src/sbin/unwind/libunbound/util/netevent.c

5112 lines
142 KiB
C

/*
* util/netevent.c - event notification
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains event notification functions.
*/
#include "config.h"
#include "util/netevent.h"
#include "util/ub_event.h"
#include "util/log.h"
#include "util/net_help.h"
#include "util/tcp_conn_limit.h"
#include "util/fptr_wlist.h"
#include "util/proxy_protocol.h"
#include "util/timeval_func.h"
#include "sldns/pkthdr.h"
#include "sldns/sbuffer.h"
#include "sldns/str2wire.h"
#include "dnstap/dnstap.h"
#include "dnscrypt/dnscrypt.h"
#include "services/listen_dnsport.h"
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_OPENSSL_SSL_H
#include <openssl/ssl.h>
#endif
#ifdef HAVE_OPENSSL_ERR_H
#include <openssl/err.h>
#endif
#ifdef HAVE_LINUX_NET_TSTAMP_H
#include <linux/net_tstamp.h>
#endif
/* -------- Start of local definitions -------- */
/** if CMSG_ALIGN is not defined on this platform, a workaround */
#ifndef CMSG_ALIGN
# ifdef __CMSG_ALIGN
# define CMSG_ALIGN(n) __CMSG_ALIGN(n)
# elif defined(CMSG_DATA_ALIGN)
# define CMSG_ALIGN _CMSG_DATA_ALIGN
# else
# define CMSG_ALIGN(len) (((len)+sizeof(long)-1) & ~(sizeof(long)-1))
# endif
#endif
/** if CMSG_LEN is not defined on this platform, a workaround */
#ifndef CMSG_LEN
# define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr))+(len))
#endif
/** if CMSG_SPACE is not defined on this platform, a workaround */
#ifndef CMSG_SPACE
# ifdef _CMSG_HDR_ALIGN
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+_CMSG_HDR_ALIGN(sizeof(struct cmsghdr)))
# else
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+CMSG_ALIGN(sizeof(struct cmsghdr)))
# endif
#endif
/** The TCP writing query timeout in milliseconds */
#define TCP_QUERY_TIMEOUT 120000
/** The minimum actual TCP timeout to use, regardless of what we advertise,
* in msec */
#define TCP_QUERY_TIMEOUT_MINIMUM 200
#ifndef NONBLOCKING_IS_BROKEN
/** number of UDP reads to perform per read indication from select */
#define NUM_UDP_PER_SELECT 100
#else
#define NUM_UDP_PER_SELECT 1
#endif
/** timeout in millisec to wait for write to unblock, packets dropped after.*/
#define SEND_BLOCKED_WAIT_TIMEOUT 200
/** max number of times to wait for write to unblock, packets dropped after.*/
#define SEND_BLOCKED_MAX_RETRY 5
/** Let's make timestamping code cleaner and redefine SO_TIMESTAMP* */
#ifndef SO_TIMESTAMP
#define SO_TIMESTAMP 29
#endif
#ifndef SO_TIMESTAMPNS
#define SO_TIMESTAMPNS 35
#endif
#ifndef SO_TIMESTAMPING
#define SO_TIMESTAMPING 37
#endif
/**
* The internal event structure for keeping ub_event info for the event.
* Possibly other structures (list, tree) this is part of.
*/
struct internal_event {
/** the comm base */
struct comm_base* base;
/** ub_event event type */
struct ub_event* ev;
};
/**
* Internal base structure, so that every thread has its own events.
*/
struct internal_base {
/** ub_event event_base type. */
struct ub_event_base* base;
/** seconds time pointer points here */
time_t secs;
/** timeval with current time */
struct timeval now;
/** the event used for slow_accept timeouts */
struct ub_event* slow_accept;
/** true if slow_accept is enabled */
int slow_accept_enabled;
/** last log time for slow logging of file descriptor errors */
time_t last_slow_log;
/** last log time for slow logging of write wait failures */
time_t last_writewait_log;
};
/**
* Internal timer structure, to store timer event in.
*/
struct internal_timer {
/** the super struct from which derived */
struct comm_timer super;
/** the comm base */
struct comm_base* base;
/** ub_event event type */
struct ub_event* ev;
/** is timer enabled */
uint8_t enabled;
};
/**
* Internal signal structure, to store signal event in.
*/
struct internal_signal {
/** ub_event event type */
struct ub_event* ev;
/** next in signal list */
struct internal_signal* next;
};
/** create a tcp handler with a parent */
static struct comm_point* comm_point_create_tcp_handler(
struct comm_base *base, struct comm_point* parent, size_t bufsize,
struct sldns_buffer* spoolbuf, comm_point_callback_type* callback,
void* callback_arg, struct unbound_socket* socket);
/* -------- End of local definitions -------- */
struct comm_base*
comm_base_create(int sigs)
{
struct comm_base* b = (struct comm_base*)calloc(1,
sizeof(struct comm_base));
const char *evnm="event", *evsys="", *evmethod="";
if(!b)
return NULL;
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
if(!b->eb) {
free(b);
return NULL;
}
b->eb->base = ub_default_event_base(sigs, &b->eb->secs, &b->eb->now);
if(!b->eb->base) {
free(b->eb);
free(b);
return NULL;
}
ub_comm_base_now(b);
ub_get_event_sys(b->eb->base, &evnm, &evsys, &evmethod);
verbose(VERB_ALGO, "%s %s uses %s method.", evnm, evsys, evmethod);
return b;
}
struct comm_base*
comm_base_create_event(struct ub_event_base* base)
{
struct comm_base* b = (struct comm_base*)calloc(1,
sizeof(struct comm_base));
if(!b)
return NULL;
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
if(!b->eb) {
free(b);
return NULL;
}
b->eb->base = base;
ub_comm_base_now(b);
return b;
}
void
comm_base_delete(struct comm_base* b)
{
if(!b)
return;
if(b->eb->slow_accept_enabled) {
if(ub_event_del(b->eb->slow_accept) != 0) {
log_err("could not event_del slow_accept");
}
ub_event_free(b->eb->slow_accept);
}
ub_event_base_free(b->eb->base);
b->eb->base = NULL;
free(b->eb);
free(b);
}
void
comm_base_delete_no_base(struct comm_base* b)
{
if(!b)
return;
if(b->eb->slow_accept_enabled) {
if(ub_event_del(b->eb->slow_accept) != 0) {
log_err("could not event_del slow_accept");
}
ub_event_free(b->eb->slow_accept);
}
b->eb->base = NULL;
free(b->eb);
free(b);
}
void
comm_base_timept(struct comm_base* b, time_t** tt, struct timeval** tv)
{
*tt = &b->eb->secs;
*tv = &b->eb->now;
}
void
comm_base_dispatch(struct comm_base* b)
{
int retval;
retval = ub_event_base_dispatch(b->eb->base);
if(retval < 0) {
fatal_exit("event_dispatch returned error %d, "
"errno is %s", retval, strerror(errno));
}
}
void comm_base_exit(struct comm_base* b)
{
if(ub_event_base_loopexit(b->eb->base) != 0) {
log_err("Could not loopexit");
}
}
void comm_base_set_slow_accept_handlers(struct comm_base* b,
void (*stop_acc)(void*), void (*start_acc)(void*), void* arg)
{
b->stop_accept = stop_acc;
b->start_accept = start_acc;
b->cb_arg = arg;
}
struct ub_event_base* comm_base_internal(struct comm_base* b)
{
return b->eb->base;
}
/** see if errno for udp has to be logged or not uses globals */
static int
udp_send_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
{
/* do not log transient errors (unless high verbosity) */
#if defined(ENETUNREACH) || defined(EHOSTDOWN) || defined(EHOSTUNREACH) || defined(ENETDOWN)
switch(errno) {
# ifdef ENETUNREACH
case ENETUNREACH:
# endif
# ifdef EHOSTDOWN
case EHOSTDOWN:
# endif
# ifdef EHOSTUNREACH
case EHOSTUNREACH:
# endif
# ifdef ENETDOWN
case ENETDOWN:
# endif
case EPERM:
case EACCES:
if(verbosity < VERB_ALGO)
return 0;
default:
break;
}
#endif
/* permission denied is gotten for every send if the
* network is disconnected (on some OS), squelch it */
if( ((errno == EPERM)
# ifdef EADDRNOTAVAIL
/* 'Cannot assign requested address' also when disconnected */
|| (errno == EADDRNOTAVAIL)
# endif
) && verbosity < VERB_ALGO)
return 0;
# ifdef EADDRINUSE
/* If SO_REUSEADDR is set, we could try to connect to the same server
* from the same source port twice. */
if(errno == EADDRINUSE && verbosity < VERB_DETAIL)
return 0;
# endif
/* squelch errors where people deploy AAAA ::ffff:bla for
* authority servers, which we try for intranets. */
if(errno == EINVAL && addr_is_ip4mapped(
(struct sockaddr_storage*)addr, addrlen) &&
verbosity < VERB_DETAIL)
return 0;
/* SO_BROADCAST sockopt can give access to 255.255.255.255,
* but a dns cache does not need it. */
if(errno == EACCES && addr_is_broadcast(
(struct sockaddr_storage*)addr, addrlen) &&
verbosity < VERB_DETAIL)
return 0;
return 1;
}
int tcp_connect_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
{
return udp_send_errno_needs_log(addr, addrlen);
}
/* send a UDP reply */
int
comm_point_send_udp_msg(struct comm_point *c, sldns_buffer* packet,
struct sockaddr* addr, socklen_t addrlen, int is_connected)
{
ssize_t sent;
log_assert(c->fd != -1);
#ifdef UNBOUND_DEBUG
if(sldns_buffer_remaining(packet) == 0)
log_err("error: send empty UDP packet");
#endif
log_assert(addr && addrlen > 0);
if(!is_connected) {
sent = sendto(c->fd, (void*)sldns_buffer_begin(packet),
sldns_buffer_remaining(packet), 0,
addr, addrlen);
} else {
sent = send(c->fd, (void*)sldns_buffer_begin(packet),
sldns_buffer_remaining(packet), 0);
}
if(sent == -1) {
/* try again and block, waiting for IO to complete,
* we want to send the answer, and we will wait for
* the ethernet interface buffer to have space. */
#ifndef USE_WINSOCK
if(errno == EAGAIN || errno == EINTR ||
# ifdef EWOULDBLOCK
errno == EWOULDBLOCK ||
# endif
errno == ENOBUFS) {
#else
if(WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAEINTR ||
WSAGetLastError() == WSAENOBUFS ||
WSAGetLastError() == WSAEWOULDBLOCK) {
#endif
int retries = 0;
/* if we set the fd blocking, other threads suddenly
* have a blocking fd that they operate on */
while(sent == -1 && retries < SEND_BLOCKED_MAX_RETRY && (
#ifndef USE_WINSOCK
errno == EAGAIN || errno == EINTR ||
# ifdef EWOULDBLOCK
errno == EWOULDBLOCK ||
# endif
errno == ENOBUFS
#else
WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAEINTR ||
WSAGetLastError() == WSAENOBUFS ||
WSAGetLastError() == WSAEWOULDBLOCK
#endif
)) {
#if defined(HAVE_POLL) || defined(USE_WINSOCK)
int send_nobufs = (
#ifndef USE_WINSOCK
errno == ENOBUFS
#else
WSAGetLastError() == WSAENOBUFS
#endif
);
struct pollfd p;
int pret;
memset(&p, 0, sizeof(p));
p.fd = c->fd;
p.events = POLLOUT | POLLERR | POLLHUP;
# ifndef USE_WINSOCK
pret = poll(&p, 1, SEND_BLOCKED_WAIT_TIMEOUT);
# else
pret = WSAPoll(&p, 1,
SEND_BLOCKED_WAIT_TIMEOUT);
# endif
if(pret == 0) {
/* timer expired */
struct comm_base* b = c->ev->base;
if(b->eb->last_writewait_log+SLOW_LOG_TIME <=
b->eb->secs) {
b->eb->last_writewait_log = b->eb->secs;
verbose(VERB_OPS, "send udp blocked "
"for long, dropping packet.");
}
return 0;
} else if(pret < 0 &&
#ifndef USE_WINSOCK
errno != EAGAIN && errno != EINTR &&
# ifdef EWOULDBLOCK
errno != EWOULDBLOCK &&
# endif
errno != ENOBUFS
#else
WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAEINTR &&
WSAGetLastError() != WSAENOBUFS &&
WSAGetLastError() != WSAEWOULDBLOCK
#endif
) {
log_err("poll udp out failed: %s",
sock_strerror(errno));
return 0;
} else if((pret < 0 &&
#ifndef USE_WINSOCK
errno == ENOBUFS
#else
WSAGetLastError() == WSAENOBUFS
#endif
) || (send_nobufs && retries > 0)) {
/* ENOBUFS, and poll returned without
* a timeout. Or the retried send call
* returned ENOBUFS. It is good to
* wait a bit for the error to clear. */
/* The timeout is 20*(2^(retries+1)),
* it increases exponentially, starting
* at 40 msec. After 5 tries, 1240 msec
* have passed in total, when poll
* returned the error, and 1200 msec
* when send returned the errors. */
#ifndef USE_WINSOCK
pret = poll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
#else
pret = WSAPoll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
#endif
if(pret < 0 &&
#ifndef USE_WINSOCK
errno != EAGAIN && errno != EINTR &&
# ifdef EWOULDBLOCK
errno != EWOULDBLOCK &&
# endif
errno != ENOBUFS
#else
WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAEINTR &&
WSAGetLastError() != WSAENOBUFS &&
WSAGetLastError() != WSAEWOULDBLOCK
#endif
) {
log_err("poll udp out timer failed: %s",
sock_strerror(errno));
}
}
#endif /* defined(HAVE_POLL) || defined(USE_WINSOCK) */
retries++;
if (!is_connected) {
sent = sendto(c->fd, (void*)sldns_buffer_begin(packet),
sldns_buffer_remaining(packet), 0,
addr, addrlen);
} else {
sent = send(c->fd, (void*)sldns_buffer_begin(packet),
sldns_buffer_remaining(packet), 0);
}
}
}
}
if(sent == -1) {
if(!udp_send_errno_needs_log(addr, addrlen))
return 0;
if (!is_connected) {
verbose(VERB_OPS, "sendto failed: %s", sock_strerror(errno));
} else {
verbose(VERB_OPS, "send failed: %s", sock_strerror(errno));
}
if(addr)
log_addr(VERB_OPS, "remote address is",
(struct sockaddr_storage*)addr, addrlen);
return 0;
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
log_err("sent %d in place of %d bytes",
(int)sent, (int)sldns_buffer_remaining(packet));
return 0;
}
return 1;
}
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && (defined(HAVE_RECVMSG) || defined(HAVE_SENDMSG))
/** print debug ancillary info */
static void p_ancil(const char* str, struct comm_reply* r)
{
if(r->srctype != 4 && r->srctype != 6) {
log_info("%s: unknown srctype %d", str, r->srctype);
return;
}
if(r->srctype == 6) {
#ifdef IPV6_PKTINFO
char buf[1024];
if(inet_ntop(AF_INET6, &r->pktinfo.v6info.ipi6_addr,
buf, (socklen_t)sizeof(buf)) == 0) {
(void)strlcpy(buf, "(inet_ntop error)", sizeof(buf));
}
buf[sizeof(buf)-1]=0;
log_info("%s: %s %d", str, buf, r->pktinfo.v6info.ipi6_ifindex);
#endif
} else if(r->srctype == 4) {
#ifdef IP_PKTINFO
char buf1[1024], buf2[1024];
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_addr,
buf1, (socklen_t)sizeof(buf1)) == 0) {
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
}
buf1[sizeof(buf1)-1]=0;
#ifdef HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_spec_dst,
buf2, (socklen_t)sizeof(buf2)) == 0) {
(void)strlcpy(buf2, "(inet_ntop error)", sizeof(buf2));
}
buf2[sizeof(buf2)-1]=0;
#else
buf2[0]=0;
#endif
log_info("%s: %d %s %s", str, r->pktinfo.v4info.ipi_ifindex,
buf1, buf2);
#elif defined(IP_RECVDSTADDR)
char buf1[1024];
if(inet_ntop(AF_INET, &r->pktinfo.v4addr,
buf1, (socklen_t)sizeof(buf1)) == 0) {
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
}
buf1[sizeof(buf1)-1]=0;
log_info("%s: %s", str, buf1);
#endif /* IP_PKTINFO or PI_RECVDSTDADDR */
}
}
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG||HAVE_SENDMSG */
/** send a UDP reply over specified interface*/
static int
comm_point_send_udp_msg_if(struct comm_point *c, sldns_buffer* packet,
struct sockaddr* addr, socklen_t addrlen, struct comm_reply* r)
{
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_SENDMSG)
ssize_t sent;
struct msghdr msg;
struct iovec iov[1];
union {
struct cmsghdr hdr;
char buf[256];
} control;
#ifndef S_SPLINT_S
struct cmsghdr *cmsg;
#endif /* S_SPLINT_S */
log_assert(c->fd != -1);
#ifdef UNBOUND_DEBUG
if(sldns_buffer_remaining(packet) == 0)
log_err("error: send empty UDP packet");
#endif
log_assert(addr && addrlen > 0);
msg.msg_name = addr;
msg.msg_namelen = addrlen;
iov[0].iov_base = sldns_buffer_begin(packet);
iov[0].iov_len = sldns_buffer_remaining(packet);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = control.buf;
#ifndef S_SPLINT_S
msg.msg_controllen = sizeof(control.buf);
#endif /* S_SPLINT_S */
msg.msg_flags = 0;
#ifndef S_SPLINT_S
cmsg = CMSG_FIRSTHDR(&msg);
if(r->srctype == 4) {
#ifdef IP_PKTINFO
void* cmsg_data;
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control.buf));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4info,
sizeof(struct in_pktinfo));
/* unset the ifindex to not bypass the routing tables */
cmsg_data = CMSG_DATA(cmsg);
((struct in_pktinfo *) cmsg_data)->ipi_ifindex = 0;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
/* zero the padding bytes inserted by the CMSG_LEN */
if(sizeof(struct in_pktinfo) < cmsg->cmsg_len)
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
sizeof(struct in_pktinfo), 0, cmsg->cmsg_len
- sizeof(struct in_pktinfo));
#elif defined(IP_SENDSRCADDR)
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_addr));
log_assert(msg.msg_controllen <= sizeof(control.buf));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4addr,
sizeof(struct in_addr));
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr));
/* zero the padding bytes inserted by the CMSG_LEN */
if(sizeof(struct in_addr) < cmsg->cmsg_len)
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
sizeof(struct in_addr), 0, cmsg->cmsg_len
- sizeof(struct in_addr));
#else
verbose(VERB_ALGO, "no IP_PKTINFO or IP_SENDSRCADDR");
msg.msg_control = NULL;
#endif /* IP_PKTINFO or IP_SENDSRCADDR */
} else if(r->srctype == 6) {
void* cmsg_data;
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control.buf));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v6info,
sizeof(struct in6_pktinfo));
/* unset the ifindex to not bypass the routing tables */
cmsg_data = CMSG_DATA(cmsg);
((struct in6_pktinfo *) cmsg_data)->ipi6_ifindex = 0;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
/* zero the padding bytes inserted by the CMSG_LEN */
if(sizeof(struct in6_pktinfo) < cmsg->cmsg_len)
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
sizeof(struct in6_pktinfo), 0, cmsg->cmsg_len
- sizeof(struct in6_pktinfo));
} else {
/* try to pass all 0 to use default route */
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control.buf));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
memset(CMSG_DATA(cmsg), 0, sizeof(struct in6_pktinfo));
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
/* zero the padding bytes inserted by the CMSG_LEN */
if(sizeof(struct in6_pktinfo) < cmsg->cmsg_len)
memset(((uint8_t*)(CMSG_DATA(cmsg))) +
sizeof(struct in6_pktinfo), 0, cmsg->cmsg_len
- sizeof(struct in6_pktinfo));
}
#endif /* S_SPLINT_S */
if(verbosity >= VERB_ALGO && r->srctype != 0)
p_ancil("send_udp over interface", r);
sent = sendmsg(c->fd, &msg, 0);
if(sent == -1) {
/* try again and block, waiting for IO to complete,
* we want to send the answer, and we will wait for
* the ethernet interface buffer to have space. */
#ifndef USE_WINSOCK
if(errno == EAGAIN || errno == EINTR ||
# ifdef EWOULDBLOCK
errno == EWOULDBLOCK ||
# endif
errno == ENOBUFS) {
#else
if(WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAEINTR ||
WSAGetLastError() == WSAENOBUFS ||
WSAGetLastError() == WSAEWOULDBLOCK) {
#endif
int retries = 0;
while(sent == -1 && retries < SEND_BLOCKED_MAX_RETRY && (
#ifndef USE_WINSOCK
errno == EAGAIN || errno == EINTR ||
# ifdef EWOULDBLOCK
errno == EWOULDBLOCK ||
# endif
errno == ENOBUFS
#else
WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAEINTR ||
WSAGetLastError() == WSAENOBUFS ||
WSAGetLastError() == WSAEWOULDBLOCK
#endif
)) {
#if defined(HAVE_POLL) || defined(USE_WINSOCK)
int send_nobufs = (
#ifndef USE_WINSOCK
errno == ENOBUFS
#else
WSAGetLastError() == WSAENOBUFS
#endif
);
struct pollfd p;
int pret;
memset(&p, 0, sizeof(p));
p.fd = c->fd;
p.events = POLLOUT | POLLERR | POLLHUP;
# ifndef USE_WINSOCK
pret = poll(&p, 1, SEND_BLOCKED_WAIT_TIMEOUT);
# else
pret = WSAPoll(&p, 1,
SEND_BLOCKED_WAIT_TIMEOUT);
# endif
if(pret == 0) {
/* timer expired */
struct comm_base* b = c->ev->base;
if(b->eb->last_writewait_log+SLOW_LOG_TIME <=
b->eb->secs) {
b->eb->last_writewait_log = b->eb->secs;
verbose(VERB_OPS, "send udp blocked "
"for long, dropping packet.");
}
return 0;
} else if(pret < 0 &&
#ifndef USE_WINSOCK
errno != EAGAIN && errno != EINTR &&
# ifdef EWOULDBLOCK
errno != EWOULDBLOCK &&
# endif
errno != ENOBUFS
#else
WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAEINTR &&
WSAGetLastError() != WSAENOBUFS &&
WSAGetLastError() != WSAEWOULDBLOCK
#endif
) {
log_err("poll udp out failed: %s",
sock_strerror(errno));
return 0;
} else if((pret < 0 &&
#ifndef USE_WINSOCK
errno == ENOBUFS
#else
WSAGetLastError() == WSAENOBUFS
#endif
) || (send_nobufs && retries > 0)) {
/* ENOBUFS, and poll returned without
* a timeout. Or the retried send call
* returned ENOBUFS. It is good to
* wait a bit for the error to clear. */
/* The timeout is 20*(2^(retries+1)),
* it increases exponentially, starting
* at 40 msec. After 5 tries, 1240 msec
* have passed in total, when poll
* returned the error, and 1200 msec
* when send returned the errors. */
#ifndef USE_WINSOCK
pret = poll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
#else
pret = WSAPoll(NULL, 0, (SEND_BLOCKED_WAIT_TIMEOUT/10)<<(retries+1));
#endif
if(pret < 0 &&
#ifndef USE_WINSOCK
errno != EAGAIN && errno != EINTR &&
# ifdef EWOULDBLOCK
errno != EWOULDBLOCK &&
# endif
errno != ENOBUFS
#else
WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAEINTR &&
WSAGetLastError() != WSAENOBUFS &&
WSAGetLastError() != WSAEWOULDBLOCK
#endif
) {
log_err("poll udp out timer failed: %s",
sock_strerror(errno));
}
}
#endif /* defined(HAVE_POLL) || defined(USE_WINSOCK) */
retries++;
sent = sendmsg(c->fd, &msg, 0);
}
}
}
if(sent == -1) {
if(!udp_send_errno_needs_log(addr, addrlen))
return 0;
verbose(VERB_OPS, "sendmsg failed: %s", strerror(errno));
log_addr(VERB_OPS, "remote address is",
(struct sockaddr_storage*)addr, addrlen);
#ifdef __NetBSD__
/* netbsd 7 has IP_PKTINFO for recv but not send */
if(errno == EINVAL && r->srctype == 4)
log_err("sendmsg: No support for sendmsg(IP_PKTINFO). "
"Please disable interface-automatic");
#endif
return 0;
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
log_err("sent %d in place of %d bytes",
(int)sent, (int)sldns_buffer_remaining(packet));
return 0;
}
return 1;
#else
(void)c;
(void)packet;
(void)addr;
(void)addrlen;
(void)r;
log_err("sendmsg: IPV6_PKTINFO not supported");
return 0;
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_SENDMSG */
}
/** return true is UDP receive error needs to be logged */
static int udp_recv_needs_log(int err)
{
switch(err) {
case EACCES: /* some hosts send ICMP 'Permission Denied' */
#ifndef USE_WINSOCK
case ECONNREFUSED:
# ifdef ENETUNREACH
case ENETUNREACH:
# endif
# ifdef EHOSTDOWN
case EHOSTDOWN:
# endif
# ifdef EHOSTUNREACH
case EHOSTUNREACH:
# endif
# ifdef ENETDOWN
case ENETDOWN:
# endif
#else /* USE_WINSOCK */
case WSAECONNREFUSED:
case WSAENETUNREACH:
case WSAEHOSTDOWN:
case WSAEHOSTUNREACH:
case WSAENETDOWN:
#endif
if(verbosity >= VERB_ALGO)
return 1;
return 0;
default:
break;
}
return 1;
}
/** Parses the PROXYv2 header from buf and updates the comm_reply struct.
* Returns 1 on success, 0 on failure. */
static int consume_pp2_header(struct sldns_buffer* buf, struct comm_reply* rep,
int stream) {
size_t size;
struct pp2_header *header;
int err = pp2_read_header(sldns_buffer_begin(buf),
sldns_buffer_remaining(buf));
if(err) return 0;
header = (struct pp2_header*)sldns_buffer_begin(buf);
size = PP2_HEADER_SIZE + ntohs(header->len);
if((header->ver_cmd & 0xF) == PP2_CMD_LOCAL) {
/* A connection from the proxy itself.
* No need to do anything with addresses. */
goto done;
}
if(header->fam_prot == PP2_UNSPEC_UNSPEC) {
/* Unspecified family and protocol. This could be used for
* health checks by proxies.
* No need to do anything with addresses. */
goto done;
}
/* Read the proxied address */
switch(header->fam_prot) {
case PP2_INET_STREAM:
case PP2_INET_DGRAM:
{
struct sockaddr_in* addr =
(struct sockaddr_in*)&rep->client_addr;
addr->sin_family = AF_INET;
addr->sin_addr.s_addr = header->addr.addr4.src_addr;
addr->sin_port = header->addr.addr4.src_port;
rep->client_addrlen = (socklen_t)sizeof(struct sockaddr_in);
}
/* Ignore the destination address; it should be us. */
break;
case PP2_INET6_STREAM:
case PP2_INET6_DGRAM:
{
struct sockaddr_in6* addr =
(struct sockaddr_in6*)&rep->client_addr;
memset(addr, 0, sizeof(*addr));
addr->sin6_family = AF_INET6;
memcpy(&addr->sin6_addr,
header->addr.addr6.src_addr, 16);
addr->sin6_port = header->addr.addr6.src_port;
rep->client_addrlen = (socklen_t)sizeof(struct sockaddr_in6);
}
/* Ignore the destination address; it should be us. */
break;
default:
log_err("proxy_protocol: unsupported family and "
"protocol 0x%x", (int)header->fam_prot);
return 0;
}
rep->is_proxied = 1;
done:
if(!stream) {
/* We are reading a whole packet;
* Move the rest of the data to overwrite the PROXYv2 header */
/* XXX can we do better to avoid memmove? */
memmove(header, ((char*)header)+size,
sldns_buffer_limit(buf)-size);
sldns_buffer_set_limit(buf, sldns_buffer_limit(buf)-size);
}
return 1;
}
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG)
void
comm_point_udp_ancil_callback(int fd, short event, void* arg)
{
struct comm_reply rep;
struct msghdr msg;
struct iovec iov[1];
ssize_t rcv;
union {
struct cmsghdr hdr;
char buf[256];
} ancil;
int i;
#ifndef S_SPLINT_S
struct cmsghdr* cmsg;
#endif /* S_SPLINT_S */
#ifdef HAVE_LINUX_NET_TSTAMP_H
struct timespec *ts;
#endif /* HAVE_LINUX_NET_TSTAMP_H */
rep.c = (struct comm_point*)arg;
log_assert(rep.c->type == comm_udp);
if(!(event&UB_EV_READ))
return;
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
ub_comm_base_now(rep.c->ev->base);
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
sldns_buffer_clear(rep.c->buffer);
timeval_clear(&rep.c->recv_tv);
rep.remote_addrlen = (socklen_t)sizeof(rep.remote_addr);
log_assert(fd != -1);
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
msg.msg_name = &rep.remote_addr;
msg.msg_namelen = (socklen_t)sizeof(rep.remote_addr);
iov[0].iov_base = sldns_buffer_begin(rep.c->buffer);
iov[0].iov_len = sldns_buffer_remaining(rep.c->buffer);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = ancil.buf;
#ifndef S_SPLINT_S
msg.msg_controllen = sizeof(ancil.buf);
#endif /* S_SPLINT_S */
msg.msg_flags = 0;
rcv = recvmsg(fd, &msg, MSG_DONTWAIT);
if(rcv == -1) {
if(errno != EAGAIN && errno != EINTR
&& udp_recv_needs_log(errno)) {
log_err("recvmsg failed: %s", strerror(errno));
}
return;
}
rep.remote_addrlen = msg.msg_namelen;
sldns_buffer_skip(rep.c->buffer, rcv);
sldns_buffer_flip(rep.c->buffer);
rep.srctype = 0;
rep.is_proxied = 0;
#ifndef S_SPLINT_S
for(cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if( cmsg->cmsg_level == IPPROTO_IPV6 &&
cmsg->cmsg_type == IPV6_PKTINFO) {
rep.srctype = 6;
memmove(&rep.pktinfo.v6info, CMSG_DATA(cmsg),
sizeof(struct in6_pktinfo));
break;
#ifdef IP_PKTINFO
} else if( cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_PKTINFO) {
rep.srctype = 4;
memmove(&rep.pktinfo.v4info, CMSG_DATA(cmsg),
sizeof(struct in_pktinfo));
break;
#elif defined(IP_RECVDSTADDR)
} else if( cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_RECVDSTADDR) {
rep.srctype = 4;
memmove(&rep.pktinfo.v4addr, CMSG_DATA(cmsg),
sizeof(struct in_addr));
break;
#endif /* IP_PKTINFO or IP_RECVDSTADDR */
#ifdef HAVE_LINUX_NET_TSTAMP_H
} else if( cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SO_TIMESTAMPNS) {
ts = (struct timespec *)CMSG_DATA(cmsg);
TIMESPEC_TO_TIMEVAL(&rep.c->recv_tv, ts);
} else if( cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SO_TIMESTAMPING) {
ts = (struct timespec *)CMSG_DATA(cmsg);
TIMESPEC_TO_TIMEVAL(&rep.c->recv_tv, ts);
} else if( cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SO_TIMESTAMP) {
memmove(&rep.c->recv_tv, CMSG_DATA(cmsg), sizeof(struct timeval));
#endif /* HAVE_LINUX_NET_TSTAMP_H */
}
}
if(verbosity >= VERB_ALGO && rep.srctype != 0)
p_ancil("receive_udp on interface", &rep);
#endif /* S_SPLINT_S */
if(rep.c->pp2_enabled && !consume_pp2_header(rep.c->buffer,
&rep, 0)) {
log_err("proxy_protocol: could not consume PROXYv2 header");
return;
}
if(!rep.is_proxied) {
rep.client_addrlen = rep.remote_addrlen;
memmove(&rep.client_addr, &rep.remote_addr,
rep.remote_addrlen);
}
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
/* send back immediate reply */
struct sldns_buffer *buffer;
#ifdef USE_DNSCRYPT
buffer = rep.c->dnscrypt_buffer;
#else
buffer = rep.c->buffer;
#endif
(void)comm_point_send_udp_msg_if(rep.c, buffer,
(struct sockaddr*)&rep.remote_addr,
rep.remote_addrlen, &rep);
}
if(!rep.c || rep.c->fd == -1) /* commpoint closed */
break;
}
}
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG */
void
comm_point_udp_callback(int fd, short event, void* arg)
{
struct comm_reply rep;
ssize_t rcv;
int i;
struct sldns_buffer *buffer;
rep.c = (struct comm_point*)arg;
log_assert(rep.c->type == comm_udp);
if(!(event&UB_EV_READ))
return;
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
ub_comm_base_now(rep.c->ev->base);
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
sldns_buffer_clear(rep.c->buffer);
rep.remote_addrlen = (socklen_t)sizeof(rep.remote_addr);
log_assert(fd != -1);
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
rcv = recvfrom(fd, (void*)sldns_buffer_begin(rep.c->buffer),
sldns_buffer_remaining(rep.c->buffer), MSG_DONTWAIT,
(struct sockaddr*)&rep.remote_addr, &rep.remote_addrlen);
if(rcv == -1) {
#ifndef USE_WINSOCK
if(errno != EAGAIN && errno != EINTR
&& udp_recv_needs_log(errno))
log_err("recvfrom %d failed: %s",
fd, strerror(errno));
#else
if(WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAECONNRESET &&
WSAGetLastError()!= WSAEWOULDBLOCK &&
udp_recv_needs_log(WSAGetLastError()))
log_err("recvfrom failed: %s",
wsa_strerror(WSAGetLastError()));
#endif
return;
}
sldns_buffer_skip(rep.c->buffer, rcv);
sldns_buffer_flip(rep.c->buffer);
rep.srctype = 0;
rep.is_proxied = 0;
if(rep.c->pp2_enabled && !consume_pp2_header(rep.c->buffer,
&rep, 0)) {
log_err("proxy_protocol: could not consume PROXYv2 header");
return;
}
if(!rep.is_proxied) {
rep.client_addrlen = rep.remote_addrlen;
memmove(&rep.client_addr, &rep.remote_addr,
rep.remote_addrlen);
}
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
/* send back immediate reply */
#ifdef USE_DNSCRYPT
buffer = rep.c->dnscrypt_buffer;
#else
buffer = rep.c->buffer;
#endif
(void)comm_point_send_udp_msg(rep.c, buffer,
(struct sockaddr*)&rep.remote_addr,
rep.remote_addrlen, 0);
}
if(!rep.c || rep.c->fd != fd) /* commpoint closed to -1 or reused for
another UDP port. Note rep.c cannot be reused with TCP fd. */
break;
}
}
int adjusted_tcp_timeout(struct comm_point* c)
{
if(c->tcp_timeout_msec < TCP_QUERY_TIMEOUT_MINIMUM)
return TCP_QUERY_TIMEOUT_MINIMUM;
return c->tcp_timeout_msec;
}
/** Use a new tcp handler for new query fd, set to read query */
static void
setup_tcp_handler(struct comm_point* c, int fd, int cur, int max)
{
int handler_usage;
log_assert(c->type == comm_tcp || c->type == comm_http);
log_assert(c->fd == -1);
sldns_buffer_clear(c->buffer);
#ifdef USE_DNSCRYPT
if (c->dnscrypt)
sldns_buffer_clear(c->dnscrypt_buffer);
#endif
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
c->tcp_keepalive = 0;
/* if more than half the tcp handlers are in use, use a shorter
* timeout for this TCP connection, we need to make space for
* other connections to be able to get attention */
/* If > 50% TCP handler structures in use, set timeout to 1/100th
* configured value.
* If > 65%TCP handler structures in use, set to 1/500th configured
* value.
* If > 80% TCP handler structures in use, set to 0.
*
* If the timeout to use falls below 200 milliseconds, an actual
* timeout of 200ms is used.
*/
handler_usage = (cur * 100) / max;
if(handler_usage > 50 && handler_usage <= 65)
c->tcp_timeout_msec /= 100;
else if (handler_usage > 65 && handler_usage <= 80)
c->tcp_timeout_msec /= 500;
else if (handler_usage > 80)
c->tcp_timeout_msec = 0;
comm_point_start_listening(c, fd, adjusted_tcp_timeout(c));
}
void comm_base_handle_slow_accept(int ATTR_UNUSED(fd),
short ATTR_UNUSED(event), void* arg)
{
struct comm_base* b = (struct comm_base*)arg;
/* timeout for the slow accept, re-enable accepts again */
if(b->start_accept) {
verbose(VERB_ALGO, "wait is over, slow accept disabled");
fptr_ok(fptr_whitelist_start_accept(b->start_accept));
(*b->start_accept)(b->cb_arg);
b->eb->slow_accept_enabled = 0;
}
}
int comm_point_perform_accept(struct comm_point* c,
struct sockaddr_storage* addr, socklen_t* addrlen)
{
int new_fd;
*addrlen = (socklen_t)sizeof(*addr);
#ifndef HAVE_ACCEPT4
new_fd = accept(c->fd, (struct sockaddr*)addr, addrlen);
#else
/* SOCK_NONBLOCK saves extra calls to fcntl for the same result */
new_fd = accept4(c->fd, (struct sockaddr*)addr, addrlen, SOCK_NONBLOCK);
#endif
if(new_fd == -1) {
#ifndef USE_WINSOCK
/* EINTR is signal interrupt. others are closed connection. */
if( errno == EINTR || errno == EAGAIN
#ifdef EWOULDBLOCK
|| errno == EWOULDBLOCK
#endif
#ifdef ECONNABORTED
|| errno == ECONNABORTED
#endif
#ifdef EPROTO
|| errno == EPROTO
#endif /* EPROTO */
)
return -1;
#if defined(ENFILE) && defined(EMFILE)
if(errno == ENFILE || errno == EMFILE) {
/* out of file descriptors, likely outside of our
* control. stop accept() calls for some time */
if(c->ev->base->stop_accept) {
struct comm_base* b = c->ev->base;
struct timeval tv;
verbose(VERB_ALGO, "out of file descriptors: "
"slow accept");
ub_comm_base_now(b);
if(b->eb->last_slow_log+SLOW_LOG_TIME <=
b->eb->secs) {
b->eb->last_slow_log = b->eb->secs;
verbose(VERB_OPS, "accept failed, "
"slow down accept for %d "
"msec: %s",
NETEVENT_SLOW_ACCEPT_TIME,
sock_strerror(errno));
}
b->eb->slow_accept_enabled = 1;
fptr_ok(fptr_whitelist_stop_accept(
b->stop_accept));
(*b->stop_accept)(b->cb_arg);
/* set timeout, no mallocs */
tv.tv_sec = NETEVENT_SLOW_ACCEPT_TIME/1000;
tv.tv_usec = (NETEVENT_SLOW_ACCEPT_TIME%1000)*1000;
b->eb->slow_accept = ub_event_new(b->eb->base,
-1, UB_EV_TIMEOUT,
comm_base_handle_slow_accept, b);
if(b->eb->slow_accept == NULL) {
/* we do not want to log here, because
* that would spam the logfiles.
* error: "event_base_set failed." */
}
else if(ub_event_add(b->eb->slow_accept, &tv)
!= 0) {
/* we do not want to log here,
* error: "event_add failed." */
}
} else {
log_err("accept, with no slow down, "
"failed: %s", sock_strerror(errno));
}
return -1;
}
#endif
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAECONNRESET)
return -1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
return -1;
}
#endif
log_err_addr("accept failed", sock_strerror(errno), addr,
*addrlen);
return -1;
}
if(c->tcp_conn_limit && c->type == comm_tcp_accept) {
c->tcl_addr = tcl_addr_lookup(c->tcp_conn_limit, addr, *addrlen);
if(!tcl_new_connection(c->tcl_addr)) {
if(verbosity >= 3)
log_err_addr("accept rejected",
"connection limit exceeded", addr, *addrlen);
close(new_fd);
return -1;
}
}
#ifndef HAVE_ACCEPT4
fd_set_nonblock(new_fd);
#endif
return new_fd;
}
#ifdef USE_WINSOCK
static long win_bio_cb(BIO *b, int oper, const char* ATTR_UNUSED(argp),
#ifdef HAVE_BIO_SET_CALLBACK_EX
size_t ATTR_UNUSED(len),
#endif
int ATTR_UNUSED(argi), long argl,
#ifndef HAVE_BIO_SET_CALLBACK_EX
long retvalue
#else
int retvalue, size_t* ATTR_UNUSED(processed)
#endif
)
{
int wsa_err = WSAGetLastError(); /* store errcode before it is gone */
verbose(VERB_ALGO, "bio_cb %d, %s %s %s", oper,
(oper&BIO_CB_RETURN)?"return":"before",
(oper&BIO_CB_READ)?"read":((oper&BIO_CB_WRITE)?"write":"other"),
wsa_err==WSAEWOULDBLOCK?"wsawb":"");
/* on windows, check if previous operation caused EWOULDBLOCK */
if( (oper == (BIO_CB_READ|BIO_CB_RETURN) && argl == 0) ||
(oper == (BIO_CB_GETS|BIO_CB_RETURN) && argl == 0)) {
if(wsa_err == WSAEWOULDBLOCK)
ub_winsock_tcp_wouldblock((struct ub_event*)
BIO_get_callback_arg(b), UB_EV_READ);
}
if( (oper == (BIO_CB_WRITE|BIO_CB_RETURN) && argl == 0) ||
(oper == (BIO_CB_PUTS|BIO_CB_RETURN) && argl == 0)) {
if(wsa_err == WSAEWOULDBLOCK)
ub_winsock_tcp_wouldblock((struct ub_event*)
BIO_get_callback_arg(b), UB_EV_WRITE);
}
/* return original return value */
return retvalue;
}
/** set win bio callbacks for nonblocking operations */
void
comm_point_tcp_win_bio_cb(struct comm_point* c, void* thessl)
{
SSL* ssl = (SSL*)thessl;
/* set them both just in case, but usually they are the same BIO */
#ifdef HAVE_BIO_SET_CALLBACK_EX
BIO_set_callback_ex(SSL_get_rbio(ssl), &win_bio_cb);
#else
BIO_set_callback(SSL_get_rbio(ssl), &win_bio_cb);
#endif
BIO_set_callback_arg(SSL_get_rbio(ssl), (char*)c->ev->ev);
#ifdef HAVE_BIO_SET_CALLBACK_EX
BIO_set_callback_ex(SSL_get_wbio(ssl), &win_bio_cb);
#else
BIO_set_callback(SSL_get_wbio(ssl), &win_bio_cb);
#endif
BIO_set_callback_arg(SSL_get_wbio(ssl), (char*)c->ev->ev);
}
#endif
#ifdef HAVE_NGHTTP2
/** Create http2 session server. Per connection, after TCP accepted.*/
static int http2_session_server_create(struct http2_session* h2_session)
{
log_assert(h2_session->callbacks);
h2_session->is_drop = 0;
if(nghttp2_session_server_new(&h2_session->session,
h2_session->callbacks,
h2_session) == NGHTTP2_ERR_NOMEM) {
log_err("failed to create nghttp2 session server");
return 0;
}
return 1;
}
/** Submit http2 setting to session. Once per session. */
static int http2_submit_settings(struct http2_session* h2_session)
{
int ret;
nghttp2_settings_entry settings[1] = {
{NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS,
h2_session->c->http2_max_streams}};
ret = nghttp2_submit_settings(h2_session->session, NGHTTP2_FLAG_NONE,
settings, 1);
if(ret) {
verbose(VERB_QUERY, "http2: submit_settings failed, "
"error: %s", nghttp2_strerror(ret));
return 0;
}
return 1;
}
#endif /* HAVE_NGHTTP2 */
void
comm_point_tcp_accept_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg, *c_hdl;
int new_fd;
log_assert(c->type == comm_tcp_accept);
if(!(event & UB_EV_READ)) {
log_info("ignoring tcp accept event %d", (int)event);
return;
}
ub_comm_base_now(c->ev->base);
/* find free tcp handler. */
if(!c->tcp_free) {
log_warn("accepted too many tcp, connections full");
return;
}
/* accept incoming connection. */
c_hdl = c->tcp_free;
/* clear leftover flags from previous use, and then set the
* correct event base for the event structure for libevent */
ub_event_free(c_hdl->ev->ev);
c_hdl->ev->ev = NULL;
if((c_hdl->type == comm_tcp && c_hdl->tcp_req_info) ||
c_hdl->type == comm_local || c_hdl->type == comm_raw)
c_hdl->tcp_do_toggle_rw = 0;
else c_hdl->tcp_do_toggle_rw = 1;
if(c_hdl->type == comm_http) {
#ifdef HAVE_NGHTTP2
if(!c_hdl->h2_session ||
!http2_session_server_create(c_hdl->h2_session)) {
log_warn("failed to create nghttp2");
return;
}
if(!c_hdl->h2_session ||
!http2_submit_settings(c_hdl->h2_session)) {
log_warn("failed to submit http2 settings");
return;
}
if(!c->ssl) {
c_hdl->tcp_do_toggle_rw = 0;
c_hdl->use_h2 = 1;
}
#endif
c_hdl->ev->ev = ub_event_new(c_hdl->ev->base->eb->base, -1,
UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT,
comm_point_http_handle_callback, c_hdl);
} else {
c_hdl->ev->ev = ub_event_new(c_hdl->ev->base->eb->base, -1,
UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT,
comm_point_tcp_handle_callback, c_hdl);
}
if(!c_hdl->ev->ev) {
log_warn("could not ub_event_new, dropped tcp");
return;
}
log_assert(fd != -1);
(void)fd;
new_fd = comm_point_perform_accept(c, &c_hdl->repinfo.remote_addr,
&c_hdl->repinfo.remote_addrlen);
if(new_fd == -1)
return;
/* Copy remote_address to client_address.
* Simplest way/time for streams to do that. */
c_hdl->repinfo.client_addrlen = c_hdl->repinfo.remote_addrlen;
memmove(&c_hdl->repinfo.client_addr,
&c_hdl->repinfo.remote_addr,
c_hdl->repinfo.remote_addrlen);
if(c->ssl) {
c_hdl->ssl = incoming_ssl_fd(c->ssl, new_fd);
if(!c_hdl->ssl) {
c_hdl->fd = new_fd;
comm_point_close(c_hdl);
return;
}
c_hdl->ssl_shake_state = comm_ssl_shake_read;
#ifdef USE_WINSOCK
comm_point_tcp_win_bio_cb(c_hdl, c_hdl->ssl);
#endif
}
/* grab the tcp handler buffers */
c->cur_tcp_count++;
c->tcp_free = c_hdl->tcp_free;
c_hdl->tcp_free = NULL;
if(!c->tcp_free) {
/* stop accepting incoming queries for now. */
comm_point_stop_listening(c);
}
setup_tcp_handler(c_hdl, new_fd, c->cur_tcp_count, c->max_tcp_count);
}
/** Make tcp handler free for next assignment */
static void
reclaim_tcp_handler(struct comm_point* c)
{
log_assert(c->type == comm_tcp);
if(c->ssl) {
#ifdef HAVE_SSL
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
c->ssl = NULL;
#endif
}
comm_point_close(c);
if(c->tcp_parent) {
if(c != c->tcp_parent->tcp_free) {
c->tcp_parent->cur_tcp_count--;
c->tcp_free = c->tcp_parent->tcp_free;
c->tcp_parent->tcp_free = c;
}
if(!c->tcp_free) {
/* re-enable listening on accept socket */
comm_point_start_listening(c->tcp_parent, -1, -1);
}
}
c->tcp_more_read_again = NULL;
c->tcp_more_write_again = NULL;
c->tcp_byte_count = 0;
c->pp2_header_state = pp2_header_none;
sldns_buffer_clear(c->buffer);
}
/** do the callback when writing is done */
static void
tcp_callback_writer(struct comm_point* c)
{
log_assert(c->type == comm_tcp);
if(!c->tcp_write_and_read) {
sldns_buffer_clear(c->buffer);
c->tcp_byte_count = 0;
}
if(c->tcp_do_toggle_rw)
c->tcp_is_reading = 1;
/* switch from listening(write) to listening(read) */
if(c->tcp_req_info) {
tcp_req_info_handle_writedone(c->tcp_req_info);
} else {
comm_point_stop_listening(c);
if(c->tcp_write_and_read) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
if( (*c->callback)(c, c->cb_arg, NETEVENT_PKT_WRITTEN,
&c->repinfo) ) {
comm_point_start_listening(c, -1,
adjusted_tcp_timeout(c));
}
} else {
comm_point_start_listening(c, -1,
adjusted_tcp_timeout(c));
}
}
}
/** do the callback when reading is done */
static void
tcp_callback_reader(struct comm_point* c)
{
log_assert(c->type == comm_tcp || c->type == comm_local);
sldns_buffer_flip(c->buffer);
if(c->tcp_do_toggle_rw)
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
if(c->tcp_req_info) {
tcp_req_info_handle_readdone(c->tcp_req_info);
} else {
if(c->type == comm_tcp)
comm_point_stop_listening(c);
fptr_ok(fptr_whitelist_comm_point(c->callback));
if( (*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &c->repinfo) ) {
comm_point_start_listening(c, -1,
adjusted_tcp_timeout(c));
}
}
}
#ifdef HAVE_SSL
/** true if the ssl handshake error has to be squelched from the logs */
int
squelch_err_ssl_handshake(unsigned long err)
{
if(verbosity >= VERB_QUERY)
return 0; /* only squelch on low verbosity */
if(ERR_GET_LIB(err) == ERR_LIB_SSL &&
(ERR_GET_REASON(err) == SSL_R_HTTPS_PROXY_REQUEST ||
ERR_GET_REASON(err) == SSL_R_HTTP_REQUEST ||
ERR_GET_REASON(err) == SSL_R_WRONG_VERSION_NUMBER ||
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_BAD_CERTIFICATE
#ifdef SSL_F_TLS_POST_PROCESS_CLIENT_HELLO
|| ERR_GET_REASON(err) == SSL_R_NO_SHARED_CIPHER
#endif
#ifdef SSL_F_TLS_EARLY_POST_PROCESS_CLIENT_HELLO
|| ERR_GET_REASON(err) == SSL_R_UNKNOWN_PROTOCOL
|| ERR_GET_REASON(err) == SSL_R_UNSUPPORTED_PROTOCOL
# ifdef SSL_R_VERSION_TOO_LOW
|| ERR_GET_REASON(err) == SSL_R_VERSION_TOO_LOW
# endif
#endif
))
return 1;
return 0;
}
#endif /* HAVE_SSL */
/** continue ssl handshake */
#ifdef HAVE_SSL
static int
ssl_handshake(struct comm_point* c)
{
int r;
if(c->ssl_shake_state == comm_ssl_shake_hs_read) {
/* read condition satisfied back to writing */
comm_point_listen_for_rw(c, 0, 1);
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
if(c->ssl_shake_state == comm_ssl_shake_hs_write) {
/* write condition satisfied, back to reading */
comm_point_listen_for_rw(c, 1, 0);
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
ERR_clear_error();
r = SSL_do_handshake(c->ssl);
if(r != 1) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_WANT_READ) {
if(c->ssl_shake_state == comm_ssl_shake_read)
return 1;
c->ssl_shake_state = comm_ssl_shake_read;
comm_point_listen_for_rw(c, 1, 0);
return 1;
} else if(want == SSL_ERROR_WANT_WRITE) {
if(c->ssl_shake_state == comm_ssl_shake_write)
return 1;
c->ssl_shake_state = comm_ssl_shake_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(r == 0) {
return 0; /* closed */
} else if(want == SSL_ERROR_SYSCALL) {
/* SYSCALL and errno==0 means closed uncleanly */
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(!tcp_connect_errno_needs_log(
(struct sockaddr*)&c->repinfo.remote_addr,
c->repinfo.remote_addrlen))
return 0; /* silence connect failures that
show up because after connect this is the
first system call that accesses the socket */
if(errno != 0)
log_err("SSL_handshake syscall: %s",
strerror(errno));
return 0;
} else {
unsigned long err = ERR_get_error();
if(!squelch_err_ssl_handshake(err)) {
long vr;
log_crypto_err_io_code("ssl handshake failed",
want, err);
if((vr=SSL_get_verify_result(c->ssl)) != 0)
log_err("ssl handshake cert error: %s",
X509_verify_cert_error_string(
vr));
log_addr(VERB_OPS, "ssl handshake failed",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
}
return 0;
}
}
/* this is where peer verification could take place */
if((SSL_get_verify_mode(c->ssl)&SSL_VERIFY_PEER)) {
/* verification */
if(SSL_get_verify_result(c->ssl) == X509_V_OK) {
#ifdef HAVE_SSL_GET1_PEER_CERTIFICATE
X509* x = SSL_get1_peer_certificate(c->ssl);
#else
X509* x = SSL_get_peer_certificate(c->ssl);
#endif
if(!x) {
log_addr(VERB_ALGO, "SSL connection failed: "
"no certificate",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
log_cert(VERB_ALGO, "peer certificate", x);
#ifdef HAVE_SSL_GET0_PEERNAME
if(SSL_get0_peername(c->ssl)) {
char buf[255];
snprintf(buf, sizeof(buf), "SSL connection "
"to %s authenticated",
SSL_get0_peername(c->ssl));
log_addr(VERB_ALGO, buf, &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
} else {
#endif
log_addr(VERB_ALGO, "SSL connection "
"authenticated", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
#ifdef HAVE_SSL_GET0_PEERNAME
}
#endif
X509_free(x);
} else {
#ifdef HAVE_SSL_GET1_PEER_CERTIFICATE
X509* x = SSL_get1_peer_certificate(c->ssl);
#else
X509* x = SSL_get_peer_certificate(c->ssl);
#endif
if(x) {
log_cert(VERB_ALGO, "peer certificate", x);
X509_free(x);
}
log_addr(VERB_ALGO, "SSL connection failed: "
"failed to authenticate",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
} else {
/* unauthenticated, the verify peer flag was not set
* in c->ssl when the ssl object was created from ssl_ctx */
log_addr(VERB_ALGO, "SSL connection", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
}
#ifdef HAVE_SSL_GET0_ALPN_SELECTED
/* check if http2 use is negotiated */
if(c->type == comm_http && c->h2_session) {
const unsigned char *alpn;
unsigned int alpnlen = 0;
SSL_get0_alpn_selected(c->ssl, &alpn, &alpnlen);
if(alpnlen == 2 && memcmp("h2", alpn, 2) == 0) {
/* connection upgraded to HTTP2 */
c->tcp_do_toggle_rw = 0;
c->use_h2 = 1;
} else {
verbose(VERB_ALGO, "client doesn't support HTTP/2");
return 0;
}
}
#endif
/* setup listen rw correctly */
if(c->tcp_is_reading) {
if(c->ssl_shake_state != comm_ssl_shake_read)
comm_point_listen_for_rw(c, 1, 0);
} else {
comm_point_listen_for_rw(c, 0, 1);
}
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
#endif /* HAVE_SSL */
/** ssl read callback on TCP */
static int
ssl_handle_read(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
if(c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
if(c->pp2_enabled && c->pp2_header_state != pp2_header_done) {
struct pp2_header* header = NULL;
size_t want_read_size = 0;
size_t current_read_size = 0;
if(c->pp2_header_state == pp2_header_none) {
want_read_size = PP2_HEADER_SIZE;
if(sldns_buffer_remaining(c->buffer)<want_read_size) {
log_err_addr("proxy_protocol: not enough "
"buffer size to read PROXYv2 header", "",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: reading fixed "
"part of PROXYv2 header (len %lu)",
(unsigned long)want_read_size);
current_read_size = want_read_size;
if(c->tcp_byte_count < current_read_size) {
ERR_clear_error();
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(
c->buffer, c->tcp_byte_count),
current_read_size -
c->tcp_byte_count)) <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
#endif
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_read",
want);
return 0;
}
c->tcp_byte_count += r;
sldns_buffer_skip(c->buffer, r);
if(c->tcp_byte_count != current_read_size) return 1;
c->pp2_header_state = pp2_header_init;
}
}
if(c->pp2_header_state == pp2_header_init) {
int err;
err = pp2_read_header(
sldns_buffer_begin(c->buffer),
sldns_buffer_limit(c->buffer));
if(err) {
log_err("proxy_protocol: could not parse "
"PROXYv2 header (%s)",
pp_lookup_error(err));
return 0;
}
header = (struct pp2_header*)sldns_buffer_begin(c->buffer);
want_read_size = ntohs(header->len);
if(sldns_buffer_limit(c->buffer) <
PP2_HEADER_SIZE + want_read_size) {
log_err_addr("proxy_protocol: not enough "
"buffer size to read PROXYv2 header", "",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: reading variable "
"part of PROXYv2 header (len %lu)",
(unsigned long)want_read_size);
current_read_size = PP2_HEADER_SIZE + want_read_size;
if(want_read_size == 0) {
/* nothing more to read; header is complete */
c->pp2_header_state = pp2_header_done;
} else if(c->tcp_byte_count < current_read_size) {
ERR_clear_error();
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(
c->buffer, c->tcp_byte_count),
current_read_size -
c->tcp_byte_count)) <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
#endif
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_read",
want);
return 0;
}
c->tcp_byte_count += r;
sldns_buffer_skip(c->buffer, r);
if(c->tcp_byte_count != current_read_size) return 1;
c->pp2_header_state = pp2_header_done;
}
}
if(c->pp2_header_state != pp2_header_done || !header) {
log_err_addr("proxy_protocol: wrong state for the "
"PROXYv2 header", "", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
sldns_buffer_flip(c->buffer);
if(!consume_pp2_header(c->buffer, &c->repinfo, 1)) {
log_err_addr("proxy_protocol: could not consume "
"PROXYv2 header", "", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: successful read of "
"PROXYv2 header");
/* Clear and reset the buffer to read the following
* DNS packet(s). */
sldns_buffer_clear(c->buffer);
c->tcp_byte_count = 0;
return 1;
}
if(c->tcp_byte_count < sizeof(uint16_t)) {
/* read length bytes */
ERR_clear_error();
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(c->buffer,
c->tcp_byte_count), (int)(sizeof(uint16_t) -
c->tcp_byte_count))) <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
#endif
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_read", want);
return 0;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
if(sldns_buffer_read_u16_at(c->buffer, 0) >
sldns_buffer_capacity(c->buffer)) {
verbose(VERB_QUERY, "ssl: dropped larger than buffer");
return 0;
}
sldns_buffer_set_limit(c->buffer,
sldns_buffer_read_u16_at(c->buffer, 0));
if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
verbose(VERB_QUERY, "ssl: dropped bogus too short.");
return 0;
}
sldns_buffer_skip(c->buffer, (ssize_t)(c->tcp_byte_count-sizeof(uint16_t)));
verbose(VERB_ALGO, "Reading ssl tcp query of length %d",
(int)sldns_buffer_limit(c->buffer));
}
if(sldns_buffer_remaining(c->buffer) > 0) {
ERR_clear_error();
r = SSL_read(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
#endif
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_read", want);
return 0;
}
sldns_buffer_skip(c->buffer, (ssize_t)r);
}
if(sldns_buffer_remaining(c->buffer) <= 0) {
tcp_callback_reader(c);
}
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** ssl write callback on TCP */
static int
ssl_handle_write(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
if(c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
/* ignore return, if fails we may simply block */
(void)SSL_set_mode(c->ssl, (long)SSL_MODE_ENABLE_PARTIAL_WRITE);
if((c->tcp_write_and_read?c->tcp_write_byte_count:c->tcp_byte_count) < sizeof(uint16_t)) {
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(c->buffer));
ERR_clear_error();
if(c->tcp_write_and_read) {
if(c->tcp_write_pkt_len + 2 < LDNS_RR_BUF_SIZE) {
/* combine the tcp length and the query for
* write, this emulates writev */
uint8_t buf[LDNS_RR_BUF_SIZE];
memmove(buf, &len, sizeof(uint16_t));
memmove(buf+sizeof(uint16_t),
c->tcp_write_pkt,
c->tcp_write_pkt_len);
r = SSL_write(c->ssl,
(void*)(buf+c->tcp_write_byte_count),
c->tcp_write_pkt_len + 2 -
c->tcp_write_byte_count);
} else {
r = SSL_write(c->ssl,
(void*)(((uint8_t*)&len)+c->tcp_write_byte_count),
(int)(sizeof(uint16_t)-c->tcp_write_byte_count));
}
} else if(sizeof(uint16_t)+sldns_buffer_remaining(c->buffer) <
LDNS_RR_BUF_SIZE) {
/* combine the tcp length and the query for write,
* this emulates writev */
uint8_t buf[LDNS_RR_BUF_SIZE];
memmove(buf, &len, sizeof(uint16_t));
memmove(buf+sizeof(uint16_t),
sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer));
r = SSL_write(c->ssl, (void*)(buf+c->tcp_byte_count),
(int)(sizeof(uint16_t)+
sldns_buffer_remaining(c->buffer)
- c->tcp_byte_count));
} else {
r = SSL_write(c->ssl,
(void*)(((uint8_t*)&len)+c->tcp_byte_count),
(int)(sizeof(uint16_t)-c->tcp_byte_count));
}
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* closed */
} else if(want == SSL_ERROR_WANT_READ) {
c->ssl_shake_state = comm_ssl_shake_hs_read;
comm_point_listen_for_rw(c, 1, 0);
return 1; /* wait for read condition */
} else if(want == SSL_ERROR_WANT_WRITE) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
#endif
return 1; /* write more later */
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_write", want);
return 0;
}
if(c->tcp_write_and_read) {
c->tcp_write_byte_count += r;
if(c->tcp_write_byte_count < sizeof(uint16_t))
return 1;
} else {
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
sldns_buffer_set_position(c->buffer, c->tcp_byte_count -
sizeof(uint16_t));
}
if((!c->tcp_write_and_read && sldns_buffer_remaining(c->buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
tcp_callback_writer(c);
return 1;
}
}
log_assert(c->tcp_write_and_read || sldns_buffer_remaining(c->buffer) > 0);
log_assert(!c->tcp_write_and_read || c->tcp_write_byte_count < c->tcp_write_pkt_len + 2);
ERR_clear_error();
if(c->tcp_write_and_read) {
r = SSL_write(c->ssl, (void*)(c->tcp_write_pkt + c->tcp_write_byte_count - 2),
(int)(c->tcp_write_pkt_len + 2 - c->tcp_write_byte_count));
} else {
r = SSL_write(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
}
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* closed */
} else if(want == SSL_ERROR_WANT_READ) {
c->ssl_shake_state = comm_ssl_shake_hs_read;
comm_point_listen_for_rw(c, 1, 0);
return 1; /* wait for read condition */
} else if(want == SSL_ERROR_WANT_WRITE) {
#ifdef USE_WINSOCK
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
#endif
return 1; /* write more later */
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_write", want);
return 0;
}
if(c->tcp_write_and_read) {
c->tcp_write_byte_count += r;
} else {
sldns_buffer_skip(c->buffer, (ssize_t)r);
}
if((!c->tcp_write_and_read && sldns_buffer_remaining(c->buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
tcp_callback_writer(c);
}
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** handle ssl tcp connection with dns contents */
static int
ssl_handle_it(struct comm_point* c, int is_write)
{
/* handle case where renegotiation wants read during write call
* or write during read calls */
if(is_write && c->ssl_shake_state == comm_ssl_shake_hs_write)
return ssl_handle_read(c);
else if(!is_write && c->ssl_shake_state == comm_ssl_shake_hs_read)
return ssl_handle_write(c);
/* handle read events for read operation and write events for a
* write operation */
else if(!is_write)
return ssl_handle_read(c);
return ssl_handle_write(c);
}
/**
* Handle tcp reading callback.
* @param fd: file descriptor of socket.
* @param c: comm point to read from into buffer.
* @param short_ok: if true, very short packets are OK (for comm_local).
* @return: 0 on error
*/
static int
comm_point_tcp_handle_read(int fd, struct comm_point* c, int short_ok)
{
ssize_t r;
int recv_initial = 0;
log_assert(c->type == comm_tcp || c->type == comm_local);
if(c->ssl)
return ssl_handle_it(c, 0);
if(!c->tcp_is_reading && !c->tcp_write_and_read)
return 0;
log_assert(fd != -1);
if(c->pp2_enabled && c->pp2_header_state != pp2_header_done) {
struct pp2_header* header = NULL;
size_t want_read_size = 0;
size_t current_read_size = 0;
if(c->pp2_header_state == pp2_header_none) {
want_read_size = PP2_HEADER_SIZE;
if(sldns_buffer_remaining(c->buffer)<want_read_size) {
log_err_addr("proxy_protocol: not enough "
"buffer size to read PROXYv2 header", "",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: reading fixed "
"part of PROXYv2 header (len %lu)",
(unsigned long)want_read_size);
current_read_size = want_read_size;
if(c->tcp_byte_count < current_read_size) {
r = recv(fd, (void*)sldns_buffer_at(c->buffer,
c->tcp_byte_count),
current_read_size-c->tcp_byte_count, MSG_DONTWAIT);
if(r == 0) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0;
} else if(r == -1) {
goto recv_error_initial;
}
c->tcp_byte_count += r;
sldns_buffer_skip(c->buffer, r);
if(c->tcp_byte_count != current_read_size) return 1;
c->pp2_header_state = pp2_header_init;
}
}
if(c->pp2_header_state == pp2_header_init) {
int err;
err = pp2_read_header(
sldns_buffer_begin(c->buffer),
sldns_buffer_limit(c->buffer));
if(err) {
log_err("proxy_protocol: could not parse "
"PROXYv2 header (%s)",
pp_lookup_error(err));
return 0;
}
header = (struct pp2_header*)sldns_buffer_begin(c->buffer);
want_read_size = ntohs(header->len);
if(sldns_buffer_limit(c->buffer) <
PP2_HEADER_SIZE + want_read_size) {
log_err_addr("proxy_protocol: not enough "
"buffer size to read PROXYv2 header", "",
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: reading variable "
"part of PROXYv2 header (len %lu)",
(unsigned long)want_read_size);
current_read_size = PP2_HEADER_SIZE + want_read_size;
if(want_read_size == 0) {
/* nothing more to read; header is complete */
c->pp2_header_state = pp2_header_done;
} else if(c->tcp_byte_count < current_read_size) {
r = recv(fd, (void*)sldns_buffer_at(c->buffer,
c->tcp_byte_count),
current_read_size-c->tcp_byte_count, MSG_DONTWAIT);
if(r == 0) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0;
} else if(r == -1) {
goto recv_error;
}
c->tcp_byte_count += r;
sldns_buffer_skip(c->buffer, r);
if(c->tcp_byte_count != current_read_size) return 1;
c->pp2_header_state = pp2_header_done;
}
}
if(c->pp2_header_state != pp2_header_done || !header) {
log_err_addr("proxy_protocol: wrong state for the "
"PROXYv2 header", "", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
sldns_buffer_flip(c->buffer);
if(!consume_pp2_header(c->buffer, &c->repinfo, 1)) {
log_err_addr("proxy_protocol: could not consume "
"PROXYv2 header", "", &c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "proxy_protocol: successful read of "
"PROXYv2 header");
/* Clear and reset the buffer to read the following
* DNS packet(s). */
sldns_buffer_clear(c->buffer);
c->tcp_byte_count = 0;
return 1;
}
if(c->tcp_byte_count < sizeof(uint16_t)) {
/* read length bytes */
r = recv(fd,(void*)sldns_buffer_at(c->buffer,c->tcp_byte_count),
sizeof(uint16_t)-c->tcp_byte_count, MSG_DONTWAIT);
if(r == 0) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0;
} else if(r == -1) {
if(c->pp2_enabled) goto recv_error;
goto recv_error_initial;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count != sizeof(uint16_t))
return 1;
if(sldns_buffer_read_u16_at(c->buffer, 0) >
sldns_buffer_capacity(c->buffer)) {
verbose(VERB_QUERY, "tcp: dropped larger than buffer");
return 0;
}
sldns_buffer_set_limit(c->buffer,
sldns_buffer_read_u16_at(c->buffer, 0));
if(!short_ok &&
sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
verbose(VERB_QUERY, "tcp: dropped bogus too short.");
return 0;
}
verbose(VERB_ALGO, "Reading tcp query of length %d",
(int)sldns_buffer_limit(c->buffer));
}
if(sldns_buffer_remaining(c->buffer) == 0)
log_err("in comm_point_tcp_handle_read buffer_remaining is "
"not > 0 as expected, continuing with (harmless) 0 "
"length recv");
r = recv(fd, (void*)sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer), MSG_DONTWAIT);
if(r == 0) {
if(c->tcp_req_info)
return tcp_req_info_handle_read_close(c->tcp_req_info);
return 0;
} else if(r == -1) {
goto recv_error;
}
sldns_buffer_skip(c->buffer, r);
if(sldns_buffer_remaining(c->buffer) <= 0) {
tcp_callback_reader(c);
}
return 1;
recv_error_initial:
recv_initial = 1;
recv_error:
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
if(recv_initial) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
#ifdef ECONNREFUSED
if(errno == ECONNREFUSED && verbosity < 2)
return 0; /* silence reset by peer */
#endif
#ifdef ENETUNREACH
if(errno == ENETUNREACH && verbosity < 2)
return 0; /* silence it */
#endif
#ifdef EHOSTDOWN
if(errno == EHOSTDOWN && verbosity < 2)
return 0; /* silence it */
#endif
#ifdef EHOSTUNREACH
if(errno == EHOSTUNREACH && verbosity < 2)
return 0; /* silence it */
#endif
#ifdef ENETDOWN
if(errno == ENETDOWN && verbosity < 2)
return 0; /* silence it */
#endif
#ifdef EACCES
if(errno == EACCES && verbosity < 2)
return 0; /* silence it */
#endif
#ifdef ENOTCONN
if(errno == ENOTCONN) {
log_err_addr("read (in tcp s) failed and this "
"could be because TCP Fast Open is "
"enabled [--disable-tfo-client "
"--disable-tfo-server] but does not "
"work", sock_strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
#endif
}
#else /* USE_WINSOCK */
if(recv_initial) {
if(WSAGetLastError() == WSAECONNREFUSED && verbosity < 2)
return 0;
if(WSAGetLastError() == WSAEHOSTDOWN && verbosity < 2)
return 0;
if(WSAGetLastError() == WSAEHOSTUNREACH && verbosity < 2)
return 0;
if(WSAGetLastError() == WSAENETDOWN && verbosity < 2)
return 0;
if(WSAGetLastError() == WSAENETUNREACH && verbosity < 2)
return 0;
}
if(WSAGetLastError() == WSAECONNRESET)
return 0;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev,
UB_EV_READ);
return 1;
}
#endif
log_err_addr("read (in tcp s)", sock_strerror(errno),
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
return 0;
}
/**
* Handle tcp writing callback.
* @param fd: file descriptor of socket.
* @param c: comm point to write buffer out of.
* @return: 0 on error
*/
static int
comm_point_tcp_handle_write(int fd, struct comm_point* c)
{
ssize_t r;
struct sldns_buffer *buffer;
log_assert(c->type == comm_tcp);
#ifdef USE_DNSCRYPT
buffer = c->dnscrypt_buffer;
#else
buffer = c->buffer;
#endif
if(c->tcp_is_reading && !c->ssl && !c->tcp_write_and_read)
return 0;
log_assert(fd != -1);
if(((!c->tcp_write_and_read && c->tcp_byte_count == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == 0)) && c->tcp_check_nb_connect) {
/* check for pending error from nonblocking connect */
/* from Stevens, unix network programming, vol1, 3rd ed, p450*/
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error,
&len) < 0){
#ifndef USE_WINSOCK
error = errno; /* on solaris errno is error */
#else /* USE_WINSOCK */
error = WSAGetLastError();
#endif
}
#ifndef USE_WINSOCK
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
if(error == EINPROGRESS || error == EWOULDBLOCK)
return 1; /* try again later */
else
#endif
if(error != 0 && verbosity < 2)
return 0; /* silence lots of chatter in the logs */
else if(error != 0) {
log_err_addr("tcp connect", strerror(error),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
#else /* USE_WINSOCK */
/* examine error */
if(error == WSAEINPROGRESS)
return 1;
else if(error == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
return 1;
} else if(error != 0 && verbosity < 2)
return 0;
else if(error != 0) {
log_err_addr("tcp connect", wsa_strerror(error),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
#endif /* USE_WINSOCK */
return 0;
}
}
if(c->ssl)
return ssl_handle_it(c, 1);
#ifdef USE_MSG_FASTOPEN
/* Only try this on first use of a connection that uses tfo,
otherwise fall through to normal write */
/* Also, TFO support on WINDOWS not implemented at the moment */
if(c->tcp_do_fastopen == 1) {
/* this form of sendmsg() does both a connect() and send() so need to
look for various flavours of error*/
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(buffer));
struct msghdr msg;
struct iovec iov[2];
c->tcp_do_fastopen = 0;
memset(&msg, 0, sizeof(msg));
if(c->tcp_write_and_read) {
iov[0].iov_base = (uint8_t*)&len + c->tcp_write_byte_count;
iov[0].iov_len = sizeof(uint16_t) - c->tcp_write_byte_count;
iov[1].iov_base = c->tcp_write_pkt;
iov[1].iov_len = c->tcp_write_pkt_len;
} else {
iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count;
iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count;
iov[1].iov_base = sldns_buffer_begin(buffer);
iov[1].iov_len = sldns_buffer_limit(buffer);
}
log_assert(iov[0].iov_len > 0);
msg.msg_name = &c->repinfo.remote_addr;
msg.msg_namelen = c->repinfo.remote_addrlen;
msg.msg_iov = iov;
msg.msg_iovlen = 2;
r = sendmsg(fd, &msg, MSG_FASTOPEN);
if (r == -1) {
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
/* Handshake is underway, maybe because no TFO cookie available.
Come back to write the message*/
if(errno == EINPROGRESS || errno == EWOULDBLOCK)
return 1;
#endif
if(errno == EINTR || errno == EAGAIN)
return 1;
/* Not handling EISCONN here as shouldn't ever hit that case.*/
if(errno != EPIPE
#ifdef EOPNOTSUPP
/* if /proc/sys/net/ipv4/tcp_fastopen is
* disabled on Linux, sendmsg may return
* 'Operation not supported', if so
* fallthrough to ordinary connect. */
&& errno != EOPNOTSUPP
#endif
&& errno != 0) {
if(verbosity < 2)
return 0; /* silence lots of chatter in the logs */
log_err_addr("tcp sendmsg", strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "tcp sendmsg for fastopen failed (with %s), try normal connect", strerror(errno));
/* fallthrough to nonFASTOPEN
* (MSG_FASTOPEN on Linux 3 produces EPIPE)
* we need to perform connect() */
if(connect(fd, (struct sockaddr *)&c->repinfo.remote_addr,
c->repinfo.remote_addrlen) == -1) {
#ifdef EINPROGRESS
if(errno == EINPROGRESS)
return 1; /* wait until connect done*/
#endif
#ifdef USE_WINSOCK
if(WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAEWOULDBLOCK)
return 1; /* wait until connect done*/
#endif
if(tcp_connect_errno_needs_log(
(struct sockaddr *)&c->repinfo.remote_addr,
c->repinfo.remote_addrlen)) {
log_err_addr("outgoing tcp: connect after EPIPE for fastopen",
strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
}
return 0;
}
} else {
if(c->tcp_write_and_read) {
c->tcp_write_byte_count += r;
if(c->tcp_write_byte_count < sizeof(uint16_t))
return 1;
} else {
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
sldns_buffer_set_position(buffer, c->tcp_byte_count -
sizeof(uint16_t));
}
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
tcp_callback_writer(c);
return 1;
}
}
}
#endif /* USE_MSG_FASTOPEN */
if((c->tcp_write_and_read?c->tcp_write_byte_count:c->tcp_byte_count) < sizeof(uint16_t)) {
uint16_t len = htons(c->tcp_write_and_read?c->tcp_write_pkt_len:sldns_buffer_limit(buffer));
#ifdef HAVE_WRITEV
struct iovec iov[2];
if(c->tcp_write_and_read) {
iov[0].iov_base = (uint8_t*)&len + c->tcp_write_byte_count;
iov[0].iov_len = sizeof(uint16_t) - c->tcp_write_byte_count;
iov[1].iov_base = c->tcp_write_pkt;
iov[1].iov_len = c->tcp_write_pkt_len;
} else {
iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count;
iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count;
iov[1].iov_base = sldns_buffer_begin(buffer);
iov[1].iov_len = sldns_buffer_limit(buffer);
}
log_assert(iov[0].iov_len > 0);
r = writev(fd, iov, 2);
#else /* HAVE_WRITEV */
if(c->tcp_write_and_read) {
r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_write_byte_count),
sizeof(uint16_t)-c->tcp_write_byte_count, 0);
} else {
r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_byte_count),
sizeof(uint16_t)-c->tcp_byte_count, 0);
}
#endif /* HAVE_WRITEV */
if(r == -1) {
#ifndef USE_WINSOCK
# ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
if(errno == EINTR || errno == EAGAIN)
return 1;
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
# ifdef HAVE_WRITEV
log_err_addr("tcp writev", strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
# else /* HAVE_WRITEV */
log_err_addr("tcp send s", strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
# endif /* HAVE_WRITEV */
#else
if(WSAGetLastError() == WSAENOTCONN)
return 1;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev,
UB_EV_WRITE);
return 1;
}
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
log_err_addr("tcp send s",
wsa_strerror(WSAGetLastError()),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
#endif
return 0;
}
if(c->tcp_write_and_read) {
c->tcp_write_byte_count += r;
if(c->tcp_write_byte_count < sizeof(uint16_t))
return 1;
} else {
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
sldns_buffer_set_position(buffer, c->tcp_byte_count -
sizeof(uint16_t));
}
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
tcp_callback_writer(c);
return 1;
}
}
log_assert(c->tcp_write_and_read || sldns_buffer_remaining(buffer) > 0);
log_assert(!c->tcp_write_and_read || c->tcp_write_byte_count < c->tcp_write_pkt_len + 2);
if(c->tcp_write_and_read) {
r = send(fd, (void*)(c->tcp_write_pkt + c->tcp_write_byte_count - 2),
c->tcp_write_pkt_len + 2 - c->tcp_write_byte_count, 0);
} else {
r = send(fd, (void*)sldns_buffer_current(buffer),
sldns_buffer_remaining(buffer), 0);
}
if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
#else
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
return 1;
}
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
log_err_addr("tcp send r", sock_strerror(errno),
&c->repinfo.remote_addr,
c->repinfo.remote_addrlen);
return 0;
}
if(c->tcp_write_and_read) {
c->tcp_write_byte_count += r;
} else {
sldns_buffer_skip(buffer, r);
}
if((!c->tcp_write_and_read && sldns_buffer_remaining(buffer) == 0) || (c->tcp_write_and_read && c->tcp_write_byte_count == c->tcp_write_pkt_len + 2)) {
tcp_callback_writer(c);
}
return 1;
}
/** read again to drain buffers when there could be more to read, returns 0
* on failure which means the comm point is closed. */
static int
tcp_req_info_read_again(int fd, struct comm_point* c)
{
while(c->tcp_req_info->read_again) {
int r;
c->tcp_req_info->read_again = 0;
if(c->tcp_is_reading)
r = comm_point_tcp_handle_read(fd, c, 0);
else r = comm_point_tcp_handle_write(fd, c);
if(!r) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return 0;
}
}
return 1;
}
/** read again to drain buffers when there could be more to read */
static void
tcp_more_read_again(int fd, struct comm_point* c)
{
/* if the packet is done, but another one could be waiting on
* the connection, the callback signals this, and we try again */
/* this continues until the read routines get EAGAIN or so,
* and thus does not call the callback, and the bool is 0 */
int* moreread = c->tcp_more_read_again;
while(moreread && *moreread) {
*moreread = 0;
if(!comm_point_tcp_handle_read(fd, c, 0)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return;
}
}
}
/** write again to fill up when there could be more to write */
static void
tcp_more_write_again(int fd, struct comm_point* c)
{
/* if the packet is done, but another is waiting to be written,
* the callback signals it and we try again. */
/* this continues until the write routines get EAGAIN or so,
* and thus does not call the callback, and the bool is 0 */
int* morewrite = c->tcp_more_write_again;
while(morewrite && *morewrite) {
*morewrite = 0;
if(!comm_point_tcp_handle_write(fd, c)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return;
}
}
}
void
comm_point_tcp_handle_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
log_assert(c->type == comm_tcp);
ub_comm_base_now(c->ev->base);
if(c->fd == -1 || c->fd != fd)
return; /* duplicate event, but commpoint closed. */
#ifdef USE_DNSCRYPT
/* Initialize if this is a dnscrypt socket */
if(c->tcp_parent) {
c->dnscrypt = c->tcp_parent->dnscrypt;
}
if(c->dnscrypt && c->dnscrypt_buffer == c->buffer) {
c->dnscrypt_buffer = sldns_buffer_new(sldns_buffer_capacity(c->buffer));
if(!c->dnscrypt_buffer) {
log_err("Could not allocate dnscrypt buffer");
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return;
}
}
#endif
if(event&UB_EV_TIMEOUT) {
verbose(VERB_QUERY, "tcp took too long, dropped");
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_TIMEOUT, NULL);
}
return;
}
if(event&UB_EV_READ
#ifdef USE_MSG_FASTOPEN
&& !(c->tcp_do_fastopen && (event&UB_EV_WRITE))
#endif
) {
int has_tcpq = (c->tcp_req_info != NULL);
int* moreread = c->tcp_more_read_again;
if(!comm_point_tcp_handle_read(fd, c, 0)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return;
}
if(has_tcpq && c->tcp_req_info && c->tcp_req_info->read_again) {
if(!tcp_req_info_read_again(fd, c))
return;
}
if(moreread && *moreread)
tcp_more_read_again(fd, c);
return;
}
if(event&UB_EV_WRITE) {
int has_tcpq = (c->tcp_req_info != NULL);
int* morewrite = c->tcp_more_write_again;
if(!comm_point_tcp_handle_write(fd, c)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
return;
}
if(has_tcpq && c->tcp_req_info && c->tcp_req_info->read_again) {
if(!tcp_req_info_read_again(fd, c))
return;
}
if(morewrite && *morewrite)
tcp_more_write_again(fd, c);
return;
}
log_err("Ignored event %d for tcphdl.", event);
}
/** Make http handler free for next assignment */
static void
reclaim_http_handler(struct comm_point* c)
{
log_assert(c->type == comm_http);
if(c->ssl) {
#ifdef HAVE_SSL
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
c->ssl = NULL;
#endif
}
comm_point_close(c);
if(c->tcp_parent) {
if(c != c->tcp_parent->tcp_free) {
c->tcp_parent->cur_tcp_count--;
c->tcp_free = c->tcp_parent->tcp_free;
c->tcp_parent->tcp_free = c;
}
if(!c->tcp_free) {
/* re-enable listening on accept socket */
comm_point_start_listening(c->tcp_parent, -1, -1);
}
}
}
/** read more data for http (with ssl) */
static int
ssl_http_read_more(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
log_assert(sldns_buffer_remaining(c->buffer) > 0);
ERR_clear_error();
r = SSL_read(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_read", want);
return 0;
}
verbose(VERB_ALGO, "ssl http read more skip to %d + %d",
(int)sldns_buffer_position(c->buffer), (int)r);
sldns_buffer_skip(c->buffer, (ssize_t)r);
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** read more data for http */
static int
http_read_more(int fd, struct comm_point* c)
{
ssize_t r;
log_assert(sldns_buffer_remaining(c->buffer) > 0);
r = recv(fd, (void*)sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer), MSG_DONTWAIT);
if(r == 0) {
return 0;
} else if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAECONNRESET)
return 0;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
return 1;
}
#endif
log_err_addr("read (in http r)", sock_strerror(errno),
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
return 0;
}
verbose(VERB_ALGO, "http read more skip to %d + %d",
(int)sldns_buffer_position(c->buffer), (int)r);
sldns_buffer_skip(c->buffer, r);
return 1;
}
/** return true if http header has been read (one line complete) */
static int
http_header_done(sldns_buffer* buf)
{
size_t i;
for(i=sldns_buffer_position(buf); i<sldns_buffer_limit(buf); i++) {
/* there was a \r before the \n, but we ignore that */
if((char)sldns_buffer_read_u8_at(buf, i) == '\n')
return 1;
}
return 0;
}
/** return character string into buffer for header line, moves buffer
* past that line and puts zero terminator into linefeed-newline */
static char*
http_header_line(sldns_buffer* buf)
{
char* result = (char*)sldns_buffer_current(buf);
size_t i;
for(i=sldns_buffer_position(buf); i<sldns_buffer_limit(buf); i++) {
/* terminate the string on the \r */
if((char)sldns_buffer_read_u8_at(buf, i) == '\r')
sldns_buffer_write_u8_at(buf, i, 0);
/* terminate on the \n and skip past the it and done */
if((char)sldns_buffer_read_u8_at(buf, i) == '\n') {
sldns_buffer_write_u8_at(buf, i, 0);
sldns_buffer_set_position(buf, i+1);
return result;
}
}
return NULL;
}
/** move unread buffer to start and clear rest for putting the rest into it */
static void
http_moveover_buffer(sldns_buffer* buf)
{
size_t pos = sldns_buffer_position(buf);
size_t len = sldns_buffer_remaining(buf);
sldns_buffer_clear(buf);
memmove(sldns_buffer_begin(buf), sldns_buffer_at(buf, pos), len);
sldns_buffer_set_position(buf, len);
}
/** a http header is complete, process it */
static int
http_process_initial_header(struct comm_point* c)
{
char* line = http_header_line(c->buffer);
if(!line) return 1;
verbose(VERB_ALGO, "http header: %s", line);
if(strncasecmp(line, "HTTP/1.1 ", 9) == 0) {
/* check returncode */
if(line[9] != '2') {
verbose(VERB_ALGO, "http bad status %s", line+9);
return 0;
}
} else if(strncasecmp(line, "Content-Length: ", 16) == 0) {
if(!c->http_is_chunked)
c->tcp_byte_count = (size_t)atoi(line+16);
} else if(strncasecmp(line, "Transfer-Encoding: chunked", 19+7) == 0) {
c->tcp_byte_count = 0;
c->http_is_chunked = 1;
} else if(line[0] == 0) {
/* end of initial headers */
c->http_in_headers = 0;
if(c->http_is_chunked)
c->http_in_chunk_headers = 1;
/* remove header text from front of buffer
* the buffer is going to be used to return the data segment
* itself and we don't want the header to get returned
* prepended with it */
http_moveover_buffer(c->buffer);
sldns_buffer_flip(c->buffer);
return 1;
}
/* ignore other headers */
return 1;
}
/** a chunk header is complete, process it, return 0=fail, 1=continue next
* header line, 2=done with chunked transfer*/
static int
http_process_chunk_header(struct comm_point* c)
{
char* line = http_header_line(c->buffer);
if(!line) return 1;
if(c->http_in_chunk_headers == 3) {
verbose(VERB_ALGO, "http chunk trailer: %s", line);
/* are we done ? */
if(line[0] == 0 && c->tcp_byte_count == 0) {
/* callback of http reader when NETEVENT_DONE,
* end of data, with no data in buffer */
sldns_buffer_set_position(c->buffer, 0);
sldns_buffer_set_limit(c->buffer, 0);
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_DONE, NULL);
/* return that we are done */
return 2;
}
if(line[0] == 0) {
/* continue with header of the next chunk */
c->http_in_chunk_headers = 1;
/* remove header text from front of buffer */
http_moveover_buffer(c->buffer);
sldns_buffer_flip(c->buffer);
return 1;
}
/* ignore further trail headers */
return 1;
}
verbose(VERB_ALGO, "http chunk header: %s", line);
if(c->http_in_chunk_headers == 1) {
/* read chunked start line */
char* end = NULL;
c->tcp_byte_count = (size_t)strtol(line, &end, 16);
if(end == line)
return 0;
c->http_in_chunk_headers = 0;
/* remove header text from front of buffer */
http_moveover_buffer(c->buffer);
sldns_buffer_flip(c->buffer);
if(c->tcp_byte_count == 0) {
/* done with chunks, process chunk_trailer lines */
c->http_in_chunk_headers = 3;
}
return 1;
}
/* ignore other headers */
return 1;
}
/** handle nonchunked data segment, 0=fail, 1=wait */
static int
http_nonchunk_segment(struct comm_point* c)
{
/* c->buffer at position..limit has new data we read in.
* the buffer itself is full of nonchunked data.
* we are looking to read tcp_byte_count more data
* and then the transfer is done. */
size_t remainbufferlen;
size_t got_now = sldns_buffer_limit(c->buffer);
if(c->tcp_byte_count <= got_now) {
/* done, this is the last data fragment */
c->http_stored = 0;
sldns_buffer_set_position(c->buffer, 0);
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_DONE, NULL);
return 1;
}
/* if we have the buffer space,
* read more data collected into the buffer */
remainbufferlen = sldns_buffer_capacity(c->buffer) -
sldns_buffer_limit(c->buffer);
if(remainbufferlen+got_now >= c->tcp_byte_count ||
remainbufferlen >= (size_t)(c->ssl?16384:2048)) {
size_t total = sldns_buffer_limit(c->buffer);
sldns_buffer_clear(c->buffer);
sldns_buffer_set_position(c->buffer, total);
c->http_stored = total;
/* return and wait to read more */
return 1;
}
/* call callback with this data amount, then
* wait for more */
c->tcp_byte_count -= got_now;
c->http_stored = 0;
sldns_buffer_set_position(c->buffer, 0);
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, NULL);
/* c->callback has to buffer_clear(c->buffer). */
/* return and wait to read more */
return 1;
}
/** handle chunked data segment, return 0=fail, 1=wait, 2=process more */
static int
http_chunked_segment(struct comm_point* c)
{
/* the c->buffer has from position..limit new data we read. */
/* the current chunk has length tcp_byte_count.
* once we read that read more chunk headers.
*/
size_t remainbufferlen;
size_t got_now = sldns_buffer_limit(c->buffer) - c->http_stored;
verbose(VERB_ALGO, "http_chunked_segment: got now %d, tcpbytcount %d, http_stored %d, buffer pos %d, buffer limit %d", (int)got_now, (int)c->tcp_byte_count, (int)c->http_stored, (int)sldns_buffer_position(c->buffer), (int)sldns_buffer_limit(c->buffer));
if(c->tcp_byte_count <= got_now) {
/* the chunk has completed (with perhaps some extra data
* from next chunk header and next chunk) */
/* save too much info into temp buffer */
size_t fraglen;
struct comm_reply repinfo;
c->http_stored = 0;
sldns_buffer_skip(c->buffer, (ssize_t)c->tcp_byte_count);
sldns_buffer_clear(c->http_temp);
sldns_buffer_write(c->http_temp,
sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer));
sldns_buffer_flip(c->http_temp);
/* callback with this fragment */
fraglen = sldns_buffer_position(c->buffer);
sldns_buffer_set_position(c->buffer, 0);
sldns_buffer_set_limit(c->buffer, fraglen);
repinfo = c->repinfo;
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &repinfo);
/* c->callback has to buffer_clear(). */
/* is commpoint deleted? */
if(!repinfo.c) {
return 1;
}
/* copy waiting info */
sldns_buffer_clear(c->buffer);
sldns_buffer_write(c->buffer,
sldns_buffer_begin(c->http_temp),
sldns_buffer_remaining(c->http_temp));
sldns_buffer_flip(c->buffer);
/* process end of chunk trailer header lines, until
* an empty line */
c->http_in_chunk_headers = 3;
/* process more data in buffer (if any) */
return 2;
}
c->tcp_byte_count -= got_now;
/* if we have the buffer space,
* read more data collected into the buffer */
remainbufferlen = sldns_buffer_capacity(c->buffer) -
sldns_buffer_limit(c->buffer);
if(remainbufferlen >= c->tcp_byte_count ||
remainbufferlen >= 2048) {
size_t total = sldns_buffer_limit(c->buffer);
sldns_buffer_clear(c->buffer);
sldns_buffer_set_position(c->buffer, total);
c->http_stored = total;
/* return and wait to read more */
return 1;
}
/* callback of http reader for a new part of the data */
c->http_stored = 0;
sldns_buffer_set_position(c->buffer, 0);
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, NULL);
/* c->callback has to buffer_clear(c->buffer). */
/* return and wait to read more */
return 1;
}
#ifdef HAVE_NGHTTP2
/** Create new http2 session. Called when creating handling comm point. */
static struct http2_session* http2_session_create(struct comm_point* c)
{
struct http2_session* session = calloc(1, sizeof(*session));
if(!session) {
log_err("malloc failure while creating http2 session");
return NULL;
}
session->c = c;
return session;
}
#endif
/** Delete http2 session. After closing connection or on error */
static void http2_session_delete(struct http2_session* h2_session)
{
#ifdef HAVE_NGHTTP2
if(h2_session->callbacks)
nghttp2_session_callbacks_del(h2_session->callbacks);
free(h2_session);
#else
(void)h2_session;
#endif
}
#ifdef HAVE_NGHTTP2
struct http2_stream* http2_stream_create(int32_t stream_id)
{
struct http2_stream* h2_stream = calloc(1, sizeof(*h2_stream));
if(!h2_stream) {
log_err("malloc failure while creating http2 stream");
return NULL;
}
h2_stream->stream_id = stream_id;
return h2_stream;
}
/** Delete http2 stream. After session delete or stream close callback */
static void http2_stream_delete(struct http2_session* h2_session,
struct http2_stream* h2_stream)
{
if(h2_stream->mesh_state) {
mesh_state_remove_reply(h2_stream->mesh, h2_stream->mesh_state,
h2_session->c);
h2_stream->mesh_state = NULL;
}
http2_req_stream_clear(h2_stream);
free(h2_stream);
}
#endif
void http2_stream_add_meshstate(struct http2_stream* h2_stream,
struct mesh_area* mesh, struct mesh_state* m)
{
h2_stream->mesh = mesh;
h2_stream->mesh_state = m;
}
/** delete http2 session server. After closing connection. */
static void http2_session_server_delete(struct http2_session* h2_session)
{
#ifdef HAVE_NGHTTP2
struct http2_stream* h2_stream, *next;
nghttp2_session_del(h2_session->session); /* NULL input is fine */
h2_session->session = NULL;
for(h2_stream = h2_session->first_stream; h2_stream;) {
next = h2_stream->next;
http2_stream_delete(h2_session, h2_stream);
h2_stream = next;
}
h2_session->first_stream = NULL;
h2_session->is_drop = 0;
h2_session->postpone_drop = 0;
h2_session->c->h2_stream = NULL;
#endif
(void)h2_session;
}
#ifdef HAVE_NGHTTP2
void http2_session_add_stream(struct http2_session* h2_session,
struct http2_stream* h2_stream)
{
if(h2_session->first_stream)
h2_session->first_stream->prev = h2_stream;
h2_stream->next = h2_session->first_stream;
h2_session->first_stream = h2_stream;
}
/** remove stream from session linked list. After stream close callback or
* closing connection */
static void http2_session_remove_stream(struct http2_session* h2_session,
struct http2_stream* h2_stream)
{
if(h2_stream->prev)
h2_stream->prev->next = h2_stream->next;
else
h2_session->first_stream = h2_stream->next;
if(h2_stream->next)
h2_stream->next->prev = h2_stream->prev;
}
int http2_stream_close_cb(nghttp2_session* ATTR_UNUSED(session),
int32_t stream_id, uint32_t ATTR_UNUSED(error_code), void* cb_arg)
{
struct http2_stream* h2_stream;
struct http2_session* h2_session = (struct http2_session*)cb_arg;
if(!(h2_stream = nghttp2_session_get_stream_user_data(
h2_session->session, stream_id))) {
return 0;
}
http2_session_remove_stream(h2_session, h2_stream);
http2_stream_delete(h2_session, h2_stream);
return 0;
}
ssize_t http2_recv_cb(nghttp2_session* ATTR_UNUSED(session), uint8_t* buf,
size_t len, int ATTR_UNUSED(flags), void* cb_arg)
{
struct http2_session* h2_session = (struct http2_session*)cb_arg;
ssize_t ret;
log_assert(h2_session->c->type == comm_http);
log_assert(h2_session->c->h2_session);
#ifdef HAVE_SSL
if(h2_session->c->ssl) {
int r;
ERR_clear_error();
r = SSL_read(h2_session->c->ssl, buf, len);
if(r <= 0) {
int want = SSL_get_error(h2_session->c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return NGHTTP2_ERR_EOF;
} else if(want == SSL_ERROR_WANT_READ) {
return NGHTTP2_ERR_WOULDBLOCK;
} else if(want == SSL_ERROR_WANT_WRITE) {
h2_session->c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(h2_session->c, 0, 1);
return NGHTTP2_ERR_WOULDBLOCK;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
#endif
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
log_crypto_err_io("could not SSL_read", want);
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
return r;
}
#endif /* HAVE_SSL */
ret = recv(h2_session->c->fd, buf, len, MSG_DONTWAIT);
if(ret == 0) {
return NGHTTP2_ERR_EOF;
} else if(ret < 0) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return NGHTTP2_ERR_WOULDBLOCK;
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
#endif
log_err_addr("could not http2 recv: %s", strerror(errno),
&h2_session->c->repinfo.remote_addr,
h2_session->c->repinfo.remote_addrlen);
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAECONNRESET)
return NGHTTP2_ERR_CALLBACK_FAILURE;
if(WSAGetLastError() == WSAEINPROGRESS)
return NGHTTP2_ERR_WOULDBLOCK;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(h2_session->c->ev->ev,
UB_EV_READ);
return NGHTTP2_ERR_WOULDBLOCK;
}
log_err_addr("could not http2 recv: %s",
wsa_strerror(WSAGetLastError()),
&h2_session->c->repinfo.remote_addr,
h2_session->c->repinfo.remote_addrlen);
#endif
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
return ret;
}
#endif /* HAVE_NGHTTP2 */
/** Handle http2 read */
static int
comm_point_http2_handle_read(int ATTR_UNUSED(fd), struct comm_point* c)
{
#ifdef HAVE_NGHTTP2
int ret;
log_assert(c->h2_session);
/* reading until recv cb returns NGHTTP2_ERR_WOULDBLOCK */
ret = nghttp2_session_recv(c->h2_session->session);
if(ret) {
if(ret != NGHTTP2_ERR_EOF &&
ret != NGHTTP2_ERR_CALLBACK_FAILURE) {
char a[256];
addr_to_str(&c->repinfo.remote_addr,
c->repinfo.remote_addrlen, a, sizeof(a));
verbose(VERB_QUERY, "http2: session_recv from %s failed, "
"error: %s", a, nghttp2_strerror(ret));
}
return 0;
}
if(nghttp2_session_want_write(c->h2_session->session)) {
c->tcp_is_reading = 0;
comm_point_stop_listening(c);
comm_point_start_listening(c, -1, adjusted_tcp_timeout(c));
} else if(!nghttp2_session_want_read(c->h2_session->session))
return 0; /* connection can be closed */
return 1;
#else
(void)c;
return 0;
#endif
}
/**
* Handle http reading callback.
* @param fd: file descriptor of socket.
* @param c: comm point to read from into buffer.
* @return: 0 on error
*/
static int
comm_point_http_handle_read(int fd, struct comm_point* c)
{
log_assert(c->type == comm_http);
log_assert(fd != -1);
/* if we are in ssl handshake, handle SSL handshake */
#ifdef HAVE_SSL
if(c->ssl && c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
#endif /* HAVE_SSL */
if(!c->tcp_is_reading)
return 1;
if(c->use_h2) {
return comm_point_http2_handle_read(fd, c);
}
/* http version is <= http/1.1 */
if(c->http_min_version >= http_version_2) {
/* HTTP/2 failed, not allowed to use lower version. */
return 0;
}
/* read more data */
if(c->ssl) {
if(!ssl_http_read_more(c))
return 0;
} else {
if(!http_read_more(fd, c))
return 0;
}
if(c->http_stored >= sldns_buffer_position(c->buffer)) {
/* read did not work but we wanted more data, there is
* no bytes to process now. */
return 1;
}
sldns_buffer_flip(c->buffer);
/* if we are partway in a segment of data, position us at the point
* where we left off previously */
if(c->http_stored < sldns_buffer_limit(c->buffer))
sldns_buffer_set_position(c->buffer, c->http_stored);
else sldns_buffer_set_position(c->buffer, sldns_buffer_limit(c->buffer));
while(sldns_buffer_remaining(c->buffer) > 0) {
/* Handle HTTP/1.x data */
/* if we are reading headers, read more headers */
if(c->http_in_headers || c->http_in_chunk_headers) {
/* if header is done, process the header */
if(!http_header_done(c->buffer)) {
/* copy remaining data to front of buffer
* and set rest for writing into it */
http_moveover_buffer(c->buffer);
/* return and wait to read more */
return 1;
}
if(!c->http_in_chunk_headers) {
/* process initial headers */
if(!http_process_initial_header(c))
return 0;
} else {
/* process chunk headers */
int r = http_process_chunk_header(c);
if(r == 0) return 0;
if(r == 2) return 1; /* done */
/* r == 1, continue */
}
/* see if we have more to process */
continue;
}
if(!c->http_is_chunked) {
/* if we are reading nonchunks, process that*/
return http_nonchunk_segment(c);
} else {
/* if we are reading chunks, read the chunk */
int r = http_chunked_segment(c);
if(r == 0) return 0;
if(r == 1) return 1;
continue;
}
}
/* broke out of the loop; could not process header instead need
* to read more */
/* moveover any remaining data and read more data */
http_moveover_buffer(c->buffer);
/* return and wait to read more */
return 1;
}
/** check pending connect for http */
static int
http_check_connect(int fd, struct comm_point* c)
{
/* check for pending error from nonblocking connect */
/* from Stevens, unix network programming, vol1, 3rd ed, p450*/
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error,
&len) < 0){
#ifndef USE_WINSOCK
error = errno; /* on solaris errno is error */
#else /* USE_WINSOCK */
error = WSAGetLastError();
#endif
}
#ifndef USE_WINSOCK
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
if(error == EINPROGRESS || error == EWOULDBLOCK)
return 1; /* try again later */
else
#endif
if(error != 0 && verbosity < 2)
return 0; /* silence lots of chatter in the logs */
else if(error != 0) {
log_err_addr("http connect", strerror(error),
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
#else /* USE_WINSOCK */
/* examine error */
if(error == WSAEINPROGRESS)
return 1;
else if(error == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
return 1;
} else if(error != 0 && verbosity < 2)
return 0;
else if(error != 0) {
log_err_addr("http connect", wsa_strerror(error),
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
#endif /* USE_WINSOCK */
return 0;
}
/* keep on processing this socket */
return 2;
}
/** write more data for http (with ssl) */
static int
ssl_http_write_more(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
log_assert(sldns_buffer_remaining(c->buffer) > 0);
ERR_clear_error();
r = SSL_write(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* closed */
} else if(want == SSL_ERROR_WANT_READ) {
c->ssl_shake_state = comm_ssl_shake_hs_read;
comm_point_listen_for_rw(c, 1, 0);
return 1; /* wait for read condition */
} else if(want == SSL_ERROR_WANT_WRITE) {
return 1; /* write more later */
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err_io("could not SSL_write", want);
return 0;
}
sldns_buffer_skip(c->buffer, (ssize_t)r);
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** write more data for http */
static int
http_write_more(int fd, struct comm_point* c)
{
ssize_t r;
log_assert(sldns_buffer_remaining(c->buffer) > 0);
r = send(fd, (void*)sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer), 0);
if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
#else
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
return 1;
}
#endif
log_err_addr("http send r", sock_strerror(errno),
&c->repinfo.remote_addr, c->repinfo.remote_addrlen);
return 0;
}
sldns_buffer_skip(c->buffer, r);
return 1;
}
#ifdef HAVE_NGHTTP2
ssize_t http2_send_cb(nghttp2_session* ATTR_UNUSED(session), const uint8_t* buf,
size_t len, int ATTR_UNUSED(flags), void* cb_arg)
{
ssize_t ret;
struct http2_session* h2_session = (struct http2_session*)cb_arg;
log_assert(h2_session->c->type == comm_http);
log_assert(h2_session->c->h2_session);
#ifdef HAVE_SSL
if(h2_session->c->ssl) {
int r;
ERR_clear_error();
r = SSL_write(h2_session->c->ssl, buf, len);
if(r <= 0) {
int want = SSL_get_error(h2_session->c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return NGHTTP2_ERR_CALLBACK_FAILURE;
} else if(want == SSL_ERROR_WANT_READ) {
h2_session->c->ssl_shake_state = comm_ssl_shake_hs_read;
comm_point_listen_for_rw(h2_session->c, 1, 0);
return NGHTTP2_ERR_WOULDBLOCK;
} else if(want == SSL_ERROR_WANT_WRITE) {
return NGHTTP2_ERR_WOULDBLOCK;
} else if(want == SSL_ERROR_SYSCALL) {
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
#endif
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
log_crypto_err_io("could not SSL_write", want);
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
return r;
}
#endif /* HAVE_SSL */
ret = send(h2_session->c->fd, buf, len, 0);
if(ret == 0) {
return NGHTTP2_ERR_CALLBACK_FAILURE;
} else if(ret < 0) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return NGHTTP2_ERR_WOULDBLOCK;
#ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
#endif
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
#endif
log_err_addr("could not http2 write: %s", strerror(errno),
&h2_session->c->repinfo.remote_addr,
h2_session->c->repinfo.remote_addrlen);
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAENOTCONN)
return NGHTTP2_ERR_WOULDBLOCK;
if(WSAGetLastError() == WSAEINPROGRESS)
return NGHTTP2_ERR_WOULDBLOCK;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
ub_winsock_tcp_wouldblock(h2_session->c->ev->ev,
UB_EV_WRITE);
return NGHTTP2_ERR_WOULDBLOCK;
}
if(WSAGetLastError() == WSAECONNRESET && verbosity < 2)
return NGHTTP2_ERR_CALLBACK_FAILURE;
log_err_addr("could not http2 write: %s",
wsa_strerror(WSAGetLastError()),
&h2_session->c->repinfo.remote_addr,
h2_session->c->repinfo.remote_addrlen);
#endif
return NGHTTP2_ERR_CALLBACK_FAILURE;
}
return ret;
}
#endif /* HAVE_NGHTTP2 */
/** Handle http2 writing */
static int
comm_point_http2_handle_write(int ATTR_UNUSED(fd), struct comm_point* c)
{
#ifdef HAVE_NGHTTP2
int ret;
log_assert(c->h2_session);
ret = nghttp2_session_send(c->h2_session->session);
if(ret) {
verbose(VERB_QUERY, "http2: session_send failed, "
"error: %s", nghttp2_strerror(ret));
return 0;
}
if(nghttp2_session_want_read(c->h2_session->session)) {
c->tcp_is_reading = 1;
comm_point_stop_listening(c);
comm_point_start_listening(c, -1, adjusted_tcp_timeout(c));
} else if(!nghttp2_session_want_write(c->h2_session->session))
return 0; /* connection can be closed */
return 1;
#else
(void)c;
return 0;
#endif
}
/**
* Handle http writing callback.
* @param fd: file descriptor of socket.
* @param c: comm point to write buffer out of.
* @return: 0 on error
*/
static int
comm_point_http_handle_write(int fd, struct comm_point* c)
{
log_assert(c->type == comm_http);
log_assert(fd != -1);
/* check pending connect errors, if that fails, we wait for more,
* or we can continue to write contents */
if(c->tcp_check_nb_connect) {
int r = http_check_connect(fd, c);
if(r == 0) return 0;
if(r == 1) return 1;
c->tcp_check_nb_connect = 0;
}
/* if we are in ssl handshake, handle SSL handshake */
#ifdef HAVE_SSL
if(c->ssl && c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
#endif /* HAVE_SSL */
if(c->tcp_is_reading)
return 1;
if(c->use_h2) {
return comm_point_http2_handle_write(fd, c);
}
/* http version is <= http/1.1 */
if(c->http_min_version >= http_version_2) {
/* HTTP/2 failed, not allowed to use lower version. */
return 0;
}
/* if we are writing, write more */
if(c->ssl) {
if(!ssl_http_write_more(c))
return 0;
} else {
if(!http_write_more(fd, c))
return 0;
}
/* we write a single buffer contents, that can contain
* the http request, and then flip to read the results */
/* see if write is done */
if(sldns_buffer_remaining(c->buffer) == 0) {
sldns_buffer_clear(c->buffer);
if(c->tcp_do_toggle_rw)
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
/* switch from listening(write) to listening(read) */
comm_point_stop_listening(c);
comm_point_start_listening(c, -1, -1);
}
return 1;
}
void
comm_point_http_handle_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
log_assert(c->type == comm_http);
ub_comm_base_now(c->ev->base);
if(event&UB_EV_TIMEOUT) {
verbose(VERB_QUERY, "http took too long, dropped");
reclaim_http_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_TIMEOUT, NULL);
}
return;
}
if(event&UB_EV_READ) {
if(!comm_point_http_handle_read(fd, c)) {
reclaim_http_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
}
return;
}
if(event&UB_EV_WRITE) {
if(!comm_point_http_handle_write(fd, c)) {
reclaim_http_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
}
return;
}
log_err("Ignored event %d for httphdl.", event);
}
void comm_point_local_handle_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
log_assert(c->type == comm_local);
ub_comm_base_now(c->ev->base);
if(event&UB_EV_READ) {
if(!comm_point_tcp_handle_read(fd, c, 1)) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED,
NULL);
}
return;
}
log_err("Ignored event %d for localhdl.", event);
}
void comm_point_raw_handle_callback(int ATTR_UNUSED(fd),
short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
int err = NETEVENT_NOERROR;
log_assert(c->type == comm_raw);
ub_comm_base_now(c->ev->base);
if(event&UB_EV_TIMEOUT)
err = NETEVENT_TIMEOUT;
fptr_ok(fptr_whitelist_comm_point_raw(c->callback));
(void)(*c->callback)(c, c->cb_arg, err, NULL);
}
struct comm_point*
comm_point_create_udp(struct comm_base *base, int fd, sldns_buffer* buffer,
int pp2_enabled, comm_point_callback_type* callback,
void* callback_arg, struct unbound_socket* socket)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = buffer;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_udp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = buffer;
#endif
c->inuse = 0;
c->callback = callback;
c->cb_arg = callback_arg;
c->socket = socket;
c->pp2_enabled = pp2_enabled;
c->pp2_header_state = pp2_header_none;
evbits = UB_EV_READ | UB_EV_PERSIST;
/* ub_event stuff */
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_udp_callback, c);
if(c->ev->ev == NULL) {
log_err("could not baseset udp event");
comm_point_delete(c);
return NULL;
}
if(fd!=-1 && ub_event_add(c->ev->ev, c->timeout) != 0 ) {
log_err("could not add udp event");
comm_point_delete(c);
return NULL;
}
c->event_added = 1;
return c;
}
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG)
struct comm_point*
comm_point_create_udp_ancil(struct comm_base *base, int fd,
sldns_buffer* buffer, int pp2_enabled,
comm_point_callback_type* callback, void* callback_arg, struct unbound_socket* socket)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = buffer;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_udp;
c->tcp_do_close = 0;
c->do_not_close = 0;
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = buffer;
#endif
c->inuse = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
c->callback = callback;
c->cb_arg = callback_arg;
c->socket = socket;
c->pp2_enabled = pp2_enabled;
c->pp2_header_state = pp2_header_none;
evbits = UB_EV_READ | UB_EV_PERSIST;
/* ub_event stuff */
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_udp_ancil_callback, c);
if(c->ev->ev == NULL) {
log_err("could not baseset udp event");
comm_point_delete(c);
return NULL;
}
if(fd!=-1 && ub_event_add(c->ev->ev, c->timeout) != 0 ) {
log_err("could not add udp event");
comm_point_delete(c);
return NULL;
}
c->event_added = 1;
return c;
}
#endif
static struct comm_point*
comm_point_create_tcp_handler(struct comm_base *base,
struct comm_point* parent, size_t bufsize,
struct sldns_buffer* spoolbuf, comm_point_callback_type* callback,
void* callback_arg, struct unbound_socket* socket)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = (struct timeval*)malloc(sizeof(struct timeval));
if(!c->timeout) {
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = parent;
c->tcp_timeout_msec = parent->tcp_timeout_msec;
c->tcp_conn_limit = parent->tcp_conn_limit;
c->tcl_addr = NULL;
c->tcp_keepalive = 0;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_tcp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
/* We don't know just yet if this is a dnscrypt channel. Allocation
* will be done when handling the callback. */
c->dnscrypt_buffer = c->buffer;
#endif
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
c->socket = socket;
c->pp2_enabled = parent->pp2_enabled;
c->pp2_header_state = pp2_header_none;
if(spoolbuf) {
c->tcp_req_info = tcp_req_info_create(spoolbuf);
if(!c->tcp_req_info) {
log_err("could not create tcp commpoint");
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
c->tcp_req_info->cp = c;
c->tcp_do_close = 1;
c->tcp_do_toggle_rw = 0;
}
/* add to parent free list */
c->tcp_free = parent->tcp_free;
parent->tcp_free = c;
/* ub_event stuff */
evbits = UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_tcp_handle_callback, c);
if(c->ev->ev == NULL)
{
log_err("could not basetset tcphdl event");
parent->tcp_free = c->tcp_free;
tcp_req_info_delete(c->tcp_req_info);
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
return c;
}
static struct comm_point*
comm_point_create_http_handler(struct comm_base *base,
struct comm_point* parent, size_t bufsize, int harden_large_queries,
uint32_t http_max_streams, char* http_endpoint,
comm_point_callback_type* callback, void* callback_arg,
struct unbound_socket* socket)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = (struct timeval*)malloc(sizeof(struct timeval));
if(!c->timeout) {
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = parent;
c->tcp_timeout_msec = parent->tcp_timeout_msec;
c->tcp_conn_limit = parent->tcp_conn_limit;
c->tcl_addr = NULL;
c->tcp_keepalive = 0;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_http;
c->tcp_do_close = 1;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1; /* will be set to 0 after http2 upgrade */
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = NULL;
#endif
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
c->socket = socket;
c->pp2_enabled = 0;
c->pp2_header_state = pp2_header_none;
c->http_min_version = http_version_2;
c->http2_stream_max_qbuffer_size = bufsize;
if(harden_large_queries && bufsize > 512)
c->http2_stream_max_qbuffer_size = 512;
c->http2_max_streams = http_max_streams;
if(!(c->http_endpoint = strdup(http_endpoint))) {
log_err("could not strdup http_endpoint");
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
c->use_h2 = 0;
#ifdef HAVE_NGHTTP2
if(!(c->h2_session = http2_session_create(c))) {
log_err("could not create http2 session");
free(c->http_endpoint);
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
if(!(c->h2_session->callbacks = http2_req_callbacks_create())) {
log_err("could not create http2 callbacks");
http2_session_delete(c->h2_session);
free(c->http_endpoint);
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
#endif
/* add to parent free list */
c->tcp_free = parent->tcp_free;
parent->tcp_free = c;
/* ub_event stuff */
evbits = UB_EV_PERSIST | UB_EV_READ | UB_EV_TIMEOUT;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_http_handle_callback, c);
if(c->ev->ev == NULL)
{
log_err("could not set http handler event");
parent->tcp_free = c->tcp_free;
http2_session_delete(c->h2_session);
sldns_buffer_free(c->buffer);
free(c->timeout);
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_tcp(struct comm_base *base, int fd, int num,
int idle_timeout, int harden_large_queries,
uint32_t http_max_streams, char* http_endpoint,
struct tcl_list* tcp_conn_limit, size_t bufsize,
struct sldns_buffer* spoolbuf, enum listen_type port_type,
int pp2_enabled, comm_point_callback_type* callback,
void* callback_arg, struct unbound_socket* socket)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
int i;
/* first allocate the TCP accept listener */
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = NULL;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_timeout_msec = idle_timeout;
c->tcp_conn_limit = tcp_conn_limit;
c->tcl_addr = NULL;
c->tcp_keepalive = 0;
c->tcp_parent = NULL;
c->max_tcp_count = num;
c->cur_tcp_count = 0;
c->tcp_handlers = (struct comm_point**)calloc((size_t)num,
sizeof(struct comm_point*));
if(!c->tcp_handlers) {
free(c->ev);
free(c);
return NULL;
}
c->tcp_free = NULL;
c->type = comm_tcp_accept;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = NULL;
#endif
c->callback = NULL;
c->cb_arg = NULL;
c->socket = socket;
c->pp2_enabled = (port_type==listen_type_http?0:pp2_enabled);
c->pp2_header_state = pp2_header_none;
evbits = UB_EV_READ | UB_EV_PERSIST;
/* ub_event stuff */
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_tcp_accept_callback, c);
if(c->ev->ev == NULL) {
log_err("could not baseset tcpacc event");
comm_point_delete(c);
return NULL;
}
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
log_err("could not add tcpacc event");
comm_point_delete(c);
return NULL;
}
c->event_added = 1;
/* now prealloc the handlers */
for(i=0; i<num; i++) {
if(port_type == listen_type_tcp ||
port_type == listen_type_ssl ||
port_type == listen_type_tcp_dnscrypt) {
c->tcp_handlers[i] = comm_point_create_tcp_handler(base,
c, bufsize, spoolbuf, callback, callback_arg, socket);
} else if(port_type == listen_type_http) {
c->tcp_handlers[i] = comm_point_create_http_handler(
base, c, bufsize, harden_large_queries,
http_max_streams, http_endpoint,
callback, callback_arg, socket);
}
else {
log_err("could not create tcp handler, unknown listen "
"type");
return NULL;
}
if(!c->tcp_handlers[i]) {
comm_point_delete(c);
return NULL;
}
}
return c;
}
struct comm_point*
comm_point_create_tcp_out(struct comm_base *base, size_t bufsize,
comm_point_callback_type* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_timeout_msec = TCP_QUERY_TIMEOUT;
c->tcp_conn_limit = NULL;
c->tcl_addr = NULL;
c->tcp_keepalive = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_tcp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1;
c->tcp_check_nb_connect = 1;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 1;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = c->buffer;
#endif
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
c->pp2_enabled = 0;
c->pp2_header_state = pp2_header_none;
evbits = UB_EV_PERSIST | UB_EV_WRITE;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_tcp_handle_callback, c);
if(c->ev->ev == NULL)
{
log_err("could not baseset tcpout event");
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_http_out(struct comm_base *base, size_t bufsize,
comm_point_callback_type* callback, void* callback_arg,
sldns_buffer* temp)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_http;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1;
c->tcp_check_nb_connect = 1;
c->http_in_headers = 1;
c->http_in_chunk_headers = 0;
c->http_is_chunked = 0;
c->http_temp = temp;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 1;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = c->buffer;
#endif
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
c->pp2_enabled = 0;
c->pp2_header_state = pp2_header_none;
evbits = UB_EV_PERSIST | UB_EV_WRITE;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_http_handle_callback, c);
if(c->ev->ev == NULL)
{
log_err("could not baseset tcpout event");
#ifdef HAVE_SSL
SSL_free(c->ssl);
#endif
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_local(struct comm_base *base, int fd, size_t bufsize,
comm_point_callback_type* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = NULL;
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_local;
c->tcp_do_close = 0;
c->do_not_close = 1;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = c->buffer;
#endif
c->callback = callback;
c->cb_arg = callback_arg;
c->pp2_enabled = 0;
c->pp2_header_state = pp2_header_none;
/* ub_event stuff */
evbits = UB_EV_PERSIST | UB_EV_READ;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_local_handle_callback, c);
if(c->ev->ev == NULL) {
log_err("could not baseset localhdl event");
free(c->ev);
free(c);
return NULL;
}
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
log_err("could not add localhdl event");
ub_event_free(c->ev->ev);
free(c->ev);
free(c);
return NULL;
}
c->event_added = 1;
return c;
}
struct comm_point*
comm_point_create_raw(struct comm_base* base, int fd, int writing,
comm_point_callback_type* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = NULL;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_raw;
c->tcp_do_close = 0;
c->do_not_close = 1;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
#ifdef USE_MSG_FASTOPEN
c->tcp_do_fastopen = 0;
#endif
#ifdef USE_DNSCRYPT
c->dnscrypt = 0;
c->dnscrypt_buffer = c->buffer;
#endif
c->callback = callback;
c->cb_arg = callback_arg;
c->pp2_enabled = 0;
c->pp2_header_state = pp2_header_none;
/* ub_event stuff */
if(writing)
evbits = UB_EV_PERSIST | UB_EV_WRITE;
else evbits = UB_EV_PERSIST | UB_EV_READ;
c->ev->ev = ub_event_new(base->eb->base, c->fd, evbits,
comm_point_raw_handle_callback, c);
if(c->ev->ev == NULL) {
log_err("could not baseset rawhdl event");
free(c->ev);
free(c);
return NULL;
}
if (ub_event_add(c->ev->ev, c->timeout) != 0) {
log_err("could not add rawhdl event");
ub_event_free(c->ev->ev);
free(c->ev);
free(c);
return NULL;
}
c->event_added = 1;
return c;
}
void
comm_point_close(struct comm_point* c)
{
if(!c)
return;
if(c->fd != -1) {
verbose(5, "comm_point_close of %d: event_del", c->fd);
if(c->event_added) {
if(ub_event_del(c->ev->ev) != 0) {
log_err("could not event_del on close");
}
c->event_added = 0;
}
}
tcl_close_connection(c->tcl_addr);
if(c->tcp_req_info)
tcp_req_info_clear(c->tcp_req_info);
if(c->h2_session)
http2_session_server_delete(c->h2_session);
/* stop the comm point from reading or writing after it is closed. */
if(c->tcp_more_read_again && *c->tcp_more_read_again)
*c->tcp_more_read_again = 0;
if(c->tcp_more_write_again && *c->tcp_more_write_again)
*c->tcp_more_write_again = 0;
/* close fd after removing from event lists, or epoll.. is messed up */
if(c->fd != -1 && !c->do_not_close) {
#ifdef USE_WINSOCK
if(c->type == comm_tcp || c->type == comm_http) {
/* delete sticky events for the fd, it gets closed */
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_READ);
ub_winsock_tcp_wouldblock(c->ev->ev, UB_EV_WRITE);
}
#endif
verbose(VERB_ALGO, "close fd %d", c->fd);
sock_close(c->fd);
}
c->fd = -1;
}
void
comm_point_delete(struct comm_point* c)
{
if(!c)
return;
if((c->type == comm_tcp || c->type == comm_http) && c->ssl) {
#ifdef HAVE_SSL
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
#endif
}
if(c->type == comm_http && c->http_endpoint) {
free(c->http_endpoint);
c->http_endpoint = NULL;
}
comm_point_close(c);
if(c->tcp_handlers) {
int i;
for(i=0; i<c->max_tcp_count; i++)
comm_point_delete(c->tcp_handlers[i]);
free(c->tcp_handlers);
}
free(c->timeout);
if(c->type == comm_tcp || c->type == comm_local || c->type == comm_http) {
sldns_buffer_free(c->buffer);
#ifdef USE_DNSCRYPT
if(c->dnscrypt && c->dnscrypt_buffer != c->buffer) {
sldns_buffer_free(c->dnscrypt_buffer);
}
#endif
if(c->tcp_req_info) {
tcp_req_info_delete(c->tcp_req_info);
}
if(c->h2_session) {
http2_session_delete(c->h2_session);
}
}
ub_event_free(c->ev->ev);
free(c->ev);
free(c);
}
void
comm_point_send_reply(struct comm_reply *repinfo)
{
struct sldns_buffer* buffer;
log_assert(repinfo && repinfo->c);
#ifdef USE_DNSCRYPT
buffer = repinfo->c->dnscrypt_buffer;
if(!dnsc_handle_uncurved_request(repinfo)) {
return;
}
#else
buffer = repinfo->c->buffer;
#endif
if(repinfo->c->type == comm_udp) {
if(repinfo->srctype)
comm_point_send_udp_msg_if(repinfo->c, buffer,
(struct sockaddr*)&repinfo->remote_addr,
repinfo->remote_addrlen, repinfo);
else
comm_point_send_udp_msg(repinfo->c, buffer,
(struct sockaddr*)&repinfo->remote_addr,
repinfo->remote_addrlen, 0);
#ifdef USE_DNSTAP
/*
* sending src (client)/dst (local service) addresses over DNSTAP from udp callback
*/
if(repinfo->c->dtenv != NULL && repinfo->c->dtenv->log_client_response_messages) {
log_addr(VERB_ALGO, "from local addr", (void*)repinfo->c->socket->addr->ai_addr, repinfo->c->socket->addr->ai_addrlen);
log_addr(VERB_ALGO, "response to client", &repinfo->client_addr, repinfo->client_addrlen);
dt_msg_send_client_response(repinfo->c->dtenv, &repinfo->client_addr, (void*)repinfo->c->socket->addr->ai_addr, repinfo->c->type, repinfo->c->ssl, repinfo->c->buffer);
}
#endif
} else {
#ifdef USE_DNSTAP
/*
* sending src (client)/dst (local service) addresses over DNSTAP from TCP callback
*/
if(repinfo->c->tcp_parent->dtenv != NULL && repinfo->c->tcp_parent->dtenv->log_client_response_messages) {
log_addr(VERB_ALGO, "from local addr", (void*)repinfo->c->socket->addr->ai_addr, repinfo->c->socket->addr->ai_addrlen);
log_addr(VERB_ALGO, "response to client", &repinfo->client_addr, repinfo->client_addrlen);
dt_msg_send_client_response(repinfo->c->tcp_parent->dtenv, &repinfo->client_addr, (void*)repinfo->c->socket->addr->ai_addr, repinfo->c->type, repinfo->c->ssl,
( repinfo->c->tcp_req_info? repinfo->c->tcp_req_info->spool_buffer: repinfo->c->buffer ));
}
#endif
if(repinfo->c->tcp_req_info) {
tcp_req_info_send_reply(repinfo->c->tcp_req_info);
} else if(repinfo->c->use_h2) {
if(!http2_submit_dns_response(repinfo->c->h2_session)) {
comm_point_drop_reply(repinfo);
return;
}
repinfo->c->h2_stream = NULL;
repinfo->c->tcp_is_reading = 0;
comm_point_stop_listening(repinfo->c);
comm_point_start_listening(repinfo->c, -1,
adjusted_tcp_timeout(repinfo->c));
return;
} else {
comm_point_start_listening(repinfo->c, -1,
adjusted_tcp_timeout(repinfo->c));
}
}
}
void
comm_point_drop_reply(struct comm_reply* repinfo)
{
if(!repinfo)
return;
log_assert(repinfo->c);
log_assert(repinfo->c->type != comm_tcp_accept);
if(repinfo->c->type == comm_udp)
return;
if(repinfo->c->tcp_req_info)
repinfo->c->tcp_req_info->is_drop = 1;
if(repinfo->c->type == comm_http) {
if(repinfo->c->h2_session) {
repinfo->c->h2_session->is_drop = 1;
if(!repinfo->c->h2_session->postpone_drop)
reclaim_http_handler(repinfo->c);
return;
}
reclaim_http_handler(repinfo->c);
return;
}
reclaim_tcp_handler(repinfo->c);
}
void
comm_point_stop_listening(struct comm_point* c)
{
verbose(VERB_ALGO, "comm point stop listening %d", c->fd);
if(c->event_added) {
if(ub_event_del(c->ev->ev) != 0) {
log_err("event_del error to stoplisten");
}
c->event_added = 0;
}
}
void
comm_point_start_listening(struct comm_point* c, int newfd, int msec)
{
verbose(VERB_ALGO, "comm point start listening %d (%d msec)",
c->fd==-1?newfd:c->fd, msec);
if(c->type == comm_tcp_accept && !c->tcp_free) {
/* no use to start listening no free slots. */
return;
}
if(c->event_added) {
if(ub_event_del(c->ev->ev) != 0) {
log_err("event_del error to startlisten");
}
c->event_added = 0;
}
if(msec != -1 && msec != 0) {
if(!c->timeout) {
c->timeout = (struct timeval*)malloc(sizeof(
struct timeval));
if(!c->timeout) {
log_err("cpsl: malloc failed. No net read.");
return;
}
}
ub_event_add_bits(c->ev->ev, UB_EV_TIMEOUT);
#ifndef S_SPLINT_S /* splint fails on struct timeval. */
c->timeout->tv_sec = msec/1000;
c->timeout->tv_usec = (msec%1000)*1000;
#endif /* S_SPLINT_S */
} else {
if(msec == 0 || !c->timeout) {
ub_event_del_bits(c->ev->ev, UB_EV_TIMEOUT);
}
}
if(c->type == comm_tcp || c->type == comm_http) {
ub_event_del_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
if(c->tcp_write_and_read) {
verbose(5, "startlistening %d mode rw", (newfd==-1?c->fd:newfd));
ub_event_add_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
} else if(c->tcp_is_reading) {
verbose(5, "startlistening %d mode r", (newfd==-1?c->fd:newfd));
ub_event_add_bits(c->ev->ev, UB_EV_READ);
} else {
verbose(5, "startlistening %d mode w", (newfd==-1?c->fd:newfd));
ub_event_add_bits(c->ev->ev, UB_EV_WRITE);
}
}
if(newfd != -1) {
if(c->fd != -1 && c->fd != newfd) {
verbose(5, "cpsl close of fd %d for %d", c->fd, newfd);
sock_close(c->fd);
}
c->fd = newfd;
ub_event_set_fd(c->ev->ev, c->fd);
}
if(ub_event_add(c->ev->ev, msec==0?NULL:c->timeout) != 0) {
log_err("event_add failed. in cpsl.");
return;
}
c->event_added = 1;
}
void comm_point_listen_for_rw(struct comm_point* c, int rd, int wr)
{
verbose(VERB_ALGO, "comm point listen_for_rw %d %d", c->fd, wr);
if(c->event_added) {
if(ub_event_del(c->ev->ev) != 0) {
log_err("event_del error to cplf");
}
c->event_added = 0;
}
if(!c->timeout) {
ub_event_del_bits(c->ev->ev, UB_EV_TIMEOUT);
}
ub_event_del_bits(c->ev->ev, UB_EV_READ|UB_EV_WRITE);
if(rd) ub_event_add_bits(c->ev->ev, UB_EV_READ);
if(wr) ub_event_add_bits(c->ev->ev, UB_EV_WRITE);
if(ub_event_add(c->ev->ev, c->timeout) != 0) {
log_err("event_add failed. in cplf.");
return;
}
c->event_added = 1;
}
size_t comm_point_get_mem(struct comm_point* c)
{
size_t s;
if(!c)
return 0;
s = sizeof(*c) + sizeof(*c->ev);
if(c->timeout)
s += sizeof(*c->timeout);
if(c->type == comm_tcp || c->type == comm_local) {
s += sizeof(*c->buffer) + sldns_buffer_capacity(c->buffer);
#ifdef USE_DNSCRYPT
s += sizeof(*c->dnscrypt_buffer);
if(c->buffer != c->dnscrypt_buffer) {
s += sldns_buffer_capacity(c->dnscrypt_buffer);
}
#endif
}
if(c->type == comm_tcp_accept) {
int i;
for(i=0; i<c->max_tcp_count; i++)
s += comm_point_get_mem(c->tcp_handlers[i]);
}
return s;
}
struct comm_timer*
comm_timer_create(struct comm_base* base, void (*cb)(void*), void* cb_arg)
{
struct internal_timer *tm = (struct internal_timer*)calloc(1,
sizeof(struct internal_timer));
if(!tm) {
log_err("malloc failed");
return NULL;
}
tm->super.ev_timer = tm;
tm->base = base;
tm->super.callback = cb;
tm->super.cb_arg = cb_arg;
tm->ev = ub_event_new(base->eb->base, -1, UB_EV_TIMEOUT,
comm_timer_callback, &tm->super);
if(tm->ev == NULL) {
log_err("timer_create: event_base_set failed.");
free(tm);
return NULL;
}
return &tm->super;
}
void
comm_timer_disable(struct comm_timer* timer)
{
if(!timer)
return;
ub_timer_del(timer->ev_timer->ev);
timer->ev_timer->enabled = 0;
}
void
comm_timer_set(struct comm_timer* timer, struct timeval* tv)
{
log_assert(tv);
if(timer->ev_timer->enabled)
comm_timer_disable(timer);
if(ub_timer_add(timer->ev_timer->ev, timer->ev_timer->base->eb->base,
comm_timer_callback, timer, tv) != 0)
log_err("comm_timer_set: evtimer_add failed.");
timer->ev_timer->enabled = 1;
}
void
comm_timer_delete(struct comm_timer* timer)
{
if(!timer)
return;
comm_timer_disable(timer);
/* Free the sub struct timer->ev_timer derived from the super struct timer.
* i.e. assert(timer == timer->ev_timer)
*/
ub_event_free(timer->ev_timer->ev);
free(timer->ev_timer);
}
void
comm_timer_callback(int ATTR_UNUSED(fd), short event, void* arg)
{
struct comm_timer* tm = (struct comm_timer*)arg;
if(!(event&UB_EV_TIMEOUT))
return;
ub_comm_base_now(tm->ev_timer->base);
tm->ev_timer->enabled = 0;
fptr_ok(fptr_whitelist_comm_timer(tm->callback));
(*tm->callback)(tm->cb_arg);
}
int
comm_timer_is_set(struct comm_timer* timer)
{
return (int)timer->ev_timer->enabled;
}
size_t
comm_timer_get_mem(struct comm_timer* ATTR_UNUSED(timer))
{
return sizeof(struct internal_timer);
}
struct comm_signal*
comm_signal_create(struct comm_base* base,
void (*callback)(int, void*), void* cb_arg)
{
struct comm_signal* com = (struct comm_signal*)malloc(
sizeof(struct comm_signal));
if(!com) {
log_err("malloc failed");
return NULL;
}
com->base = base;
com->callback = callback;
com->cb_arg = cb_arg;
com->ev_signal = NULL;
return com;
}
void
comm_signal_callback(int sig, short event, void* arg)
{
struct comm_signal* comsig = (struct comm_signal*)arg;
if(!(event & UB_EV_SIGNAL))
return;
ub_comm_base_now(comsig->base);
fptr_ok(fptr_whitelist_comm_signal(comsig->callback));
(*comsig->callback)(sig, comsig->cb_arg);
}
int
comm_signal_bind(struct comm_signal* comsig, int sig)
{
struct internal_signal* entry = (struct internal_signal*)calloc(1,
sizeof(struct internal_signal));
if(!entry) {
log_err("malloc failed");
return 0;
}
log_assert(comsig);
/* add signal event */
entry->ev = ub_signal_new(comsig->base->eb->base, sig,
comm_signal_callback, comsig);
if(entry->ev == NULL) {
log_err("Could not create signal event");
free(entry);
return 0;
}
if(ub_signal_add(entry->ev, NULL) != 0) {
log_err("Could not add signal handler");
ub_event_free(entry->ev);
free(entry);
return 0;
}
/* link into list */
entry->next = comsig->ev_signal;
comsig->ev_signal = entry;
return 1;
}
void
comm_signal_delete(struct comm_signal* comsig)
{
struct internal_signal* p, *np;
if(!comsig)
return;
p=comsig->ev_signal;
while(p) {
np = p->next;
ub_signal_del(p->ev);
ub_event_free(p->ev);
free(p);
p = np;
}
free(comsig);
}