src/sbin/unwind/libunbound/validator/val_anchor.c

1346 lines
35 KiB
C

/*
* validator/val_anchor.c - validator trust anchor storage.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains storage for the trust anchors for the validator.
*/
#include "config.h"
#include <ctype.h>
#include "validator/val_anchor.h"
#include "validator/val_sigcrypt.h"
#include "validator/autotrust.h"
#include "util/data/packed_rrset.h"
#include "util/data/dname.h"
#include "util/log.h"
#include "util/net_help.h"
#include "util/config_file.h"
#include "util/as112.h"
#include "sldns/sbuffer.h"
#include "sldns/rrdef.h"
#include "sldns/str2wire.h"
#ifdef HAVE_GLOB_H
#include <glob.h>
#endif
int
anchor_cmp(const void* k1, const void* k2)
{
int m;
struct trust_anchor* n1 = (struct trust_anchor*)k1;
struct trust_anchor* n2 = (struct trust_anchor*)k2;
/* no need to ntohs(class) because sort order is irrelevant */
if(n1->dclass != n2->dclass) {
if(n1->dclass < n2->dclass)
return -1;
return 1;
}
return dname_lab_cmp(n1->name, n1->namelabs, n2->name, n2->namelabs,
&m);
}
struct val_anchors*
anchors_create(void)
{
struct val_anchors* a = (struct val_anchors*)calloc(1, sizeof(*a));
if(!a)
return NULL;
a->tree = rbtree_create(anchor_cmp);
if(!a->tree) {
anchors_delete(a);
return NULL;
}
a->autr = autr_global_create();
if(!a->autr) {
anchors_delete(a);
return NULL;
}
lock_basic_init(&a->lock);
lock_protect(&a->lock, a, sizeof(*a));
lock_protect(&a->lock, a->autr, sizeof(*a->autr));
return a;
}
/** delete assembled rrset */
static void
assembled_rrset_delete(struct ub_packed_rrset_key* pkey)
{
if(!pkey) return;
if(pkey->entry.data) {
struct packed_rrset_data* pd = (struct packed_rrset_data*)
pkey->entry.data;
free(pd->rr_data);
free(pd->rr_ttl);
free(pd->rr_len);
free(pd);
}
free(pkey->rk.dname);
free(pkey);
}
/** destroy locks in tree and delete autotrust anchors */
static void
anchors_delfunc(rbnode_type* elem, void* ATTR_UNUSED(arg))
{
struct trust_anchor* ta = (struct trust_anchor*)elem;
if(!ta) return;
if(ta->autr) {
autr_point_delete(ta);
} else {
struct ta_key* p, *np;
lock_basic_destroy(&ta->lock);
free(ta->name);
p = ta->keylist;
while(p) {
np = p->next;
free(p->data);
free(p);
p = np;
}
assembled_rrset_delete(ta->ds_rrset);
assembled_rrset_delete(ta->dnskey_rrset);
free(ta);
}
}
void
anchors_delete(struct val_anchors* anchors)
{
if(!anchors)
return;
lock_unprotect(&anchors->lock, anchors->autr);
lock_unprotect(&anchors->lock, anchors);
lock_basic_destroy(&anchors->lock);
if(anchors->tree)
traverse_postorder(anchors->tree, anchors_delfunc, NULL);
free(anchors->tree);
autr_global_delete(anchors->autr);
free(anchors);
}
void
anchors_init_parents_locked(struct val_anchors* anchors)
{
struct trust_anchor* node, *prev = NULL, *p;
int m;
/* nobody else can grab locks because we hold the main lock.
* Thus the previous items, after unlocked, are not deleted */
RBTREE_FOR(node, struct trust_anchor*, anchors->tree) {
lock_basic_lock(&node->lock);
node->parent = NULL;
if(!prev || prev->dclass != node->dclass) {
prev = node;
lock_basic_unlock(&node->lock);
continue;
}
(void)dname_lab_cmp(prev->name, prev->namelabs, node->name,
node->namelabs, &m); /* we know prev is smaller */
/* sort order like: . com. bla.com. zwb.com. net. */
/* find the previous, or parent-parent-parent */
for(p = prev; p; p = p->parent)
/* looking for name with few labels, a parent */
if(p->namelabs <= m) {
/* ==: since prev matched m, this is closest*/
/* <: prev matches more, but is not a parent,
* this one is a (grand)parent */
node->parent = p;
break;
}
lock_basic_unlock(&node->lock);
prev = node;
}
}
/** initialise parent pointers in the tree */
static void
init_parents(struct val_anchors* anchors)
{
lock_basic_lock(&anchors->lock);
anchors_init_parents_locked(anchors);
lock_basic_unlock(&anchors->lock);
}
struct trust_anchor*
anchor_find(struct val_anchors* anchors, uint8_t* name, int namelabs,
size_t namelen, uint16_t dclass)
{
struct trust_anchor key;
rbnode_type* n;
if(!name) return NULL;
key.node.key = &key;
key.name = name;
key.namelabs = namelabs;
key.namelen = namelen;
key.dclass = dclass;
lock_basic_lock(&anchors->lock);
n = rbtree_search(anchors->tree, &key);
if(n) {
lock_basic_lock(&((struct trust_anchor*)n->key)->lock);
}
lock_basic_unlock(&anchors->lock);
if(!n)
return NULL;
return (struct trust_anchor*)n->key;
}
/** create new trust anchor object */
static struct trust_anchor*
anchor_new_ta(struct val_anchors* anchors, uint8_t* name, int namelabs,
size_t namelen, uint16_t dclass, int lockit)
{
#ifdef UNBOUND_DEBUG
rbnode_type* r;
#endif
struct trust_anchor* ta = (struct trust_anchor*)malloc(
sizeof(struct trust_anchor));
if(!ta)
return NULL;
memset(ta, 0, sizeof(*ta));
ta->node.key = ta;
ta->name = memdup(name, namelen);
if(!ta->name) {
free(ta);
return NULL;
}
ta->namelabs = namelabs;
ta->namelen = namelen;
ta->dclass = dclass;
lock_basic_init(&ta->lock);
if(lockit) {
lock_basic_lock(&anchors->lock);
}
#ifdef UNBOUND_DEBUG
r =
#else
(void)
#endif
rbtree_insert(anchors->tree, &ta->node);
if(lockit) {
lock_basic_unlock(&anchors->lock);
}
log_assert(r != NULL);
return ta;
}
/** find trustanchor key by exact data match */
static struct ta_key*
anchor_find_key(struct trust_anchor* ta, uint8_t* rdata, size_t rdata_len,
uint16_t type)
{
struct ta_key* k;
for(k = ta->keylist; k; k = k->next) {
if(k->type == type && k->len == rdata_len &&
memcmp(k->data, rdata, rdata_len) == 0)
return k;
}
return NULL;
}
/** create new trustanchor key */
static struct ta_key*
anchor_new_ta_key(uint8_t* rdata, size_t rdata_len, uint16_t type)
{
struct ta_key* k = (struct ta_key*)malloc(sizeof(*k));
if(!k)
return NULL;
memset(k, 0, sizeof(*k));
k->data = memdup(rdata, rdata_len);
if(!k->data) {
free(k);
return NULL;
}
k->len = rdata_len;
k->type = type;
return k;
}
/**
* This routine adds a new RR to a trust anchor. The trust anchor may not
* exist yet, and is created if not. The RR can be DS or DNSKEY.
* This routine will also remove duplicates; storing them only once.
* @param anchors: anchor storage.
* @param name: name of trust anchor (wireformat)
* @param type: type or RR
* @param dclass: class of RR
* @param rdata: rdata wireformat, starting with rdlength.
* If NULL, nothing is stored, but an entry is created.
* @param rdata_len: length of rdata including rdlength.
* @return: NULL on error, else the trust anchor.
*/
static struct trust_anchor*
anchor_store_new_key(struct val_anchors* anchors, uint8_t* name, uint16_t type,
uint16_t dclass, uint8_t* rdata, size_t rdata_len)
{
struct ta_key* k;
struct trust_anchor* ta;
int namelabs;
size_t namelen;
namelabs = dname_count_size_labels(name, &namelen);
if(type != LDNS_RR_TYPE_DS && type != LDNS_RR_TYPE_DNSKEY) {
log_err("Bad type for trust anchor");
return 0;
}
/* lookup or create trustanchor */
ta = anchor_find(anchors, name, namelabs, namelen, dclass);
if(!ta) {
ta = anchor_new_ta(anchors, name, namelabs, namelen, dclass, 1);
if(!ta)
return NULL;
lock_basic_lock(&ta->lock);
}
if(!rdata) {
lock_basic_unlock(&ta->lock);
return ta;
}
/* look for duplicates */
if(anchor_find_key(ta, rdata, rdata_len, type)) {
lock_basic_unlock(&ta->lock);
return ta;
}
k = anchor_new_ta_key(rdata, rdata_len, type);
if(!k) {
lock_basic_unlock(&ta->lock);
return NULL;
}
/* add new key */
if(type == LDNS_RR_TYPE_DS)
ta->numDS++;
else ta->numDNSKEY++;
k->next = ta->keylist;
ta->keylist = k;
lock_basic_unlock(&ta->lock);
return ta;
}
/**
* Add new RR. It converts ldns RR to wire format.
* @param anchors: anchor storage.
* @param rr: the wirerr.
* @param rl: length of rr.
* @param dl: length of dname.
* @return NULL on error, else the trust anchor.
*/
static struct trust_anchor*
anchor_store_new_rr(struct val_anchors* anchors, uint8_t* rr, size_t rl,
size_t dl)
{
struct trust_anchor* ta;
if(!(ta=anchor_store_new_key(anchors, rr,
sldns_wirerr_get_type(rr, rl, dl),
sldns_wirerr_get_class(rr, rl, dl),
sldns_wirerr_get_rdatawl(rr, rl, dl),
sldns_wirerr_get_rdatalen(rr, rl, dl)+2))) {
return NULL;
}
log_nametypeclass(VERB_QUERY, "adding trusted key",
rr, sldns_wirerr_get_type(rr, rl, dl),
sldns_wirerr_get_class(rr, rl, dl));
return ta;
}
/**
* Insert insecure anchor
* @param anchors: anchor storage.
* @param str: the domain name.
* @return NULL on error, Else last trust anchor point
*/
static struct trust_anchor*
anchor_insert_insecure(struct val_anchors* anchors, const char* str)
{
struct trust_anchor* ta;
size_t dname_len = 0;
uint8_t* nm = sldns_str2wire_dname(str, &dname_len);
if(!nm) {
log_err("parse error in domain name '%s'", str);
return NULL;
}
ta = anchor_store_new_key(anchors, nm, LDNS_RR_TYPE_DS,
LDNS_RR_CLASS_IN, NULL, 0);
free(nm);
return ta;
}
struct trust_anchor*
anchor_store_str(struct val_anchors* anchors, sldns_buffer* buffer,
const char* str)
{
struct trust_anchor* ta;
uint8_t* rr = sldns_buffer_begin(buffer);
size_t len = sldns_buffer_capacity(buffer), dname_len = 0;
int status = sldns_str2wire_rr_buf(str, rr, &len, &dname_len,
0, NULL, 0, NULL, 0);
if(status != 0) {
log_err("error parsing trust anchor %s: at %d: %s",
str, LDNS_WIREPARSE_OFFSET(status),
sldns_get_errorstr_parse(status));
return NULL;
}
if(!(ta=anchor_store_new_rr(anchors, rr, len, dname_len))) {
log_err("out of memory");
return NULL;
}
return ta;
}
/**
* Read a file with trust anchors
* @param anchors: anchor storage.
* @param buffer: parsing buffer.
* @param fname: string.
* @param onlyone: only one trust anchor allowed in file.
* @return NULL on error. Else last trust-anchor point.
*/
static struct trust_anchor*
anchor_read_file(struct val_anchors* anchors, sldns_buffer* buffer,
const char* fname, int onlyone)
{
struct trust_anchor* ta = NULL, *tanew;
struct sldns_file_parse_state pst;
int status;
size_t len, dname_len;
uint8_t* rr = sldns_buffer_begin(buffer);
int ok = 1;
FILE* in = fopen(fname, "r");
if(!in) {
log_err("error opening file %s: %s", fname, strerror(errno));
return 0;
}
memset(&pst, 0, sizeof(pst));
pst.default_ttl = 3600;
pst.lineno = 1;
while(!feof(in)) {
len = sldns_buffer_capacity(buffer);
dname_len = 0;
status = sldns_fp2wire_rr_buf(in, rr, &len, &dname_len, &pst);
if(len == 0) /* empty, $TTL, $ORIGIN */
continue;
if(status != 0) {
log_err("parse error in %s:%d:%d : %s", fname,
pst.lineno, LDNS_WIREPARSE_OFFSET(status),
sldns_get_errorstr_parse(status));
ok = 0;
break;
}
if(sldns_wirerr_get_type(rr, len, dname_len) !=
LDNS_RR_TYPE_DS && sldns_wirerr_get_type(rr, len,
dname_len) != LDNS_RR_TYPE_DNSKEY) {
continue;
}
if(!(tanew=anchor_store_new_rr(anchors, rr, len, dname_len))) {
log_err("mem error at %s line %d", fname, pst.lineno);
ok = 0;
break;
}
if(onlyone && ta && ta != tanew) {
log_err("error at %s line %d: no multiple anchor "
"domains allowed (you can have multiple "
"keys, but they must have the same name).",
fname, pst.lineno);
ok = 0;
break;
}
ta = tanew;
}
fclose(in);
if(!ok) return NULL;
/* empty file is OK when multiple anchors are allowed */
if(!onlyone && !ta) return (struct trust_anchor*)1;
return ta;
}
/** skip file to end of line */
static void
skip_to_eol(FILE* in)
{
int c;
while((c = getc(in)) != EOF ) {
if(c == '\n')
return;
}
}
/** true for special characters in bind configs */
static int
is_bind_special(int c)
{
switch(c) {
case '{':
case '}':
case '"':
case ';':
return 1;
}
return 0;
}
/**
* Read a keyword skipping bind comments; spaces, specials, restkeywords.
* The file is split into the following tokens:
* * special characters, on their own, rdlen=1, { } doublequote ;
* * whitespace becomes a single ' ' or tab. Newlines become spaces.
* * other words ('keywords')
* * comments are skipped if desired
* / / C++ style comment to end of line
* # to end of line
* / * C style comment * /
* @param in: file to read from.
* @param buf: buffer, what is read is stored after current buffer position.
* Space is left in the buffer to write a terminating 0.
* @param line: line number is increased per line, for error reports.
* @param comments: if 0, comments are not possible and become text.
* if 1, comments are skipped entirely.
* In BIND files, this is when reading quoted strings, for example
* " base 64 text with / / in there "
* @return the number of character written to the buffer.
* 0 on end of file.
*/
static int
readkeyword_bindfile(FILE* in, sldns_buffer* buf, int* line, int comments)
{
int c;
int numdone = 0;
while((c = getc(in)) != EOF ) {
if(comments && c == '#') { /* # blabla */
skip_to_eol(in);
(*line)++;
continue;
} else if(comments && c=='/' && numdone>0 && /* /_/ bla*/
sldns_buffer_read_u8_at(buf,
sldns_buffer_position(buf)-1) == '/') {
sldns_buffer_skip(buf, -1);
numdone--;
skip_to_eol(in);
(*line)++;
continue;
} else if(comments && c=='*' && numdone>0 && /* /_* bla *_/ */
sldns_buffer_read_u8_at(buf,
sldns_buffer_position(buf)-1) == '/') {
sldns_buffer_skip(buf, -1);
numdone--;
/* skip to end of comment */
while(c != EOF && (c=getc(in)) != EOF ) {
if(c == '*') {
if((c=getc(in)) == '/')
break;
}
if(c == '\n')
(*line)++;
}
continue;
}
/* not a comment, complete the keyword */
if(numdone > 0) {
/* check same type */
if(isspace((unsigned char)c)) {
ungetc(c, in);
return numdone;
}
if(is_bind_special(c)) {
ungetc(c, in);
return numdone;
}
}
if(c == '\n') {
c = ' ';
(*line)++;
}
/* space for 1 char + 0 string terminator */
if(sldns_buffer_remaining(buf) < 2) {
fatal_exit("trusted-keys, %d, string too long", *line);
}
sldns_buffer_write_u8(buf, (uint8_t)c);
numdone++;
if(isspace((unsigned char)c)) {
/* collate whitespace into ' ' */
while((c = getc(in)) != EOF ) {
if(c == '\n')
(*line)++;
if(!isspace((unsigned char)c)) {
ungetc(c, in);
break;
}
}
return numdone;
}
if(is_bind_special(c))
return numdone;
}
return numdone;
}
/** skip through file to { or ; */
static int
skip_to_special(FILE* in, sldns_buffer* buf, int* line, int spec)
{
int rdlen;
sldns_buffer_clear(buf);
while((rdlen=readkeyword_bindfile(in, buf, line, 1))) {
if(rdlen == 1 && isspace((unsigned char)*sldns_buffer_begin(buf))) {
sldns_buffer_clear(buf);
continue;
}
if(rdlen != 1 || *sldns_buffer_begin(buf) != (uint8_t)spec) {
sldns_buffer_write_u8(buf, 0);
log_err("trusted-keys, line %d, expected %c",
*line, spec);
return 0;
}
return 1;
}
log_err("trusted-keys, line %d, expected %c got EOF", *line, spec);
return 0;
}
/**
* read contents of trusted-keys{ ... ; clauses and insert keys into storage.
* @param anchors: where to store keys
* @param buf: buffer to use
* @param line: line number in file
* @param in: file to read from.
* @return 0 on error.
*/
static int
process_bind_contents(struct val_anchors* anchors, sldns_buffer* buf,
int* line, FILE* in)
{
/* loop over contents, collate strings before ; */
/* contents is (numbered): 0 1 2 3 4 5 6 7 8 */
/* name. 257 3 5 base64 base64 */
/* quoted value: 0 "111" 0 0 0 0 0 0 0 */
/* comments value: 1 "000" 1 1 1 "0 0 0 0" 1 */
int contnum = 0;
int quoted = 0;
int comments = 1;
int rdlen;
char* str = 0;
sldns_buffer_clear(buf);
while((rdlen=readkeyword_bindfile(in, buf, line, comments))) {
if(rdlen == 1 && sldns_buffer_position(buf) == 1
&& isspace((unsigned char)*sldns_buffer_begin(buf))) {
/* starting whitespace is removed */
sldns_buffer_clear(buf);
continue;
} else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == '"') {
/* remove " from the string */
if(contnum == 0) {
quoted = 1;
comments = 0;
}
sldns_buffer_skip(buf, -1);
if(contnum > 0 && quoted) {
if(sldns_buffer_remaining(buf) < 8+1) {
log_err("line %d, too long", *line);
return 0;
}
sldns_buffer_write(buf, " DNSKEY ", 8);
quoted = 0;
comments = 1;
} else if(contnum > 0)
comments = !comments;
continue;
} else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == ';') {
if(contnum < 5) {
sldns_buffer_write_u8(buf, 0);
log_err("line %d, bad key", *line);
return 0;
}
sldns_buffer_skip(buf, -1);
sldns_buffer_write_u8(buf, 0);
str = strdup((char*)sldns_buffer_begin(buf));
if(!str) {
log_err("line %d, allocation failure", *line);
return 0;
}
if(!anchor_store_str(anchors, buf, str)) {
log_err("line %d, bad key", *line);
free(str);
return 0;
}
free(str);
sldns_buffer_clear(buf);
contnum = 0;
quoted = 0;
comments = 1;
continue;
} else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == '}') {
if(contnum > 0) {
sldns_buffer_write_u8(buf, 0);
log_err("line %d, bad key before }", *line);
return 0;
}
return 1;
} else if(rdlen == 1 &&
isspace((unsigned char)sldns_buffer_current(buf)[-1])) {
/* leave whitespace here */
} else {
/* not space or whatnot, so actual content */
contnum ++;
if(contnum == 1 && !quoted) {
if(sldns_buffer_remaining(buf) < 8+1) {
log_err("line %d, too long", *line);
return 0;
}
sldns_buffer_write(buf, " DNSKEY ", 8);
}
}
}
log_err("line %d, EOF before }", *line);
return 0;
}
/**
* Read a BIND9 like file with trust anchors in named.conf format.
* @param anchors: anchor storage.
* @param buffer: parsing buffer.
* @param fname: string.
* @return false on error.
*/
static int
anchor_read_bind_file(struct val_anchors* anchors, sldns_buffer* buffer,
const char* fname)
{
int line_nr = 1;
FILE* in = fopen(fname, "r");
int rdlen = 0;
if(!in) {
log_err("error opening file %s: %s", fname, strerror(errno));
return 0;
}
verbose(VERB_QUERY, "reading in bind-compat-mode: '%s'", fname);
/* scan for trusted-keys keyword, ignore everything else */
sldns_buffer_clear(buffer);
while((rdlen=readkeyword_bindfile(in, buffer, &line_nr, 1)) != 0) {
if(rdlen != 12 || strncmp((char*)sldns_buffer_begin(buffer),
"trusted-keys", 12) != 0) {
sldns_buffer_clear(buffer);
/* ignore everything but trusted-keys */
continue;
}
if(!skip_to_special(in, buffer, &line_nr, '{')) {
log_err("error in trusted key: \"%s\"", fname);
fclose(in);
return 0;
}
/* process contents */
if(!process_bind_contents(anchors, buffer, &line_nr, in)) {
log_err("error in trusted key: \"%s\"", fname);
fclose(in);
return 0;
}
if(!skip_to_special(in, buffer, &line_nr, ';')) {
log_err("error in trusted key: \"%s\"", fname);
fclose(in);
return 0;
}
sldns_buffer_clear(buffer);
}
fclose(in);
return 1;
}
/**
* Read a BIND9 like files with trust anchors in named.conf format.
* Performs wildcard processing of name.
* @param anchors: anchor storage.
* @param buffer: parsing buffer.
* @param pat: pattern string. (can be wildcarded)
* @return false on error.
*/
static int
anchor_read_bind_file_wild(struct val_anchors* anchors, sldns_buffer* buffer,
const char* pat)
{
#ifdef HAVE_GLOB
glob_t g;
size_t i;
int r, flags;
if(!strchr(pat, '*') && !strchr(pat, '?') && !strchr(pat, '[') &&
!strchr(pat, '{') && !strchr(pat, '~')) {
return anchor_read_bind_file(anchors, buffer, pat);
}
verbose(VERB_QUERY, "wildcard found, processing %s", pat);
flags = 0
#ifdef GLOB_ERR
| GLOB_ERR
#endif
#ifdef GLOB_NOSORT
| GLOB_NOSORT
#endif
#ifdef GLOB_BRACE
| GLOB_BRACE
#endif
#ifdef GLOB_TILDE
| GLOB_TILDE
#endif
;
memset(&g, 0, sizeof(g));
r = glob(pat, flags, NULL, &g);
if(r) {
/* some error */
if(r == GLOB_NOMATCH) {
verbose(VERB_QUERY, "trusted-keys-file: "
"no matches for %s", pat);
return 1;
} else if(r == GLOB_NOSPACE) {
log_err("wildcard trusted-keys-file %s: "
"pattern out of memory", pat);
} else if(r == GLOB_ABORTED) {
log_err("wildcard trusted-keys-file %s: expansion "
"aborted (%s)", pat, strerror(errno));
} else {
log_err("wildcard trusted-keys-file %s: expansion "
"failed (%s)", pat, strerror(errno));
}
/* ignore globs that yield no files */
return 1;
}
/* process files found, if any */
for(i=0; i<(size_t)g.gl_pathc; i++) {
if(!anchor_read_bind_file(anchors, buffer, g.gl_pathv[i])) {
log_err("error reading wildcard "
"trusted-keys-file: %s", g.gl_pathv[i]);
globfree(&g);
return 0;
}
}
globfree(&g);
return 1;
#else /* not HAVE_GLOB */
return anchor_read_bind_file(anchors, buffer, pat);
#endif /* HAVE_GLOB */
}
/**
* Assemble an rrset structure for the type
* @param ta: trust anchor.
* @param num: number of items to fetch from list.
* @param type: fetch only items of this type.
* @return rrset or NULL on error.
*/
static struct ub_packed_rrset_key*
assemble_it(struct trust_anchor* ta, size_t num, uint16_t type)
{
struct ub_packed_rrset_key* pkey = (struct ub_packed_rrset_key*)
malloc(sizeof(*pkey));
struct packed_rrset_data* pd;
struct ta_key* tk;
size_t i;
if(!pkey)
return NULL;
memset(pkey, 0, sizeof(*pkey));
pkey->rk.dname = memdup(ta->name, ta->namelen);
if(!pkey->rk.dname) {
free(pkey);
return NULL;
}
pkey->rk.dname_len = ta->namelen;
pkey->rk.type = htons(type);
pkey->rk.rrset_class = htons(ta->dclass);
/* The rrset is build in an uncompressed way. This means it
* cannot be copied in the normal way. */
pd = (struct packed_rrset_data*)malloc(sizeof(*pd));
if(!pd) {
free(pkey->rk.dname);
free(pkey);
return NULL;
}
memset(pd, 0, sizeof(*pd));
pd->count = num;
pd->trust = rrset_trust_ultimate;
pd->rr_len = (size_t*)reallocarray(NULL, num, sizeof(size_t));
if(!pd->rr_len) {
free(pd);
free(pkey->rk.dname);
free(pkey);
return NULL;
}
pd->rr_ttl = (time_t*)reallocarray(NULL, num, sizeof(time_t));
if(!pd->rr_ttl) {
free(pd->rr_len);
free(pd);
free(pkey->rk.dname);
free(pkey);
return NULL;
}
pd->rr_data = (uint8_t**)reallocarray(NULL, num, sizeof(uint8_t*));
if(!pd->rr_data) {
free(pd->rr_ttl);
free(pd->rr_len);
free(pd);
free(pkey->rk.dname);
free(pkey);
return NULL;
}
/* fill in rrs */
i=0;
for(tk = ta->keylist; tk; tk = tk->next) {
if(tk->type != type)
continue;
pd->rr_len[i] = tk->len;
/* reuse data ptr to allocation in talist */
pd->rr_data[i] = tk->data;
pd->rr_ttl[i] = 0;
i++;
}
pkey->entry.data = (void*)pd;
return pkey;
}
/**
* Assemble structures for the trust DS and DNSKEY rrsets.
* @param ta: trust anchor
* @return: false on error.
*/
static int
anchors_assemble(struct trust_anchor* ta)
{
if(ta->numDS > 0) {
ta->ds_rrset = assemble_it(ta, ta->numDS, LDNS_RR_TYPE_DS);
if(!ta->ds_rrset)
return 0;
}
if(ta->numDNSKEY > 0) {
ta->dnskey_rrset = assemble_it(ta, ta->numDNSKEY,
LDNS_RR_TYPE_DNSKEY);
if(!ta->dnskey_rrset)
return 0;
}
return 1;
}
/**
* Check DS algos for support, warn if not.
* @param ta: trust anchor
* @return number of DS anchors with unsupported algorithms.
*/
static size_t
anchors_ds_unsupported(struct trust_anchor* ta)
{
size_t i, num = 0;
for(i=0; i<ta->numDS; i++) {
if(!ds_digest_algo_is_supported(ta->ds_rrset, i) ||
!ds_key_algo_is_supported(ta->ds_rrset, i))
num++;
}
return num;
}
/**
* Check DNSKEY algos for support, warn if not.
* @param ta: trust anchor
* @return number of DNSKEY anchors with unsupported algorithms.
*/
static size_t
anchors_dnskey_unsupported(struct trust_anchor* ta)
{
size_t i, num = 0;
for(i=0; i<ta->numDNSKEY; i++) {
if(!dnskey_algo_is_supported(ta->dnskey_rrset, i) ||
!dnskey_size_is_supported(ta->dnskey_rrset, i))
num++;
}
return num;
}
/**
* Assemble the rrsets in the anchors, ready for use by validator.
* @param anchors: trust anchor storage.
* @return: false on error.
*/
static int
anchors_assemble_rrsets(struct val_anchors* anchors)
{
struct trust_anchor* ta;
struct trust_anchor* next;
size_t nods, nokey;
lock_basic_lock(&anchors->lock);
ta=(struct trust_anchor*)rbtree_first(anchors->tree);
while((rbnode_type*)ta != RBTREE_NULL) {
next = (struct trust_anchor*)rbtree_next(&ta->node);
lock_basic_lock(&ta->lock);
if(ta->autr || (ta->numDS == 0 && ta->numDNSKEY == 0)) {
lock_basic_unlock(&ta->lock);
ta = next; /* skip */
continue;
}
if(!anchors_assemble(ta)) {
log_err("out of memory");
lock_basic_unlock(&ta->lock);
lock_basic_unlock(&anchors->lock);
return 0;
}
nods = anchors_ds_unsupported(ta);
nokey = anchors_dnskey_unsupported(ta);
if(nods) {
log_nametypeclass(NO_VERBOSE, "warning: unsupported "
"algorithm for trust anchor",
ta->name, LDNS_RR_TYPE_DS, ta->dclass);
}
if(nokey) {
log_nametypeclass(NO_VERBOSE, "warning: unsupported "
"algorithm for trust anchor",
ta->name, LDNS_RR_TYPE_DNSKEY, ta->dclass);
}
if(nods == ta->numDS && nokey == ta->numDNSKEY) {
char b[257];
dname_str(ta->name, b);
log_warn("trust anchor %s has no supported algorithms,"
" the anchor is ignored (check if you need to"
" upgrade unbound and "
#ifdef HAVE_LIBRESSL
"libressl"
#else
"openssl"
#endif
")", b);
(void)rbtree_delete(anchors->tree, &ta->node);
lock_basic_unlock(&ta->lock);
anchors_delfunc(&ta->node, NULL);
ta = next;
continue;
}
lock_basic_unlock(&ta->lock);
ta = next;
}
lock_basic_unlock(&anchors->lock);
return 1;
}
int
anchors_apply_cfg(struct val_anchors* anchors, struct config_file* cfg)
{
struct config_strlist* f;
const char** zstr;
char* nm;
sldns_buffer* parsebuf = sldns_buffer_new(65535);
if(!parsebuf) {
log_err("malloc error in anchors_apply_cfg.");
return 0;
}
if(cfg->insecure_lan_zones) {
for(zstr = as112_zones; *zstr; zstr++) {
if(!anchor_insert_insecure(anchors, *zstr)) {
log_err("error in insecure-lan-zones: %s", *zstr);
sldns_buffer_free(parsebuf);
return 0;
}
}
}
for(f = cfg->domain_insecure; f; f = f->next) {
if(!f->str || f->str[0] == 0) /* empty "" */
continue;
if(!anchor_insert_insecure(anchors, f->str)) {
log_err("error in domain-insecure: %s", f->str);
sldns_buffer_free(parsebuf);
return 0;
}
}
for(f = cfg->trust_anchor_file_list; f; f = f->next) {
if(!f->str || f->str[0] == 0) /* empty "" */
continue;
nm = f->str;
if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
nm += strlen(cfg->chrootdir);
if(!anchor_read_file(anchors, parsebuf, nm, 0)) {
log_err("error reading trust-anchor-file: %s", f->str);
sldns_buffer_free(parsebuf);
return 0;
}
}
for(f = cfg->trusted_keys_file_list; f; f = f->next) {
if(!f->str || f->str[0] == 0) /* empty "" */
continue;
nm = f->str;
if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
nm += strlen(cfg->chrootdir);
if(!anchor_read_bind_file_wild(anchors, parsebuf, nm)) {
log_err("error reading trusted-keys-file: %s", f->str);
sldns_buffer_free(parsebuf);
return 0;
}
}
for(f = cfg->trust_anchor_list; f; f = f->next) {
if(!f->str || f->str[0] == 0) /* empty "" */
continue;
if(!anchor_store_str(anchors, parsebuf, f->str)) {
log_err("error in trust-anchor: \"%s\"", f->str);
sldns_buffer_free(parsebuf);
return 0;
}
}
/* do autr last, so that it sees what anchors are filled by other
* means can can print errors about double config for the name */
for(f = cfg->auto_trust_anchor_file_list; f; f = f->next) {
if(!f->str || f->str[0] == 0) /* empty "" */
continue;
nm = f->str;
if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
nm += strlen(cfg->chrootdir);
if(!autr_read_file(anchors, nm)) {
log_err("error reading auto-trust-anchor-file: %s",
f->str);
sldns_buffer_free(parsebuf);
return 0;
}
}
/* first assemble, since it may delete useless anchors */
anchors_assemble_rrsets(anchors);
init_parents(anchors);
sldns_buffer_free(parsebuf);
if(verbosity >= VERB_ALGO) autr_debug_print(anchors);
return 1;
}
struct trust_anchor*
anchors_lookup(struct val_anchors* anchors,
uint8_t* qname, size_t qname_len, uint16_t qclass)
{
struct trust_anchor key;
struct trust_anchor* result;
rbnode_type* res = NULL;
key.node.key = &key;
key.name = qname;
key.namelabs = dname_count_labels(qname);
key.namelen = qname_len;
key.dclass = qclass;
lock_basic_lock(&anchors->lock);
if(rbtree_find_less_equal(anchors->tree, &key, &res)) {
/* exact */
result = (struct trust_anchor*)res;
} else {
/* smaller element (or no element) */
int m;
result = (struct trust_anchor*)res;
if(!result || result->dclass != qclass) {
lock_basic_unlock(&anchors->lock);
return NULL;
}
/* count number of labels matched */
(void)dname_lab_cmp(result->name, result->namelabs, key.name,
key.namelabs, &m);
while(result) { /* go up until qname is subdomain of stub */
if(result->namelabs <= m)
break;
result = result->parent;
}
}
if(result) {
lock_basic_lock(&result->lock);
}
lock_basic_unlock(&anchors->lock);
return result;
}
size_t
anchors_get_mem(struct val_anchors* anchors)
{
struct trust_anchor *ta;
size_t s = sizeof(*anchors);
if(!anchors)
return 0;
RBTREE_FOR(ta, struct trust_anchor*, anchors->tree) {
s += sizeof(*ta) + ta->namelen;
/* keys and so on */
}
return s;
}
int
anchors_add_insecure(struct val_anchors* anchors, uint16_t c, uint8_t* nm)
{
struct trust_anchor key;
key.node.key = &key;
key.name = nm;
key.namelabs = dname_count_size_labels(nm, &key.namelen);
key.dclass = c;
lock_basic_lock(&anchors->lock);
if(rbtree_search(anchors->tree, &key)) {
lock_basic_unlock(&anchors->lock);
/* nothing to do, already an anchor or insecure point */
return 1;
}
if(!anchor_new_ta(anchors, nm, key.namelabs, key.namelen, c, 0)) {
log_err("out of memory");
lock_basic_unlock(&anchors->lock);
return 0;
}
/* no other contents in new ta, because it is insecure point */
anchors_init_parents_locked(anchors);
lock_basic_unlock(&anchors->lock);
return 1;
}
void
anchors_delete_insecure(struct val_anchors* anchors, uint16_t c,
uint8_t* nm)
{
struct trust_anchor key;
struct trust_anchor* ta;
key.node.key = &key;
key.name = nm;
key.namelabs = dname_count_size_labels(nm, &key.namelen);
key.dclass = c;
lock_basic_lock(&anchors->lock);
if(!(ta=(struct trust_anchor*)rbtree_search(anchors->tree, &key))) {
lock_basic_unlock(&anchors->lock);
/* nothing there */
return;
}
/* lock it to drive away other threads that use it */
lock_basic_lock(&ta->lock);
/* see if its really an insecure point */
if(ta->keylist || ta->autr || ta->numDS || ta->numDNSKEY) {
lock_basic_unlock(&anchors->lock);
lock_basic_unlock(&ta->lock);
/* its not an insecure point, do not remove it */
return;
}
/* remove from tree */
(void)rbtree_delete(anchors->tree, &ta->node);
anchors_init_parents_locked(anchors);
lock_basic_unlock(&anchors->lock);
/* actual free of data */
lock_basic_unlock(&ta->lock);
anchors_delfunc(&ta->node, NULL);
}
/** compare two keytags, return -1, 0 or 1 */
static int
keytag_compare(const void* x, const void* y)
{
if(*(uint16_t*)x == *(uint16_t*)y)
return 0;
if(*(uint16_t*)x > *(uint16_t*)y)
return 1;
return -1;
}
size_t
anchor_list_keytags(struct trust_anchor* ta, uint16_t* list, size_t num)
{
size_t i, ret = 0;
if(ta->numDS == 0 && ta->numDNSKEY == 0)
return 0; /* insecure point */
if(ta->numDS != 0 && ta->ds_rrset) {
struct packed_rrset_data* d=(struct packed_rrset_data*)
ta->ds_rrset->entry.data;
for(i=0; i<d->count; i++) {
if(ret == num) continue;
list[ret++] = ds_get_keytag(ta->ds_rrset, i);
}
}
if(ta->numDNSKEY != 0 && ta->dnskey_rrset) {
struct packed_rrset_data* d=(struct packed_rrset_data*)
ta->dnskey_rrset->entry.data;
for(i=0; i<d->count; i++) {
if(ret == num) continue;
list[ret++] = dnskey_calc_keytag(ta->dnskey_rrset, i);
}
}
qsort(list, ret, sizeof(*list), keytag_compare);
return ret;
}
int
anchor_has_keytag(struct val_anchors* anchors, uint8_t* name, int namelabs,
size_t namelen, uint16_t dclass, uint16_t keytag)
{
uint16_t* taglist;
uint16_t* tl;
size_t numtag, i;
struct trust_anchor* anchor = anchor_find(anchors,
name, namelabs, namelen, dclass);
if(!anchor)
return 0;
if(!anchor->numDS && !anchor->numDNSKEY) {
lock_basic_unlock(&anchor->lock);
return 0;
}
taglist = calloc(anchor->numDS + anchor->numDNSKEY, sizeof(*taglist));
if(!taglist) {
lock_basic_unlock(&anchor->lock);
return 0;
}
numtag = anchor_list_keytags(anchor, taglist,
anchor->numDS+anchor->numDNSKEY);
lock_basic_unlock(&anchor->lock);
if(!numtag) {
free(taglist);
return 0;
}
tl = taglist;
for(i=0; i<numtag; i++) {
if(*tl == keytag) {
free(taglist);
return 1;
}
tl++;
}
free(taglist);
return 0;
}
struct trust_anchor*
anchors_find_any_noninsecure(struct val_anchors* anchors)
{
struct trust_anchor* ta, *next;
lock_basic_lock(&anchors->lock);
ta=(struct trust_anchor*)rbtree_first(anchors->tree);
while((rbnode_type*)ta != RBTREE_NULL) {
next = (struct trust_anchor*)rbtree_next(&ta->node);
lock_basic_lock(&ta->lock);
if(ta->numDS != 0 || ta->numDNSKEY != 0) {
/* not an insecurepoint */
lock_basic_unlock(&anchors->lock);
return ta;
}
lock_basic_unlock(&ta->lock);
ta = next;
}
lock_basic_unlock(&anchors->lock);
return NULL;
}