src/sys/arch/amd64/amd64/vmm_machdep.c

8657 lines
228 KiB
C

/* $OpenBSD: vmm_machdep.c,v 1.24 2024/04/13 21:57:22 dv Exp $ */
/*
* Copyright (c) 2014 Mike Larkin <mlarkin@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/queue.h>
#include <sys/refcnt.h>
#include <sys/rwlock.h>
#include <sys/pledge.h>
#include <sys/memrange.h>
#include <sys/tracepoint.h>
#include <uvm/uvm_extern.h>
#include <machine/fpu.h>
#include <machine/pmap.h>
#include <machine/biosvar.h>
#include <machine/segments.h>
#include <machine/cpufunc.h>
#include <machine/vmmvar.h>
#include <dev/isa/isareg.h>
#include <dev/pv/pvreg.h>
#include <dev/vmm/vmm.h>
#ifdef MP_LOCKDEBUG
#include <ddb/db_output.h>
extern int __mp_lock_spinout;
#endif /* MP_LOCKDEBUG */
void *l1tf_flush_region;
#define DEVNAME(s) ((s)->sc_dev.dv_xname)
#define CTRL_DUMP(x,y,z) printf(" %s: Can set:%s Can clear:%s\n", #z , \
vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
IA32_VMX_##z, 1) ? "Yes" : "No", \
vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
IA32_VMX_##z, 0) ? "Yes" : "No");
#define VMX_EXIT_INFO_HAVE_RIP 0x1
#define VMX_EXIT_INFO_HAVE_REASON 0x2
#define VMX_EXIT_INFO_COMPLETE \
(VMX_EXIT_INFO_HAVE_RIP | VMX_EXIT_INFO_HAVE_REASON)
void vmx_dump_vmcs_field(uint16_t, const char *);
int vmm_enabled(void);
void vmm_activate_machdep(struct device *, int);
int vmmioctl_machdep(dev_t, u_long, caddr_t, int, struct proc *);
int vmm_quiesce_vmx(void);
int vm_run(struct vm_run_params *);
int vm_intr_pending(struct vm_intr_params *);
int vm_rwregs(struct vm_rwregs_params *, int);
int vm_mprotect_ept(struct vm_mprotect_ept_params *);
int vm_rwvmparams(struct vm_rwvmparams_params *, int);
int vcpu_readregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
int vcpu_readregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
int vcpu_writeregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
int vcpu_writeregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
int vcpu_reset_regs(struct vcpu *, struct vcpu_reg_state *);
int vcpu_reset_regs_vmx(struct vcpu *, struct vcpu_reg_state *);
int vcpu_reset_regs_svm(struct vcpu *, struct vcpu_reg_state *);
int vcpu_reload_vmcs_vmx(struct vcpu *);
int vcpu_init(struct vcpu *);
int vcpu_init_vmx(struct vcpu *);
int vcpu_init_svm(struct vcpu *);
int vcpu_run_vmx(struct vcpu *, struct vm_run_params *);
int vcpu_run_svm(struct vcpu *, struct vm_run_params *);
void vcpu_deinit(struct vcpu *);
void vcpu_deinit_svm(struct vcpu *);
void vcpu_deinit_vmx(struct vcpu *);
int vm_impl_init(struct vm *, struct proc *);
int vm_impl_init_vmx(struct vm *, struct proc *);
int vm_impl_init_svm(struct vm *, struct proc *);
void vm_impl_deinit(struct vm *);
int vcpu_vmx_check_cap(struct vcpu *, uint32_t, uint32_t, int);
int vcpu_vmx_compute_ctrl(uint64_t, uint16_t, uint32_t, uint32_t, uint32_t *);
int vmx_get_exit_info(uint64_t *, uint64_t *);
int vmx_load_pdptes(struct vcpu *);
int vmx_handle_exit(struct vcpu *);
int svm_handle_exit(struct vcpu *);
int svm_handle_msr(struct vcpu *);
int vmm_handle_xsetbv(struct vcpu *, uint64_t *);
int vmx_handle_xsetbv(struct vcpu *);
int svm_handle_xsetbv(struct vcpu *);
int vmm_handle_cpuid(struct vcpu *);
int vmx_handle_rdmsr(struct vcpu *);
int vmx_handle_wrmsr(struct vcpu *);
int vmx_handle_cr0_write(struct vcpu *, uint64_t);
int vmx_handle_cr4_write(struct vcpu *, uint64_t);
int vmx_handle_cr(struct vcpu *);
int svm_handle_inout(struct vcpu *);
int vmx_handle_inout(struct vcpu *);
int svm_handle_hlt(struct vcpu *);
int vmx_handle_hlt(struct vcpu *);
int vmm_inject_ud(struct vcpu *);
int vmm_inject_gp(struct vcpu *);
int vmm_inject_db(struct vcpu *);
void vmx_handle_intr(struct vcpu *);
void vmx_handle_intwin(struct vcpu *);
void vmx_handle_misc_enable_msr(struct vcpu *);
int vmm_get_guest_memtype(struct vm *, paddr_t);
int vmx_get_guest_faulttype(void);
int svm_get_guest_faulttype(struct vmcb *);
int vmx_get_exit_qualification(uint64_t *);
int vmm_get_guest_cpu_cpl(struct vcpu *);
int vmm_get_guest_cpu_mode(struct vcpu *);
int svm_fault_page(struct vcpu *, paddr_t);
int vmx_fault_page(struct vcpu *, paddr_t);
int vmx_handle_np_fault(struct vcpu *);
int svm_handle_np_fault(struct vcpu *);
int vmx_mprotect_ept(vm_map_t, paddr_t, paddr_t, int);
pt_entry_t *vmx_pmap_find_pte_ept(pmap_t, paddr_t);
int vmm_alloc_vpid(uint16_t *);
void vmm_free_vpid(uint16_t);
const char *vcpu_state_decode(u_int);
const char *vmx_exit_reason_decode(uint32_t);
const char *svm_exit_reason_decode(uint32_t);
const char *vmx_instruction_error_decode(uint32_t);
void svm_setmsrbr(struct vcpu *, uint32_t);
void svm_setmsrbw(struct vcpu *, uint32_t);
void svm_setmsrbrw(struct vcpu *, uint32_t);
void vmx_setmsrbr(struct vcpu *, uint32_t);
void vmx_setmsrbw(struct vcpu *, uint32_t);
void vmx_setmsrbrw(struct vcpu *, uint32_t);
void svm_set_clean(struct vcpu *, uint32_t);
void svm_set_dirty(struct vcpu *, uint32_t);
int vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size);
void vmm_init_pvclock(struct vcpu *, paddr_t);
int vmm_update_pvclock(struct vcpu *);
int vmm_pat_is_valid(uint64_t);
#ifdef MULTIPROCESSOR
static int vmx_remote_vmclear(struct cpu_info*, struct vcpu *);
#endif
#ifdef VMM_DEBUG
void vmx_vcpu_dump_regs(struct vcpu *);
void vmx_dump_vmcs(struct vcpu *);
const char *msr_name_decode(uint32_t);
void vmm_segment_desc_decode(uint64_t);
void vmm_decode_cr0(uint64_t);
void vmm_decode_cr3(uint64_t);
void vmm_decode_cr4(uint64_t);
void vmm_decode_msr_value(uint64_t, uint64_t);
void vmm_decode_apicbase_msr_value(uint64_t);
void vmm_decode_ia32_fc_value(uint64_t);
void vmm_decode_mtrrcap_value(uint64_t);
void vmm_decode_perf_status_value(uint64_t);
void vmm_decode_perf_ctl_value(uint64_t);
void vmm_decode_mtrrdeftype_value(uint64_t);
void vmm_decode_efer_value(uint64_t);
void vmm_decode_rflags(uint64_t);
void vmm_decode_misc_enable_value(uint64_t);
const char *vmm_decode_cpu_mode(struct vcpu *);
extern int mtrr2mrt(int);
struct vmm_reg_debug_info {
uint64_t vrdi_bit;
const char *vrdi_present;
const char *vrdi_absent;
};
#endif /* VMM_DEBUG */
extern uint64_t tsc_frequency;
extern int tsc_is_invariant;
const char *vmm_hv_signature = VMM_HV_SIGNATURE;
const struct kmem_pa_mode vmm_kp_contig = {
.kp_constraint = &no_constraint,
.kp_maxseg = 1,
.kp_align = 4096,
.kp_zero = 1,
};
extern struct cfdriver vmm_cd;
extern const struct cfattach vmm_ca;
/*
* Helper struct to easily get the VMCS field IDs needed in vmread/vmwrite
* to access the individual fields of the guest segment registers. This
* struct is indexed by VCPU_REGS_* id.
*/
const struct {
uint64_t selid;
uint64_t limitid;
uint64_t arid;
uint64_t baseid;
} vmm_vmx_sreg_vmcs_fields[] = {
{ VMCS_GUEST_IA32_ES_SEL, VMCS_GUEST_IA32_ES_LIMIT,
VMCS_GUEST_IA32_ES_AR, VMCS_GUEST_IA32_ES_BASE },
{ VMCS_GUEST_IA32_CS_SEL, VMCS_GUEST_IA32_CS_LIMIT,
VMCS_GUEST_IA32_CS_AR, VMCS_GUEST_IA32_CS_BASE },
{ VMCS_GUEST_IA32_SS_SEL, VMCS_GUEST_IA32_SS_LIMIT,
VMCS_GUEST_IA32_SS_AR, VMCS_GUEST_IA32_SS_BASE },
{ VMCS_GUEST_IA32_DS_SEL, VMCS_GUEST_IA32_DS_LIMIT,
VMCS_GUEST_IA32_DS_AR, VMCS_GUEST_IA32_DS_BASE },
{ VMCS_GUEST_IA32_FS_SEL, VMCS_GUEST_IA32_FS_LIMIT,
VMCS_GUEST_IA32_FS_AR, VMCS_GUEST_IA32_FS_BASE },
{ VMCS_GUEST_IA32_GS_SEL, VMCS_GUEST_IA32_GS_LIMIT,
VMCS_GUEST_IA32_GS_AR, VMCS_GUEST_IA32_GS_BASE },
{ VMCS_GUEST_IA32_LDTR_SEL, VMCS_GUEST_IA32_LDTR_LIMIT,
VMCS_GUEST_IA32_LDTR_AR, VMCS_GUEST_IA32_LDTR_BASE },
{ VMCS_GUEST_IA32_TR_SEL, VMCS_GUEST_IA32_TR_LIMIT,
VMCS_GUEST_IA32_TR_AR, VMCS_GUEST_IA32_TR_BASE }
};
/* Pools for VMs and VCPUs */
extern struct pool vm_pool;
extern struct pool vcpu_pool;
extern struct vmm_softc *vmm_softc;
/* IDT information used when populating host state area */
extern vaddr_t idt_vaddr;
extern struct gate_descriptor *idt;
/* Constants used in "CR access exit" */
#define CR_WRITE 0
#define CR_READ 1
#define CR_CLTS 2
#define CR_LMSW 3
/*
* vmm_enabled
*
* Checks if we have at least one CPU with either VMX or SVM.
* Returns 1 if we have at least one of either type, but not both, 0 otherwise.
*/
int
vmm_enabled(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
int found_vmx = 0, found_svm = 0;
/* Check if we have at least one CPU with either VMX or SVM */
CPU_INFO_FOREACH(cii, ci) {
if (ci->ci_vmm_flags & CI_VMM_VMX)
found_vmx = 1;
if (ci->ci_vmm_flags & CI_VMM_SVM)
found_svm = 1;
}
/* Don't support both SVM and VMX at the same time */
if (found_vmx && found_svm)
return (0);
if (found_vmx || found_svm)
return 1;
return 0;
}
void
vmm_attach_machdep(struct device *parent, struct device *self, void *aux)
{
struct vmm_softc *sc = (struct vmm_softc *)self;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
sc->sc_md.nr_rvi_cpus = 0;
sc->sc_md.nr_ept_cpus = 0;
/* Calculate CPU features */
CPU_INFO_FOREACH(cii, ci) {
if (ci->ci_vmm_flags & CI_VMM_RVI)
sc->sc_md.nr_rvi_cpus++;
if (ci->ci_vmm_flags & CI_VMM_EPT)
sc->sc_md.nr_ept_cpus++;
}
sc->sc_md.pkru_enabled = 0;
if (rcr4() & CR4_PKE)
sc->sc_md.pkru_enabled = 1;
if (sc->sc_md.nr_ept_cpus) {
printf(": VMX/EPT");
sc->mode = VMM_MODE_EPT;
} else if (sc->sc_md.nr_rvi_cpus) {
printf(": SVM/RVI");
sc->mode = VMM_MODE_RVI;
} else {
printf(": unknown");
sc->mode = VMM_MODE_UNKNOWN;
}
if (sc->mode == VMM_MODE_EPT) {
if (!(curcpu()->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr)) {
l1tf_flush_region = km_alloc(VMX_L1D_FLUSH_SIZE,
&kv_any, &vmm_kp_contig, &kd_waitok);
if (!l1tf_flush_region) {
printf(" (failing, no memory)");
sc->mode = VMM_MODE_UNKNOWN;
} else {
printf(" (using slow L1TF mitigation)");
memset(l1tf_flush_region, 0xcc,
VMX_L1D_FLUSH_SIZE);
}
}
}
if (sc->mode == VMM_MODE_RVI) {
sc->max_vpid = curcpu()->ci_vmm_cap.vcc_svm.svm_max_asid;
} else {
sc->max_vpid = 0xFFF;
}
bzero(&sc->vpids, sizeof(sc->vpids));
rw_init(&sc->vpid_lock, "vpid");
}
/*
* vmm_quiesce_vmx
*
* Prepare the host for suspend by flushing all VMCS states.
*/
int
vmm_quiesce_vmx(void)
{
struct vm *vm;
struct vcpu *vcpu;
int err;
/*
* We should be only called from a quiescing device state so we
* don't expect to sleep here. If we can't get all our locks,
* something is wrong.
*/
if ((err = rw_enter(&vmm_softc->vm_lock, RW_WRITE | RW_NOSLEEP)))
return (err);
/* Iterate over each vm... */
SLIST_FOREACH(vm, &vmm_softc->vm_list, vm_link) {
/* Iterate over each vcpu... */
SLIST_FOREACH(vcpu, &vm->vm_vcpu_list, vc_vcpu_link) {
err = rw_enter(&vcpu->vc_lock, RW_WRITE | RW_NOSLEEP);
if (err)
break;
/* We can skip unlaunched VMCS. Nothing to flush. */
if (atomic_load_int(&vcpu->vc_vmx_vmcs_state)
!= VMCS_LAUNCHED) {
DPRINTF("%s: skipping vcpu %d for vm %d\n",
__func__, vcpu->vc_id, vm->vm_id);
rw_exit_write(&vcpu->vc_lock);
continue;
}
#ifdef MULTIPROCESSOR
if (vcpu->vc_last_pcpu != curcpu()) {
/* Remote cpu vmclear via ipi. */
err = vmx_remote_vmclear(vcpu->vc_last_pcpu,
vcpu);
if (err)
printf("%s: failed to remote vmclear "
"vcpu %d of vm %d\n", __func__,
vcpu->vc_id, vm->vm_id);
} else
#endif
{
/* Local cpu vmclear instruction. */
if ((err = vmclear(&vcpu->vc_control_pa)))
printf("%s: failed to locally vmclear "
"vcpu %d of vm %d\n", __func__,
vcpu->vc_id, vm->vm_id);
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state,
VMCS_CLEARED);
}
rw_exit_write(&vcpu->vc_lock);
if (err)
break;
DPRINTF("%s: cleared vcpu %d for vm %d\n", __func__,
vcpu->vc_id, vm->vm_id);
}
if (err)
break;
}
rw_exit_write(&vmm_softc->vm_lock);
if (err)
return (err);
return (0);
}
void
vmm_activate_machdep(struct device *self, int act)
{
struct cpu_info *ci = curcpu();
switch (act) {
case DVACT_QUIESCE:
/* If we're not in vmm mode, nothing to do. */
if ((ci->ci_flags & CPUF_VMM) == 0)
break;
/* Intel systems need extra steps to sync vcpu state. */
if (vmm_softc->mode == VMM_MODE_EPT)
if (vmm_quiesce_vmx())
DPRINTF("%s: vmx quiesce failed\n", __func__);
/* Stop virtualization mode on all cpus. */
vmm_stop();
break;
case DVACT_WAKEUP:
/* Restart virtualization mode on all cpu's. */
if (vmm_softc->vm_ct > 0)
vmm_start();
break;
}
}
int
vmmioctl_machdep(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
int ret;
switch (cmd) {
case VMM_IOC_INTR:
ret = vm_intr_pending((struct vm_intr_params *)data);
break;
case VMM_IOC_MPROTECT_EPT:
ret = vm_mprotect_ept((struct vm_mprotect_ept_params *)data);
break;
default:
DPRINTF("%s: unknown ioctl code 0x%lx\n", __func__, cmd);
ret = ENOTTY;
}
return (ret);
}
int
pledge_ioctl_vmm_machdep(struct proc *p, long com)
{
switch (com) {
case VMM_IOC_INTR:
case VMM_IOC_MPROTECT_EPT:
return (0);
}
return (EPERM);
}
/*
* vm_intr_pending
*
* IOCTL handler routine for VMM_IOC_INTR messages, sent from vmd when an
* interrupt is pending and needs acknowledgment
*
* Parameters:
* vip: Describes the vm/vcpu for which the interrupt is pending
*
* Return values:
* 0: if successful
* ENOENT: if the VM/VCPU defined by 'vip' cannot be found
*/
int
vm_intr_pending(struct vm_intr_params *vip)
{
struct vm *vm;
struct vcpu *vcpu;
#ifdef MULTIPROCESSOR
struct cpu_info *ci;
#endif
int error, ret = 0;
/* Find the desired VM */
error = vm_find(vip->vip_vm_id, &vm);
/* Not found? exit. */
if (error != 0)
return (error);
vcpu = vm_find_vcpu(vm, vip->vip_vcpu_id);
if (vcpu == NULL) {
ret = ENOENT;
goto out;
}
vcpu->vc_intr = vip->vip_intr;
#ifdef MULTIPROCESSOR
ci = READ_ONCE(vcpu->vc_curcpu);
if (ci != NULL)
x86_send_ipi(ci, X86_IPI_NOP);
#endif
out:
refcnt_rele_wake(&vm->vm_refcnt);
return (ret);
}
/*
* vm_rwvmparams
*
* IOCTL handler to read/write the current vmm params like pvclock gpa, pvclock
* version, etc.
*
* Parameters:
* vrwp: Describes the VM and VCPU to get/set the params from
* dir: 0 for reading, 1 for writing
*
* Return values:
* 0: if successful
* ENOENT: if the VM/VCPU defined by 'vpp' cannot be found
* EINVAL: if an error occurred reading the registers of the guest
*/
int
vm_rwvmparams(struct vm_rwvmparams_params *vpp, int dir)
{
struct vm *vm;
struct vcpu *vcpu;
int error, ret = 0;
/* Find the desired VM */
error = vm_find(vpp->vpp_vm_id, &vm);
/* Not found? exit. */
if (error != 0)
return (error);
vcpu = vm_find_vcpu(vm, vpp->vpp_vcpu_id);
if (vcpu == NULL) {
ret = ENOENT;
goto out;
}
if (dir == 0) {
if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
vpp->vpp_pvclock_version = vcpu->vc_pvclock_version;
if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA)
vpp->vpp_pvclock_system_gpa = \
vcpu->vc_pvclock_system_gpa;
} else {
if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
vcpu->vc_pvclock_version = vpp->vpp_pvclock_version;
if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA) {
vmm_init_pvclock(vcpu, vpp->vpp_pvclock_system_gpa);
}
}
out:
refcnt_rele_wake(&vm->vm_refcnt);
return (ret);
}
/*
* vm_readregs
*
* IOCTL handler to read/write the current register values of a guest VCPU.
* The VCPU must not be running.
*
* Parameters:
* vrwp: Describes the VM and VCPU to get/set the registers from. The
* register values are returned here as well.
* dir: 0 for reading, 1 for writing
*
* Return values:
* 0: if successful
* ENOENT: if the VM/VCPU defined by 'vrwp' cannot be found
* EINVAL: if an error occurred accessing the registers of the guest
* EPERM: if the vm cannot be accessed from the calling process
*/
int
vm_rwregs(struct vm_rwregs_params *vrwp, int dir)
{
struct vm *vm;
struct vcpu *vcpu;
struct vcpu_reg_state *vrs = &vrwp->vrwp_regs;
int error, ret = 0;
/* Find the desired VM */
error = vm_find(vrwp->vrwp_vm_id, &vm);
/* Not found? exit. */
if (error != 0)
return (error);
vcpu = vm_find_vcpu(vm, vrwp->vrwp_vcpu_id);
if (vcpu == NULL) {
ret = ENOENT;
goto out;
}
rw_enter_write(&vcpu->vc_lock);
if (vmm_softc->mode == VMM_MODE_EPT)
ret = (dir == 0) ?
vcpu_readregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs) :
vcpu_writeregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs);
else if (vmm_softc->mode == VMM_MODE_RVI)
ret = (dir == 0) ?
vcpu_readregs_svm(vcpu, vrwp->vrwp_mask, vrs) :
vcpu_writeregs_svm(vcpu, vrwp->vrwp_mask, vrs);
else {
DPRINTF("%s: unknown vmm mode", __func__);
ret = EINVAL;
}
rw_exit_write(&vcpu->vc_lock);
out:
refcnt_rele_wake(&vm->vm_refcnt);
return (ret);
}
/*
* vm_mprotect_ept
*
* IOCTL handler to sets the access protections of the ept
*
* Parameters:
* vmep: describes the memory for which the protect will be applied..
*
* Return values:
* 0: if successful
* ENOENT: if the VM defined by 'vmep' cannot be found
* EINVAL: if the sgpa or size is not page aligned, the prot is invalid,
* size is too large (512GB), there is wraparound
* (like start = 512GB-1 and end = 512GB-2),
* the address specified is not within the vm's mem range
* or the address lies inside reserved (MMIO) memory
*/
int
vm_mprotect_ept(struct vm_mprotect_ept_params *vmep)
{
struct vm *vm;
struct vcpu *vcpu;
vaddr_t sgpa;
size_t size;
vm_prot_t prot;
uint64_t msr;
int ret = 0, memtype;
/* If not EPT or RVI, nothing to do here */
if (!(vmm_softc->mode == VMM_MODE_EPT
|| vmm_softc->mode == VMM_MODE_RVI))
return (0);
/* Find the desired VM */
ret = vm_find(vmep->vmep_vm_id, &vm);
/* Not found? exit. */
if (ret != 0) {
DPRINTF("%s: vm id %u not found\n", __func__,
vmep->vmep_vm_id);
return (ret);
}
vcpu = vm_find_vcpu(vm, vmep->vmep_vcpu_id);
if (vcpu == NULL) {
DPRINTF("%s: vcpu id %u of vm %u not found\n", __func__,
vmep->vmep_vcpu_id, vmep->vmep_vm_id);
ret = ENOENT;
goto out_nolock;
}
rw_enter_write(&vcpu->vc_lock);
if (vcpu->vc_state != VCPU_STATE_STOPPED) {
DPRINTF("%s: mprotect_ept %u on vm %u attempted "
"while vcpu was in state %u (%s)\n", __func__,
vmep->vmep_vcpu_id, vmep->vmep_vm_id, vcpu->vc_state,
vcpu_state_decode(vcpu->vc_state));
ret = EBUSY;
goto out;
}
/* Only proceed if the pmap is in the correct mode */
KASSERT((vmm_softc->mode == VMM_MODE_EPT &&
vm->vm_map->pmap->pm_type == PMAP_TYPE_EPT) ||
(vmm_softc->mode == VMM_MODE_RVI &&
vm->vm_map->pmap->pm_type == PMAP_TYPE_RVI));
sgpa = vmep->vmep_sgpa;
size = vmep->vmep_size;
prot = vmep->vmep_prot;
/* No W^X permissions */
if ((prot & PROT_MASK) != prot &&
(prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC)) {
DPRINTF("%s: W+X permission requested\n", __func__);
ret = EINVAL;
goto out;
}
/* No Write only permissions */
if ((prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) == PROT_WRITE) {
DPRINTF("%s: No Write only permissions\n", __func__);
ret = EINVAL;
goto out;
}
/* No empty permissions */
if (prot == 0) {
DPRINTF("%s: No empty permissions\n", __func__);
ret = EINVAL;
goto out;
}
/* No execute only on EPT CPUs that don't have that capability */
if (vmm_softc->mode == VMM_MODE_EPT) {
msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
if (prot == PROT_EXEC &&
(msr & IA32_EPT_VPID_CAP_XO_TRANSLATIONS) == 0) {
DPRINTF("%s: Execute only permissions unsupported,"
" adding read permission\n", __func__);
prot |= PROT_READ;
}
}
/* Must be page aligned */
if ((sgpa & PAGE_MASK) || (size & PAGE_MASK) || size == 0) {
ret = EINVAL;
goto out;
}
/* size must be less then 512GB */
if (size >= NBPD_L4) {
ret = EINVAL;
goto out;
}
/* no wraparound */
if (sgpa + size < sgpa) {
ret = EINVAL;
goto out;
}
/*
* Specifying addresses within the PCI MMIO space is forbidden.
* Disallow addresses that start inside the MMIO space:
* [VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
*/
if (sgpa >= VMM_PCI_MMIO_BAR_BASE && sgpa <= VMM_PCI_MMIO_BAR_END) {
ret = EINVAL;
goto out;
}
/*
* ... and disallow addresses that end inside the MMIO space:
* (VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
*/
if (sgpa + size > VMM_PCI_MMIO_BAR_BASE &&
sgpa + size <= VMM_PCI_MMIO_BAR_END) {
ret = EINVAL;
goto out;
}
memtype = vmm_get_guest_memtype(vm, sgpa);
if (memtype == VMM_MEM_TYPE_UNKNOWN) {
ret = EINVAL;
goto out;
}
if (vmm_softc->mode == VMM_MODE_EPT)
ret = vmx_mprotect_ept(vm->vm_map, sgpa, sgpa + size, prot);
else if (vmm_softc->mode == VMM_MODE_RVI) {
pmap_write_protect(vm->vm_map->pmap, sgpa, sgpa + size, prot);
/* XXX requires a invlpga */
ret = 0;
} else
ret = EINVAL;
out:
if (vcpu != NULL)
rw_exit_write(&vcpu->vc_lock);
out_nolock:
refcnt_rele_wake(&vm->vm_refcnt);
return (ret);
}
/*
* vmx_mprotect_ept
*
* apply the ept protections to the requested pages, faulting in the page if
* required.
*/
int
vmx_mprotect_ept(vm_map_t vm_map, paddr_t sgpa, paddr_t egpa, int prot)
{
struct vmx_invept_descriptor vid;
pmap_t pmap;
pt_entry_t *pte;
paddr_t addr;
int ret = 0;
pmap = vm_map->pmap;
KERNEL_LOCK();
for (addr = sgpa; addr < egpa; addr += PAGE_SIZE) {
pte = vmx_pmap_find_pte_ept(pmap, addr);
if (pte == NULL) {
ret = uvm_fault(vm_map, addr, VM_FAULT_WIRE,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (ret)
printf("%s: uvm_fault returns %d, GPA=0x%llx\n",
__func__, ret, (uint64_t)addr);
pte = vmx_pmap_find_pte_ept(pmap, addr);
if (pte == NULL) {
KERNEL_UNLOCK();
return EFAULT;
}
}
if (prot & PROT_READ)
*pte |= EPT_R;
else
*pte &= ~EPT_R;
if (prot & PROT_WRITE)
*pte |= EPT_W;
else
*pte &= ~EPT_W;
if (prot & PROT_EXEC)
*pte |= EPT_X;
else
*pte &= ~EPT_X;
}
/*
* SDM 3C: 28.3.3.4 Guidelines for Use of the INVEPT Instruction
* the first bullet point seems to say we should call invept.
*
* Software should use the INVEPT instruction with the “single-context”
* INVEPT type after making any of the following changes to an EPT
* paging-structure entry (the INVEPT descriptor should contain an
* EPTP value that references — directly or indirectly
* — the modified EPT paging structure):
* — Changing any of the privilege bits 2:0 from 1 to 0.
* */
if (pmap->eptp != 0) {
memset(&vid, 0, sizeof(vid));
vid.vid_eptp = pmap->eptp;
DPRINTF("%s: flushing EPT TLB for EPTP 0x%llx\n", __func__,
vid.vid_eptp);
invept(IA32_VMX_INVEPT_SINGLE_CTX, &vid);
}
KERNEL_UNLOCK();
return ret;
}
/*
* vmx_pmap_find_pte_ept
*
* find the page table entry specified by addr in the pmap supplied.
*/
pt_entry_t *
vmx_pmap_find_pte_ept(pmap_t pmap, paddr_t addr)
{
int l4idx, l3idx, l2idx, l1idx;
pd_entry_t *pd;
paddr_t pdppa;
pt_entry_t *ptes, *pte;
l4idx = (addr & L4_MASK) >> L4_SHIFT; /* PML4E idx */
l3idx = (addr & L3_MASK) >> L3_SHIFT; /* PDPTE idx */
l2idx = (addr & L2_MASK) >> L2_SHIFT; /* PDE idx */
l1idx = (addr & L1_MASK) >> L1_SHIFT; /* PTE idx */
pd = (pd_entry_t *)pmap->pm_pdir;
if (pd == NULL)
return NULL;
/*
* l4idx should always be 0 since we don't support more than 512GB
* guest physical memory.
*/
if (l4idx > 0)
return NULL;
/*
* l3idx should always be < MAXDSIZ/1GB because we don't support more
* than MAXDSIZ guest phys mem.
*/
if (l3idx >= MAXDSIZ / ((paddr_t)1024 * 1024 * 1024))
return NULL;
pdppa = pd[l4idx] & PG_FRAME;
if (pdppa == 0)
return NULL;
ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
pdppa = ptes[l3idx] & PG_FRAME;
if (pdppa == 0)
return NULL;
ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
pdppa = ptes[l2idx] & PG_FRAME;
if (pdppa == 0)
return NULL;
ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
pte = &ptes[l1idx];
if (*pte == 0)
return NULL;
return pte;
}
/*
* vmm_start
*
* Starts VMM mode on the system
*/
int
vmm_start(void)
{
int rv = 0;
struct cpu_info *self = curcpu();
#ifdef MULTIPROCESSOR
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
#ifdef MP_LOCKDEBUG
int nticks;
#endif /* MP_LOCKDEBUG */
#endif /* MULTIPROCESSOR */
rw_enter_write(&vmm_softc->sc_slock);
/* VMM is already running */
if (self->ci_flags & CPUF_VMM)
goto unlock;
/* Start VMM on this CPU */
start_vmm_on_cpu(self);
if (!(self->ci_flags & CPUF_VMM)) {
printf("%s: failed to enter VMM mode\n",
self->ci_dev->dv_xname);
rv = EIO;
goto unlock;
}
#ifdef MULTIPROCESSOR
/* Broadcast start VMM IPI */
x86_broadcast_ipi(X86_IPI_START_VMM);
CPU_INFO_FOREACH(cii, ci) {
if (ci == self)
continue;
#ifdef MP_LOCKDEBUG
nticks = __mp_lock_spinout;
#endif /* MP_LOCKDEBUG */
while (!(ci->ci_flags & CPUF_VMM)) {
CPU_BUSY_CYCLE();
#ifdef MP_LOCKDEBUG
if (--nticks <= 0) {
db_printf("%s: spun out", __func__);
db_enter();
nticks = __mp_lock_spinout;
}
#endif /* MP_LOCKDEBUG */
}
}
#endif /* MULTIPROCESSOR */
unlock:
rw_exit_write(&vmm_softc->sc_slock);
return (rv);
}
/*
* vmm_stop
*
* Stops VMM mode on the system
*/
int
vmm_stop(void)
{
int rv = 0;
struct cpu_info *self = curcpu();
#ifdef MULTIPROCESSOR
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
#ifdef MP_LOCKDEBUG
int nticks;
#endif /* MP_LOCKDEBUG */
#endif /* MULTIPROCESSOR */
rw_enter_write(&vmm_softc->sc_slock);
/* VMM is not running */
if (!(self->ci_flags & CPUF_VMM))
goto unlock;
/* Stop VMM on this CPU */
stop_vmm_on_cpu(self);
if (self->ci_flags & CPUF_VMM) {
printf("%s: failed to exit VMM mode\n",
self->ci_dev->dv_xname);
rv = EIO;
goto unlock;
}
#ifdef MULTIPROCESSOR
/* Stop VMM on other CPUs */
x86_broadcast_ipi(X86_IPI_STOP_VMM);
CPU_INFO_FOREACH(cii, ci) {
if (ci == self)
continue;
#ifdef MP_LOCKDEBUG
nticks = __mp_lock_spinout;
#endif /* MP_LOCKDEBUG */
while ((ci->ci_flags & CPUF_VMM)) {
CPU_BUSY_CYCLE();
#ifdef MP_LOCKDEBUG
if (--nticks <= 0) {
db_printf("%s: spunout", __func__);
db_enter();
nticks = __mp_lock_spinout;
}
#endif /* MP_LOCKDEBUG */
}
}
#endif /* MULTIPROCESSOR */
unlock:
rw_exit_write(&vmm_softc->sc_slock);
return (0);
}
/*
* start_vmm_on_cpu
*
* Starts VMM mode on 'ci' by executing the appropriate CPU-specific insn
* sequence to enter VMM mode (eg, VMXON)
*/
void
start_vmm_on_cpu(struct cpu_info *ci)
{
uint64_t msr;
uint32_t cr4;
struct vmx_invept_descriptor vid;
/* No VMM mode? exit. */
if ((ci->ci_vmm_flags & CI_VMM_VMX) == 0 &&
(ci->ci_vmm_flags & CI_VMM_SVM) == 0)
return;
/*
* AMD SVM
*/
if (ci->ci_vmm_flags & CI_VMM_SVM) {
msr = rdmsr(MSR_EFER);
msr |= EFER_SVME;
wrmsr(MSR_EFER, msr);
}
/*
* Intel VMX
*/
if (ci->ci_vmm_flags & CI_VMM_VMX) {
if (ci->ci_vmxon_region == 0)
return;
else {
bzero(ci->ci_vmxon_region, PAGE_SIZE);
ci->ci_vmxon_region->vr_revision =
ci->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
/* Enable VMX */
msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
if (msr & IA32_FEATURE_CONTROL_LOCK) {
if (!(msr & IA32_FEATURE_CONTROL_VMX_EN))
return;
} else {
msr |= IA32_FEATURE_CONTROL_VMX_EN |
IA32_FEATURE_CONTROL_LOCK;
wrmsr(MSR_IA32_FEATURE_CONTROL, msr);
}
/* Set CR4.VMXE */
cr4 = rcr4();
cr4 |= CR4_VMXE;
lcr4(cr4);
/* Enter VMX mode and clear EPTs on this cpu */
if (vmxon((uint64_t *)&ci->ci_vmxon_region_pa))
panic("vmxon failed");
memset(&vid, 0, sizeof(vid));
if (invept(IA32_VMX_INVEPT_GLOBAL_CTX, &vid))
panic("invept failed");
}
}
atomic_setbits_int(&ci->ci_flags, CPUF_VMM);
}
/*
* stop_vmm_on_cpu
*
* Stops VMM mode on 'ci' by executing the appropriate CPU-specific insn
* sequence to exit VMM mode (eg, VMXOFF)
*/
void
stop_vmm_on_cpu(struct cpu_info *ci)
{
uint64_t msr;
uint32_t cr4;
if (!(ci->ci_flags & CPUF_VMM))
return;
/*
* AMD SVM
*/
if (ci->ci_vmm_flags & CI_VMM_SVM) {
msr = rdmsr(MSR_EFER);
msr &= ~EFER_SVME;
wrmsr(MSR_EFER, msr);
}
/*
* Intel VMX
*/
if (ci->ci_vmm_flags & CI_VMM_VMX) {
if (vmxoff())
panic("VMXOFF failed");
cr4 = rcr4();
cr4 &= ~CR4_VMXE;
lcr4(cr4);
}
atomic_clearbits_int(&ci->ci_flags, CPUF_VMM);
}
/*
* vmclear_on_cpu
*
* Flush and clear VMCS on 'ci' by executing vmclear.
*
*/
void
vmclear_on_cpu(struct cpu_info *ci)
{
if ((ci->ci_flags & CPUF_VMM) && (ci->ci_vmm_flags & CI_VMM_VMX)) {
if (vmclear(&ci->ci_vmcs_pa))
panic("VMCLEAR ipi failed");
atomic_swap_ulong(&ci->ci_vmcs_pa, VMX_VMCS_PA_CLEAR);
}
}
#ifdef MULTIPROCESSOR
static int
vmx_remote_vmclear(struct cpu_info *ci, struct vcpu *vcpu)
{
#ifdef MP_LOCKDEBUG
int nticks = __mp_lock_spinout;
#endif /* MP_LOCKDEBUG */
rw_enter_write(&ci->ci_vmcs_lock);
atomic_swap_ulong(&ci->ci_vmcs_pa, vcpu->vc_control_pa);
x86_send_ipi(ci, X86_IPI_VMCLEAR_VMM);
while (ci->ci_vmcs_pa != VMX_VMCS_PA_CLEAR) {
CPU_BUSY_CYCLE();
#ifdef MP_LOCKDEBUG
if (--nticks <= 0) {
db_printf("%s: spun out\n", __func__);
db_enter();
nticks = __mp_lock_spinout;
}
#endif /* MP_LOCKDEBUG */
}
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
rw_exit_write(&ci->ci_vmcs_lock);
return (0);
}
#endif /* MULTIPROCESSOR */
/*
* vm_impl_init_vmx
*
* Intel VMX specific VM initialization routine
*
* Parameters:
* vm: the VM being initialized
* p: vmd process owning the VM
*
* Return values:
* 0: the initialization was successful
* ENOMEM: the initialization failed (lack of resources)
*/
int
vm_impl_init_vmx(struct vm *vm, struct proc *p)
{
int i, ret;
vaddr_t mingpa, maxgpa;
struct vm_mem_range *vmr;
/* If not EPT, nothing to do here */
if (vmm_softc->mode != VMM_MODE_EPT)
return (0);
vmr = &vm->vm_memranges[0];
mingpa = vmr->vmr_gpa;
vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
maxgpa = vmr->vmr_gpa + vmr->vmr_size;
/*
* uvmspace_alloc (currently) always returns a valid vmspace
*/
vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
vm->vm_map = &vm->vm_vmspace->vm_map;
/* Map the new map with an anon */
DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
for (i = 0; i < vm->vm_nmemranges; i++) {
vmr = &vm->vm_memranges[i];
ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
PROT_READ | PROT_WRITE | PROT_EXEC,
&p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
if (ret) {
printf("%s: uvm_share failed (%d)\n", __func__, ret);
/* uvmspace_free calls pmap_destroy for us */
uvmspace_free(vm->vm_vmspace);
vm->vm_vmspace = NULL;
return (ENOMEM);
}
}
pmap_convert(vm->vm_map->pmap, PMAP_TYPE_EPT);
return (0);
}
/*
* vm_impl_init_svm
*
* AMD SVM specific VM initialization routine
*
* Parameters:
* vm: the VM being initialized
* p: vmd process owning the VM
*
* Return values:
* 0: the initialization was successful
* ENOMEM: the initialization failed (lack of resources)
*/
int
vm_impl_init_svm(struct vm *vm, struct proc *p)
{
int i, ret;
vaddr_t mingpa, maxgpa;
struct vm_mem_range *vmr;
/* If not RVI, nothing to do here */
if (vmm_softc->mode != VMM_MODE_RVI)
return (0);
vmr = &vm->vm_memranges[0];
mingpa = vmr->vmr_gpa;
vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
maxgpa = vmr->vmr_gpa + vmr->vmr_size;
/*
* uvmspace_alloc (currently) always returns a valid vmspace
*/
vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
vm->vm_map = &vm->vm_vmspace->vm_map;
/* Map the new map with an anon */
DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
for (i = 0; i < vm->vm_nmemranges; i++) {
vmr = &vm->vm_memranges[i];
ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
PROT_READ | PROT_WRITE | PROT_EXEC,
&p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
if (ret) {
printf("%s: uvm_share failed (%d)\n", __func__, ret);
/* uvmspace_free calls pmap_destroy for us */
uvmspace_free(vm->vm_vmspace);
vm->vm_vmspace = NULL;
return (ENOMEM);
}
}
/* Convert pmap to RVI */
pmap_convert(vm->vm_map->pmap, PMAP_TYPE_RVI);
return (0);
}
/*
* vm_impl_init
*
* Calls the architecture-specific VM init routine
*
* Parameters:
* vm: the VM being initialized
* p: vmd process owning the VM
*
* Return values (from architecture-specific init routines):
* 0: the initialization was successful
* ENOMEM: the initialization failed (lack of resources)
*/
int
vm_impl_init(struct vm *vm, struct proc *p)
{
int ret;
KERNEL_LOCK();
if (vmm_softc->mode == VMM_MODE_EPT)
ret = vm_impl_init_vmx(vm, p);
else if (vmm_softc->mode == VMM_MODE_RVI)
ret = vm_impl_init_svm(vm, p);
else
panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
KERNEL_UNLOCK();
return (ret);
}
void
vm_impl_deinit(struct vm *vm)
{
/* unused */
}
/*
* vcpu_reload_vmcs_vmx
*
* (Re)load the VMCS on the current cpu. Must be called with the VMCS write
* lock acquired. If the VMCS is determined to be loaded on a remote cpu, an
* ipi will be used to remotely flush it before loading the VMCS locally.
*
* Parameters:
* vcpu: Pointer to the vcpu needing its VMCS
*
* Return values:
* 0: if successful
* EINVAL: an error occurred during flush or reload
*/
int
vcpu_reload_vmcs_vmx(struct vcpu *vcpu)
{
struct cpu_info *ci, *last_ci;
rw_assert_wrlock(&vcpu->vc_lock);
ci = curcpu();
last_ci = vcpu->vc_last_pcpu;
if (last_ci == NULL) {
/* First launch */
if (vmclear(&vcpu->vc_control_pa))
return (EINVAL);
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
#ifdef MULTIPROCESSOR
} else if (last_ci != ci) {
/* We've moved CPUs at some point, so remote VMCLEAR */
if (vmx_remote_vmclear(last_ci, vcpu))
return (EINVAL);
KASSERT(vcpu->vc_vmx_vmcs_state == VMCS_CLEARED);
#endif /* MULTIPROCESSOR */
}
if (vmptrld(&vcpu->vc_control_pa)) {
printf("%s: vmptrld\n", __func__);
return (EINVAL);
}
return (0);
}
/*
* vcpu_readregs_vmx
*
* Reads 'vcpu's registers
*
* Parameters:
* vcpu: the vcpu to read register values from
* regmask: the types of registers to read
* loadvmcs: bit to indicate whether the VMCS has to be loaded first
* vrs: output parameter where register values are stored
*
* Return values:
* 0: if successful
* EINVAL: an error reading registers occurred
*/
int
vcpu_readregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
struct vcpu_reg_state *vrs)
{
int i, ret = 0;
uint64_t sel, limit, ar;
uint64_t *gprs = vrs->vrs_gprs;
uint64_t *crs = vrs->vrs_crs;
uint64_t *msrs = vrs->vrs_msrs;
uint64_t *drs = vrs->vrs_drs;
struct vcpu_segment_info *sregs = vrs->vrs_sregs;
struct vmx_msr_store *msr_store;
if (loadvmcs) {
if (vcpu_reload_vmcs_vmx(vcpu))
return (EINVAL);
}
#ifdef VMM_DEBUG
/* VMCS should be loaded... */
paddr_t pa = 0ULL;
if (vmptrst(&pa))
panic("%s: vmptrst", __func__);
KASSERT(pa == vcpu->vc_control_pa);
#endif /* VMM_DEBUG */
if (regmask & VM_RWREGS_GPRS) {
gprs[VCPU_REGS_RAX] = vcpu->vc_gueststate.vg_rax;
gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
gprs[VCPU_REGS_RIP] = vcpu->vc_gueststate.vg_rip;
if (vmread(VMCS_GUEST_IA32_RSP, &gprs[VCPU_REGS_RSP]))
goto errout;
if (vmread(VMCS_GUEST_IA32_RFLAGS, &gprs[VCPU_REGS_RFLAGS]))
goto errout;
}
if (regmask & VM_RWREGS_SREGS) {
for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
if (vmread(vmm_vmx_sreg_vmcs_fields[i].selid, &sel))
goto errout;
if (vmread(vmm_vmx_sreg_vmcs_fields[i].limitid, &limit))
goto errout;
if (vmread(vmm_vmx_sreg_vmcs_fields[i].arid, &ar))
goto errout;
if (vmread(vmm_vmx_sreg_vmcs_fields[i].baseid,
&sregs[i].vsi_base))
goto errout;
sregs[i].vsi_sel = sel;
sregs[i].vsi_limit = limit;
sregs[i].vsi_ar = ar;
}
if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &limit))
goto errout;
if (vmread(VMCS_GUEST_IA32_GDTR_BASE,
&vrs->vrs_gdtr.vsi_base))
goto errout;
vrs->vrs_gdtr.vsi_limit = limit;
if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &limit))
goto errout;
if (vmread(VMCS_GUEST_IA32_IDTR_BASE,
&vrs->vrs_idtr.vsi_base))
goto errout;
vrs->vrs_idtr.vsi_limit = limit;
}
if (regmask & VM_RWREGS_CRS) {
crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
if (vmread(VMCS_GUEST_IA32_CR0, &crs[VCPU_REGS_CR0]))
goto errout;
if (vmread(VMCS_GUEST_IA32_CR3, &crs[VCPU_REGS_CR3]))
goto errout;
if (vmread(VMCS_GUEST_IA32_CR4, &crs[VCPU_REGS_CR4]))
goto errout;
if (vmread(VMCS_GUEST_PDPTE0, &crs[VCPU_REGS_PDPTE0]))
goto errout;
if (vmread(VMCS_GUEST_PDPTE1, &crs[VCPU_REGS_PDPTE1]))
goto errout;
if (vmread(VMCS_GUEST_PDPTE2, &crs[VCPU_REGS_PDPTE2]))
goto errout;
if (vmread(VMCS_GUEST_PDPTE3, &crs[VCPU_REGS_PDPTE3]))
goto errout;
}
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
if (regmask & VM_RWREGS_MSRS) {
for (i = 0; i < VCPU_REGS_NMSRS; i++) {
msrs[i] = msr_store[i].vms_data;
}
}
if (regmask & VM_RWREGS_DRS) {
drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
drs[VCPU_REGS_DR6] = vcpu->vc_gueststate.vg_dr6;
if (vmread(VMCS_GUEST_IA32_DR7, &drs[VCPU_REGS_DR7]))
goto errout;
}
goto out;
errout:
ret = EINVAL;
out:
return (ret);
}
/*
* vcpu_readregs_svm
*
* Reads 'vcpu's registers
*
* Parameters:
* vcpu: the vcpu to read register values from
* regmask: the types of registers to read
* vrs: output parameter where register values are stored
*
* Return values:
* 0: if successful
*/
int
vcpu_readregs_svm(struct vcpu *vcpu, uint64_t regmask,
struct vcpu_reg_state *vrs)
{
uint64_t *gprs = vrs->vrs_gprs;
uint64_t *crs = vrs->vrs_crs;
uint64_t *msrs = vrs->vrs_msrs;
uint64_t *drs = vrs->vrs_drs;
uint32_t attr;
struct vcpu_segment_info *sregs = vrs->vrs_sregs;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
if (regmask & VM_RWREGS_GPRS) {
gprs[VCPU_REGS_RAX] = vmcb->v_rax;
gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
gprs[VCPU_REGS_RIP] = vmcb->v_rip;
gprs[VCPU_REGS_RSP] = vmcb->v_rsp;
gprs[VCPU_REGS_RFLAGS] = vmcb->v_rflags;
}
if (regmask & VM_RWREGS_SREGS) {
sregs[VCPU_REGS_CS].vsi_sel = vmcb->v_cs.vs_sel;
sregs[VCPU_REGS_CS].vsi_limit = vmcb->v_cs.vs_lim;
attr = vmcb->v_cs.vs_attr;
sregs[VCPU_REGS_CS].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_CS].vsi_base = vmcb->v_cs.vs_base;
sregs[VCPU_REGS_DS].vsi_sel = vmcb->v_ds.vs_sel;
sregs[VCPU_REGS_DS].vsi_limit = vmcb->v_ds.vs_lim;
attr = vmcb->v_ds.vs_attr;
sregs[VCPU_REGS_DS].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_DS].vsi_base = vmcb->v_ds.vs_base;
sregs[VCPU_REGS_ES].vsi_sel = vmcb->v_es.vs_sel;
sregs[VCPU_REGS_ES].vsi_limit = vmcb->v_es.vs_lim;
attr = vmcb->v_es.vs_attr;
sregs[VCPU_REGS_ES].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_ES].vsi_base = vmcb->v_es.vs_base;
sregs[VCPU_REGS_FS].vsi_sel = vmcb->v_fs.vs_sel;
sregs[VCPU_REGS_FS].vsi_limit = vmcb->v_fs.vs_lim;
attr = vmcb->v_fs.vs_attr;
sregs[VCPU_REGS_FS].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_FS].vsi_base = vmcb->v_fs.vs_base;
sregs[VCPU_REGS_GS].vsi_sel = vmcb->v_gs.vs_sel;
sregs[VCPU_REGS_GS].vsi_limit = vmcb->v_gs.vs_lim;
attr = vmcb->v_gs.vs_attr;
sregs[VCPU_REGS_GS].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_GS].vsi_base = vmcb->v_gs.vs_base;
sregs[VCPU_REGS_SS].vsi_sel = vmcb->v_ss.vs_sel;
sregs[VCPU_REGS_SS].vsi_limit = vmcb->v_ss.vs_lim;
attr = vmcb->v_ss.vs_attr;
sregs[VCPU_REGS_SS].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_SS].vsi_base = vmcb->v_ss.vs_base;
sregs[VCPU_REGS_LDTR].vsi_sel = vmcb->v_ldtr.vs_sel;
sregs[VCPU_REGS_LDTR].vsi_limit = vmcb->v_ldtr.vs_lim;
attr = vmcb->v_ldtr.vs_attr;
sregs[VCPU_REGS_LDTR].vsi_ar = (attr & 0xff) | ((attr << 4)
& 0xf000);
sregs[VCPU_REGS_LDTR].vsi_base = vmcb->v_ldtr.vs_base;
sregs[VCPU_REGS_TR].vsi_sel = vmcb->v_tr.vs_sel;
sregs[VCPU_REGS_TR].vsi_limit = vmcb->v_tr.vs_lim;
attr = vmcb->v_tr.vs_attr;
sregs[VCPU_REGS_TR].vsi_ar = (attr & 0xff) | ((attr << 4) &
0xf000);
sregs[VCPU_REGS_TR].vsi_base = vmcb->v_tr.vs_base;
vrs->vrs_gdtr.vsi_limit = vmcb->v_gdtr.vs_lim;
vrs->vrs_gdtr.vsi_base = vmcb->v_gdtr.vs_base;
vrs->vrs_idtr.vsi_limit = vmcb->v_idtr.vs_lim;
vrs->vrs_idtr.vsi_base = vmcb->v_idtr.vs_base;
}
if (regmask & VM_RWREGS_CRS) {
crs[VCPU_REGS_CR0] = vmcb->v_cr0;
crs[VCPU_REGS_CR3] = vmcb->v_cr3;
crs[VCPU_REGS_CR4] = vmcb->v_cr4;
crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
}
if (regmask & VM_RWREGS_MSRS) {
msrs[VCPU_REGS_EFER] = vmcb->v_efer;
msrs[VCPU_REGS_STAR] = vmcb->v_star;
msrs[VCPU_REGS_LSTAR] = vmcb->v_lstar;
msrs[VCPU_REGS_CSTAR] = vmcb->v_cstar;
msrs[VCPU_REGS_SFMASK] = vmcb->v_sfmask;
msrs[VCPU_REGS_KGSBASE] = vmcb->v_kgsbase;
}
if (regmask & VM_RWREGS_DRS) {
drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
drs[VCPU_REGS_DR6] = vmcb->v_dr6;
drs[VCPU_REGS_DR7] = vmcb->v_dr7;
}
return (0);
}
/*
* vcpu_writeregs_vmx
*
* Writes VCPU registers
*
* Parameters:
* vcpu: the vcpu that has to get its registers written to
* regmask: the types of registers to write
* loadvmcs: bit to indicate whether the VMCS has to be loaded first
* vrs: the register values to write
*
* Return values:
* 0: if successful
* EINVAL an error writing registers occurred
*/
int
vcpu_writeregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
struct vcpu_reg_state *vrs)
{
int i, ret = 0;
uint16_t sel;
uint64_t limit, ar;
uint64_t *gprs = vrs->vrs_gprs;
uint64_t *crs = vrs->vrs_crs;
uint64_t *msrs = vrs->vrs_msrs;
uint64_t *drs = vrs->vrs_drs;
struct vcpu_segment_info *sregs = vrs->vrs_sregs;
struct vmx_msr_store *msr_store;
if (loadvmcs) {
if (vcpu_reload_vmcs_vmx(vcpu))
return (EINVAL);
}
#ifdef VMM_DEBUG
/* VMCS should be loaded... */
paddr_t pa = 0ULL;
if (vmptrst(&pa))
panic("%s: vmptrst", __func__);
KASSERT(pa == vcpu->vc_control_pa);
#endif /* VMM_DEBUG */
if (regmask & VM_RWREGS_GPRS) {
vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
if (vmwrite(VMCS_GUEST_IA32_RIP, gprs[VCPU_REGS_RIP]))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_RSP, gprs[VCPU_REGS_RSP]))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_RFLAGS, gprs[VCPU_REGS_RFLAGS]))
goto errout;
}
if (regmask & VM_RWREGS_SREGS) {
for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
sel = sregs[i].vsi_sel;
limit = sregs[i].vsi_limit;
ar = sregs[i].vsi_ar;
if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].selid, sel))
goto errout;
if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].limitid, limit))
goto errout;
if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].arid, ar))
goto errout;
if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].baseid,
sregs[i].vsi_base))
goto errout;
}
if (vmwrite(VMCS_GUEST_IA32_GDTR_LIMIT,
vrs->vrs_gdtr.vsi_limit))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_GDTR_BASE,
vrs->vrs_gdtr.vsi_base))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_IDTR_LIMIT,
vrs->vrs_idtr.vsi_limit))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_IDTR_BASE,
vrs->vrs_idtr.vsi_base))
goto errout;
}
if (regmask & VM_RWREGS_CRS) {
vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
if (vmwrite(VMCS_GUEST_IA32_CR0, crs[VCPU_REGS_CR0]))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_CR3, crs[VCPU_REGS_CR3]))
goto errout;
if (vmwrite(VMCS_GUEST_IA32_CR4, crs[VCPU_REGS_CR4]))
goto errout;
if (vmwrite(VMCS_GUEST_PDPTE0, crs[VCPU_REGS_PDPTE0]))
goto errout;
if (vmwrite(VMCS_GUEST_PDPTE1, crs[VCPU_REGS_PDPTE1]))
goto errout;
if (vmwrite(VMCS_GUEST_PDPTE2, crs[VCPU_REGS_PDPTE2]))
goto errout;
if (vmwrite(VMCS_GUEST_PDPTE3, crs[VCPU_REGS_PDPTE3]))
goto errout;
}
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
if (regmask & VM_RWREGS_MSRS) {
for (i = 0; i < VCPU_REGS_NMSRS; i++) {
msr_store[i].vms_data = msrs[i];
}
}
if (regmask & VM_RWREGS_DRS) {
vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
vcpu->vc_gueststate.vg_dr6 = drs[VCPU_REGS_DR6];
if (vmwrite(VMCS_GUEST_IA32_DR7, drs[VCPU_REGS_DR7]))
goto errout;
}
goto out;
errout:
ret = EINVAL;
out:
if (loadvmcs) {
if (vmclear(&vcpu->vc_control_pa))
ret = EINVAL;
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
}
return (ret);
}
/*
* vcpu_writeregs_svm
*
* Writes 'vcpu's registers
*
* Parameters:
* vcpu: the vcpu that has to get its registers written to
* regmask: the types of registers to write
* vrs: the register values to write
*
* Return values:
* 0: if successful
* EINVAL an error writing registers occurred
*/
int
vcpu_writeregs_svm(struct vcpu *vcpu, uint64_t regmask,
struct vcpu_reg_state *vrs)
{
uint64_t *gprs = vrs->vrs_gprs;
uint64_t *crs = vrs->vrs_crs;
uint16_t attr;
uint64_t *msrs = vrs->vrs_msrs;
uint64_t *drs = vrs->vrs_drs;
struct vcpu_segment_info *sregs = vrs->vrs_sregs;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
if (regmask & VM_RWREGS_GPRS) {
vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
vmcb->v_rax = gprs[VCPU_REGS_RAX];
vmcb->v_rip = gprs[VCPU_REGS_RIP];
vmcb->v_rsp = gprs[VCPU_REGS_RSP];
vmcb->v_rflags = gprs[VCPU_REGS_RFLAGS];
}
if (regmask & VM_RWREGS_SREGS) {
vmcb->v_cs.vs_sel = sregs[VCPU_REGS_CS].vsi_sel;
vmcb->v_cs.vs_lim = sregs[VCPU_REGS_CS].vsi_limit;
attr = sregs[VCPU_REGS_CS].vsi_ar;
vmcb->v_cs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_cs.vs_base = sregs[VCPU_REGS_CS].vsi_base;
vmcb->v_ds.vs_sel = sregs[VCPU_REGS_DS].vsi_sel;
vmcb->v_ds.vs_lim = sregs[VCPU_REGS_DS].vsi_limit;
attr = sregs[VCPU_REGS_DS].vsi_ar;
vmcb->v_ds.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_ds.vs_base = sregs[VCPU_REGS_DS].vsi_base;
vmcb->v_es.vs_sel = sregs[VCPU_REGS_ES].vsi_sel;
vmcb->v_es.vs_lim = sregs[VCPU_REGS_ES].vsi_limit;
attr = sregs[VCPU_REGS_ES].vsi_ar;
vmcb->v_es.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_es.vs_base = sregs[VCPU_REGS_ES].vsi_base;
vmcb->v_fs.vs_sel = sregs[VCPU_REGS_FS].vsi_sel;
vmcb->v_fs.vs_lim = sregs[VCPU_REGS_FS].vsi_limit;
attr = sregs[VCPU_REGS_FS].vsi_ar;
vmcb->v_fs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_fs.vs_base = sregs[VCPU_REGS_FS].vsi_base;
vmcb->v_gs.vs_sel = sregs[VCPU_REGS_GS].vsi_sel;
vmcb->v_gs.vs_lim = sregs[VCPU_REGS_GS].vsi_limit;
attr = sregs[VCPU_REGS_GS].vsi_ar;
vmcb->v_gs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_gs.vs_base = sregs[VCPU_REGS_GS].vsi_base;
vmcb->v_ss.vs_sel = sregs[VCPU_REGS_SS].vsi_sel;
vmcb->v_ss.vs_lim = sregs[VCPU_REGS_SS].vsi_limit;
attr = sregs[VCPU_REGS_SS].vsi_ar;
vmcb->v_ss.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_ss.vs_base = sregs[VCPU_REGS_SS].vsi_base;
vmcb->v_ldtr.vs_sel = sregs[VCPU_REGS_LDTR].vsi_sel;
vmcb->v_ldtr.vs_lim = sregs[VCPU_REGS_LDTR].vsi_limit;
attr = sregs[VCPU_REGS_LDTR].vsi_ar;
vmcb->v_ldtr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_ldtr.vs_base = sregs[VCPU_REGS_LDTR].vsi_base;
vmcb->v_tr.vs_sel = sregs[VCPU_REGS_TR].vsi_sel;
vmcb->v_tr.vs_lim = sregs[VCPU_REGS_TR].vsi_limit;
attr = sregs[VCPU_REGS_TR].vsi_ar;
vmcb->v_tr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
vmcb->v_tr.vs_base = sregs[VCPU_REGS_TR].vsi_base;
vmcb->v_gdtr.vs_lim = vrs->vrs_gdtr.vsi_limit;
vmcb->v_gdtr.vs_base = vrs->vrs_gdtr.vsi_base;
vmcb->v_idtr.vs_lim = vrs->vrs_idtr.vsi_limit;
vmcb->v_idtr.vs_base = vrs->vrs_idtr.vsi_base;
}
if (regmask & VM_RWREGS_CRS) {
vmcb->v_cr0 = crs[VCPU_REGS_CR0];
vmcb->v_cr3 = crs[VCPU_REGS_CR3];
vmcb->v_cr4 = crs[VCPU_REGS_CR4];
vcpu->vc_gueststate.vg_cr2 = crs[VCPU_REGS_CR2];
vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
}
if (regmask & VM_RWREGS_MSRS) {
vmcb->v_efer |= msrs[VCPU_REGS_EFER];
vmcb->v_star = msrs[VCPU_REGS_STAR];
vmcb->v_lstar = msrs[VCPU_REGS_LSTAR];
vmcb->v_cstar = msrs[VCPU_REGS_CSTAR];
vmcb->v_sfmask = msrs[VCPU_REGS_SFMASK];
vmcb->v_kgsbase = msrs[VCPU_REGS_KGSBASE];
}
if (regmask & VM_RWREGS_DRS) {
vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
vmcb->v_dr6 = drs[VCPU_REGS_DR6];
vmcb->v_dr7 = drs[VCPU_REGS_DR7];
}
return (0);
}
/*
* vcpu_reset_regs_svm
*
* Initializes 'vcpu's registers to supplied state
*
* Parameters:
* vcpu: the vcpu whose register state is to be initialized
* vrs: the register state to set
*
* Return values:
* 0: registers init'ed successfully
* EINVAL: an error occurred setting register state
*/
int
vcpu_reset_regs_svm(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
{
struct vmcb *vmcb;
int ret;
uint16_t asid;
vmcb = (struct vmcb *)vcpu->vc_control_va;
/*
* Intercept controls
*
* External Interrupt exiting (SVM_INTERCEPT_INTR)
* External NMI exiting (SVM_INTERCEPT_NMI)
* CPUID instruction (SVM_INTERCEPT_CPUID)
* HLT instruction (SVM_INTERCEPT_HLT)
* I/O instructions (SVM_INTERCEPT_INOUT)
* MSR access (SVM_INTERCEPT_MSR)
* shutdown events (SVM_INTERCEPT_SHUTDOWN)
*
* VMRUN instruction (SVM_INTERCEPT_VMRUN)
* VMMCALL instruction (SVM_INTERCEPT_VMMCALL)
* VMLOAD instruction (SVM_INTERCEPT_VMLOAD)
* VMSAVE instruction (SVM_INTERCEPT_VMSAVE)
* STGI instruction (SVM_INTERCEPT_STGI)
* CLGI instruction (SVM_INTERCEPT_CLGI)
* SKINIT instruction (SVM_INTERCEPT_SKINIT)
* ICEBP instruction (SVM_INTERCEPT_ICEBP)
* MWAIT instruction (SVM_INTERCEPT_MWAIT_UNCOND)
* MWAIT instruction (SVM_INTERCEPT_MWAIT_COND)
* MONITOR instruction (SVM_INTERCEPT_MONITOR)
* RDTSCP instruction (SVM_INTERCEPT_RDTSCP)
* INVLPGA instruction (SVM_INTERCEPT_INVLPGA)
* XSETBV instruction (SVM_INTERCEPT_XSETBV) (if available)
*/
vmcb->v_intercept1 = SVM_INTERCEPT_INTR | SVM_INTERCEPT_NMI |
SVM_INTERCEPT_CPUID | SVM_INTERCEPT_HLT | SVM_INTERCEPT_INOUT |
SVM_INTERCEPT_MSR | SVM_INTERCEPT_SHUTDOWN;
vmcb->v_intercept2 = SVM_INTERCEPT_VMRUN | SVM_INTERCEPT_VMMCALL |
SVM_INTERCEPT_VMLOAD | SVM_INTERCEPT_VMSAVE | SVM_INTERCEPT_STGI |
SVM_INTERCEPT_CLGI | SVM_INTERCEPT_SKINIT | SVM_INTERCEPT_ICEBP |
SVM_INTERCEPT_MWAIT_UNCOND | SVM_INTERCEPT_MONITOR |
SVM_INTERCEPT_MWAIT_COND | SVM_INTERCEPT_RDTSCP |
SVM_INTERCEPT_INVLPGA;
if (xsave_mask)
vmcb->v_intercept2 |= SVM_INTERCEPT_XSETBV;
/* Setup I/O bitmap */
memset((uint8_t *)vcpu->vc_svm_ioio_va, 0xFF, 3 * PAGE_SIZE);
vmcb->v_iopm_pa = (uint64_t)(vcpu->vc_svm_ioio_pa);
/* Setup MSR bitmap */
memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, 2 * PAGE_SIZE);
vmcb->v_msrpm_pa = (uint64_t)(vcpu->vc_msr_bitmap_pa);
svm_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
svm_setmsrbrw(vcpu, MSR_SYSENTER_CS);
svm_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
svm_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
svm_setmsrbrw(vcpu, MSR_STAR);
svm_setmsrbrw(vcpu, MSR_LSTAR);
svm_setmsrbrw(vcpu, MSR_CSTAR);
svm_setmsrbrw(vcpu, MSR_SFMASK);
svm_setmsrbrw(vcpu, MSR_FSBASE);
svm_setmsrbrw(vcpu, MSR_GSBASE);
svm_setmsrbrw(vcpu, MSR_KERNELGSBASE);
/* EFER is R/O so we can ensure the guest always has SVME */
svm_setmsrbr(vcpu, MSR_EFER);
/* allow reading TSC */
svm_setmsrbr(vcpu, MSR_TSC);
/* allow reading HWCR and PSTATEDEF to determine TSC frequency */
svm_setmsrbr(vcpu, MSR_HWCR);
svm_setmsrbr(vcpu, MSR_PSTATEDEF(0));
/* Guest VCPU ASID */
if (vmm_alloc_vpid(&asid)) {
DPRINTF("%s: could not allocate asid\n", __func__);
ret = EINVAL;
goto exit;
}
vmcb->v_asid = asid;
vcpu->vc_vpid = asid;
/* TLB Control - First time in, flush all*/
vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_ALL;
/* INTR masking */
vmcb->v_intr_masking = 1;
/* PAT */
vmcb->v_g_pat = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) |
PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) |
PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) |
PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC);
/* NPT */
if (vmm_softc->mode == VMM_MODE_RVI) {
vmcb->v_np_enable = 1;
vmcb->v_n_cr3 = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
}
/* Enable SVME in EFER (must always be set) */
vmcb->v_efer |= EFER_SVME;
ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_ALL, vrs);
/* xcr0 power on default sets bit 0 (x87 state) */
vcpu->vc_gueststate.vg_xcr0 = XFEATURE_X87 & xsave_mask;
vcpu->vc_parent->vm_map->pmap->eptp = 0;
exit:
return ret;
}
/*
* svm_setmsrbr
*
* Allow read access to the specified msr on the supplied vcpu.
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
svm_setmsrbr(struct vcpu *vcpu, uint32_t msr)
{
uint8_t *msrs;
uint16_t idx;
msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
/*
* MSR Read bitmap layout:
* Pentium MSRs (0x0 - 0x1fff) @ 0x0
* Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
* Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
*
* Read enable bit is low order bit of 2-bit pair
* per MSR (eg, MSR 0x0 write bit is at bit 0 @ 0x0)
*/
if (msr <= 0x1fff) {
idx = SVM_MSRIDX(msr);
msrs[idx] &= ~(SVM_MSRBIT_R(msr));
} else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0000000));
} else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0010000));
} else {
printf("%s: invalid msr 0x%x\n", __func__, msr);
return;
}
}
/*
* svm_setmsrbw
*
* Allow write access to the specified msr on the supplied vcpu
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
svm_setmsrbw(struct vcpu *vcpu, uint32_t msr)
{
uint8_t *msrs;
uint16_t idx;
msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
/*
* MSR Write bitmap layout:
* Pentium MSRs (0x0 - 0x1fff) @ 0x0
* Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
* Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
*
* Write enable bit is high order bit of 2-bit pair
* per MSR (eg, MSR 0x0 write bit is at bit 1 @ 0x0)
*/
if (msr <= 0x1fff) {
idx = SVM_MSRIDX(msr);
msrs[idx] &= ~(SVM_MSRBIT_W(msr));
} else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0000000));
} else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0010000));
} else {
printf("%s: invalid msr 0x%x\n", __func__, msr);
return;
}
}
/*
* svm_setmsrbrw
*
* Allow read/write access to the specified msr on the supplied vcpu
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
svm_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
{
svm_setmsrbr(vcpu, msr);
svm_setmsrbw(vcpu, msr);
}
/*
* vmx_setmsrbr
*
* Allow read access to the specified msr on the supplied vcpu.
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
vmx_setmsrbr(struct vcpu *vcpu, uint32_t msr)
{
uint8_t *msrs;
uint16_t idx;
msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
/*
* MSR Read bitmap layout:
* "Low" MSRs (0x0 - 0x1fff) @ 0x0
* "High" MSRs (0xc0000000 - 0xc0001fff) @ 0x400
*/
if (msr <= 0x1fff) {
idx = VMX_MSRIDX(msr);
msrs[idx] &= ~(VMX_MSRBIT(msr));
} else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
idx = VMX_MSRIDX(msr - 0xc0000000) + 0x400;
msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
} else
printf("%s: invalid msr 0x%x\n", __func__, msr);
}
/*
* vmx_setmsrbw
*
* Allow write access to the specified msr on the supplied vcpu
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
vmx_setmsrbw(struct vcpu *vcpu, uint32_t msr)
{
uint8_t *msrs;
uint16_t idx;
msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
/*
* MSR Write bitmap layout:
* "Low" MSRs (0x0 - 0x1fff) @ 0x800
* "High" MSRs (0xc0000000 - 0xc0001fff) @ 0xc00
*/
if (msr <= 0x1fff) {
idx = VMX_MSRIDX(msr) + 0x800;
msrs[idx] &= ~(VMX_MSRBIT(msr));
} else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
idx = VMX_MSRIDX(msr - 0xc0000000) + 0xc00;
msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
} else
printf("%s: invalid msr 0x%x\n", __func__, msr);
}
/*
* vmx_setmsrbrw
*
* Allow read/write access to the specified msr on the supplied vcpu
*
* Parameters:
* vcpu: the VCPU to allow access
* msr: the MSR number to allow access to
*/
void
vmx_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
{
vmx_setmsrbr(vcpu, msr);
vmx_setmsrbw(vcpu, msr);
}
/*
* svm_set_clean
*
* Sets (mark as unmodified) the VMCB clean bit set in 'value'.
* For example, to set the clean bit for the VMCB intercepts (bit position 0),
* the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
* Multiple cleanbits can be provided in 'value' at the same time (eg,
* "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
*
* Note that this function does not clear any bits; to clear bits in the
* vmcb cleanbits bitfield, use 'svm_set_dirty'.
*
* Parameters:
* vmcs: the VCPU whose VMCB clean value should be set
* value: the value(s) to enable in the cleanbits mask
*/
void
svm_set_clean(struct vcpu *vcpu, uint32_t value)
{
struct vmcb *vmcb;
/* If no cleanbits support, do nothing */
if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
return;
vmcb = (struct vmcb *)vcpu->vc_control_va;
vmcb->v_vmcb_clean_bits |= value;
}
/*
* svm_set_dirty
*
* Clears (mark as modified) the VMCB clean bit set in 'value'.
* For example, to clear the bit for the VMCB intercepts (bit position 0)
* the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
* Multiple dirty bits can be provided in 'value' at the same time (eg,
* "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
*
* Parameters:
* vmcs: the VCPU whose VMCB dirty value should be set
* value: the value(s) to dirty in the cleanbits mask
*/
void
svm_set_dirty(struct vcpu *vcpu, uint32_t value)
{
struct vmcb *vmcb;
/* If no cleanbits support, do nothing */
if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
return;
vmcb = (struct vmcb *)vcpu->vc_control_va;
vmcb->v_vmcb_clean_bits &= ~value;
}
/*
* vcpu_reset_regs_vmx
*
* Initializes 'vcpu's registers to supplied state
*
* Parameters:
* vcpu: the vcpu whose register state is to be initialized
* vrs: the register state to set
*
* Return values:
* 0: registers init'ed successfully
* EINVAL: an error occurred setting register state
*/
int
vcpu_reset_regs_vmx(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
{
int ret = 0, ug = 0;
uint32_t cr0, cr4;
uint32_t pinbased, procbased, procbased2, exit, entry;
uint32_t want1, want0;
uint64_t ctrlval, cr3, msr_misc_enable;
uint16_t ctrl, vpid;
struct vmx_msr_store *msr_store;
rw_assert_wrlock(&vcpu->vc_lock);
cr0 = vrs->vrs_crs[VCPU_REGS_CR0];
if (vcpu_reload_vmcs_vmx(vcpu)) {
DPRINTF("%s: error reloading VMCS\n", __func__);
ret = EINVAL;
goto exit;
}
#ifdef VMM_DEBUG
/* VMCS should be loaded... */
paddr_t pa = 0ULL;
if (vmptrst(&pa))
panic("%s: vmptrst", __func__);
KASSERT(pa == vcpu->vc_control_pa);
#endif /* VMM_DEBUG */
/* Compute Basic Entry / Exit Controls */
vcpu->vc_vmx_basic = rdmsr(IA32_VMX_BASIC);
vcpu->vc_vmx_entry_ctls = rdmsr(IA32_VMX_ENTRY_CTLS);
vcpu->vc_vmx_exit_ctls = rdmsr(IA32_VMX_EXIT_CTLS);
vcpu->vc_vmx_pinbased_ctls = rdmsr(IA32_VMX_PINBASED_CTLS);
vcpu->vc_vmx_procbased_ctls = rdmsr(IA32_VMX_PROCBASED_CTLS);
/* Compute True Entry / Exit Controls (if applicable) */
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
vcpu->vc_vmx_true_entry_ctls = rdmsr(IA32_VMX_TRUE_ENTRY_CTLS);
vcpu->vc_vmx_true_exit_ctls = rdmsr(IA32_VMX_TRUE_EXIT_CTLS);
vcpu->vc_vmx_true_pinbased_ctls =
rdmsr(IA32_VMX_TRUE_PINBASED_CTLS);
vcpu->vc_vmx_true_procbased_ctls =
rdmsr(IA32_VMX_TRUE_PROCBASED_CTLS);
}
/* Compute Secondary Procbased Controls (if applicable) */
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1))
vcpu->vc_vmx_procbased2_ctls = rdmsr(IA32_VMX_PROCBASED2_CTLS);
/*
* Pinbased ctrls
*
* We must be able to set the following:
* IA32_VMX_EXTERNAL_INT_EXITING - exit on host interrupt
* IA32_VMX_NMI_EXITING - exit on host NMI
*/
want1 = IA32_VMX_EXTERNAL_INT_EXITING |
IA32_VMX_NMI_EXITING;
want0 = 0;
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
ctrl = IA32_VMX_TRUE_PINBASED_CTLS;
ctrlval = vcpu->vc_vmx_true_pinbased_ctls;
} else {
ctrl = IA32_VMX_PINBASED_CTLS;
ctrlval = vcpu->vc_vmx_pinbased_ctls;
}
if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &pinbased)) {
DPRINTF("%s: error computing pinbased controls\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_PINBASED_CTLS, pinbased)) {
DPRINTF("%s: error setting pinbased controls\n", __func__);
ret = EINVAL;
goto exit;
}
/*
* Procbased ctrls
*
* We must be able to set the following:
* IA32_VMX_HLT_EXITING - exit on HLT instruction
* IA32_VMX_MWAIT_EXITING - exit on MWAIT instruction
* IA32_VMX_UNCONDITIONAL_IO_EXITING - exit on I/O instructions
* IA32_VMX_USE_MSR_BITMAPS - exit on various MSR accesses
* IA32_VMX_CR8_LOAD_EXITING - guest TPR access
* IA32_VMX_CR8_STORE_EXITING - guest TPR access
* IA32_VMX_USE_TPR_SHADOW - guest TPR access (shadow)
* IA32_VMX_MONITOR_EXITING - exit on MONITOR instruction
*
* If we have EPT, we must be able to clear the following
* IA32_VMX_CR3_LOAD_EXITING - don't care about guest CR3 accesses
* IA32_VMX_CR3_STORE_EXITING - don't care about guest CR3 accesses
*/
want1 = IA32_VMX_HLT_EXITING |
IA32_VMX_MWAIT_EXITING |
IA32_VMX_UNCONDITIONAL_IO_EXITING |
IA32_VMX_USE_MSR_BITMAPS |
IA32_VMX_CR8_LOAD_EXITING |
IA32_VMX_CR8_STORE_EXITING |
IA32_VMX_MONITOR_EXITING |
IA32_VMX_USE_TPR_SHADOW;
want0 = 0;
if (vmm_softc->mode == VMM_MODE_EPT) {
want1 |= IA32_VMX_ACTIVATE_SECONDARY_CONTROLS;
want0 |= IA32_VMX_CR3_LOAD_EXITING |
IA32_VMX_CR3_STORE_EXITING;
}
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
ctrl = IA32_VMX_TRUE_PROCBASED_CTLS;
ctrlval = vcpu->vc_vmx_true_procbased_ctls;
} else {
ctrl = IA32_VMX_PROCBASED_CTLS;
ctrlval = vcpu->vc_vmx_procbased_ctls;
}
if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased)) {
DPRINTF("%s: error computing procbased controls\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
DPRINTF("%s: error setting procbased controls\n", __func__);
ret = EINVAL;
goto exit;
}
/*
* Secondary Procbased ctrls
*
* We want to be able to set the following, if available:
* IA32_VMX_ENABLE_VPID - use VPIDs where available
*
* If we have EPT, we must be able to set the following:
* IA32_VMX_ENABLE_EPT - enable EPT
*
* If we have unrestricted guest capability, we must be able to set
* the following:
* IA32_VMX_UNRESTRICTED_GUEST - enable unrestricted guest (if caller
* specified CR0_PG | CR0_PE in %cr0 in the 'vrs' parameter)
*/
want1 = 0;
/* XXX checking for 2ndary controls can be combined here */
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_VPID, 1)) {
want1 |= IA32_VMX_ENABLE_VPID;
vcpu->vc_vmx_vpid_enabled = 1;
}
}
if (vmm_softc->mode == VMM_MODE_EPT)
want1 |= IA32_VMX_ENABLE_EPT;
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_UNRESTRICTED_GUEST, 1)) {
if ((cr0 & (CR0_PE | CR0_PG)) == 0) {
want1 |= IA32_VMX_UNRESTRICTED_GUEST;
ug = 1;
}
}
}
want0 = ~want1;
ctrlval = vcpu->vc_vmx_procbased2_ctls;
ctrl = IA32_VMX_PROCBASED2_CTLS;
if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased2)) {
DPRINTF("%s: error computing secondary procbased controls\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_PROCBASED2_CTLS, procbased2)) {
DPRINTF("%s: error setting secondary procbased controls\n",
__func__);
ret = EINVAL;
goto exit;
}
/*
* Exit ctrls
*
* We must be able to set the following:
* IA32_VMX_SAVE_DEBUG_CONTROLS
* IA32_VMX_HOST_SPACE_ADDRESS_SIZE - exit to long mode
* IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT - ack interrupt on exit
*/
want1 = IA32_VMX_HOST_SPACE_ADDRESS_SIZE |
IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT |
IA32_VMX_SAVE_DEBUG_CONTROLS;
want0 = 0;
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
ctrl = IA32_VMX_TRUE_EXIT_CTLS;
ctrlval = vcpu->vc_vmx_true_exit_ctls;
} else {
ctrl = IA32_VMX_EXIT_CTLS;
ctrlval = vcpu->vc_vmx_exit_ctls;
}
if (rcr4() & CR4_CET)
want1 |= IA32_VMX_LOAD_HOST_CET_STATE;
else
want0 |= IA32_VMX_LOAD_HOST_CET_STATE;
if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &exit)) {
DPRINTF("%s: error computing exit controls\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_EXIT_CTLS, exit)) {
DPRINTF("%s: error setting exit controls\n", __func__);
ret = EINVAL;
goto exit;
}
/*
* Entry ctrls
*
* We must be able to set the following:
* IA32_VMX_IA32E_MODE_GUEST (if no unrestricted guest)
* IA32_VMX_LOAD_DEBUG_CONTROLS
* We must be able to clear the following:
* IA32_VMX_ENTRY_TO_SMM - enter to SMM
* IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT
* IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY
*/
want1 = IA32_VMX_LOAD_DEBUG_CONTROLS;
if (vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)
want1 |= IA32_VMX_IA32E_MODE_GUEST;
want0 = IA32_VMX_ENTRY_TO_SMM |
IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT |
IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY;
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
ctrl = IA32_VMX_TRUE_ENTRY_CTLS;
ctrlval = vcpu->vc_vmx_true_entry_ctls;
} else {
ctrl = IA32_VMX_ENTRY_CTLS;
ctrlval = vcpu->vc_vmx_entry_ctls;
}
if (rcr4() & CR4_CET)
want1 |= IA32_VMX_LOAD_GUEST_CET_STATE;
else
want0 |= IA32_VMX_LOAD_GUEST_CET_STATE;
if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &entry)) {
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_ENTRY_CTLS, entry)) {
ret = EINVAL;
goto exit;
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_VPID, 1)) {
/* We may sleep during allocation, so reload VMCS. */
vcpu->vc_last_pcpu = curcpu();
ret = vmm_alloc_vpid(&vpid);
if (vcpu_reload_vmcs_vmx(vcpu)) {
printf("%s: failed to reload vmcs\n", __func__);
ret = EINVAL;
goto exit;
}
if (ret) {
DPRINTF("%s: could not allocate VPID\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_VPID, vpid)) {
DPRINTF("%s: error setting guest VPID\n",
__func__);
ret = EINVAL;
goto exit;
}
vcpu->vc_vpid = vpid;
}
}
/*
* Determine which bits in CR0 have to be set to a fixed
* value as per Intel SDM A.7.
* CR0 bits in the vrs parameter must match these.
*/
want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
/*
* CR0_FIXED0 and CR0_FIXED1 may report the CR0_PG and CR0_PE bits as
* fixed to 1 even if the CPU supports the unrestricted guest
* feature. Update want1 and want0 accordingly to allow
* any value for CR0_PG and CR0_PE in vrs->vrs_crs[VCPU_REGS_CR0] if
* the CPU has the unrestricted guest capability.
*/
if (ug) {
want1 &= ~(CR0_PG | CR0_PE);
want0 &= ~(CR0_PG | CR0_PE);
}
/*
* VMX may require some bits to be set that userland should not have
* to care about. Set those here.
*/
if (want1 & CR0_NE)
cr0 |= CR0_NE;
if ((cr0 & want1) != want1) {
ret = EINVAL;
goto exit;
}
if ((~cr0 & want0) != want0) {
ret = EINVAL;
goto exit;
}
vcpu->vc_vmx_cr0_fixed1 = want1;
vcpu->vc_vmx_cr0_fixed0 = want0;
/*
* Determine which bits in CR4 have to be set to a fixed
* value as per Intel SDM A.8.
* CR4 bits in the vrs parameter must match these, except
* CR4_VMXE - we add that here since it must always be set.
*/
want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
cr4 = vrs->vrs_crs[VCPU_REGS_CR4] | CR4_VMXE;
if ((cr4 & want1) != want1) {
ret = EINVAL;
goto exit;
}
if ((~cr4 & want0) != want0) {
ret = EINVAL;
goto exit;
}
cr3 = vrs->vrs_crs[VCPU_REGS_CR3];
/* Restore PDPTEs if 32-bit PAE paging is being used */
if (cr3 && (cr4 & CR4_PAE) &&
!(vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)) {
if (vmwrite(VMCS_GUEST_PDPTE0,
vrs->vrs_crs[VCPU_REGS_PDPTE0])) {
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE1,
vrs->vrs_crs[VCPU_REGS_PDPTE1])) {
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE2,
vrs->vrs_crs[VCPU_REGS_PDPTE2])) {
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE3,
vrs->vrs_crs[VCPU_REGS_PDPTE3])) {
ret = EINVAL;
goto exit;
}
}
vrs->vrs_crs[VCPU_REGS_CR0] = cr0;
vrs->vrs_crs[VCPU_REGS_CR4] = cr4;
msr_misc_enable = rdmsr(MSR_MISC_ENABLE);
/*
* Select host MSRs to be loaded on exit
*/
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_load_va;
msr_store[VCPU_HOST_REGS_EFER].vms_index = MSR_EFER;
msr_store[VCPU_HOST_REGS_EFER].vms_data = rdmsr(MSR_EFER);
msr_store[VCPU_HOST_REGS_STAR].vms_index = MSR_STAR;
msr_store[VCPU_HOST_REGS_STAR].vms_data = rdmsr(MSR_STAR);
msr_store[VCPU_HOST_REGS_LSTAR].vms_index = MSR_LSTAR;
msr_store[VCPU_HOST_REGS_LSTAR].vms_data = rdmsr(MSR_LSTAR);
msr_store[VCPU_HOST_REGS_CSTAR].vms_index = MSR_CSTAR;
msr_store[VCPU_HOST_REGS_CSTAR].vms_data = 0;
msr_store[VCPU_HOST_REGS_SFMASK].vms_index = MSR_SFMASK;
msr_store[VCPU_HOST_REGS_SFMASK].vms_data = rdmsr(MSR_SFMASK);
msr_store[VCPU_HOST_REGS_KGSBASE].vms_index = MSR_KERNELGSBASE;
msr_store[VCPU_HOST_REGS_KGSBASE].vms_data = 0;
msr_store[VCPU_HOST_REGS_MISC_ENABLE].vms_index = MSR_MISC_ENABLE;
msr_store[VCPU_HOST_REGS_MISC_ENABLE].vms_data = msr_misc_enable;
/*
* Select guest MSRs to be loaded on entry / saved on exit
*/
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
msr_store[VCPU_REGS_EFER].vms_index = MSR_EFER;
msr_store[VCPU_REGS_STAR].vms_index = MSR_STAR;
msr_store[VCPU_REGS_LSTAR].vms_index = MSR_LSTAR;
msr_store[VCPU_REGS_CSTAR].vms_index = MSR_CSTAR;
msr_store[VCPU_REGS_SFMASK].vms_index = MSR_SFMASK;
msr_store[VCPU_REGS_KGSBASE].vms_index = MSR_KERNELGSBASE;
msr_store[VCPU_REGS_MISC_ENABLE].vms_index = MSR_MISC_ENABLE;
/*
* Initialize MSR_MISC_ENABLE as it can't be read and populated from vmd
* and some of the content is based on the host.
*/
msr_store[VCPU_REGS_MISC_ENABLE].vms_data = msr_misc_enable;
msr_store[VCPU_REGS_MISC_ENABLE].vms_data &=
~(MISC_ENABLE_TCC | MISC_ENABLE_PERF_MON_AVAILABLE |
MISC_ENABLE_EIST_ENABLED | MISC_ENABLE_ENABLE_MONITOR_FSM |
MISC_ENABLE_xTPR_MESSAGE_DISABLE);
msr_store[VCPU_REGS_MISC_ENABLE].vms_data |=
MISC_ENABLE_BTS_UNAVAILABLE | MISC_ENABLE_PEBS_UNAVAILABLE;
/*
* Currently we use the same memory for guest MSRs (entry-load and
* exit-store) so they have the same count. We exit-load the same
* host MSRs, so same count but different memory. Those are just
* our current choices, not architectural requirements.
*/
if (vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VCPU_REGS_NMSRS)) {
DPRINTF("%s: error setting guest MSR exit store count\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_EXIT_MSR_LOAD_COUNT, VCPU_HOST_REGS_NMSRS)) {
DPRINTF("%s: error setting guest MSR exit load count\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, VCPU_REGS_NMSRS)) {
DPRINTF("%s: error setting guest MSR entry load count\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_EXIT_STORE_MSR_ADDRESS,
vcpu->vc_vmx_msr_exit_save_pa)) {
DPRINTF("%s: error setting guest MSR exit store address\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_EXIT_LOAD_MSR_ADDRESS,
vcpu->vc_vmx_msr_exit_load_pa)) {
DPRINTF("%s: error setting guest MSR exit load address\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_ENTRY_LOAD_MSR_ADDRESS,
vcpu->vc_vmx_msr_exit_save_pa)) {
DPRINTF("%s: error setting guest MSR entry load address\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_MSR_BITMAP_ADDRESS,
vcpu->vc_msr_bitmap_pa)) {
DPRINTF("%s: error setting guest MSR bitmap address\n",
__func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_CR4_MASK, CR4_VMXE)) {
DPRINTF("%s: error setting guest CR4 mask\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_CR0_MASK, CR0_NE)) {
DPRINTF("%s: error setting guest CR0 mask\n", __func__);
ret = EINVAL;
goto exit;
}
/*
* Set up the VMCS for the register state we want during VCPU start.
* This matches what the CPU state would be after a bootloader
* transition to 'start'.
*/
ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_ALL, 0, vrs);
/*
* Set up the MSR bitmap
*/
memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, PAGE_SIZE);
vmx_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
vmx_setmsrbrw(vcpu, MSR_SYSENTER_CS);
vmx_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
vmx_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
vmx_setmsrbrw(vcpu, MSR_EFER);
vmx_setmsrbrw(vcpu, MSR_STAR);
vmx_setmsrbrw(vcpu, MSR_LSTAR);
vmx_setmsrbrw(vcpu, MSR_CSTAR);
vmx_setmsrbrw(vcpu, MSR_SFMASK);
vmx_setmsrbrw(vcpu, MSR_FSBASE);
vmx_setmsrbrw(vcpu, MSR_GSBASE);
vmx_setmsrbrw(vcpu, MSR_KERNELGSBASE);
vmx_setmsrbr(vcpu, MSR_MISC_ENABLE);
vmx_setmsrbr(vcpu, MSR_TSC);
/* If host supports CET, pass through access to the guest. */
if (rcr4() & CR4_CET)
vmx_setmsrbrw(vcpu, MSR_S_CET);
/* XXX CR0 shadow */
/* XXX CR4 shadow */
/* xcr0 power on default sets bit 0 (x87 state) */
vcpu->vc_gueststate.vg_xcr0 = XFEATURE_X87 & xsave_mask;
/* XXX PAT shadow */
vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
/* Flush the VMCS */
if (vmclear(&vcpu->vc_control_pa)) {
DPRINTF("%s: vmclear failed\n", __func__);
ret = EINVAL;
}
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
exit:
return (ret);
}
/*
* vcpu_init_vmx
*
* Intel VMX specific VCPU initialization routine.
*
* This function allocates various per-VCPU memory regions, sets up initial
* VCPU VMCS controls, and sets initial register values.
*
* Parameters:
* vcpu: the VCPU structure being initialized
*
* Return values:
* 0: the VCPU was initialized successfully
* ENOMEM: insufficient resources
* EINVAL: an error occurred during VCPU initialization
*/
int
vcpu_init_vmx(struct vcpu *vcpu)
{
struct vmcs *vmcs;
uint64_t msr, eptp;
uint32_t cr0, cr4;
int ret = 0;
/* Allocate VMCS VA */
vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
&kd_waitok);
vcpu->vc_vmx_vmcs_state = VMCS_CLEARED;
if (!vcpu->vc_control_va)
return (ENOMEM);
/* Compute VMCS PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
(paddr_t *)&vcpu->vc_control_pa)) {
ret = ENOMEM;
goto exit;
}
/* Allocate MSR bitmap VA */
vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
&kd_waitok);
if (!vcpu->vc_msr_bitmap_va) {
ret = ENOMEM;
goto exit;
}
/* Compute MSR bitmap PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
(paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
ret = ENOMEM;
goto exit;
}
/* Allocate MSR exit load area VA */
vcpu->vc_vmx_msr_exit_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
&kp_zero, &kd_waitok);
if (!vcpu->vc_vmx_msr_exit_load_va) {
ret = ENOMEM;
goto exit;
}
/* Compute MSR exit load area PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_load_va,
&vcpu->vc_vmx_msr_exit_load_pa)) {
ret = ENOMEM;
goto exit;
}
/* Allocate MSR exit save area VA */
vcpu->vc_vmx_msr_exit_save_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
&kp_zero, &kd_waitok);
if (!vcpu->vc_vmx_msr_exit_save_va) {
ret = ENOMEM;
goto exit;
}
/* Compute MSR exit save area PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_save_va,
&vcpu->vc_vmx_msr_exit_save_pa)) {
ret = ENOMEM;
goto exit;
}
#if 0 /* XXX currently use msr_exit_save for msr_entry_load too */
/* Allocate MSR entry load area VA */
vcpu->vc_vmx_msr_entry_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
&kp_zero, &kd_waitok);
if (!vcpu->vc_vmx_msr_entry_load_va) {
ret = ENOMEM;
goto exit;
}
/* Compute MSR entry load area PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_entry_load_va,
&vcpu->vc_vmx_msr_entry_load_pa)) {
ret = ENOMEM;
goto exit;
}
#endif
vmcs = (struct vmcs *)vcpu->vc_control_va;
vmcs->vmcs_revision = curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
/*
* Load the VMCS onto this PCPU so we can write registers
*/
if (vmptrld(&vcpu->vc_control_pa)) {
ret = EINVAL;
goto exit;
}
/* Configure EPT Pointer */
eptp = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
if (msr & IA32_EPT_VPID_CAP_PAGE_WALK_4) {
/* Page walk length 4 supported */
eptp |= ((IA32_EPT_PAGE_WALK_LENGTH - 1) << 3);
} else {
DPRINTF("EPT page walk length 4 not supported\n");
ret = EINVAL;
goto exit;
}
if (msr & IA32_EPT_VPID_CAP_WB) {
/* WB cache type supported */
eptp |= IA32_EPT_PAGING_CACHE_TYPE_WB;
} else
DPRINTF("%s: no WB cache type available, guest VM will run "
"uncached\n", __func__);
DPRINTF("Guest EPTP = 0x%llx\n", eptp);
if (vmwrite(VMCS_GUEST_IA32_EPTP, eptp)) {
DPRINTF("%s: error setting guest EPTP\n", __func__);
ret = EINVAL;
goto exit;
}
vcpu->vc_parent->vm_map->pmap->eptp = eptp;
/* Host CR0 */
cr0 = rcr0() & ~CR0_TS;
if (vmwrite(VMCS_HOST_IA32_CR0, cr0)) {
DPRINTF("%s: error writing host CR0\n", __func__);
ret = EINVAL;
goto exit;
}
/* Host CR4 */
cr4 = rcr4();
if (vmwrite(VMCS_HOST_IA32_CR4, cr4)) {
DPRINTF("%s: error writing host CR4\n", __func__);
ret = EINVAL;
goto exit;
}
/* Host Segment Selectors */
if (vmwrite(VMCS_HOST_IA32_CS_SEL, GSEL(GCODE_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host CS selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_DS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host DS selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_ES_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host ES selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_FS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host FS selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_GS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host GS selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_SS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host SS selector\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_HOST_IA32_TR_SEL, GSYSSEL(GPROC0_SEL, SEL_KPL))) {
DPRINTF("%s: error writing host TR selector\n", __func__);
ret = EINVAL;
goto exit;
}
/* Host IDTR base */
if (vmwrite(VMCS_HOST_IA32_IDTR_BASE, idt_vaddr)) {
DPRINTF("%s: error writing host IDTR base\n", __func__);
ret = EINVAL;
goto exit;
}
/* VMCS link */
if (vmwrite(VMCS_LINK_POINTER, VMX_VMCS_PA_CLEAR)) {
DPRINTF("%s: error writing VMCS link pointer\n", __func__);
ret = EINVAL;
goto exit;
}
/* Flush the initial VMCS */
if (vmclear(&vcpu->vc_control_pa)) {
DPRINTF("%s: vmclear failed\n", __func__);
ret = EINVAL;
}
exit:
if (ret)
vcpu_deinit_vmx(vcpu);
return (ret);
}
/*
* vcpu_reset_regs
*
* Resets a vcpu's registers to the provided state
*
* Parameters:
* vcpu: the vcpu whose registers shall be reset
* vrs: the desired register state
*
* Return values:
* 0: the vcpu's registers were successfully reset
* !0: the vcpu's registers could not be reset (see arch-specific reset
* function for various values that can be returned here)
*/
int
vcpu_reset_regs(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
{
int ret;
if (vmm_softc->mode == VMM_MODE_EPT)
ret = vcpu_reset_regs_vmx(vcpu, vrs);
else if (vmm_softc->mode == VMM_MODE_RVI)
ret = vcpu_reset_regs_svm(vcpu, vrs);
else
panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
return (ret);
}
/*
* vcpu_init_svm
*
* AMD SVM specific VCPU initialization routine.
*
* This function allocates various per-VCPU memory regions, sets up initial
* VCPU VMCB controls, and sets initial register values.
*
* Parameters:
* vcpu: the VCPU structure being initialized
*
* Return values:
* 0: the VCPU was initialized successfully
* ENOMEM: insufficient resources
* EINVAL: an error occurred during VCPU initialization
*/
int
vcpu_init_svm(struct vcpu *vcpu)
{
int ret = 0;
/* Allocate VMCB VA */
vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
&kd_waitok);
if (!vcpu->vc_control_va)
return (ENOMEM);
/* Compute VMCB PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
(paddr_t *)&vcpu->vc_control_pa)) {
ret = ENOMEM;
goto exit;
}
DPRINTF("%s: VMCB va @ 0x%llx, pa @ 0x%llx\n", __func__,
(uint64_t)vcpu->vc_control_va,
(uint64_t)vcpu->vc_control_pa);
/* Allocate MSR bitmap VA (2 pages) */
vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(2 * PAGE_SIZE, &kv_any,
&vmm_kp_contig, &kd_waitok);
if (!vcpu->vc_msr_bitmap_va) {
ret = ENOMEM;
goto exit;
}
/* Compute MSR bitmap PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
(paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
ret = ENOMEM;
goto exit;
}
DPRINTF("%s: MSR bitmap va @ 0x%llx, pa @ 0x%llx\n", __func__,
(uint64_t)vcpu->vc_msr_bitmap_va,
(uint64_t)vcpu->vc_msr_bitmap_pa);
/* Allocate host state area VA */
vcpu->vc_svm_hsa_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
&kp_zero, &kd_waitok);
if (!vcpu->vc_svm_hsa_va) {
ret = ENOMEM;
goto exit;
}
/* Compute host state area PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_hsa_va,
&vcpu->vc_svm_hsa_pa)) {
ret = ENOMEM;
goto exit;
}
DPRINTF("%s: HSA va @ 0x%llx, pa @ 0x%llx\n", __func__,
(uint64_t)vcpu->vc_svm_hsa_va,
(uint64_t)vcpu->vc_svm_hsa_pa);
/* Allocate IOIO area VA (3 pages) */
vcpu->vc_svm_ioio_va = (vaddr_t)km_alloc(3 * PAGE_SIZE, &kv_any,
&vmm_kp_contig, &kd_waitok);
if (!vcpu->vc_svm_ioio_va) {
ret = ENOMEM;
goto exit;
}
/* Compute IOIO area PA */
if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_ioio_va,
&vcpu->vc_svm_ioio_pa)) {
ret = ENOMEM;
goto exit;
}
DPRINTF("%s: IOIO va @ 0x%llx, pa @ 0x%llx\n", __func__,
(uint64_t)vcpu->vc_svm_ioio_va,
(uint64_t)vcpu->vc_svm_ioio_pa);
exit:
if (ret)
vcpu_deinit_svm(vcpu);
return (ret);
}
/*
* vcpu_init
*
* Calls the architecture-specific VCPU init routine
*/
int
vcpu_init(struct vcpu *vcpu)
{
int ret = 0;
vcpu->vc_virt_mode = vmm_softc->mode;
vcpu->vc_state = VCPU_STATE_STOPPED;
vcpu->vc_vpid = 0;
vcpu->vc_pvclock_system_gpa = 0;
vcpu->vc_last_pcpu = NULL;
rw_init(&vcpu->vc_lock, "vcpu");
/* Shadow PAT MSR, starting with host's value. */
vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
if (vmm_softc->mode == VMM_MODE_EPT)
ret = vcpu_init_vmx(vcpu);
else if (vmm_softc->mode == VMM_MODE_RVI)
ret = vcpu_init_svm(vcpu);
else
panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
return (ret);
}
/*
* vcpu_deinit_vmx
*
* Deinitializes the vcpu described by 'vcpu'
*
* Parameters:
* vcpu: the vcpu to be deinited
*/
void
vcpu_deinit_vmx(struct vcpu *vcpu)
{
if (vcpu->vc_control_va) {
km_free((void *)vcpu->vc_control_va, PAGE_SIZE,
&kv_page, &kp_zero);
vcpu->vc_control_va = 0;
}
if (vcpu->vc_vmx_msr_exit_save_va) {
km_free((void *)vcpu->vc_vmx_msr_exit_save_va,
PAGE_SIZE, &kv_page, &kp_zero);
vcpu->vc_vmx_msr_exit_save_va = 0;
}
if (vcpu->vc_vmx_msr_exit_load_va) {
km_free((void *)vcpu->vc_vmx_msr_exit_load_va,
PAGE_SIZE, &kv_page, &kp_zero);
vcpu->vc_vmx_msr_exit_load_va = 0;
}
#if 0
if (vcpu->vc_vmx_msr_entry_load_va) {
km_free((void *)vcpu->vc_vmx_msr_entry_load_va,
PAGE_SIZE, &kv_page, &kp_zero);
vcpu->vc_vmx_msr_entry_load_va = 0;
}
#endif
if (vcpu->vc_vmx_vpid_enabled)
vmm_free_vpid(vcpu->vc_vpid);
}
/*
* vcpu_deinit_svm
*
* Deinitializes the vcpu described by 'vcpu'
*
* Parameters:
* vcpu: the vcpu to be deinited
*/
void
vcpu_deinit_svm(struct vcpu *vcpu)
{
if (vcpu->vc_control_va) {
km_free((void *)vcpu->vc_control_va, PAGE_SIZE, &kv_page,
&kp_zero);
vcpu->vc_control_va = 0;
}
if (vcpu->vc_msr_bitmap_va) {
km_free((void *)vcpu->vc_msr_bitmap_va, 2 * PAGE_SIZE, &kv_any,
&vmm_kp_contig);
vcpu->vc_msr_bitmap_va = 0;
}
if (vcpu->vc_svm_hsa_va) {
km_free((void *)vcpu->vc_svm_hsa_va, PAGE_SIZE, &kv_page,
&kp_zero);
vcpu->vc_svm_hsa_va = 0;
}
if (vcpu->vc_svm_ioio_va) {
km_free((void *)vcpu->vc_svm_ioio_va, 3 * PAGE_SIZE, &kv_any,
&vmm_kp_contig);
vcpu->vc_svm_ioio_va = 0;
}
vmm_free_vpid(vcpu->vc_vpid);
}
/*
* vcpu_deinit
*
* Calls the architecture-specific VCPU deinit routine
*
* Parameters:
* vcpu: the vcpu to be deinited
*/
void
vcpu_deinit(struct vcpu *vcpu)
{
if (vmm_softc->mode == VMM_MODE_EPT)
vcpu_deinit_vmx(vcpu);
else if (vmm_softc->mode == VMM_MODE_RVI)
vcpu_deinit_svm(vcpu);
else
panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
}
/*
* vcpu_vmx_check_cap
*
* Checks if the 'cap' bit in the 'msr' MSR can be set or cleared (set = 1
* or set = 0, respectively).
*
* When considering 'msr', we check to see if true controls are available,
* and use those if so.
*
* Returns 1 of 'cap' can be set/cleared as requested, 0 otherwise.
*/
int
vcpu_vmx_check_cap(struct vcpu *vcpu, uint32_t msr, uint32_t cap, int set)
{
uint64_t ctl;
if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
switch (msr) {
case IA32_VMX_PINBASED_CTLS:
ctl = vcpu->vc_vmx_true_pinbased_ctls;
break;
case IA32_VMX_PROCBASED_CTLS:
ctl = vcpu->vc_vmx_true_procbased_ctls;
break;
case IA32_VMX_PROCBASED2_CTLS:
ctl = vcpu->vc_vmx_procbased2_ctls;
break;
case IA32_VMX_ENTRY_CTLS:
ctl = vcpu->vc_vmx_true_entry_ctls;
break;
case IA32_VMX_EXIT_CTLS:
ctl = vcpu->vc_vmx_true_exit_ctls;
break;
default:
return (0);
}
} else {
switch (msr) {
case IA32_VMX_PINBASED_CTLS:
ctl = vcpu->vc_vmx_pinbased_ctls;
break;
case IA32_VMX_PROCBASED_CTLS:
ctl = vcpu->vc_vmx_procbased_ctls;
break;
case IA32_VMX_PROCBASED2_CTLS:
ctl = vcpu->vc_vmx_procbased2_ctls;
break;
case IA32_VMX_ENTRY_CTLS:
ctl = vcpu->vc_vmx_entry_ctls;
break;
case IA32_VMX_EXIT_CTLS:
ctl = vcpu->vc_vmx_exit_ctls;
break;
default:
return (0);
}
}
if (set) {
/* Check bit 'cap << 32', must be !0 */
return (ctl & ((uint64_t)cap << 32)) != 0;
} else {
/* Check bit 'cap', must be 0 */
return (ctl & cap) == 0;
}
}
/*
* vcpu_vmx_compute_ctrl
*
* Computes the appropriate control value, given the supplied parameters
* and CPU capabilities.
*
* Intel has made somewhat of a mess of this computation - it is described
* using no fewer than three different approaches, spread across many
* pages of the SDM. Further compounding the problem is the fact that now
* we have "true controls" for each type of "control", and each needs to
* be examined to get the calculation right, but only if "true" controls
* are present on the CPU we're on.
*
* Parameters:
* ctrlval: the control value, as read from the CPU MSR
* ctrl: which control is being set (eg, pinbased, procbased, etc)
* want0: the set of desired 0 bits
* want1: the set of desired 1 bits
* out: (out) the correct value to write into the VMCS for this VCPU,
* for the 'ctrl' desired.
*
* Returns 0 if successful, or EINVAL if the supplied parameters define
* an unworkable control setup.
*/
int
vcpu_vmx_compute_ctrl(uint64_t ctrlval, uint16_t ctrl, uint32_t want1,
uint32_t want0, uint32_t *out)
{
int i, set, clear;
*out = 0;
/*
* The Intel SDM gives three formulae for determining which bits to
* set/clear for a given control and desired functionality. Formula
* 1 is the simplest but disallows use of newer features that are
* enabled by functionality in later CPUs.
*
* Formulas 2 and 3 allow such extra functionality. We use formula
* 2 - this requires us to know the identity of controls in the
* "default1" class for each control register, but allows us to not
* have to pass along and/or query both sets of capability MSRs for
* each control lookup. This makes the code slightly longer,
* however.
*/
for (i = 0; i < 32; i++) {
/* Figure out if we can set and / or clear this bit */
set = (ctrlval & (1ULL << (i + 32))) != 0;
clear = ((1ULL << i) & ((uint64_t)ctrlval)) == 0;
/* If the bit can't be set nor cleared, something's wrong */
if (!set && !clear)
return (EINVAL);
/*
* Formula 2.c.i - "If the relevant VMX capability MSR
* reports that a control has a single setting, use that
* setting."
*/
if (set && !clear) {
if (want0 & (1ULL << i))
return (EINVAL);
else
*out |= (1ULL << i);
} else if (clear && !set) {
if (want1 & (1ULL << i))
return (EINVAL);
else
*out &= ~(1ULL << i);
} else {
/*
* 2.c.ii - "If the relevant VMX capability MSR
* reports that a control can be set to 0 or 1
* and that control's meaning is known to the VMM,
* set the control based on the functionality desired."
*/
if (want1 & (1ULL << i))
*out |= (1ULL << i);
else if (want0 & (1 << i))
*out &= ~(1ULL << i);
else {
/*
* ... assuming the control's meaning is not
* known to the VMM ...
*
* 2.c.iii - "If the relevant VMX capability
* MSR reports that a control can be set to 0
* or 1 and the control is not in the default1
* class, set the control to 0."
*
* 2.c.iv - "If the relevant VMX capability
* MSR reports that a control can be set to 0
* or 1 and the control is in the default1
* class, set the control to 1."
*/
switch (ctrl) {
case IA32_VMX_PINBASED_CTLS:
case IA32_VMX_TRUE_PINBASED_CTLS:
/*
* A.3.1 - default1 class of pinbased
* controls comprises bits 1,2,4
*/
switch (i) {
case 1:
case 2:
case 4:
*out |= (1ULL << i);
break;
default:
*out &= ~(1ULL << i);
break;
}
break;
case IA32_VMX_PROCBASED_CTLS:
case IA32_VMX_TRUE_PROCBASED_CTLS:
/*
* A.3.2 - default1 class of procbased
* controls comprises bits 1, 4-6, 8,
* 13-16, 26
*/
switch (i) {
case 1:
case 4 ... 6:
case 8:
case 13 ... 16:
case 26:
*out |= (1ULL << i);
break;
default:
*out &= ~(1ULL << i);
break;
}
break;
/*
* Unknown secondary procbased controls
* can always be set to 0
*/
case IA32_VMX_PROCBASED2_CTLS:
*out &= ~(1ULL << i);
break;
case IA32_VMX_EXIT_CTLS:
case IA32_VMX_TRUE_EXIT_CTLS:
/*
* A.4 - default1 class of exit
* controls comprises bits 0-8, 10,
* 11, 13, 14, 16, 17
*/
switch (i) {
case 0 ... 8:
case 10 ... 11:
case 13 ... 14:
case 16 ... 17:
*out |= (1ULL << i);
break;
default:
*out &= ~(1ULL << i);
break;
}
break;
case IA32_VMX_ENTRY_CTLS:
case IA32_VMX_TRUE_ENTRY_CTLS:
/*
* A.5 - default1 class of entry
* controls comprises bits 0-8, 12
*/
switch (i) {
case 0 ... 8:
case 12:
*out |= (1ULL << i);
break;
default:
*out &= ~(1ULL << i);
break;
}
break;
}
}
}
}
return (0);
}
/*
* vm_run
*
* Run the vm / vcpu specified by 'vrp'
*
* Parameters:
* vrp: structure defining the VM to run
*
* Return value:
* ENOENT: the VM defined in 'vrp' could not be located
* EBUSY: the VM defined in 'vrp' is already running
* EFAULT: error copying data from userspace (vmd) on return from previous
* exit.
* EAGAIN: help is needed from vmd(8) (device I/O or exit vmm(4) cannot
* handle in-kernel.)
* 0: the run loop exited and no help is needed from vmd(8)
*/
int
vm_run(struct vm_run_params *vrp)
{
struct vm *vm;
struct vcpu *vcpu;
int ret = 0;
u_int old, next;
/*
* Find desired VM
*/
ret = vm_find(vrp->vrp_vm_id, &vm);
if (ret)
return (ret);
vcpu = vm_find_vcpu(vm, vrp->vrp_vcpu_id);
if (vcpu == NULL) {
ret = ENOENT;
goto out;
}
/*
* Attempt to transition from VCPU_STATE_STOPPED -> VCPU_STATE_RUNNING.
* Failure to make the transition indicates the VCPU is busy.
*/
rw_enter_write(&vcpu->vc_lock);
old = VCPU_STATE_STOPPED;
next = VCPU_STATE_RUNNING;
if (atomic_cas_uint(&vcpu->vc_state, old, next) != old) {
ret = EBUSY;
goto out_unlock;
}
/*
* We may be returning from userland helping us from the last exit.
* If so (vrp_continue == 1), copy in the exit data from vmd. The
* exit data will be consumed before the next entry (this typically
* comprises VCPU register changes as the result of vmd(8)'s actions).
*/
if (vrp->vrp_continue) {
if (copyin(vrp->vrp_exit, &vcpu->vc_exit,
sizeof(struct vm_exit)) == EFAULT) {
ret = EFAULT;
goto out_unlock;
}
}
vcpu->vc_inject.vie_type = vrp->vrp_inject.vie_type;
vcpu->vc_inject.vie_vector = vrp->vrp_inject.vie_vector;
vcpu->vc_inject.vie_errorcode = vrp->vrp_inject.vie_errorcode;
WRITE_ONCE(vcpu->vc_curcpu, curcpu());
/* Run the VCPU specified in vrp */
if (vcpu->vc_virt_mode == VMM_MODE_EPT) {
ret = vcpu_run_vmx(vcpu, vrp);
} else if (vcpu->vc_virt_mode == VMM_MODE_RVI) {
ret = vcpu_run_svm(vcpu, vrp);
}
WRITE_ONCE(vcpu->vc_curcpu, NULL);
if (ret == 0 || ret == EAGAIN) {
/* If we are exiting, populate exit data so vmd can help. */
vrp->vrp_exit_reason = (ret == 0) ? VM_EXIT_NONE
: vcpu->vc_gueststate.vg_exit_reason;
vrp->vrp_irqready = vcpu->vc_irqready;
vcpu->vc_state = VCPU_STATE_STOPPED;
if (copyout(&vcpu->vc_exit, vrp->vrp_exit,
sizeof(struct vm_exit)) == EFAULT) {
ret = EFAULT;
} else
ret = 0;
} else {
vrp->vrp_exit_reason = VM_EXIT_TERMINATED;
vcpu->vc_state = VCPU_STATE_TERMINATED;
}
out_unlock:
rw_exit_write(&vcpu->vc_lock);
out:
refcnt_rele_wake(&vm->vm_refcnt);
return (ret);
}
/*
* vmm_fpurestore
*
* Restore the guest's FPU state, saving the existing userland thread's
* FPU context if necessary. Must be called with interrupts disabled.
*/
int
vmm_fpurestore(struct vcpu *vcpu)
{
struct cpu_info *ci = curcpu();
rw_assert_wrlock(&vcpu->vc_lock);
/* save vmm's FPU state if we haven't already */
if (ci->ci_pflags & CPUPF_USERXSTATE) {
ci->ci_pflags &= ~CPUPF_USERXSTATE;
fpusavereset(&curproc->p_addr->u_pcb.pcb_savefpu);
}
if (vcpu->vc_fpuinited)
xrstor_kern(&vcpu->vc_g_fpu, xsave_mask);
if (xsave_mask) {
/* Restore guest %xcr0 */
if (xsetbv_user(0, vcpu->vc_gueststate.vg_xcr0)) {
DPRINTF("%s: guest attempted to set invalid bits in "
"xcr0 (guest %%xcr0=0x%llx, host %%xcr0=0x%llx)\n",
__func__, vcpu->vc_gueststate.vg_xcr0, xsave_mask);
return EINVAL;
}
}
return 0;
}
/*
* vmm_fpusave
*
* Save the guest's FPU state. Must be called with interrupts disabled.
*/
void
vmm_fpusave(struct vcpu *vcpu)
{
rw_assert_wrlock(&vcpu->vc_lock);
if (xsave_mask) {
/* Save guest %xcr0 */
vcpu->vc_gueststate.vg_xcr0 = xgetbv(0);
/* Restore host %xcr0 */
xsetbv(0, xsave_mask & XFEATURE_XCR0_MASK);
}
/*
* Save full copy of FPU state - guest content is always
* a subset of host's save area (see xsetbv exit handler)
*/
fpusavereset(&vcpu->vc_g_fpu);
vcpu->vc_fpuinited = 1;
}
/*
* vmm_translate_gva
*
* Translates a guest virtual address to a guest physical address by walking
* the currently active page table (if needed).
*
* Note - this function can possibly alter the supplied VCPU state.
* Specifically, it may inject exceptions depending on the current VCPU
* configuration, and may alter %cr2 on #PF. Consequently, this function
* should only be used as part of instruction emulation.
*
* Parameters:
* vcpu: The VCPU this translation should be performed for (guest MMU settings
* are gathered from this VCPU)
* va: virtual address to translate
* pa: pointer to paddr_t variable that will receive the translated physical
* address. 'pa' is unchanged on error.
* mode: one of PROT_READ, PROT_WRITE, PROT_EXEC indicating the mode in which
* the address should be translated
*
* Return values:
* 0: the address was successfully translated - 'pa' contains the physical
* address currently mapped by 'va'.
* EFAULT: the PTE for 'VA' is unmapped. A #PF will be injected in this case
* and %cr2 set in the vcpu structure.
* EINVAL: an error occurred reading paging table structures
*/
int
vmm_translate_gva(struct vcpu *vcpu, uint64_t va, uint64_t *pa, int mode)
{
int level, shift, pdidx;
uint64_t pte, pt_paddr, pte_paddr, mask, low_mask, high_mask;
uint64_t shift_width, pte_size, *hva;
paddr_t hpa;
struct vcpu_reg_state vrs;
level = 0;
if (vmm_softc->mode == VMM_MODE_EPT) {
if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 1, &vrs))
return (EINVAL);
} else if (vmm_softc->mode == VMM_MODE_RVI) {
if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vrs))
return (EINVAL);
} else {
printf("%s: unknown vmm mode", __func__);
return (EINVAL);
}
DPRINTF("%s: guest %%cr0=0x%llx, %%cr3=0x%llx\n", __func__,
vrs.vrs_crs[VCPU_REGS_CR0], vrs.vrs_crs[VCPU_REGS_CR3]);
if (!(vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PG)) {
DPRINTF("%s: unpaged, va=pa=0x%llx\n", __func__,
va);
*pa = va;
return (0);
}
pt_paddr = vrs.vrs_crs[VCPU_REGS_CR3];
if (vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PE) {
if (vrs.vrs_crs[VCPU_REGS_CR4] & CR4_PAE) {
pte_size = sizeof(uint64_t);
shift_width = 9;
if (vrs.vrs_msrs[VCPU_REGS_EFER] & EFER_LMA) {
level = 4;
mask = L4_MASK;
shift = L4_SHIFT;
} else {
level = 3;
mask = L3_MASK;
shift = L3_SHIFT;
}
} else {
level = 2;
shift_width = 10;
mask = 0xFFC00000;
shift = 22;
pte_size = sizeof(uint32_t);
}
} else {
return (EINVAL);
}
DPRINTF("%s: pte size=%lld level=%d mask=0x%llx, shift=%d, "
"shift_width=%lld\n", __func__, pte_size, level, mask, shift,
shift_width);
/* XXX: Check for R bit in segment selector and set A bit */
for (;level > 0; level--) {
pdidx = (va & mask) >> shift;
pte_paddr = (pt_paddr) + (pdidx * pte_size);
DPRINTF("%s: read pte level %d @ GPA 0x%llx\n", __func__,
level, pte_paddr);
if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, pte_paddr,
&hpa)) {
DPRINTF("%s: cannot extract HPA for GPA 0x%llx\n",
__func__, pte_paddr);
return (EINVAL);
}
hpa = hpa | (pte_paddr & 0xFFF);
hva = (uint64_t *)PMAP_DIRECT_MAP(hpa);
DPRINTF("%s: GPA 0x%llx -> HPA 0x%llx -> HVA 0x%llx\n",
__func__, pte_paddr, (uint64_t)hpa, (uint64_t)hva);
if (pte_size == 8)
pte = *hva;
else
pte = *(uint32_t *)hva;
DPRINTF("%s: PTE @ 0x%llx = 0x%llx\n", __func__, pte_paddr,
pte);
/* XXX: Set CR2 */
if (!(pte & PG_V))
return (EFAULT);
/* XXX: Check for SMAP */
if ((mode == PROT_WRITE) && !(pte & PG_RW))
return (EPERM);
if ((vcpu->vc_exit.cpl > 0) && !(pte & PG_u))
return (EPERM);
pte = pte | PG_U;
if (mode == PROT_WRITE)
pte = pte | PG_M;
*hva = pte;
/* XXX: EINVAL if in 32bit and PG_PS is 1 but CR4.PSE is 0 */
if (pte & PG_PS)
break;
if (level > 1) {
pt_paddr = pte & PG_FRAME;
shift -= shift_width;
mask = mask >> shift_width;
}
}
low_mask = ((uint64_t)1ULL << shift) - 1;
high_mask = (((uint64_t)1ULL << ((pte_size * 8) - 1)) - 1) ^ low_mask;
*pa = (pte & high_mask) | (va & low_mask);
DPRINTF("%s: final GPA for GVA 0x%llx = 0x%llx\n", __func__,
va, *pa);
return (0);
}
/*
* vcpu_run_vmx
*
* VMX main loop used to run a VCPU.
*
* Parameters:
* vcpu: The VCPU to run
* vrp: run parameters
*
* Return values:
* 0: The run loop exited and no help is needed from vmd
* EAGAIN: The run loop exited and help from vmd is needed
* EINVAL: an error occurred
*/
int
vcpu_run_vmx(struct vcpu *vcpu, struct vm_run_params *vrp)
{
int ret = 0, exitinfo;
struct region_descriptor gdt;
struct cpu_info *ci = NULL;
uint64_t exit_reason, cr3, msr, insn_error;
struct schedstate_percpu *spc;
struct vmx_msr_store *msr_store;
struct vmx_invvpid_descriptor vid;
uint64_t cr0, eii, procbased, int_st;
u_long s;
rw_assert_wrlock(&vcpu->vc_lock);
if (vcpu_reload_vmcs_vmx(vcpu)) {
printf("%s: failed (re)loading vmcs\n", __func__);
return (EINVAL);
}
/*
* If we are returning from userspace (vmd) because we exited
* last time, fix up any needed vcpu state first. Which state
* needs to be fixed up depends on what vmd populated in the
* exit data structure.
*/
if (vrp->vrp_intr_pending)
vcpu->vc_intr = 1;
else
vcpu->vc_intr = 0;
if (vrp->vrp_continue) {
switch (vcpu->vc_gueststate.vg_exit_reason) {
case VMX_EXIT_IO:
if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN)
vcpu->vc_gueststate.vg_rax =
vcpu->vc_exit.vei.vei_data;
vcpu->vc_gueststate.vg_rip =
vcpu->vc_exit.vrs.vrs_gprs[VCPU_REGS_RIP];
if (vmwrite(VMCS_GUEST_IA32_RIP,
vcpu->vc_gueststate.vg_rip)) {
printf("%s: failed to update rip\n", __func__);
return (EINVAL);
}
break;
case VMX_EXIT_EPT_VIOLATION:
ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_GPRS, 0,
&vcpu->vc_exit.vrs);
if (ret) {
printf("%s: vm %d vcpu %d failed to update "
"registers\n", __func__,
vcpu->vc_parent->vm_id, vcpu->vc_id);
return (EINVAL);
}
break;
case VM_EXIT_NONE:
case VMX_EXIT_HLT:
case VMX_EXIT_INT_WINDOW:
case VMX_EXIT_EXTINT:
case VMX_EXIT_CPUID:
case VMX_EXIT_XSETBV:
break;
#ifdef VMM_DEBUG
case VMX_EXIT_TRIPLE_FAULT:
DPRINTF("%s: vm %d vcpu %d triple fault\n",
__func__, vcpu->vc_parent->vm_id,
vcpu->vc_id);
vmx_vcpu_dump_regs(vcpu);
dump_vcpu(vcpu);
vmx_dump_vmcs(vcpu);
break;
case VMX_EXIT_ENTRY_FAILED_GUEST_STATE:
DPRINTF("%s: vm %d vcpu %d failed entry "
"due to invalid guest state\n",
__func__, vcpu->vc_parent->vm_id,
vcpu->vc_id);
vmx_vcpu_dump_regs(vcpu);
dump_vcpu(vcpu);
return (EINVAL);
default:
DPRINTF("%s: unimplemented exit type %d (%s)\n",
__func__,
vcpu->vc_gueststate.vg_exit_reason,
vmx_exit_reason_decode(
vcpu->vc_gueststate.vg_exit_reason));
vmx_vcpu_dump_regs(vcpu);
dump_vcpu(vcpu);
break;
#endif /* VMM_DEBUG */
}
memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
}
/* Host CR3 */
cr3 = rcr3();
if (vmwrite(VMCS_HOST_IA32_CR3, cr3)) {
printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
VMCS_HOST_IA32_CR3, cr3);
return (EINVAL);
}
/* Handle vmd(8) injected interrupts */
/* Is there an interrupt pending injection? */
if (vcpu->vc_inject.vie_type == VCPU_INJECT_INTR) {
if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST, &int_st)) {
printf("%s: can't get interruptibility state\n",
__func__);
return (EINVAL);
}
/* Interruptibility state 0x3 covers NMIs and STI */
if (!(int_st & 0x3) && vcpu->vc_irqready) {
eii = (uint64_t)vcpu->vc_inject.vie_vector;
eii |= (1ULL << 31); /* Valid */
if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
printf("vcpu_run_vmx: can't vector "
"interrupt to guest\n");
return (EINVAL);
}
vcpu->vc_inject.vie_type = VCPU_INJECT_NONE;
}
} else if (!vcpu->vc_intr) {
/*
* Disable window exiting
*/
if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
printf("%s: can't read procbased ctls on exit\n",
__func__);
return (EINVAL);
} else {
procbased &= ~IA32_VMX_INTERRUPT_WINDOW_EXITING;
if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
printf("%s: can't write procbased ctls "
"on exit\n", __func__);
return (EINVAL);
}
}
}
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_load_va;
while (ret == 0) {
#ifdef VMM_DEBUG
paddr_t pa = 0ULL;
vmptrst(&pa);
KASSERT(pa == vcpu->vc_control_pa);
#endif /* VMM_DEBUG */
vmm_update_pvclock(vcpu);
if (ci != curcpu()) {
ci = curcpu();
vcpu->vc_last_pcpu = ci;
setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
if (gdt.rd_base == 0) {
printf("%s: setregion\n", __func__);
return (EINVAL);
}
/* Host GDTR base */
if (vmwrite(VMCS_HOST_IA32_GDTR_BASE, gdt.rd_base)) {
printf("%s: vmwrite(0x%04X, 0x%llx)\n",
__func__, VMCS_HOST_IA32_GDTR_BASE,
gdt.rd_base);
return (EINVAL);
}
/* Host TR base */
if (vmwrite(VMCS_HOST_IA32_TR_BASE,
(uint64_t)ci->ci_tss)) {
printf("%s: vmwrite(0x%04X, 0x%llx)\n",
__func__, VMCS_HOST_IA32_TR_BASE,
(uint64_t)ci->ci_tss);
return (EINVAL);
}
/* Host GS.base (aka curcpu) */
if (vmwrite(VMCS_HOST_IA32_GS_BASE, (uint64_t)ci)) {
printf("%s: vmwrite(0x%04X, 0x%llx)\n",
__func__, VMCS_HOST_IA32_GS_BASE,
(uint64_t)ci);
return (EINVAL);
}
/* Host FS.base */
msr = rdmsr(MSR_FSBASE);
if (vmwrite(VMCS_HOST_IA32_FS_BASE, msr)) {
printf("%s: vmwrite(0x%04X, 0x%llx)\n",
__func__, VMCS_HOST_IA32_FS_BASE, msr);
return (EINVAL);
}
/* Host KernelGS.base (userspace GS.base here) */
msr_store[VCPU_HOST_REGS_KGSBASE].vms_data =
rdmsr(MSR_KERNELGSBASE);
}
/* Inject event if present */
if (vcpu->vc_inject.vie_type == VCPU_INJECT_EX) {
eii = (uint64_t)vcpu->vc_inject.vie_vector;
eii |= (1ULL << 31); /* Valid */
switch (vcpu->vc_inject.vie_vector) {
case VMM_EX_BP:
case VMM_EX_OF:
/* Software Exceptions */
eii |= (4ULL << 8);
break;
case VMM_EX_DF:
case VMM_EX_TS:
case VMM_EX_NP:
case VMM_EX_SS:
case VMM_EX_GP:
case VMM_EX_PF:
case VMM_EX_AC:
/* Hardware Exceptions */
eii |= (3ULL << 8);
cr0 = 0;
if (vmread(VMCS_GUEST_IA32_CR0, &cr0)) {
printf("%s: vmread(VMCS_GUEST_IA32_CR0)"
"\n", __func__);
ret = EINVAL;
break;
}
/* Don't set error codes if in real mode. */
if (ret == EINVAL || !(cr0 & CR0_PE))
break;
eii |= (1ULL << 11);
/* Enforce a 0 error code for #AC. */
if (vcpu->vc_inject.vie_vector == VMM_EX_AC)
vcpu->vc_inject.vie_errorcode = 0;
/*
* XXX: Intel SDM says if IA32_VMX_BASIC[56] is
* set, error codes can be injected for hw
* exceptions with or without error code,
* regardless of vector. See Vol 3D. A1. Ignore
* this capability for now.
*/
if (vmwrite(VMCS_ENTRY_EXCEPTION_ERROR_CODE,
vcpu->vc_inject.vie_errorcode)) {
printf("%s: can't write error code to "
"guest\n", __func__);
ret = EINVAL;
}
} /* switch */
if (ret == EINVAL)
break;
if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
printf("%s: can't vector event to guest\n",
__func__);
ret = EINVAL;
break;
}
vcpu->vc_inject.vie_type = VCPU_INJECT_NONE;
}
if (vcpu->vc_vmx_vpid_enabled) {
/* Invalidate old TLB mappings */
vid.vid_vpid = vcpu->vc_vpid;
vid.vid_addr = 0;
invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
}
/* Start / resume the VCPU */
/* Disable interrupts and save the current host FPU state. */
s = intr_disable();
if ((ret = vmm_fpurestore(vcpu))) {
intr_restore(s);
break;
}
TRACEPOINT(vmm, guest_enter, vcpu, vrp);
/*
* If we're resuming to a different VCPU and have IBPB,
* then use it to prevent cross-VM branch-target injection.
*/
if (ci->ci_guest_vcpu != vcpu &&
(ci->ci_feature_sefflags_edx & SEFF0EDX_IBRS)) {
wrmsr(MSR_PRED_CMD, PRED_CMD_IBPB);
ci->ci_guest_vcpu = vcpu;
}
/* Restore any guest PKRU state. */
if (vmm_softc->sc_md.pkru_enabled)
wrpkru(0, vcpu->vc_pkru);
ret = vmx_enter_guest(&vcpu->vc_control_pa,
&vcpu->vc_gueststate,
(vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED),
ci->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr);
/* Restore host PKRU state. */
if (vmm_softc->sc_md.pkru_enabled) {
vcpu->vc_pkru = rdpkru(0);
wrpkru(0, PGK_VALUE);
}
/*
* VM exit restores the GDT and IDT bases, but gives
* them high limits. Reload with the correct limits here.
* 'gdt' is set above first time through and reset there
* whenever this thread switches CPU.
*/
bare_lgdt(&gdt);
cpu_init_idt();
/*
* On exit, interrupts are disabled, and we are running with
* the guest FPU state still possibly on the CPU. Save the FPU
* state before re-enabling interrupts.
*/
vmm_fpusave(vcpu);
intr_restore(s);
atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_LAUNCHED);
exit_reason = VM_EXIT_NONE;
/* If we exited successfully ... */
if (ret == 0) {
exitinfo = vmx_get_exit_info(
&vcpu->vc_gueststate.vg_rip, &exit_reason);
if (!(exitinfo & VMX_EXIT_INFO_HAVE_RIP)) {
printf("%s: cannot read guest rip\n", __func__);
ret = EINVAL;
break;
}
if (!(exitinfo & VMX_EXIT_INFO_HAVE_REASON)) {
printf("%s: cant read exit reason\n", __func__);
ret = EINVAL;
break;
}
vcpu->vc_gueststate.vg_exit_reason = exit_reason;
TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
/* Update our state */
if (vmread(VMCS_GUEST_IA32_RFLAGS,
&vcpu->vc_gueststate.vg_rflags)) {
printf("%s: can't read guest rflags during "
"exit\n", __func__);
ret = EINVAL;
break;
}
/*
* Handle the exit. This will alter "ret" to EAGAIN if
* the exit handler determines help from vmd is needed.
*/
ret = vmx_handle_exit(vcpu);
if (vcpu->vc_gueststate.vg_rflags & PSL_I)
vcpu->vc_irqready = 1;
else
vcpu->vc_irqready = 0;
/*
* If not ready for interrupts, but interrupts pending,
* enable interrupt window exiting.
*/
if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
printf("%s: can't read procbased ctls "
"on intwin exit\n", __func__);
ret = EINVAL;
break;
}
procbased |= IA32_VMX_INTERRUPT_WINDOW_EXITING;
if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
printf("%s: can't write procbased ctls "
"on intwin exit\n", __func__);
ret = EINVAL;
break;
}
}
/*
* Exit to vmd if we are terminating, failed to enter,
* or need help (device I/O)
*/
if (ret || vcpu_must_stop(vcpu))
break;
if (vcpu->vc_intr && vcpu->vc_irqready) {
ret = EAGAIN;
break;
}
/* Check if we should yield - don't hog the {p,v}pu */
spc = &ci->ci_schedstate;
if (spc->spc_schedflags & SPCF_SHOULDYIELD)
break;
} else {
/*
* We failed vmresume or vmlaunch for some reason,
* typically due to invalid vmcs state or other
* reasons documented in SDM Vol 3C 30.4.
*/
switch (ret) {
case VMX_FAIL_LAUNCH_INVALID_VMCS:
printf("%s: failed %s with invalid vmcs\n",
__func__,
(vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
? "vmresume" : "vmlaunch"));
break;
case VMX_FAIL_LAUNCH_VALID_VMCS:
printf("%s: failed %s with valid vmcs\n",
__func__,
(vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
? "vmresume" : "vmlaunch"));
break;
default:
printf("%s: failed %s for unknown reason\n",
__func__,
(vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
? "vmresume" : "vmlaunch"));
}
ret = EINVAL;
/* Try to translate a vmfail error code, if possible. */
if (vmread(VMCS_INSTRUCTION_ERROR, &insn_error)) {
printf("%s: can't read insn error field\n",
__func__);
} else
printf("%s: error code = %lld, %s\n", __func__,
insn_error,
vmx_instruction_error_decode(insn_error));
#ifdef VMM_DEBUG
vmx_vcpu_dump_regs(vcpu);
dump_vcpu(vcpu);
#endif /* VMM_DEBUG */
}
}
vcpu->vc_last_pcpu = curcpu();
/* Copy the VCPU register state to the exit structure */
if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 0, &vcpu->vc_exit.vrs))
ret = EINVAL;
vcpu->vc_exit.cpl = vmm_get_guest_cpu_cpl(vcpu);
return (ret);
}
/*
* vmx_handle_intr
*
* Handle host (external) interrupts. We read which interrupt fired by
* extracting the vector from the VMCS and dispatch the interrupt directly
* to the host using vmm_dispatch_intr.
*/
void
vmx_handle_intr(struct vcpu *vcpu)
{
uint8_t vec;
uint64_t eii;
struct gate_descriptor *idte;
vaddr_t handler;
if (vmread(VMCS_EXIT_INTERRUPTION_INFO, &eii)) {
printf("%s: can't obtain intr info\n", __func__);
return;
}
vec = eii & 0xFF;
/* XXX check "error valid" code in eii, abort if 0 */
idte=&idt[vec];
handler = idte->gd_looffset + ((uint64_t)idte->gd_hioffset << 16);
vmm_dispatch_intr(handler);
}
/*
* svm_handle_hlt
*
* Handle HLT exits
*
* Parameters
* vcpu: The VCPU that executed the HLT instruction
*
* Return Values:
* EIO: The guest halted with interrupts disabled
* EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
* until a virtual interrupt is ready to inject
*/
int
svm_handle_hlt(struct vcpu *vcpu)
{
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
uint64_t rflags = vmcb->v_rflags;
/* All HLT insns are 1 byte */
vcpu->vc_gueststate.vg_rip += 1;
if (!(rflags & PSL_I)) {
DPRINTF("%s: guest halted with interrupts disabled\n",
__func__);
return (EIO);
}
return (EAGAIN);
}
/*
* vmx_handle_hlt
*
* Handle HLT exits. HLTing the CPU with interrupts disabled will terminate
* the guest (no NMIs handled) by returning EIO to vmd.
*
* Parameters:
* vcpu: The VCPU that executed the HLT instruction
*
* Return Values:
* EINVAL: An error occurred extracting information from the VMCS, or an
* invalid HLT instruction was encountered
* EIO: The guest halted with interrupts disabled
* EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
* until a virtual interrupt is ready to inject
*
*/
int
vmx_handle_hlt(struct vcpu *vcpu)
{
uint64_t insn_length, rflags;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
if (vmread(VMCS_GUEST_IA32_RFLAGS, &rflags)) {
printf("%s: can't obtain guest rflags\n", __func__);
return (EINVAL);
}
if (insn_length != 1) {
DPRINTF("%s: HLT with instruction length %lld not supported\n",
__func__, insn_length);
return (EINVAL);
}
if (!(rflags & PSL_I)) {
DPRINTF("%s: guest halted with interrupts disabled\n",
__func__);
return (EIO);
}
vcpu->vc_gueststate.vg_rip += insn_length;
return (EAGAIN);
}
/*
* vmx_get_exit_info
*
* Returns exit information containing the current guest RIP and exit reason
* in rip and exit_reason. The return value is a bitmask indicating whether
* reading the RIP and exit reason was successful.
*/
int
vmx_get_exit_info(uint64_t *rip, uint64_t *exit_reason)
{
int rv = 0;
if (vmread(VMCS_GUEST_IA32_RIP, rip) == 0) {
rv |= VMX_EXIT_INFO_HAVE_RIP;
if (vmread(VMCS_EXIT_REASON, exit_reason) == 0)
rv |= VMX_EXIT_INFO_HAVE_REASON;
}
return (rv);
}
/*
* svm_handle_exit
*
* Handle exits from the VM by decoding the exit reason and calling various
* subhandlers as needed.
*/
int
svm_handle_exit(struct vcpu *vcpu)
{
uint64_t exit_reason, rflags;
int update_rip, ret = 0;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
update_rip = 0;
exit_reason = vcpu->vc_gueststate.vg_exit_reason;
rflags = vcpu->vc_gueststate.vg_rflags;
switch (exit_reason) {
case SVM_VMEXIT_VINTR:
if (!(rflags & PSL_I)) {
DPRINTF("%s: impossible interrupt window exit "
"config\n", __func__);
ret = EINVAL;
break;
}
/*
* Guest is now ready for interrupts, so disable interrupt
* window exiting.
*/
vmcb->v_irq = 0;
vmcb->v_intr_vector = 0;
vmcb->v_intercept1 &= ~SVM_INTERCEPT_VINTR;
svm_set_dirty(vcpu, SVM_CLEANBITS_TPR | SVM_CLEANBITS_I);
update_rip = 0;
break;
case SVM_VMEXIT_INTR:
update_rip = 0;
break;
case SVM_VMEXIT_SHUTDOWN:
update_rip = 0;
ret = EAGAIN;
break;
case SVM_VMEXIT_NPF:
ret = svm_handle_np_fault(vcpu);
break;
case SVM_VMEXIT_CPUID:
ret = vmm_handle_cpuid(vcpu);
update_rip = 1;
break;
case SVM_VMEXIT_MSR:
ret = svm_handle_msr(vcpu);
update_rip = 1;
break;
case SVM_VMEXIT_XSETBV:
ret = svm_handle_xsetbv(vcpu);
update_rip = 1;
break;
case SVM_VMEXIT_IOIO:
if (svm_handle_inout(vcpu) == 0)
ret = EAGAIN;
break;
case SVM_VMEXIT_HLT:
ret = svm_handle_hlt(vcpu);
update_rip = 1;
break;
case SVM_VMEXIT_MWAIT:
case SVM_VMEXIT_MWAIT_CONDITIONAL:
case SVM_VMEXIT_MONITOR:
case SVM_VMEXIT_VMRUN:
case SVM_VMEXIT_VMMCALL:
case SVM_VMEXIT_VMLOAD:
case SVM_VMEXIT_VMSAVE:
case SVM_VMEXIT_STGI:
case SVM_VMEXIT_CLGI:
case SVM_VMEXIT_SKINIT:
case SVM_VMEXIT_RDTSCP:
case SVM_VMEXIT_ICEBP:
case SVM_VMEXIT_INVLPGA:
ret = vmm_inject_ud(vcpu);
update_rip = 0;
break;
default:
DPRINTF("%s: unhandled exit 0x%llx (pa=0x%llx)\n", __func__,
exit_reason, (uint64_t)vcpu->vc_control_pa);
return (EINVAL);
}
if (update_rip) {
vmcb->v_rip = vcpu->vc_gueststate.vg_rip;
if (rflags & PSL_T) {
if (vmm_inject_db(vcpu)) {
printf("%s: can't inject #DB exception to "
"guest", __func__);
return (EINVAL);
}
}
}
/* Enable SVME in EFER (must always be set) */
vmcb->v_efer |= EFER_SVME;
svm_set_dirty(vcpu, SVM_CLEANBITS_CR);
return (ret);
}
/*
* vmx_handle_exit
*
* Handle exits from the VM by decoding the exit reason and calling various
* subhandlers as needed.
*/
int
vmx_handle_exit(struct vcpu *vcpu)
{
uint64_t exit_reason, rflags, istate;
int update_rip, ret = 0;
update_rip = 0;
exit_reason = vcpu->vc_gueststate.vg_exit_reason;
rflags = vcpu->vc_gueststate.vg_rflags;
switch (exit_reason) {
case VMX_EXIT_INT_WINDOW:
if (!(rflags & PSL_I)) {
DPRINTF("%s: impossible interrupt window exit "
"config\n", __func__);
ret = EINVAL;
break;
}
ret = EAGAIN;
update_rip = 0;
break;
case VMX_EXIT_EPT_VIOLATION:
ret = vmx_handle_np_fault(vcpu);
break;
case VMX_EXIT_CPUID:
ret = vmm_handle_cpuid(vcpu);
update_rip = 1;
break;
case VMX_EXIT_IO:
if (vmx_handle_inout(vcpu) == 0)
ret = EAGAIN;
break;
case VMX_EXIT_EXTINT:
vmx_handle_intr(vcpu);
update_rip = 0;
break;
case VMX_EXIT_CR_ACCESS:
ret = vmx_handle_cr(vcpu);
update_rip = 1;
break;
case VMX_EXIT_HLT:
ret = vmx_handle_hlt(vcpu);
update_rip = 1;
break;
case VMX_EXIT_RDMSR:
ret = vmx_handle_rdmsr(vcpu);
update_rip = 1;
break;
case VMX_EXIT_WRMSR:
ret = vmx_handle_wrmsr(vcpu);
update_rip = 1;
break;
case VMX_EXIT_XSETBV:
ret = vmx_handle_xsetbv(vcpu);
update_rip = 1;
break;
case VMX_EXIT_MWAIT:
case VMX_EXIT_MONITOR:
case VMX_EXIT_VMXON:
case VMX_EXIT_VMWRITE:
case VMX_EXIT_VMREAD:
case VMX_EXIT_VMLAUNCH:
case VMX_EXIT_VMRESUME:
case VMX_EXIT_VMPTRLD:
case VMX_EXIT_VMPTRST:
case VMX_EXIT_VMCLEAR:
case VMX_EXIT_VMCALL:
case VMX_EXIT_VMFUNC:
case VMX_EXIT_VMXOFF:
case VMX_EXIT_INVVPID:
case VMX_EXIT_INVEPT:
ret = vmm_inject_ud(vcpu);
update_rip = 0;
break;
case VMX_EXIT_TRIPLE_FAULT:
#ifdef VMM_DEBUG
DPRINTF("%s: vm %d vcpu %d triple fault\n", __func__,
vcpu->vc_parent->vm_id, vcpu->vc_id);
vmx_vcpu_dump_regs(vcpu);
dump_vcpu(vcpu);
vmx_dump_vmcs(vcpu);
#endif /* VMM_DEBUG */
ret = EAGAIN;
update_rip = 0;
break;
default:
#ifdef VMM_DEBUG
DPRINTF("%s: unhandled exit 0x%llx (%s)\n", __func__,
exit_reason, vmx_exit_reason_decode(exit_reason));
#endif /* VMM_DEBUG */
return (EINVAL);
}
if (update_rip) {
if (vmwrite(VMCS_GUEST_IA32_RIP,
vcpu->vc_gueststate.vg_rip)) {
printf("%s: can't advance rip\n", __func__);
return (EINVAL);
}
if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST,
&istate)) {
printf("%s: can't read interruptibility state\n",
__func__);
return (EINVAL);
}
/* Interruptibility state 0x3 covers NMIs and STI */
istate &= ~0x3;
if (vmwrite(VMCS_GUEST_INTERRUPTIBILITY_ST,
istate)) {
printf("%s: can't write interruptibility state\n",
__func__);
return (EINVAL);
}
if (rflags & PSL_T) {
if (vmm_inject_db(vcpu)) {
printf("%s: can't inject #DB exception to "
"guest", __func__);
return (EINVAL);
}
}
}
return (ret);
}
/*
* vmm_inject_gp
*
* Injects an #GP exception into the guest VCPU.
*
* Parameters:
* vcpu: vcpu to inject into
*
* Return values:
* Always 0
*/
int
vmm_inject_gp(struct vcpu *vcpu)
{
DPRINTF("%s: injecting #GP at guest %%rip 0x%llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
vcpu->vc_inject.vie_vector = VMM_EX_GP;
vcpu->vc_inject.vie_type = VCPU_INJECT_EX;
vcpu->vc_inject.vie_errorcode = 0;
return (0);
}
/*
* vmm_inject_ud
*
* Injects an #UD exception into the guest VCPU.
*
* Parameters:
* vcpu: vcpu to inject into
*
* Return values:
* Always 0
*/
int
vmm_inject_ud(struct vcpu *vcpu)
{
DPRINTF("%s: injecting #UD at guest %%rip 0x%llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
vcpu->vc_inject.vie_vector = VMM_EX_UD;
vcpu->vc_inject.vie_type = VCPU_INJECT_EX;
vcpu->vc_inject.vie_errorcode = 0;
return (0);
}
/*
* vmm_inject_db
*
* Injects a #DB exception into the guest VCPU.
*
* Parameters:
* vcpu: vcpu to inject into
*
* Return values:
* Always 0
*/
int
vmm_inject_db(struct vcpu *vcpu)
{
DPRINTF("%s: injecting #DB at guest %%rip 0x%llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
vcpu->vc_inject.vie_vector = VMM_EX_DB;
vcpu->vc_inject.vie_type = VCPU_INJECT_EX;
vcpu->vc_inject.vie_errorcode = 0;
return (0);
}
/*
* vmm_get_guest_memtype
*
* Returns the type of memory 'gpa' refers to in the context of vm 'vm'
*/
int
vmm_get_guest_memtype(struct vm *vm, paddr_t gpa)
{
int i;
struct vm_mem_range *vmr;
/* XXX Use binary search? */
for (i = 0; i < vm->vm_nmemranges; i++) {
vmr = &vm->vm_memranges[i];
/*
* vm_memranges are ascending. gpa can no longer be in one of
* the memranges
*/
if (gpa < vmr->vmr_gpa)
break;
if (gpa < vmr->vmr_gpa + vmr->vmr_size) {
if (vmr->vmr_type == VM_MEM_MMIO)
return (VMM_MEM_TYPE_MMIO);
return (VMM_MEM_TYPE_REGULAR);
}
}
DPRINTF("guest memtype @ 0x%llx unknown\n", (uint64_t)gpa);
return (VMM_MEM_TYPE_UNKNOWN);
}
/*
* vmx_get_exit_qualification
*
* Return the current VMCS' exit qualification information
*/
int
vmx_get_exit_qualification(uint64_t *exit_qualification)
{
if (vmread(VMCS_GUEST_EXIT_QUALIFICATION, exit_qualification)) {
printf("%s: can't extract exit qual\n", __func__);
return (EINVAL);
}
return (0);
}
/*
* vmx_get_guest_faulttype
*
* Determines the type (R/W/X) of the last fault on the VCPU last run on
* this PCPU.
*/
int
vmx_get_guest_faulttype(void)
{
uint64_t exit_qual;
uint64_t presentmask = IA32_VMX_EPT_FAULT_WAS_READABLE |
IA32_VMX_EPT_FAULT_WAS_WRITABLE | IA32_VMX_EPT_FAULT_WAS_EXECABLE;
vm_prot_t prot, was_prot;
if (vmx_get_exit_qualification(&exit_qual))
return (-1);
if ((exit_qual & presentmask) == 0)
return VM_FAULT_INVALID;
was_prot = 0;
if (exit_qual & IA32_VMX_EPT_FAULT_WAS_READABLE)
was_prot |= PROT_READ;
if (exit_qual & IA32_VMX_EPT_FAULT_WAS_WRITABLE)
was_prot |= PROT_WRITE;
if (exit_qual & IA32_VMX_EPT_FAULT_WAS_EXECABLE)
was_prot |= PROT_EXEC;
prot = 0;
if (exit_qual & IA32_VMX_EPT_FAULT_READ)
prot = PROT_READ;
else if (exit_qual & IA32_VMX_EPT_FAULT_WRITE)
prot = PROT_WRITE;
else if (exit_qual & IA32_VMX_EPT_FAULT_EXEC)
prot = PROT_EXEC;
if ((was_prot & prot) == 0)
return VM_FAULT_PROTECT;
return (-1);
}
/*
* svm_get_guest_faulttype
*
* Determines the type (R/W/X) of the last fault on the VCPU last run on
* this PCPU.
*/
int
svm_get_guest_faulttype(struct vmcb *vmcb)
{
if (!(vmcb->v_exitinfo1 & 0x1))
return VM_FAULT_INVALID;
return VM_FAULT_PROTECT;
}
/*
* svm_fault_page
*
* Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
* at address 'gpa'.
*/
int
svm_fault_page(struct vcpu *vcpu, paddr_t gpa)
{
int ret;
ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (ret)
printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
__func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
return (ret);
}
/*
* svm_handle_np_fault
*
* High level nested paging handler for SVM. Verifies that a fault is for a
* valid memory region, then faults a page, or aborts otherwise.
*/
int
svm_handle_np_fault(struct vcpu *vcpu)
{
uint64_t gpa;
int gpa_memtype, ret = 0;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
struct cpu_info *ci = curcpu();
memset(vee, 0, sizeof(*vee));
gpa = vmcb->v_exitinfo2;
gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
switch (gpa_memtype) {
case VMM_MEM_TYPE_REGULAR:
vee->vee_fault_type = VEE_FAULT_HANDLED;
ret = svm_fault_page(vcpu, gpa);
break;
case VMM_MEM_TYPE_MMIO:
vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
if (ci->ci_vmm_cap.vcc_svm.svm_decode_assist) {
vee->vee_insn_len = vmcb->v_n_bytes_fetched;
memcpy(&vee->vee_insn_bytes, vmcb->v_guest_ins_bytes,
sizeof(vee->vee_insn_bytes));
vee->vee_insn_info |= VEE_BYTES_VALID;
}
ret = EAGAIN;
break;
default:
printf("%s: unknown memory type %d for GPA 0x%llx\n",
__func__, gpa_memtype, gpa);
return (EINVAL);
}
return (ret);
}
/*
* vmx_fault_page
*
* Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
* at address 'gpa'.
*
* Parameters:
* vcpu: guest VCPU requiring the page to be faulted into the UVM map
* gpa: guest physical address that triggered the fault
*
* Return Values:
* 0: if successful
* EINVAL: if fault type could not be determined or VMCS reload fails
* EAGAIN: if a protection fault occurred, ie writing to a read-only page
* errno: if uvm_fault(9) fails to wire in the page
*/
int
vmx_fault_page(struct vcpu *vcpu, paddr_t gpa)
{
int fault_type, ret;
fault_type = vmx_get_guest_faulttype();
switch (fault_type) {
case -1:
printf("%s: invalid fault type\n", __func__);
return (EINVAL);
case VM_FAULT_PROTECT:
vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_PROTECT;
return (EAGAIN);
default:
vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_HANDLED;
break;
}
/* We may sleep during uvm_fault(9), so reload VMCS. */
vcpu->vc_last_pcpu = curcpu();
ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (vcpu_reload_vmcs_vmx(vcpu)) {
printf("%s: failed to reload vmcs\n", __func__);
return (EINVAL);
}
if (ret)
printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
__func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
return (ret);
}
/*
* vmx_handle_np_fault
*
* High level nested paging handler for VMX. Verifies that a fault is for a
* valid memory region, then faults a page, or aborts otherwise.
*/
int
vmx_handle_np_fault(struct vcpu *vcpu)
{
uint64_t insn_len = 0, gpa;
int gpa_memtype, ret = 0;
struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
memset(vee, 0, sizeof(*vee));
if (vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa)) {
printf("%s: cannot extract faulting pa\n", __func__);
return (EINVAL);
}
gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
switch (gpa_memtype) {
case VMM_MEM_TYPE_REGULAR:
vee->vee_fault_type = VEE_FAULT_HANDLED;
ret = vmx_fault_page(vcpu, gpa);
break;
case VMM_MEM_TYPE_MMIO:
vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_len) ||
insn_len == 0 || insn_len > 15) {
printf("%s: failed to extract instruction length\n",
__func__);
ret = EINVAL;
} else {
vee->vee_insn_len = (uint32_t)insn_len;
vee->vee_insn_info |= VEE_LEN_VALID;
ret = EAGAIN;
}
break;
default:
printf("%s: unknown memory type %d for GPA 0x%llx\n",
__func__, gpa_memtype, gpa);
return (EINVAL);
}
return (ret);
}
/*
* vmm_get_guest_cpu_cpl
*
* Determines current CPL of 'vcpu'. On VMX/Intel, this is gathered from the
* VMCS field for the DPL of SS (this seems odd, but is documented that way
* in the SDM). For SVM/AMD, this is gathered directly from the VMCB's 'cpl'
* field, as per the APM.
*
* Parameters:
* vcpu: guest VCPU for which CPL is to be checked
*
* Return Values:
* -1: the CPL could not be determined
* 0-3 indicating the current CPL. For real mode operation, 0 is returned.
*/
int
vmm_get_guest_cpu_cpl(struct vcpu *vcpu)
{
int mode;
struct vmcb *vmcb;
uint64_t ss_ar;
mode = vmm_get_guest_cpu_mode(vcpu);
if (mode == VMM_CPU_MODE_UNKNOWN)
return (-1);
if (mode == VMM_CPU_MODE_REAL)
return (0);
if (vmm_softc->mode == VMM_MODE_RVI) {
vmcb = (struct vmcb *)vcpu->vc_control_va;
return (vmcb->v_cpl);
} else if (vmm_softc->mode == VMM_MODE_EPT) {
if (vmread(VMCS_GUEST_IA32_SS_AR, &ss_ar))
return (-1);
return ((ss_ar & 0x60) >> 5);
} else
return (-1);
}
/*
* vmm_get_guest_cpu_mode
*
* Determines current CPU mode of 'vcpu'.
*
* Parameters:
* vcpu: guest VCPU for which mode is to be checked
*
* Return Values:
* One of VMM_CPU_MODE_*, or VMM_CPU_MODE_UNKNOWN if the mode could not be
* ascertained.
*/
int
vmm_get_guest_cpu_mode(struct vcpu *vcpu)
{
uint64_t cr0, efer, cs_ar;
uint8_t l, dib;
struct vmcb *vmcb;
struct vmx_msr_store *msr_store;
if (vmm_softc->mode == VMM_MODE_RVI) {
vmcb = (struct vmcb *)vcpu->vc_control_va;
cr0 = vmcb->v_cr0;
efer = vmcb->v_efer;
cs_ar = vmcb->v_cs.vs_attr;
cs_ar = (cs_ar & 0xff) | ((cs_ar << 4) & 0xf000);
} else if (vmm_softc->mode == VMM_MODE_EPT) {
if (vmread(VMCS_GUEST_IA32_CR0, &cr0))
return (VMM_CPU_MODE_UNKNOWN);
if (vmread(VMCS_GUEST_IA32_CS_AR, &cs_ar))
return (VMM_CPU_MODE_UNKNOWN);
msr_store =
(struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
efer = msr_store[VCPU_REGS_EFER].vms_data;
} else
return (VMM_CPU_MODE_UNKNOWN);
l = (cs_ar & 0x2000) >> 13;
dib = (cs_ar & 0x4000) >> 14;
/* Check CR0.PE */
if (!(cr0 & CR0_PE))
return (VMM_CPU_MODE_REAL);
/* Check EFER */
if (efer & EFER_LMA) {
/* Could be compat or long mode, check CS.L */
if (l)
return (VMM_CPU_MODE_LONG);
else
return (VMM_CPU_MODE_COMPAT);
}
/* Check prot vs prot32 */
if (dib)
return (VMM_CPU_MODE_PROT32);
else
return (VMM_CPU_MODE_PROT);
}
/*
* svm_handle_inout
*
* Exit handler for IN/OUT instructions.
*
* Parameters:
* vcpu: The VCPU where the IN/OUT instruction occurred
*
* Return values:
* 0: if successful
* EINVAL: an invalid IN/OUT instruction was encountered
*/
int
svm_handle_inout(struct vcpu *vcpu)
{
uint64_t insn_length, exit_qual;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
insn_length = vmcb->v_exitinfo2 - vmcb->v_rip;
exit_qual = vmcb->v_exitinfo1;
/* Bit 0 - direction */
if (exit_qual & 0x1)
vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
else
vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
/* Bit 2 - string instruction? */
vcpu->vc_exit.vei.vei_string = (exit_qual & 0x4) >> 2;
/* Bit 3 - REP prefix? */
vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x8) >> 3;
/* Bits 4:6 - size of exit */
if (exit_qual & 0x10)
vcpu->vc_exit.vei.vei_size = 1;
else if (exit_qual & 0x20)
vcpu->vc_exit.vei.vei_size = 2;
else if (exit_qual & 0x40)
vcpu->vc_exit.vei.vei_size = 4;
/* Bit 16:31 - port */
vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
/* Data */
vcpu->vc_exit.vei.vei_data = vmcb->v_rax;
vcpu->vc_exit.vei.vei_insn_len = (uint8_t)insn_length;
TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
return (0);
}
/*
* vmx_handle_inout
*
* Exit handler for IN/OUT instructions.
*
* Parameters:
* vcpu: The VCPU where the IN/OUT instruction occurred
*
* Return values:
* 0: if successful
* EINVAL: invalid IN/OUT instruction or vmread failures occurred
*/
int
vmx_handle_inout(struct vcpu *vcpu)
{
uint64_t insn_length, exit_qual;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
if (vmx_get_exit_qualification(&exit_qual)) {
printf("%s: can't get exit qual\n", __func__);
return (EINVAL);
}
/* Bits 0:2 - size of exit */
vcpu->vc_exit.vei.vei_size = (exit_qual & 0x7) + 1;
/* Bit 3 - direction */
if ((exit_qual & 0x8) >> 3)
vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
else
vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
/* Bit 4 - string instruction? */
vcpu->vc_exit.vei.vei_string = (exit_qual & 0x10) >> 4;
/* Bit 5 - REP prefix? */
vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x20) >> 5;
/* Bit 6 - Operand encoding */
vcpu->vc_exit.vei.vei_encoding = (exit_qual & 0x40) >> 6;
/* Bit 16:31 - port */
vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
/* Data */
vcpu->vc_exit.vei.vei_data = (uint32_t)vcpu->vc_gueststate.vg_rax;
vcpu->vc_exit.vei.vei_insn_len = (uint8_t)insn_length;
TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
return (0);
}
/*
* vmx_load_pdptes
*
* Update the PDPTEs in the VMCS with the values currently indicated by the
* guest CR3. This is used for 32-bit PAE guests when enabling paging.
*
* Parameters
* vcpu: The vcpu whose PDPTEs should be loaded
*
* Return values:
* 0: if successful
* EINVAL: if the PDPTEs could not be loaded
* ENOMEM: memory allocation failure
*/
int
vmx_load_pdptes(struct vcpu *vcpu)
{
uint64_t cr3, cr3_host_phys;
vaddr_t cr3_host_virt;
pd_entry_t *pdptes;
int ret;
if (vmread(VMCS_GUEST_IA32_CR3, &cr3)) {
printf("%s: can't read guest cr3\n", __func__);
return (EINVAL);
}
if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, (vaddr_t)cr3,
(paddr_t *)&cr3_host_phys)) {
DPRINTF("%s: nonmapped guest CR3, setting PDPTEs to 0\n",
__func__);
if (vmwrite(VMCS_GUEST_PDPTE0, 0)) {
printf("%s: can't write guest PDPTE0\n", __func__);
return (EINVAL);
}
if (vmwrite(VMCS_GUEST_PDPTE1, 0)) {
printf("%s: can't write guest PDPTE1\n", __func__);
return (EINVAL);
}
if (vmwrite(VMCS_GUEST_PDPTE2, 0)) {
printf("%s: can't write guest PDPTE2\n", __func__);
return (EINVAL);
}
if (vmwrite(VMCS_GUEST_PDPTE3, 0)) {
printf("%s: can't write guest PDPTE3\n", __func__);
return (EINVAL);
}
return (0);
}
ret = 0;
/* We may sleep during km_alloc(9), so reload VMCS. */
vcpu->vc_last_pcpu = curcpu();
cr3_host_virt = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none,
&kd_waitok);
if (vcpu_reload_vmcs_vmx(vcpu)) {
printf("%s: failed to reload vmcs\n", __func__);
ret = EINVAL;
goto exit;
}
if (!cr3_host_virt) {
printf("%s: can't allocate address for guest CR3 mapping\n",
__func__);
return (ENOMEM);
}
pmap_kenter_pa(cr3_host_virt, cr3_host_phys, PROT_READ);
pdptes = (pd_entry_t *)cr3_host_virt;
if (vmwrite(VMCS_GUEST_PDPTE0, pdptes[0])) {
printf("%s: can't write guest PDPTE0\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE1, pdptes[1])) {
printf("%s: can't write guest PDPTE1\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE2, pdptes[2])) {
printf("%s: can't write guest PDPTE2\n", __func__);
ret = EINVAL;
goto exit;
}
if (vmwrite(VMCS_GUEST_PDPTE3, pdptes[3])) {
printf("%s: can't write guest PDPTE3\n", __func__);
ret = EINVAL;
goto exit;
}
exit:
pmap_kremove(cr3_host_virt, PAGE_SIZE);
/* km_free(9) might sleep, so we need to reload VMCS. */
vcpu->vc_last_pcpu = curcpu();
km_free((void *)cr3_host_virt, PAGE_SIZE, &kv_any, &kp_none);
if (vcpu_reload_vmcs_vmx(vcpu)) {
printf("%s: failed to reload vmcs after km_free\n", __func__);
ret = EINVAL;
}
return (ret);
}
/*
* vmx_handle_cr0_write
*
* Write handler for CR0. This function ensures valid values are written into
* CR0 for the cpu/vmm mode in use (cr0 must-be-0 and must-be-1 bits, etc).
*
* Parameters
* vcpu: The vcpu taking the cr0 write exit
* r: The guest's desired (incoming) cr0 value
*
* Return values:
* 0: if successful
* EINVAL: if an error occurred
*/
int
vmx_handle_cr0_write(struct vcpu *vcpu, uint64_t r)
{
struct vmx_msr_store *msr_store;
struct vmx_invvpid_descriptor vid;
uint64_t ectls, oldcr0, cr4, mask;
int ret;
/* Check must-be-0 bits */
mask = vcpu->vc_vmx_cr0_fixed1;
if (~r & mask) {
/* Inject #GP, let the guest handle it */
DPRINTF("%s: guest set invalid bits in %%cr0. Zeros "
"mask=0x%llx, data=0x%llx\n", __func__,
vcpu->vc_vmx_cr0_fixed1, r);
vmm_inject_gp(vcpu);
return (0);
}
/* Check must-be-1 bits */
mask = vcpu->vc_vmx_cr0_fixed0;
if ((r & mask) != mask) {
/* Inject #GP, let the guest handle it */
DPRINTF("%s: guest set invalid bits in %%cr0. Ones "
"mask=0x%llx, data=0x%llx\n", __func__,
vcpu->vc_vmx_cr0_fixed0, r);
vmm_inject_gp(vcpu);
return (0);
}
if (r & 0xFFFFFFFF00000000ULL) {
DPRINTF("%s: setting bits 63:32 of %%cr0 is invalid,"
" inject #GP, cr0=0x%llx\n", __func__, r);
vmm_inject_gp(vcpu);
return (0);
}
if ((r & CR0_PG) && (r & CR0_PE) == 0) {
DPRINTF("%s: PG flag set when the PE flag is clear,"
" inject #GP, cr0=0x%llx\n", __func__, r);
vmm_inject_gp(vcpu);
return (0);
}
if ((r & CR0_NW) && (r & CR0_CD) == 0) {
DPRINTF("%s: NW flag set when the CD flag is clear,"
" inject #GP, cr0=0x%llx\n", __func__, r);
vmm_inject_gp(vcpu);
return (0);
}
if (vmread(VMCS_GUEST_IA32_CR0, &oldcr0)) {
printf("%s: can't read guest cr0\n", __func__);
return (EINVAL);
}
/* CR0 must always have NE set */
r |= CR0_NE;
if (vmwrite(VMCS_GUEST_IA32_CR0, r)) {
printf("%s: can't write guest cr0\n", __func__);
return (EINVAL);
}
/* If the guest hasn't enabled paging ... */
if (!(r & CR0_PG) && (oldcr0 & CR0_PG)) {
/* Paging was disabled (prev. enabled) - Flush TLB */
if (vmm_softc->mode == VMM_MODE_EPT &&
vcpu->vc_vmx_vpid_enabled) {
vid.vid_vpid = vcpu->vc_vpid;
vid.vid_addr = 0;
invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
}
} else if (!(oldcr0 & CR0_PG) && (r & CR0_PG)) {
/*
* Since the guest has enabled paging, then the IA32_VMX_IA32E_MODE_GUEST
* control must be set to the same as EFER_LME.
*/
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
if (vmread(VMCS_ENTRY_CTLS, &ectls)) {
printf("%s: can't read entry controls", __func__);
return (EINVAL);
}
if (msr_store[VCPU_REGS_EFER].vms_data & EFER_LME)
ectls |= IA32_VMX_IA32E_MODE_GUEST;
else
ectls &= ~IA32_VMX_IA32E_MODE_GUEST;
if (vmwrite(VMCS_ENTRY_CTLS, ectls)) {
printf("%s: can't write entry controls", __func__);
return (EINVAL);
}
if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
printf("%s: can't read guest cr4\n", __func__);
return (EINVAL);
}
/* Load PDPTEs if PAE guest enabling paging */
if (cr4 & CR4_PAE) {
ret = vmx_load_pdptes(vcpu);
if (ret) {
printf("%s: updating PDPTEs failed\n", __func__);
return (ret);
}
}
}
return (0);
}
/*
* vmx_handle_cr4_write
*
* Write handler for CR4. This function ensures valid values are written into
* CR4 for the cpu/vmm mode in use (cr4 must-be-0 and must-be-1 bits, etc).
*
* Parameters
* vcpu: The vcpu taking the cr4 write exit
* r: The guest's desired (incoming) cr4 value
*
* Return values:
* 0: if successful
* EINVAL: if an error occurred
*/
int
vmx_handle_cr4_write(struct vcpu *vcpu, uint64_t r)
{
uint64_t mask;
/* Check must-be-0 bits */
mask = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
if (r & mask) {
/* Inject #GP, let the guest handle it */
DPRINTF("%s: guest set invalid bits in %%cr4. Zeros "
"mask=0x%llx, data=0x%llx\n", __func__,
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1,
r);
vmm_inject_gp(vcpu);
return (0);
}
/* Check must-be-1 bits */
mask = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0;
if ((r & mask) != mask) {
/* Inject #GP, let the guest handle it */
DPRINTF("%s: guest set invalid bits in %%cr4. Ones "
"mask=0x%llx, data=0x%llx\n", __func__,
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0,
r);
vmm_inject_gp(vcpu);
return (0);
}
/* CR4_VMXE must always be enabled */
r |= CR4_VMXE;
if (vmwrite(VMCS_GUEST_IA32_CR4, r)) {
printf("%s: can't write guest cr4\n", __func__);
return (EINVAL);
}
return (0);
}
/*
* vmx_handle_cr
*
* Handle reads/writes to control registers (except CR3)
*/
int
vmx_handle_cr(struct vcpu *vcpu)
{
uint64_t insn_length, exit_qual, r;
uint8_t crnum, dir, reg;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
if (vmx_get_exit_qualification(&exit_qual)) {
printf("%s: can't get exit qual\n", __func__);
return (EINVAL);
}
/* Low 4 bits of exit_qual represent the CR number */
crnum = exit_qual & 0xf;
/*
* Bits 5:4 indicate the direction of operation (or special CR-modifying
* instruction)
*/
dir = (exit_qual & 0x30) >> 4;
/* Bits 11:8 encode the source/target register */
reg = (exit_qual & 0xf00) >> 8;
switch (dir) {
case CR_WRITE:
if (crnum == 0 || crnum == 4) {
switch (reg) {
case 0: r = vcpu->vc_gueststate.vg_rax; break;
case 1: r = vcpu->vc_gueststate.vg_rcx; break;
case 2: r = vcpu->vc_gueststate.vg_rdx; break;
case 3: r = vcpu->vc_gueststate.vg_rbx; break;
case 4: if (vmread(VMCS_GUEST_IA32_RSP, &r)) {
printf("%s: unable to read guest "
"RSP\n", __func__);
return (EINVAL);
}
break;
case 5: r = vcpu->vc_gueststate.vg_rbp; break;
case 6: r = vcpu->vc_gueststate.vg_rsi; break;
case 7: r = vcpu->vc_gueststate.vg_rdi; break;
case 8: r = vcpu->vc_gueststate.vg_r8; break;
case 9: r = vcpu->vc_gueststate.vg_r9; break;
case 10: r = vcpu->vc_gueststate.vg_r10; break;
case 11: r = vcpu->vc_gueststate.vg_r11; break;
case 12: r = vcpu->vc_gueststate.vg_r12; break;
case 13: r = vcpu->vc_gueststate.vg_r13; break;
case 14: r = vcpu->vc_gueststate.vg_r14; break;
case 15: r = vcpu->vc_gueststate.vg_r15; break;
}
DPRINTF("%s: mov to cr%d @ %llx, data=0x%llx\n",
__func__, crnum, vcpu->vc_gueststate.vg_rip, r);
}
if (crnum == 0)
vmx_handle_cr0_write(vcpu, r);
if (crnum == 4)
vmx_handle_cr4_write(vcpu, r);
break;
case CR_READ:
DPRINTF("%s: mov from cr%d @ %llx\n", __func__, crnum,
vcpu->vc_gueststate.vg_rip);
break;
case CR_CLTS:
DPRINTF("%s: clts instruction @ %llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
break;
case CR_LMSW:
DPRINTF("%s: lmsw instruction @ %llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
break;
default:
DPRINTF("%s: unknown cr access @ %llx\n", __func__,
vcpu->vc_gueststate.vg_rip);
}
vcpu->vc_gueststate.vg_rip += insn_length;
return (0);
}
/*
* vmx_handle_rdmsr
*
* Handler for rdmsr instructions. Bitmap MSRs are allowed implicit access
* and won't end up here. This handler is primarily intended to catch otherwise
* unknown MSR access for possible later inclusion in the bitmap list. For
* each MSR access that ends up here, we log the access (when VMM_DEBUG is
* enabled)
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
*
* Return value:
* 0: The operation was successful
* EINVAL: An error occurred
*/
int
vmx_handle_rdmsr(struct vcpu *vcpu)
{
uint64_t insn_length;
uint64_t *rax, *rdx;
uint64_t *rcx;
int ret;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
if (insn_length != 2) {
DPRINTF("%s: RDMSR with instruction length %lld not "
"supported\n", __func__, insn_length);
return (EINVAL);
}
rax = &vcpu->vc_gueststate.vg_rax;
rcx = &vcpu->vc_gueststate.vg_rcx;
rdx = &vcpu->vc_gueststate.vg_rdx;
switch (*rcx) {
case MSR_BIOS_SIGN:
case MSR_PLATFORM_ID:
/* Ignored */
*rax = 0;
*rdx = 0;
break;
case MSR_CR_PAT:
*rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
*rdx = (vcpu->vc_shadow_pat >> 32);
break;
default:
/* Unsupported MSRs causes #GP exception, don't advance %rip */
DPRINTF("%s: unsupported rdmsr (msr=0x%llx), injecting #GP\n",
__func__, *rcx);
ret = vmm_inject_gp(vcpu);
return (ret);
}
vcpu->vc_gueststate.vg_rip += insn_length;
return (0);
}
/*
* vmx_handle_xsetbv
*
* VMX-specific part of the xsetbv instruction exit handler
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
*
* Return value:
* 0: The operation was successful
* EINVAL: An error occurred
*/
int
vmx_handle_xsetbv(struct vcpu *vcpu)
{
uint64_t insn_length, *rax;
int ret;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
/* All XSETBV instructions are 3 bytes */
if (insn_length != 3) {
DPRINTF("%s: XSETBV with instruction length %lld not "
"supported\n", __func__, insn_length);
return (EINVAL);
}
rax = &vcpu->vc_gueststate.vg_rax;
ret = vmm_handle_xsetbv(vcpu, rax);
vcpu->vc_gueststate.vg_rip += insn_length;
return ret;
}
/*
* svm_handle_xsetbv
*
* SVM-specific part of the xsetbv instruction exit handler
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
*
* Return value:
* 0: The operation was successful
* EINVAL: An error occurred
*/
int
svm_handle_xsetbv(struct vcpu *vcpu)
{
uint64_t insn_length, *rax;
int ret;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
/* All XSETBV instructions are 3 bytes */
insn_length = 3;
rax = &vmcb->v_rax;
ret = vmm_handle_xsetbv(vcpu, rax);
vcpu->vc_gueststate.vg_rip += insn_length;
return ret;
}
/*
* vmm_handle_xsetbv
*
* Handler for xsetbv instructions. We allow the guest VM to set xcr0 values
* limited to the xsave_mask in use in the host.
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
* rax: pointer to guest %rax
*
* Return value:
* 0: The operation was successful
* EINVAL: An error occurred
*/
int
vmm_handle_xsetbv(struct vcpu *vcpu, uint64_t *rax)
{
uint64_t *rdx, *rcx, val;
rcx = &vcpu->vc_gueststate.vg_rcx;
rdx = &vcpu->vc_gueststate.vg_rdx;
if (vmm_get_guest_cpu_cpl(vcpu) != 0) {
DPRINTF("%s: guest cpl not zero\n", __func__);
return (vmm_inject_gp(vcpu));
}
if (*rcx != 0) {
DPRINTF("%s: guest specified invalid xcr register number "
"%lld\n", __func__, *rcx);
return (vmm_inject_gp(vcpu));
}
val = *rax + (*rdx << 32);
if (val & ~xsave_mask) {
DPRINTF("%s: guest specified xcr0 outside xsave_mask %lld\n",
__func__, val);
return (vmm_inject_gp(vcpu));
}
vcpu->vc_gueststate.vg_xcr0 = val;
return (0);
}
/*
* vmx_handle_misc_enable_msr
*
* Handler for writes to the MSR_MISC_ENABLE (0x1a0) MSR on Intel CPUs. We
* limit what the guest can write to this MSR (certain hardware-related
* settings like speedstep, etc).
*
* Parameters:
* vcpu: vcpu structure containing information about the wrmsr causing this
* exit
*/
void
vmx_handle_misc_enable_msr(struct vcpu *vcpu)
{
uint64_t *rax, *rdx;
struct vmx_msr_store *msr_store;
rax = &vcpu->vc_gueststate.vg_rax;
rdx = &vcpu->vc_gueststate.vg_rdx;
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
/* Filter out guest writes to TCC, EIST, and xTPR */
*rax &= ~(MISC_ENABLE_TCC | MISC_ENABLE_EIST_ENABLED |
MISC_ENABLE_xTPR_MESSAGE_DISABLE);
msr_store[VCPU_REGS_MISC_ENABLE].vms_data = *rax | (*rdx << 32);
}
/*
* vmx_handle_wrmsr
*
* Handler for wrmsr instructions. This handler logs the access, and discards
* the written data (when VMM_DEBUG is enabled). Any valid wrmsr will not end
* up here (it will be whitelisted in the MSR bitmap).
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
*
* Return value:
* 0: The operation was successful
* EINVAL: An error occurred
*/
int
vmx_handle_wrmsr(struct vcpu *vcpu)
{
uint64_t insn_length, val;
uint64_t *rax, *rdx, *rcx;
int ret;
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
printf("%s: can't obtain instruction length\n", __func__);
return (EINVAL);
}
if (insn_length != 2) {
DPRINTF("%s: WRMSR with instruction length %lld not "
"supported\n", __func__, insn_length);
return (EINVAL);
}
rax = &vcpu->vc_gueststate.vg_rax;
rcx = &vcpu->vc_gueststate.vg_rcx;
rdx = &vcpu->vc_gueststate.vg_rdx;
val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
switch (*rcx) {
case MSR_CR_PAT:
if (!vmm_pat_is_valid(val)) {
ret = vmm_inject_gp(vcpu);
return (ret);
}
vcpu->vc_shadow_pat = val;
break;
case MSR_MISC_ENABLE:
vmx_handle_misc_enable_msr(vcpu);
break;
case MSR_SMM_MONITOR_CTL:
/*
* 34.15.5 - Enabling dual monitor treatment
*
* Unsupported, so inject #GP and return without
* advancing %rip.
*/
ret = vmm_inject_gp(vcpu);
return (ret);
case KVM_MSR_SYSTEM_TIME:
vmm_init_pvclock(vcpu,
(*rax & 0xFFFFFFFFULL) | (*rdx << 32));
break;
#ifdef VMM_DEBUG
default:
/*
* Log the access, to be able to identify unknown MSRs
*/
DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
"written from guest=0x%llx:0x%llx\n", __func__,
*rcx, *rdx, *rax);
#endif /* VMM_DEBUG */
}
vcpu->vc_gueststate.vg_rip += insn_length;
return (0);
}
/*
* svm_handle_msr
*
* Handler for MSR instructions.
*
* Parameters:
* vcpu: vcpu structure containing instruction info causing the exit
*
* Return value:
* Always 0 (successful)
*/
int
svm_handle_msr(struct vcpu *vcpu)
{
uint64_t insn_length, val;
uint64_t *rax, *rcx, *rdx;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
int ret;
/* XXX: Validate RDMSR / WRMSR insn_length */
insn_length = 2;
rax = &vmcb->v_rax;
rcx = &vcpu->vc_gueststate.vg_rcx;
rdx = &vcpu->vc_gueststate.vg_rdx;
if (vmcb->v_exitinfo1 == 1) {
/* WRMSR */
val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
switch (*rcx) {
case MSR_CR_PAT:
if (!vmm_pat_is_valid(val)) {
ret = vmm_inject_gp(vcpu);
return (ret);
}
vcpu->vc_shadow_pat = val;
break;
case MSR_EFER:
vmcb->v_efer = *rax | EFER_SVME;
break;
case KVM_MSR_SYSTEM_TIME:
vmm_init_pvclock(vcpu,
(*rax & 0xFFFFFFFFULL) | (*rdx << 32));
break;
default:
/* Log the access, to be able to identify unknown MSRs */
DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
"written from guest=0x%llx:0x%llx\n", __func__,
*rcx, *rdx, *rax);
}
} else {
/* RDMSR */
switch (*rcx) {
case MSR_BIOS_SIGN:
case MSR_INT_PEN_MSG:
case MSR_PLATFORM_ID:
/* Ignored */
*rax = 0;
*rdx = 0;
break;
case MSR_CR_PAT:
*rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
*rdx = (vcpu->vc_shadow_pat >> 32);
break;
case MSR_DE_CFG:
/* LFENCE serializing bit is set by host */
*rax = DE_CFG_SERIALIZE_LFENCE;
*rdx = 0;
break;
default:
/*
* Unsupported MSRs causes #GP exception, don't advance
* %rip
*/
DPRINTF("%s: unsupported rdmsr (msr=0x%llx), "
"injecting #GP\n", __func__, *rcx);
ret = vmm_inject_gp(vcpu);
return (ret);
}
}
vcpu->vc_gueststate.vg_rip += insn_length;
return (0);
}
/* Handle cpuid(0xd) and its subleafs */
static void
vmm_handle_cpuid_0xd(struct vcpu *vcpu, uint32_t subleaf, uint64_t *rax,
uint32_t eax, uint32_t ebx, uint32_t ecx, uint32_t edx)
{
if (subleaf == 0) {
/*
* CPUID(0xd.0) depends on the value in XCR0 and MSR_XSS. If
* the guest XCR0 isn't the same as the host then set it, redo
* the CPUID, and restore it.
*/
uint64_t xcr0 = vcpu->vc_gueststate.vg_xcr0;
/*
* "ecx enumerates the size required ... for an area
* containing all the ... components supported by this
* processor"
* "ebx enumerates the size required ... for an area
* containing all the ... components corresponding to bits
* currently set in xcr0"
* So: since the VMM 'processor' is what our base kernel uses,
* the VMM ecx is our ebx
*/
ecx = ebx;
if (xcr0 != (xsave_mask & XFEATURE_XCR0_MASK)) {
uint32_t dummy;
xsetbv(0, xcr0);
CPUID_LEAF(0xd, subleaf, eax, ebx, dummy, edx);
xsetbv(0, xsave_mask & XFEATURE_XCR0_MASK);
}
eax = xsave_mask & XFEATURE_XCR0_MASK;
edx = (xsave_mask & XFEATURE_XCR0_MASK) >> 32;
} else if (subleaf == 1) {
/* mask out XSAVEC, XSAVES, and XFD support */
eax &= XSAVE_XSAVEOPT | XSAVE_XGETBV1;
ebx = 0; /* no xsavec or xsaves for now */
ecx = edx = 0; /* no xsaves for now */
} else if (subleaf >= 63 ||
((1ULL << subleaf) & xsave_mask & XFEATURE_XCR0_MASK) == 0) {
/* disclaim subleaves of features we don't expose */
eax = ebx = ecx = edx = 0;
} else {
/* disclaim compressed alignment or xfd support */
ecx = 0;
}
*rax = eax;
vcpu->vc_gueststate.vg_rbx = ebx;
vcpu->vc_gueststate.vg_rcx = ecx;
vcpu->vc_gueststate.vg_rdx = edx;
}
/*
* vmm_handle_cpuid
*
* Exit handler for CPUID instruction
*
* Parameters:
* vcpu: vcpu causing the CPUID exit
*
* Return value:
* 0: the exit was processed successfully
* EINVAL: error occurred validating the CPUID instruction arguments
*/
int
vmm_handle_cpuid(struct vcpu *vcpu)
{
uint64_t insn_length, cr4;
uint64_t *rax, *rbx, *rcx, *rdx;
struct vmcb *vmcb;
uint32_t leaf, subleaf, eax, ebx, ecx, edx;
struct vmx_msr_store *msr_store;
int vmm_cpuid_level;
/* what's the cpuid level we support/advertise? */
vmm_cpuid_level = cpuid_level;
if (vmm_cpuid_level < 0x15 && tsc_is_invariant)
vmm_cpuid_level = 0x15;
if (vmm_softc->mode == VMM_MODE_EPT) {
if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
DPRINTF("%s: can't obtain instruction length\n",
__func__);
return (EINVAL);
}
if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
DPRINTF("%s: can't obtain cr4\n", __func__);
return (EINVAL);
}
rax = &vcpu->vc_gueststate.vg_rax;
/*
* "CPUID leaves above 02H and below 80000000H are only
* visible when IA32_MISC_ENABLE MSR has bit 22 set to its
* default value 0"
*/
msr_store =
(struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
if (msr_store[VCPU_REGS_MISC_ENABLE].vms_data &
MISC_ENABLE_LIMIT_CPUID_MAXVAL)
vmm_cpuid_level = 0x02;
} else {
/* XXX: validate insn_length 2 */
insn_length = 2;
vmcb = (struct vmcb *)vcpu->vc_control_va;
rax = &vmcb->v_rax;
cr4 = vmcb->v_cr4;
}
rbx = &vcpu->vc_gueststate.vg_rbx;
rcx = &vcpu->vc_gueststate.vg_rcx;
rdx = &vcpu->vc_gueststate.vg_rdx;
vcpu->vc_gueststate.vg_rip += insn_length;
leaf = *rax;
subleaf = *rcx;
/*
* "If a value entered for CPUID.EAX is higher than the maximum input
* value for basic or extended function for that processor then the
* data for the highest basic information leaf is returned."
*
* "When CPUID returns the highest basic leaf information as a result
* of an invalid input EAX value, any dependence on input ECX value
* in the basic leaf is honored."
*
* This means if leaf is between vmm_cpuid_level and 0x40000000 (the start
* of the hypervisor info leaves), clamp to vmm_cpuid_level, but without
* altering subleaf. Also, if leaf is greater than the extended function
* info, clamp also to vmm_cpuid_level.
*/
if ((leaf > vmm_cpuid_level && leaf < 0x40000000) ||
(leaf > curcpu()->ci_pnfeatset)) {
DPRINTF("%s: invalid cpuid input leaf 0x%x, guest rip="
"0x%llx - resetting to 0x%x\n", __func__, leaf,
vcpu->vc_gueststate.vg_rip - insn_length,
vmm_cpuid_level);
leaf = vmm_cpuid_level;
}
/* we fake up values in the range (cpuid_level, vmm_cpuid_level] */
if (leaf <= cpuid_level || leaf > 0x80000000)
CPUID_LEAF(leaf, subleaf, eax, ebx, ecx, edx);
else
eax = ebx = ecx = edx = 0;
switch (leaf) {
case 0x00: /* Max level and vendor ID */
*rax = vmm_cpuid_level;
*rbx = *((uint32_t *)&cpu_vendor);
*rdx = *((uint32_t *)&cpu_vendor + 1);
*rcx = *((uint32_t *)&cpu_vendor + 2);
break;
case 0x01: /* Version, brand, feature info */
*rax = cpu_id;
/* mask off host's APIC ID, reset to vcpu id */
*rbx = cpu_ebxfeature & 0x0000FFFF;
*rbx |= (vcpu->vc_id & 0xFF) << 24;
*rcx = (cpu_ecxfeature | CPUIDECX_HV) & VMM_CPUIDECX_MASK;
/* Guest CR4.OSXSAVE determines presence of CPUIDECX_OSXSAVE */
if (cr4 & CR4_OSXSAVE)
*rcx |= CPUIDECX_OSXSAVE;
else
*rcx &= ~CPUIDECX_OSXSAVE;
*rdx = curcpu()->ci_feature_flags & VMM_CPUIDEDX_MASK;
break;
case 0x02: /* Cache and TLB information */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
case 0x03: /* Processor serial number (not supported) */
DPRINTF("%s: function 0x03 (processor serial number) not "
"supported\n", __func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x04: /* Deterministic cache info */
*rax = eax & VMM_CPUID4_CACHE_TOPOLOGY_MASK;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
case 0x05: /* MONITOR/MWAIT (not supported) */
DPRINTF("%s: function 0x05 (monitor/mwait) not supported\n",
__func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x06: /* Thermal / Power management (not supported) */
DPRINTF("%s: function 0x06 (thermal/power mgt) not supported\n",
__func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x07: /* SEFF */
if (subleaf == 0) {
*rax = 0; /* Highest subleaf supported */
*rbx = curcpu()->ci_feature_sefflags_ebx & VMM_SEFF0EBX_MASK;
*rcx = curcpu()->ci_feature_sefflags_ecx & VMM_SEFF0ECX_MASK;
*rdx = curcpu()->ci_feature_sefflags_edx & VMM_SEFF0EDX_MASK;
/*
* Only expose PKU support if we've detected it in use
* on the host.
*/
if (vmm_softc->sc_md.pkru_enabled)
*rcx |= SEFF0ECX_PKU;
else
*rcx &= ~SEFF0ECX_PKU;
/* Expose IBT bit if we've enabled CET on the host. */
if (rcr4() & CR4_CET)
*rdx |= SEFF0EDX_IBT;
else
*rdx &= ~SEFF0EDX_IBT;
} else {
/* Unsupported subleaf */
DPRINTF("%s: function 0x07 (SEFF) unsupported subleaf "
"0x%x not supported\n", __func__, subleaf);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
}
break;
case 0x09: /* Direct Cache Access (not supported) */
DPRINTF("%s: function 0x09 (direct cache access) not "
"supported\n", __func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x0a: /* Architectural perf monitoring (not supported) */
DPRINTF("%s: function 0x0a (arch. perf mon) not supported\n",
__func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x0b: /* Extended topology enumeration (not supported) */
DPRINTF("%s: function 0x0b (topology enumeration) not "
"supported\n", __func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x0d: /* Processor ext. state information */
vmm_handle_cpuid_0xd(vcpu, subleaf, rax, eax, ebx, ecx, edx);
break;
case 0x0f: /* QoS info (not supported) */
DPRINTF("%s: function 0x0f (QoS info) not supported\n",
__func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x14: /* Processor Trace info (not supported) */
DPRINTF("%s: function 0x14 (processor trace info) not "
"supported\n", __func__);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x15:
if (cpuid_level >= 0x15) {
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
} else {
KASSERT(tsc_is_invariant);
*rax = 1;
*rbx = 100;
*rcx = tsc_frequency / 100;
*rdx = 0;
}
break;
case 0x16: /* Processor frequency info */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
case 0x40000000: /* Hypervisor information */
*rax = 0;
*rbx = *((uint32_t *)&vmm_hv_signature[0]);
*rcx = *((uint32_t *)&vmm_hv_signature[4]);
*rdx = *((uint32_t *)&vmm_hv_signature[8]);
break;
case 0x40000001: /* KVM hypervisor features */
*rax = (1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x80000000: /* Extended function level */
*rax = 0x80000008; /* curcpu()->ci_pnfeatset */
*rbx = 0;
*rcx = 0;
*rdx = 0;
break;
case 0x80000001: /* Extended function info */
*rax = curcpu()->ci_efeature_eax;
*rbx = 0; /* Reserved */
*rcx = curcpu()->ci_efeature_ecx & VMM_ECPUIDECX_MASK;
*rdx = curcpu()->ci_feature_eflags & VMM_FEAT_EFLAGS_MASK;
break;
case 0x80000002: /* Brand string */
*rax = curcpu()->ci_brand[0];
*rbx = curcpu()->ci_brand[1];
*rcx = curcpu()->ci_brand[2];
*rdx = curcpu()->ci_brand[3];
break;
case 0x80000003: /* Brand string */
*rax = curcpu()->ci_brand[4];
*rbx = curcpu()->ci_brand[5];
*rcx = curcpu()->ci_brand[6];
*rdx = curcpu()->ci_brand[7];
break;
case 0x80000004: /* Brand string */
*rax = curcpu()->ci_brand[8];
*rbx = curcpu()->ci_brand[9];
*rcx = curcpu()->ci_brand[10];
*rdx = curcpu()->ci_brand[11];
break;
case 0x80000005: /* Reserved (Intel), cacheinfo (AMD) */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
case 0x80000006: /* ext. cache info */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
case 0x80000007: /* apmi */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx & VMM_APMI_EDX_INCLUDE_MASK;
break;
case 0x80000008: /* Phys bits info and topology (AMD) */
*rax = eax;
*rbx = ebx & VMM_AMDSPEC_EBX_MASK;
/* Reset %rcx (topology) */
*rcx = 0;
*rdx = edx;
break;
case 0x8000001d: /* cache topology (AMD) */
*rax = eax;
*rbx = ebx;
*rcx = ecx;
*rdx = edx;
break;
default:
DPRINTF("%s: unsupported rax=0x%llx\n", __func__, *rax);
*rax = 0;
*rbx = 0;
*rcx = 0;
*rdx = 0;
}
if (vmm_softc->mode == VMM_MODE_RVI) {
/*
* update %rax. the rest of the registers get updated in
* svm_enter_guest
*/
vmcb->v_rax = *rax;
}
return (0);
}
/*
* vcpu_run_svm
*
* SVM main loop used to run a VCPU.
*
* Parameters:
* vcpu: The VCPU to run
* vrp: run parameters
*
* Return values:
* 0: The run loop exited and no help is needed from vmd
* EAGAIN: The run loop exited and help from vmd is needed
* EINVAL: an error occurred
*/
int
vcpu_run_svm(struct vcpu *vcpu, struct vm_run_params *vrp)
{
int ret = 0;
struct region_descriptor gdt;
struct cpu_info *ci = NULL;
uint64_t exit_reason;
struct schedstate_percpu *spc;
struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
if (vrp->vrp_intr_pending)
vcpu->vc_intr = 1;
else
vcpu->vc_intr = 0;
/*
* If we are returning from userspace (vmd) because we exited
* last time, fix up any needed vcpu state first. Which state
* needs to be fixed up depends on what vmd populated in the
* exit data structure.
*/
if (vrp->vrp_continue) {
switch (vcpu->vc_gueststate.vg_exit_reason) {
case SVM_VMEXIT_IOIO:
if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN) {
vcpu->vc_gueststate.vg_rax =
vcpu->vc_exit.vei.vei_data;
vmcb->v_rax = vcpu->vc_gueststate.vg_rax;
}
vcpu->vc_gueststate.vg_rip =
vcpu->vc_exit.vrs.vrs_gprs[VCPU_REGS_RIP];
vmcb->v_rip = vcpu->vc_gueststate.vg_rip;
break;
case SVM_VMEXIT_NPF:
ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_GPRS,
&vcpu->vc_exit.vrs);
if (ret) {
printf("%s: vm %d vcpu %d failed to update "
"registers\n", __func__,
vcpu->vc_parent->vm_id, vcpu->vc_id);
return (EINVAL);
}
break;
}
memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
}
while (ret == 0) {
vmm_update_pvclock(vcpu);
if (ci != curcpu()) {
/*
* We are launching for the first time, or we are
* resuming from a different pcpu, so we need to
* reset certain pcpu-specific values.
*/
ci = curcpu();
setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
if (ci != vcpu->vc_last_pcpu) {
/*
* Flush TLB by guest ASID if feature
* available, flush entire TLB if not.
*/
if (ci->ci_vmm_cap.vcc_svm.svm_flush_by_asid)
vmcb->v_tlb_control =
SVM_TLB_CONTROL_FLUSH_ASID;
else
vmcb->v_tlb_control =
SVM_TLB_CONTROL_FLUSH_ALL;
svm_set_dirty(vcpu, SVM_CLEANBITS_ALL);
}
vcpu->vc_last_pcpu = ci;
if (gdt.rd_base == 0) {
ret = EINVAL;
break;
}
}
/* Handle vmd(8) injected interrupts */
/* Is there an interrupt pending injection? */
if (vcpu->vc_inject.vie_type == VCPU_INJECT_INTR &&
vcpu->vc_irqready) {
vmcb->v_eventinj = vcpu->vc_inject.vie_vector |
(1U << 31);
vcpu->vc_inject.vie_type = VCPU_INJECT_NONE;
}
/* Inject event if present */
if (vcpu->vc_inject.vie_type == VCPU_INJECT_EX) {
vmcb->v_eventinj = vcpu->vc_inject.vie_vector;
/* Set the "Event Valid" flag for certain vectors */
switch (vcpu->vc_inject.vie_vector) {
case VMM_EX_BP:
case VMM_EX_OF:
case VMM_EX_DB:
/*
* Software exception.
* XXX check nRIP support.
*/
vmcb->v_eventinj |= (4ULL << 8);
break;
case VMM_EX_AC:
vcpu->vc_inject.vie_errorcode = 0;
/* fallthrough */
case VMM_EX_DF:
case VMM_EX_TS:
case VMM_EX_NP:
case VMM_EX_SS:
case VMM_EX_GP:
case VMM_EX_PF:
/* Hardware exception. */
vmcb->v_eventinj |= (3ULL << 8);
if (vmcb->v_cr0 & CR0_PE) {
/* Error code valid. */
vmcb->v_eventinj |= (1ULL << 11);
vmcb->v_eventinj |= (uint64_t)
vcpu->vc_inject.vie_errorcode << 32;
}
break;
default:
printf("%s: unsupported exception vector %u\n",
__func__, vcpu->vc_inject.vie_vector);
ret = EINVAL;
} /* switch */
if (ret == EINVAL)
break;
/* Event is valid. */
vmcb->v_eventinj |= (1U << 31);
vcpu->vc_inject.vie_type = VCPU_INJECT_NONE;
}
TRACEPOINT(vmm, guest_enter, vcpu, vrp);
/* Start / resume the VCPU */
/* Disable interrupts and save the current host FPU state. */
clgi();
if ((ret = vmm_fpurestore(vcpu))) {
stgi();
break;
}
/*
* If we're resuming to a different VCPU and have IBPB,
* then use it to prevent cross-VM branch-target injection.
*/
if (ci->ci_guest_vcpu != vcpu &&
(ci->ci_feature_amdspec_ebx & CPUIDEBX_IBPB)) {
wrmsr(MSR_PRED_CMD, PRED_CMD_IBPB);
ci->ci_guest_vcpu = vcpu;
}
/* Restore any guest PKRU state. */
if (vmm_softc->sc_md.pkru_enabled)
wrpkru(0, vcpu->vc_pkru);
KASSERT(vmcb->v_intercept1 & SVM_INTERCEPT_INTR);
wrmsr(MSR_AMD_VM_HSAVE_PA, vcpu->vc_svm_hsa_pa);
ret = svm_enter_guest(vcpu->vc_control_pa,
&vcpu->vc_gueststate, &gdt);
/* Restore host PKRU state. */
if (vmm_softc->sc_md.pkru_enabled) {
vcpu->vc_pkru = rdpkru(0);
wrpkru(0, PGK_VALUE);
}
/*
* On exit, interrupts are disabled, and we are running with
* the guest FPU state still possibly on the CPU. Save the FPU
* state before re-enabling interrupts.
*/
vmm_fpusave(vcpu);
/*
* Enable interrupts now. Note that if the exit was due to INTR
* (external interrupt), the interrupt will be processed now.
*/
stgi();
vcpu->vc_gueststate.vg_rip = vmcb->v_rip;
vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_NONE;
svm_set_clean(vcpu, SVM_CLEANBITS_ALL);
/* If we exited successfully ... */
if (ret == 0) {
exit_reason = vmcb->v_exitcode;
vcpu->vc_gueststate.vg_exit_reason = exit_reason;
TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
vcpu->vc_gueststate.vg_rflags = vmcb->v_rflags;
/*
* Handle the exit. This will alter "ret" to EAGAIN if
* the exit handler determines help from vmd is needed.
*/
ret = svm_handle_exit(vcpu);
if (vcpu->vc_gueststate.vg_rflags & PSL_I)
vcpu->vc_irqready = 1;
else
vcpu->vc_irqready = 0;
/*
* If not ready for interrupts, but interrupts pending,
* enable interrupt window exiting.
*/
if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
vmcb->v_intercept1 |= SVM_INTERCEPT_VINTR;
vmcb->v_irq = 1;
vmcb->v_intr_misc = SVM_INTR_MISC_V_IGN_TPR;
vmcb->v_intr_vector = 0;
svm_set_dirty(vcpu, SVM_CLEANBITS_TPR |
SVM_CLEANBITS_I);
}
/*
* Exit to vmd if we are terminating, failed to enter,
* or need help (device I/O)
*/
if (ret || vcpu_must_stop(vcpu))
break;
if (vcpu->vc_intr && vcpu->vc_irqready) {
ret = EAGAIN;
break;
}
/* Check if we should yield - don't hog the cpu */
spc = &ci->ci_schedstate;
if (spc->spc_schedflags & SPCF_SHOULDYIELD)
break;
}
}
/*
* We are heading back to userspace (vmd), either because we need help
* handling an exit, a guest interrupt is pending, or we failed in some
* way to enter the guest. Copy the guest registers to the exit struct
* and return to vmd.
*/
if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vcpu->vc_exit.vrs))
ret = EINVAL;
return (ret);
}
/*
* vmm_alloc_vpid
*
* Sets the memory location pointed to by "vpid" to the next available VPID
* or ASID.
*
* Parameters:
* vpid: Pointer to location to receive the next VPID/ASID
*
* Return Values:
* 0: The operation completed successfully
* ENOMEM: No VPIDs/ASIDs were available. Content of 'vpid' is unchanged.
*/
int
vmm_alloc_vpid(uint16_t *vpid)
{
uint16_t i;
uint8_t idx, bit;
struct vmm_softc *sc = vmm_softc;
rw_enter_write(&vmm_softc->vpid_lock);
for (i = 1; i <= sc->max_vpid; i++) {
idx = i / 8;
bit = i - (idx * 8);
if (!(sc->vpids[idx] & (1 << bit))) {
sc->vpids[idx] |= (1 << bit);
*vpid = i;
DPRINTF("%s: allocated VPID/ASID %d\n", __func__,
i);
rw_exit_write(&vmm_softc->vpid_lock);
return 0;
}
}
printf("%s: no available %ss\n", __func__,
(sc->mode == VMM_MODE_EPT) ? "VPID" :
"ASID");
rw_exit_write(&vmm_softc->vpid_lock);
return ENOMEM;
}
/*
* vmm_free_vpid
*
* Frees the VPID/ASID id supplied in "vpid".
*
* Parameters:
* vpid: VPID/ASID to free.
*/
void
vmm_free_vpid(uint16_t vpid)
{
uint8_t idx, bit;
struct vmm_softc *sc = vmm_softc;
rw_enter_write(&vmm_softc->vpid_lock);
idx = vpid / 8;
bit = vpid - (idx * 8);
sc->vpids[idx] &= ~(1 << bit);
DPRINTF("%s: freed VPID/ASID %d\n", __func__, vpid);
rw_exit_write(&vmm_softc->vpid_lock);
}
/* vmm_gpa_is_valid
*
* Check if the given gpa is within guest memory space.
*
* Parameters:
* vcpu: The virtual cpu we are running on.
* gpa: The address to check.
* obj_size: The size of the object assigned to gpa
*
* Return values:
* 1: gpa is within the memory ranges allocated for the vcpu
* 0: otherwise
*/
int
vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size)
{
struct vm *vm = vcpu->vc_parent;
struct vm_mem_range *vmr;
size_t i;
for (i = 0; i < vm->vm_nmemranges; ++i) {
vmr = &vm->vm_memranges[i];
if (vmr->vmr_size >= obj_size &&
vmr->vmr_gpa <= gpa &&
gpa < (vmr->vmr_gpa + vmr->vmr_size - obj_size)) {
return 1;
}
}
return 0;
}
void
vmm_init_pvclock(struct vcpu *vcpu, paddr_t gpa)
{
paddr_t pvclock_gpa = gpa & 0xFFFFFFFFFFFFFFF0;
if (!vmm_gpa_is_valid(vcpu, pvclock_gpa,
sizeof(struct pvclock_time_info))) {
/* XXX: Kill guest? */
vmm_inject_gp(vcpu);
return;
}
/* XXX: handle case when this struct goes over page boundaries */
if ((pvclock_gpa & PAGE_MASK) + sizeof(struct pvclock_time_info) >
PAGE_SIZE) {
vmm_inject_gp(vcpu);
return;
}
vcpu->vc_pvclock_system_gpa = gpa;
if (tsc_frequency > 0)
vcpu->vc_pvclock_system_tsc_mul =
(int) ((1000000000L << 20) / tsc_frequency);
else
vcpu->vc_pvclock_system_tsc_mul = 0;
vmm_update_pvclock(vcpu);
}
int
vmm_update_pvclock(struct vcpu *vcpu)
{
struct pvclock_time_info *pvclock_ti;
struct timespec tv;
struct vm *vm = vcpu->vc_parent;
paddr_t pvclock_hpa, pvclock_gpa;
if (vcpu->vc_pvclock_system_gpa & PVCLOCK_SYSTEM_TIME_ENABLE) {
pvclock_gpa = vcpu->vc_pvclock_system_gpa & 0xFFFFFFFFFFFFFFF0;
if (!pmap_extract(vm->vm_map->pmap, pvclock_gpa, &pvclock_hpa))
return (EINVAL);
pvclock_ti = (void*) PMAP_DIRECT_MAP(pvclock_hpa);
/* START next cycle (must be odd) */
pvclock_ti->ti_version =
(++vcpu->vc_pvclock_version << 1) | 0x1;
pvclock_ti->ti_tsc_timestamp = rdtsc();
nanotime(&tv);
pvclock_ti->ti_system_time =
tv.tv_sec * 1000000000L + tv.tv_nsec;
pvclock_ti->ti_tsc_shift = 12;
pvclock_ti->ti_tsc_to_system_mul =
vcpu->vc_pvclock_system_tsc_mul;
pvclock_ti->ti_flags = PVCLOCK_FLAG_TSC_STABLE;
/* END (must be even) */
pvclock_ti->ti_version &= ~0x1;
}
return (0);
}
int
vmm_pat_is_valid(uint64_t pat)
{
int i;
uint8_t *byte = (uint8_t *)&pat;
/* Intel SDM Vol 3A, 11.12.2: 0x02, 0x03, and 0x08-0xFF result in #GP */
for (i = 0; i < 8; i++) {
if (byte[i] == 0x02 || byte[i] == 0x03 || byte[i] > 0x07) {
DPRINTF("%s: invalid pat %llx\n", __func__, pat);
return 0;
}
}
return 1;
}
/*
* vmx_exit_reason_decode
*
* Returns a human readable string describing exit type 'code'
*/
const char *
vmx_exit_reason_decode(uint32_t code)
{
switch (code) {
case VMX_EXIT_NMI: return "NMI";
case VMX_EXIT_EXTINT: return "External interrupt";
case VMX_EXIT_TRIPLE_FAULT: return "Triple fault";
case VMX_EXIT_INIT: return "INIT signal";
case VMX_EXIT_SIPI: return "SIPI signal";
case VMX_EXIT_IO_SMI: return "I/O SMI";
case VMX_EXIT_OTHER_SMI: return "other SMI";
case VMX_EXIT_INT_WINDOW: return "Interrupt window";
case VMX_EXIT_NMI_WINDOW: return "NMI window";
case VMX_EXIT_TASK_SWITCH: return "Task switch";
case VMX_EXIT_CPUID: return "CPUID instruction";
case VMX_EXIT_GETSEC: return "GETSEC instruction";
case VMX_EXIT_HLT: return "HLT instruction";
case VMX_EXIT_INVD: return "INVD instruction";
case VMX_EXIT_INVLPG: return "INVLPG instruction";
case VMX_EXIT_RDPMC: return "RDPMC instruction";
case VMX_EXIT_RDTSC: return "RDTSC instruction";
case VMX_EXIT_RSM: return "RSM instruction";
case VMX_EXIT_VMCALL: return "VMCALL instruction";
case VMX_EXIT_VMCLEAR: return "VMCLEAR instruction";
case VMX_EXIT_VMLAUNCH: return "VMLAUNCH instruction";
case VMX_EXIT_VMPTRLD: return "VMPTRLD instruction";
case VMX_EXIT_VMPTRST: return "VMPTRST instruction";
case VMX_EXIT_VMREAD: return "VMREAD instruction";
case VMX_EXIT_VMRESUME: return "VMRESUME instruction";
case VMX_EXIT_VMWRITE: return "VMWRITE instruction";
case VMX_EXIT_VMXOFF: return "VMXOFF instruction";
case VMX_EXIT_VMXON: return "VMXON instruction";
case VMX_EXIT_CR_ACCESS: return "CR access";
case VMX_EXIT_MOV_DR: return "MOV DR instruction";
case VMX_EXIT_IO: return "I/O instruction";
case VMX_EXIT_RDMSR: return "RDMSR instruction";
case VMX_EXIT_WRMSR: return "WRMSR instruction";
case VMX_EXIT_ENTRY_FAILED_GUEST_STATE: return "guest state invalid";
case VMX_EXIT_ENTRY_FAILED_MSR_LOAD: return "MSR load failed";
case VMX_EXIT_MWAIT: return "MWAIT instruction";
case VMX_EXIT_MTF: return "monitor trap flag";
case VMX_EXIT_MONITOR: return "MONITOR instruction";
case VMX_EXIT_PAUSE: return "PAUSE instruction";
case VMX_EXIT_ENTRY_FAILED_MCE: return "MCE during entry";
case VMX_EXIT_TPR_BELOW_THRESHOLD: return "TPR below threshold";
case VMX_EXIT_APIC_ACCESS: return "APIC access";
case VMX_EXIT_VIRTUALIZED_EOI: return "virtualized EOI";
case VMX_EXIT_GDTR_IDTR: return "GDTR/IDTR access";
case VMX_EXIT_LDTR_TR: return "LDTR/TR access";
case VMX_EXIT_EPT_VIOLATION: return "EPT violation";
case VMX_EXIT_EPT_MISCONFIGURATION: return "EPT misconfiguration";
case VMX_EXIT_INVEPT: return "INVEPT instruction";
case VMX_EXIT_RDTSCP: return "RDTSCP instruction";
case VMX_EXIT_VMX_PREEMPTION_TIMER_EXPIRED:
return "preemption timer expired";
case VMX_EXIT_INVVPID: return "INVVPID instruction";
case VMX_EXIT_WBINVD: return "WBINVD instruction";
case VMX_EXIT_XSETBV: return "XSETBV instruction";
case VMX_EXIT_APIC_WRITE: return "APIC write";
case VMX_EXIT_RDRAND: return "RDRAND instruction";
case VMX_EXIT_INVPCID: return "INVPCID instruction";
case VMX_EXIT_VMFUNC: return "VMFUNC instruction";
case VMX_EXIT_RDSEED: return "RDSEED instruction";
case VMX_EXIT_XSAVES: return "XSAVES instruction";
case VMX_EXIT_XRSTORS: return "XRSTORS instruction";
default: return "unknown";
}
}
/*
* svm_exit_reason_decode
*
* Returns a human readable string describing exit type 'code'
*/
const char *
svm_exit_reason_decode(uint32_t code)
{
switch (code) {
case SVM_VMEXIT_CR0_READ: return "CR0 read"; /* 0x00 */
case SVM_VMEXIT_CR1_READ: return "CR1 read"; /* 0x01 */
case SVM_VMEXIT_CR2_READ: return "CR2 read"; /* 0x02 */
case SVM_VMEXIT_CR3_READ: return "CR3 read"; /* 0x03 */
case SVM_VMEXIT_CR4_READ: return "CR4 read"; /* 0x04 */
case SVM_VMEXIT_CR5_READ: return "CR5 read"; /* 0x05 */
case SVM_VMEXIT_CR6_READ: return "CR6 read"; /* 0x06 */
case SVM_VMEXIT_CR7_READ: return "CR7 read"; /* 0x07 */
case SVM_VMEXIT_CR8_READ: return "CR8 read"; /* 0x08 */
case SVM_VMEXIT_CR9_READ: return "CR9 read"; /* 0x09 */
case SVM_VMEXIT_CR10_READ: return "CR10 read"; /* 0x0A */
case SVM_VMEXIT_CR11_READ: return "CR11 read"; /* 0x0B */
case SVM_VMEXIT_CR12_READ: return "CR12 read"; /* 0x0C */
case SVM_VMEXIT_CR13_READ: return "CR13 read"; /* 0x0D */
case SVM_VMEXIT_CR14_READ: return "CR14 read"; /* 0x0E */
case SVM_VMEXIT_CR15_READ: return "CR15 read"; /* 0x0F */
case SVM_VMEXIT_CR0_WRITE: return "CR0 write"; /* 0x10 */
case SVM_VMEXIT_CR1_WRITE: return "CR1 write"; /* 0x11 */
case SVM_VMEXIT_CR2_WRITE: return "CR2 write"; /* 0x12 */
case SVM_VMEXIT_CR3_WRITE: return "CR3 write"; /* 0x13 */
case SVM_VMEXIT_CR4_WRITE: return "CR4 write"; /* 0x14 */
case SVM_VMEXIT_CR5_WRITE: return "CR5 write"; /* 0x15 */
case SVM_VMEXIT_CR6_WRITE: return "CR6 write"; /* 0x16 */
case SVM_VMEXIT_CR7_WRITE: return "CR7 write"; /* 0x17 */
case SVM_VMEXIT_CR8_WRITE: return "CR8 write"; /* 0x18 */
case SVM_VMEXIT_CR9_WRITE: return "CR9 write"; /* 0x19 */
case SVM_VMEXIT_CR10_WRITE: return "CR10 write"; /* 0x1A */
case SVM_VMEXIT_CR11_WRITE: return "CR11 write"; /* 0x1B */
case SVM_VMEXIT_CR12_WRITE: return "CR12 write"; /* 0x1C */
case SVM_VMEXIT_CR13_WRITE: return "CR13 write"; /* 0x1D */
case SVM_VMEXIT_CR14_WRITE: return "CR14 write"; /* 0x1E */
case SVM_VMEXIT_CR15_WRITE: return "CR15 write"; /* 0x1F */
case SVM_VMEXIT_DR0_READ: return "DR0 read"; /* 0x20 */
case SVM_VMEXIT_DR1_READ: return "DR1 read"; /* 0x21 */
case SVM_VMEXIT_DR2_READ: return "DR2 read"; /* 0x22 */
case SVM_VMEXIT_DR3_READ: return "DR3 read"; /* 0x23 */
case SVM_VMEXIT_DR4_READ: return "DR4 read"; /* 0x24 */
case SVM_VMEXIT_DR5_READ: return "DR5 read"; /* 0x25 */
case SVM_VMEXIT_DR6_READ: return "DR6 read"; /* 0x26 */
case SVM_VMEXIT_DR7_READ: return "DR7 read"; /* 0x27 */
case SVM_VMEXIT_DR8_READ: return "DR8 read"; /* 0x28 */
case SVM_VMEXIT_DR9_READ: return "DR9 read"; /* 0x29 */
case SVM_VMEXIT_DR10_READ: return "DR10 read"; /* 0x2A */
case SVM_VMEXIT_DR11_READ: return "DR11 read"; /* 0x2B */
case SVM_VMEXIT_DR12_READ: return "DR12 read"; /* 0x2C */
case SVM_VMEXIT_DR13_READ: return "DR13 read"; /* 0x2D */
case SVM_VMEXIT_DR14_READ: return "DR14 read"; /* 0x2E */
case SVM_VMEXIT_DR15_READ: return "DR15 read"; /* 0x2F */
case SVM_VMEXIT_DR0_WRITE: return "DR0 write"; /* 0x30 */
case SVM_VMEXIT_DR1_WRITE: return "DR1 write"; /* 0x31 */
case SVM_VMEXIT_DR2_WRITE: return "DR2 write"; /* 0x32 */
case SVM_VMEXIT_DR3_WRITE: return "DR3 write"; /* 0x33 */
case SVM_VMEXIT_DR4_WRITE: return "DR4 write"; /* 0x34 */
case SVM_VMEXIT_DR5_WRITE: return "DR5 write"; /* 0x35 */
case SVM_VMEXIT_DR6_WRITE: return "DR6 write"; /* 0x36 */
case SVM_VMEXIT_DR7_WRITE: return "DR7 write"; /* 0x37 */
case SVM_VMEXIT_DR8_WRITE: return "DR8 write"; /* 0x38 */
case SVM_VMEXIT_DR9_WRITE: return "DR9 write"; /* 0x39 */
case SVM_VMEXIT_DR10_WRITE: return "DR10 write"; /* 0x3A */
case SVM_VMEXIT_DR11_WRITE: return "DR11 write"; /* 0x3B */
case SVM_VMEXIT_DR12_WRITE: return "DR12 write"; /* 0x3C */
case SVM_VMEXIT_DR13_WRITE: return "DR13 write"; /* 0x3D */
case SVM_VMEXIT_DR14_WRITE: return "DR14 write"; /* 0x3E */
case SVM_VMEXIT_DR15_WRITE: return "DR15 write"; /* 0x3F */
case SVM_VMEXIT_EXCP0: return "Exception 0x00"; /* 0x40 */
case SVM_VMEXIT_EXCP1: return "Exception 0x01"; /* 0x41 */
case SVM_VMEXIT_EXCP2: return "Exception 0x02"; /* 0x42 */
case SVM_VMEXIT_EXCP3: return "Exception 0x03"; /* 0x43 */
case SVM_VMEXIT_EXCP4: return "Exception 0x04"; /* 0x44 */
case SVM_VMEXIT_EXCP5: return "Exception 0x05"; /* 0x45 */
case SVM_VMEXIT_EXCP6: return "Exception 0x06"; /* 0x46 */
case SVM_VMEXIT_EXCP7: return "Exception 0x07"; /* 0x47 */
case SVM_VMEXIT_EXCP8: return "Exception 0x08"; /* 0x48 */
case SVM_VMEXIT_EXCP9: return "Exception 0x09"; /* 0x49 */
case SVM_VMEXIT_EXCP10: return "Exception 0x0A"; /* 0x4A */
case SVM_VMEXIT_EXCP11: return "Exception 0x0B"; /* 0x4B */
case SVM_VMEXIT_EXCP12: return "Exception 0x0C"; /* 0x4C */
case SVM_VMEXIT_EXCP13: return "Exception 0x0D"; /* 0x4D */
case SVM_VMEXIT_EXCP14: return "Exception 0x0E"; /* 0x4E */
case SVM_VMEXIT_EXCP15: return "Exception 0x0F"; /* 0x4F */
case SVM_VMEXIT_EXCP16: return "Exception 0x10"; /* 0x50 */
case SVM_VMEXIT_EXCP17: return "Exception 0x11"; /* 0x51 */
case SVM_VMEXIT_EXCP18: return "Exception 0x12"; /* 0x52 */
case SVM_VMEXIT_EXCP19: return "Exception 0x13"; /* 0x53 */
case SVM_VMEXIT_EXCP20: return "Exception 0x14"; /* 0x54 */
case SVM_VMEXIT_EXCP21: return "Exception 0x15"; /* 0x55 */
case SVM_VMEXIT_EXCP22: return "Exception 0x16"; /* 0x56 */
case SVM_VMEXIT_EXCP23: return "Exception 0x17"; /* 0x57 */
case SVM_VMEXIT_EXCP24: return "Exception 0x18"; /* 0x58 */
case SVM_VMEXIT_EXCP25: return "Exception 0x19"; /* 0x59 */
case SVM_VMEXIT_EXCP26: return "Exception 0x1A"; /* 0x5A */
case SVM_VMEXIT_EXCP27: return "Exception 0x1B"; /* 0x5B */
case SVM_VMEXIT_EXCP28: return "Exception 0x1C"; /* 0x5C */
case SVM_VMEXIT_EXCP29: return "Exception 0x1D"; /* 0x5D */
case SVM_VMEXIT_EXCP30: return "Exception 0x1E"; /* 0x5E */
case SVM_VMEXIT_EXCP31: return "Exception 0x1F"; /* 0x5F */
case SVM_VMEXIT_INTR: return "External interrupt"; /* 0x60 */
case SVM_VMEXIT_NMI: return "NMI"; /* 0x61 */
case SVM_VMEXIT_SMI: return "SMI"; /* 0x62 */
case SVM_VMEXIT_INIT: return "INIT"; /* 0x63 */
case SVM_VMEXIT_VINTR: return "Interrupt window"; /* 0x64 */
case SVM_VMEXIT_CR0_SEL_WRITE: return "Sel CR0 write"; /* 0x65 */
case SVM_VMEXIT_IDTR_READ: return "IDTR read"; /* 0x66 */
case SVM_VMEXIT_GDTR_READ: return "GDTR read"; /* 0x67 */
case SVM_VMEXIT_LDTR_READ: return "LDTR read"; /* 0x68 */
case SVM_VMEXIT_TR_READ: return "TR read"; /* 0x69 */
case SVM_VMEXIT_IDTR_WRITE: return "IDTR write"; /* 0x6A */
case SVM_VMEXIT_GDTR_WRITE: return "GDTR write"; /* 0x6B */
case SVM_VMEXIT_LDTR_WRITE: return "LDTR write"; /* 0x6C */
case SVM_VMEXIT_TR_WRITE: return "TR write"; /* 0x6D */
case SVM_VMEXIT_RDTSC: return "RDTSC instruction"; /* 0x6E */
case SVM_VMEXIT_RDPMC: return "RDPMC instruction"; /* 0x6F */
case SVM_VMEXIT_PUSHF: return "PUSHF instruction"; /* 0x70 */
case SVM_VMEXIT_POPF: return "POPF instruction"; /* 0x71 */
case SVM_VMEXIT_CPUID: return "CPUID instruction"; /* 0x72 */
case SVM_VMEXIT_RSM: return "RSM instruction"; /* 0x73 */
case SVM_VMEXIT_IRET: return "IRET instruction"; /* 0x74 */
case SVM_VMEXIT_SWINT: return "SWINT instruction"; /* 0x75 */
case SVM_VMEXIT_INVD: return "INVD instruction"; /* 0x76 */
case SVM_VMEXIT_PAUSE: return "PAUSE instruction"; /* 0x77 */
case SVM_VMEXIT_HLT: return "HLT instruction"; /* 0x78 */
case SVM_VMEXIT_INVLPG: return "INVLPG instruction"; /* 0x79 */
case SVM_VMEXIT_INVLPGA: return "INVLPGA instruction"; /* 0x7A */
case SVM_VMEXIT_IOIO: return "I/O instruction"; /* 0x7B */
case SVM_VMEXIT_MSR: return "RDMSR/WRMSR instruction"; /* 0x7C */
case SVM_VMEXIT_TASK_SWITCH: return "Task switch"; /* 0x7D */
case SVM_VMEXIT_FERR_FREEZE: return "FERR_FREEZE"; /* 0x7E */
case SVM_VMEXIT_SHUTDOWN: return "Triple fault"; /* 0x7F */
case SVM_VMEXIT_VMRUN: return "VMRUN instruction"; /* 0x80 */
case SVM_VMEXIT_VMMCALL: return "VMMCALL instruction"; /* 0x81 */
case SVM_VMEXIT_VMLOAD: return "VMLOAD instruction"; /* 0x82 */
case SVM_VMEXIT_VMSAVE: return "VMSAVE instruction"; /* 0x83 */
case SVM_VMEXIT_STGI: return "STGI instruction"; /* 0x84 */
case SVM_VMEXIT_CLGI: return "CLGI instruction"; /* 0x85 */
case SVM_VMEXIT_SKINIT: return "SKINIT instruction"; /* 0x86 */
case SVM_VMEXIT_RDTSCP: return "RDTSCP instruction"; /* 0x87 */
case SVM_VMEXIT_ICEBP: return "ICEBP instruction"; /* 0x88 */
case SVM_VMEXIT_WBINVD: return "WBINVD instruction"; /* 0x89 */
case SVM_VMEXIT_MONITOR: return "MONITOR instruction"; /* 0x8A */
case SVM_VMEXIT_MWAIT: return "MWAIT instruction"; /* 0x8B */
case SVM_VMEXIT_MWAIT_CONDITIONAL: return "Cond MWAIT"; /* 0x8C */
case SVM_VMEXIT_NPF: return "NPT violation"; /* 0x400 */
default: return "unknown";
}
}
/*
* vmx_instruction_error_decode
*
* Returns a human readable string describing the instruction error in 'code'
*/
const char *
vmx_instruction_error_decode(uint32_t code)
{
switch (code) {
case 1: return "VMCALL: unsupported in VMX root";
case 2: return "VMCLEAR: invalid paddr";
case 3: return "VMCLEAR: VMXON pointer";
case 4: return "VMLAUNCH: non-clear VMCS";
case 5: return "VMRESUME: non-launched VMCS";
case 6: return "VMRESUME: executed after VMXOFF";
case 7: return "VM entry: invalid control field(s)";
case 8: return "VM entry: invalid host state field(s)";
case 9: return "VMPTRLD: invalid paddr";
case 10: return "VMPTRLD: VMXON pointer";
case 11: return "VMPTRLD: incorrect VMCS revid";
case 12: return "VMREAD/VMWRITE: unsupported VMCS field";
case 13: return "VMWRITE: RO VMCS field";
case 15: return "VMXON: unsupported in VMX root";
case 20: return "VMCALL: invalid VM exit control fields";
case 26: return "VM entry: blocked by MOV SS";
case 28: return "Invalid operand to INVEPT/INVVPID";
case 0x80000021: return "VM entry: invalid guest state";
case 0x80000022: return "VM entry: failure due to MSR loading";
case 0x80000029: return "VM entry: machine-check event";
default: return "unknown";
}
}
/*
* vcpu_state_decode
*
* Returns a human readable string describing the vcpu state in 'state'.
*/
const char *
vcpu_state_decode(u_int state)
{
switch (state) {
case VCPU_STATE_STOPPED: return "stopped";
case VCPU_STATE_RUNNING: return "running";
case VCPU_STATE_REQTERM: return "requesting termination";
case VCPU_STATE_TERMINATED: return "terminated";
case VCPU_STATE_UNKNOWN: return "unknown";
default: return "invalid";
}
}
#ifdef VMM_DEBUG
/*
* dump_vcpu
*
* Dumps the VMX capabilities of vcpu 'vcpu'
*/
void
dump_vcpu(struct vcpu *vcpu)
{
printf("vcpu @ %p\n", vcpu);
printf(" parent vm @ %p\n", vcpu->vc_parent);
printf(" mode: ");
if (vcpu->vc_virt_mode == VMM_MODE_EPT) {
printf("VMX\n");
printf(" pinbased ctls: 0x%llx\n",
vcpu->vc_vmx_pinbased_ctls);
printf(" true pinbased ctls: 0x%llx\n",
vcpu->vc_vmx_true_pinbased_ctls);
CTRL_DUMP(vcpu, PINBASED, EXTERNAL_INT_EXITING);
CTRL_DUMP(vcpu, PINBASED, NMI_EXITING);
CTRL_DUMP(vcpu, PINBASED, VIRTUAL_NMIS);
CTRL_DUMP(vcpu, PINBASED, ACTIVATE_VMX_PREEMPTION_TIMER);
CTRL_DUMP(vcpu, PINBASED, PROCESS_POSTED_INTERRUPTS);
printf(" procbased ctls: 0x%llx\n",
vcpu->vc_vmx_procbased_ctls);
printf(" true procbased ctls: 0x%llx\n",
vcpu->vc_vmx_true_procbased_ctls);
CTRL_DUMP(vcpu, PROCBASED, INTERRUPT_WINDOW_EXITING);
CTRL_DUMP(vcpu, PROCBASED, USE_TSC_OFFSETTING);
CTRL_DUMP(vcpu, PROCBASED, HLT_EXITING);
CTRL_DUMP(vcpu, PROCBASED, INVLPG_EXITING);
CTRL_DUMP(vcpu, PROCBASED, MWAIT_EXITING);
CTRL_DUMP(vcpu, PROCBASED, RDPMC_EXITING);
CTRL_DUMP(vcpu, PROCBASED, RDTSC_EXITING);
CTRL_DUMP(vcpu, PROCBASED, CR3_LOAD_EXITING);
CTRL_DUMP(vcpu, PROCBASED, CR3_STORE_EXITING);
CTRL_DUMP(vcpu, PROCBASED, CR8_LOAD_EXITING);
CTRL_DUMP(vcpu, PROCBASED, CR8_STORE_EXITING);
CTRL_DUMP(vcpu, PROCBASED, USE_TPR_SHADOW);
CTRL_DUMP(vcpu, PROCBASED, NMI_WINDOW_EXITING);
CTRL_DUMP(vcpu, PROCBASED, MOV_DR_EXITING);
CTRL_DUMP(vcpu, PROCBASED, UNCONDITIONAL_IO_EXITING);
CTRL_DUMP(vcpu, PROCBASED, USE_IO_BITMAPS);
CTRL_DUMP(vcpu, PROCBASED, MONITOR_TRAP_FLAG);
CTRL_DUMP(vcpu, PROCBASED, USE_MSR_BITMAPS);
CTRL_DUMP(vcpu, PROCBASED, MONITOR_EXITING);
CTRL_DUMP(vcpu, PROCBASED, PAUSE_EXITING);
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
printf(" procbased2 ctls: 0x%llx\n",
vcpu->vc_vmx_procbased2_ctls);
CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_APIC);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_EPT);
CTRL_DUMP(vcpu, PROCBASED2, DESCRIPTOR_TABLE_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_RDTSCP);
CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_X2APIC_MODE);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VPID);
CTRL_DUMP(vcpu, PROCBASED2, WBINVD_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, UNRESTRICTED_GUEST);
CTRL_DUMP(vcpu, PROCBASED2,
APIC_REGISTER_VIRTUALIZATION);
CTRL_DUMP(vcpu, PROCBASED2,
VIRTUAL_INTERRUPT_DELIVERY);
CTRL_DUMP(vcpu, PROCBASED2, PAUSE_LOOP_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, RDRAND_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_INVPCID);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VM_FUNCTIONS);
CTRL_DUMP(vcpu, PROCBASED2, VMCS_SHADOWING);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_ENCLS_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, RDSEED_EXITING);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_PML);
CTRL_DUMP(vcpu, PROCBASED2, EPT_VIOLATION_VE);
CTRL_DUMP(vcpu, PROCBASED2, CONCEAL_VMX_FROM_PT);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_XSAVES_XRSTORS);
CTRL_DUMP(vcpu, PROCBASED2, ENABLE_TSC_SCALING);
}
printf(" entry ctls: 0x%llx\n",
vcpu->vc_vmx_entry_ctls);
printf(" true entry ctls: 0x%llx\n",
vcpu->vc_vmx_true_entry_ctls);
CTRL_DUMP(vcpu, ENTRY, LOAD_DEBUG_CONTROLS);
CTRL_DUMP(vcpu, ENTRY, IA32E_MODE_GUEST);
CTRL_DUMP(vcpu, ENTRY, ENTRY_TO_SMM);
CTRL_DUMP(vcpu, ENTRY, DEACTIVATE_DUAL_MONITOR_TREATMENT);
CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY);
CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PAT_ON_ENTRY);
CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_EFER_ON_ENTRY);
CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_BNDCFGS_ON_ENTRY);
CTRL_DUMP(vcpu, ENTRY, CONCEAL_VM_ENTRIES_FROM_PT);
printf(" exit ctls: 0x%llx\n",
vcpu->vc_vmx_exit_ctls);
printf(" true exit ctls: 0x%llx\n",
vcpu->vc_vmx_true_exit_ctls);
CTRL_DUMP(vcpu, EXIT, SAVE_DEBUG_CONTROLS);
CTRL_DUMP(vcpu, EXIT, HOST_SPACE_ADDRESS_SIZE);
CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, ACKNOWLEDGE_INTERRUPT_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, SAVE_IA32_PAT_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PAT_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, SAVE_IA32_EFER_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, LOAD_IA32_EFER_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, SAVE_VMX_PREEMPTION_TIMER);
CTRL_DUMP(vcpu, EXIT, CLEAR_IA32_BNDCFGS_ON_EXIT);
CTRL_DUMP(vcpu, EXIT, CONCEAL_VM_EXITS_FROM_PT);
}
}
/*
* vmx_dump_vmcs_field
*
* Debug function to dump the contents of a single VMCS field
*
* Parameters:
* fieldid: VMCS Field ID
* msg: string to display
*/
void
vmx_dump_vmcs_field(uint16_t fieldid, const char *msg)
{
uint8_t width;
uint64_t val;
DPRINTF("%s (0x%04x): ", msg, fieldid);
if (vmread(fieldid, &val))
DPRINTF("???? ");
else {
/*
* Field width encoding : bits 13:14
*
* 0: 16-bit
* 1: 64-bit
* 2: 32-bit
* 3: natural width
*/
width = (fieldid >> 13) & 0x3;
switch (width) {
case 0: DPRINTF("0x%04llx ", val); break;
case 1:
case 3: DPRINTF("0x%016llx ", val); break;
case 2: DPRINTF("0x%08llx ", val);
}
}
}
/*
* vmx_dump_vmcs
*
* Debug function to dump the contents of the current VMCS.
*/
void
vmx_dump_vmcs(struct vcpu *vcpu)
{
int has_sec, i;
uint32_t cr3_tgt_ct;
/* XXX save and load new vmcs, restore at end */
DPRINTF("--CURRENT VMCS STATE--\n");
printf("VMCS launched: %s\n",
(vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED) ? "Yes" : "No");
DPRINTF("VMXON revision : 0x%x\n",
curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision);
DPRINTF("CR0 fixed0: 0x%llx\n",
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0);
DPRINTF("CR0 fixed1: 0x%llx\n",
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
DPRINTF("CR4 fixed0: 0x%llx\n",
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0);
DPRINTF("CR4 fixed1: 0x%llx\n",
curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
DPRINTF("MSR table size: 0x%x\n",
512 * (curcpu()->ci_vmm_cap.vcc_vmx.vmx_msr_table_size + 1));
has_sec = vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1);
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_VPID, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_VPID, "VPID");
}
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
vmx_dump_vmcs_field(VMCS_POSTED_INT_NOTIF_VECTOR,
"Posted Int Notif Vec");
}
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_EPT_VIOLATION_VE, 1)) {
vmx_dump_vmcs_field(VMCS_EPTP_INDEX, "EPTP idx");
}
}
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_SEL, "G.ES");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_SEL, "G.CS");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_SEL, "G.SS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_SEL, "G.DS");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_SEL, "G.FS");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_SEL, "G.GS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_SEL, "LDTR");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_SEL, "G.TR");
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPT_STATUS,
"Int sts");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_PML, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_PML_INDEX, "PML Idx");
}
}
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_ES_SEL, "H.ES");
vmx_dump_vmcs_field(VMCS_HOST_IA32_CS_SEL, "H.CS");
vmx_dump_vmcs_field(VMCS_HOST_IA32_SS_SEL, "H.SS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_DS_SEL, "H.DS");
vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_SEL, "H.FS");
vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_SEL, "H.GS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_BITMAP_A, "I/O Bitmap A");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_BITMAP_B, "I/O Bitmap B");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_USE_MSR_BITMAPS, 1)) {
vmx_dump_vmcs_field(VMCS_MSR_BITMAP_ADDRESS, "MSR Bitmap");
DPRINTF("\n");
}
vmx_dump_vmcs_field(VMCS_EXIT_STORE_MSR_ADDRESS, "Exit Store MSRs");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXIT_LOAD_MSR_ADDRESS, "Exit Load MSRs");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_ENTRY_LOAD_MSR_ADDRESS, "Entry Load MSRs");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXECUTIVE_VMCS_POINTER, "Exec VMCS Ptr");
DPRINTF("\n");
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_PML, 1)) {
vmx_dump_vmcs_field(VMCS_PML_ADDRESS, "PML Addr");
DPRINTF("\n");
}
}
vmx_dump_vmcs_field(VMCS_TSC_OFFSET, "TSC Offset");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_USE_TPR_SHADOW, 1)) {
vmx_dump_vmcs_field(VMCS_VIRTUAL_APIC_ADDRESS,
"Virtual APIC Addr");
DPRINTF("\n");
}
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_VIRTUALIZE_APIC, 1)) {
vmx_dump_vmcs_field(VMCS_APIC_ACCESS_ADDRESS,
"APIC Access Addr");
DPRINTF("\n");
}
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
vmx_dump_vmcs_field(VMCS_POSTED_INTERRUPT_DESC,
"Posted Int Desc Addr");
DPRINTF("\n");
}
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
vmx_dump_vmcs_field(VMCS_VM_FUNCTION_CONTROLS,
"VM Function Controls");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_EPT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_IA32_EPTP,
"EPT Pointer");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_0,
"EOI Exit Bitmap 0");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_1,
"EOI Exit Bitmap 1");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_2,
"EOI Exit Bitmap 2");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_3,
"EOI Exit Bitmap 3");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
/* We assume all CPUs have the same VMFUNC caps */
if (curcpu()->ci_vmm_cap.vcc_vmx.vmx_vm_func & 0x1) {
vmx_dump_vmcs_field(VMCS_EPTP_LIST_ADDRESS,
"EPTP List Addr");
DPRINTF("\n");
}
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_VMCS_SHADOWING, 1)) {
vmx_dump_vmcs_field(VMCS_VMREAD_BITMAP_ADDRESS,
"VMREAD Bitmap Addr");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_VMWRITE_BITMAP_ADDRESS,
"VMWRITE Bitmap Addr");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_EPT_VIOLATION_VE, 1)) {
vmx_dump_vmcs_field(VMCS_VIRTUALIZATION_EXC_ADDRESS,
"#VE Addr");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_XSAVES_XRSTORS, 1)) {
vmx_dump_vmcs_field(VMCS_XSS_EXITING_BITMAP,
"XSS exiting bitmap addr");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_ENCLS_EXITING, 1)) {
vmx_dump_vmcs_field(VMCS_ENCLS_EXITING_BITMAP,
"Encls exiting bitmap addr");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_TSC_SCALING, 1)) {
vmx_dump_vmcs_field(VMCS_TSC_MULTIPLIER,
"TSC scaling factor");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_EPT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_PHYSICAL_ADDRESS,
"Guest PA");
DPRINTF("\n");
}
}
vmx_dump_vmcs_field(VMCS_LINK_POINTER, "VMCS Link Pointer");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DEBUGCTL, "Guest DEBUGCTL");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
IA32_VMX_LOAD_IA32_PAT_ON_ENTRY, 1) ||
vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_SAVE_IA32_PAT_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_IA32_PAT,
"Guest PAT");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
IA32_VMX_LOAD_IA32_EFER_ON_ENTRY, 1) ||
vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_SAVE_IA32_EFER_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_IA32_EFER,
"Guest EFER");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_IA32_PERF_GBL_CTRL,
"Guest Perf Global Ctrl");
DPRINTF("\n");
}
if (has_sec) {
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_ENABLE_EPT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_PDPTE0, "Guest PDPTE0");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_PDPTE1, "Guest PDPTE1");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_PDPTE2, "Guest PDPTE2");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_PDPTE3, "Guest PDPTE3");
DPRINTF("\n");
}
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
IA32_VMX_LOAD_IA32_BNDCFGS_ON_ENTRY, 1) ||
vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_CLEAR_IA32_BNDCFGS_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_GUEST_IA32_BNDCFGS,
"Guest BNDCFGS");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_LOAD_IA32_PAT_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_HOST_IA32_PAT,
"Host PAT");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_LOAD_IA32_EFER_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_HOST_IA32_EFER,
"Host EFER");
DPRINTF("\n");
}
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT, 1)) {
vmx_dump_vmcs_field(VMCS_HOST_IA32_PERF_GBL_CTRL,
"Host Perf Global Ctrl");
DPRINTF("\n");
}
vmx_dump_vmcs_field(VMCS_PINBASED_CTLS, "Pinbased Ctrls");
vmx_dump_vmcs_field(VMCS_PROCBASED_CTLS, "Procbased Ctrls");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXCEPTION_BITMAP, "Exception Bitmap");
vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MASK, "#PF Err Code Mask");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MATCH, "#PF Err Code Match");
vmx_dump_vmcs_field(VMCS_CR3_TARGET_COUNT, "CR3 Tgt Count");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXIT_CTLS, "Exit Ctrls");
vmx_dump_vmcs_field(VMCS_EXIT_MSR_STORE_COUNT, "Exit MSR Store Ct");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXIT_MSR_LOAD_COUNT, "Exit MSR Load Ct");
vmx_dump_vmcs_field(VMCS_ENTRY_CTLS, "Entry Ctrls");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_ENTRY_MSR_LOAD_COUNT, "Entry MSR Load Ct");
vmx_dump_vmcs_field(VMCS_ENTRY_INTERRUPTION_INFO, "Entry Int. Info");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_ENTRY_EXCEPTION_ERROR_CODE,
"Entry Ex. Err Code");
vmx_dump_vmcs_field(VMCS_ENTRY_INSTRUCTION_LENGTH, "Entry Insn Len");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_USE_TPR_SHADOW, 1)) {
vmx_dump_vmcs_field(VMCS_TPR_THRESHOLD, "TPR Threshold");
DPRINTF("\n");
}
if (has_sec) {
vmx_dump_vmcs_field(VMCS_PROCBASED2_CTLS, "2ndary Ctrls");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
IA32_VMX_PAUSE_LOOP_EXITING, 1)) {
vmx_dump_vmcs_field(VMCS_PLE_GAP, "PLE Gap");
vmx_dump_vmcs_field(VMCS_PLE_WINDOW, "PLE Window");
}
DPRINTF("\n");
}
vmx_dump_vmcs_field(VMCS_INSTRUCTION_ERROR, "Insn Error");
vmx_dump_vmcs_field(VMCS_EXIT_REASON, "Exit Reason");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_INFO, "Exit Int. Info");
vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_ERR_CODE,
"Exit Int. Err Code");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IDT_VECTORING_INFO, "IDT vect info");
vmx_dump_vmcs_field(VMCS_IDT_VECTORING_ERROR_CODE,
"IDT vect err code");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_INSTRUCTION_LENGTH, "Insn Len");
vmx_dump_vmcs_field(VMCS_EXIT_INSTRUCTION_INFO, "Exit Insn Info");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_LIMIT, "G. ES Lim");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_LIMIT, "G. CS Lim");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_LIMIT, "G. SS Lim");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_LIMIT, "G. DS Lim");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_LIMIT, "G. FS Lim");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_LIMIT, "G. GS Lim");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_LIMIT, "G. LDTR Lim");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_LIMIT, "G. TR Lim");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_LIMIT, "G. GDTR Lim");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_LIMIT, "G. IDTR Lim");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_AR, "G. ES AR");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_AR, "G. CS AR");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_AR, "G. SS AR");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_AR, "G. DS AR");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_AR, "G. FS AR");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_AR, "G. GS AR");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_AR, "G. LDTR AR");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_AR, "G. TR AR");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPTIBILITY_ST, "G. Int St.");
vmx_dump_vmcs_field(VMCS_GUEST_ACTIVITY_STATE, "G. Act St.");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_SMBASE, "G. SMBASE");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_CS, "G. SYSENTER CS");
DPRINTF("\n");
if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
IA32_VMX_ACTIVATE_VMX_PREEMPTION_TIMER, 1)) {
vmx_dump_vmcs_field(VMCS_VMX_PREEMPTION_TIMER_VAL,
"VMX Preempt Timer");
DPRINTF("\n");
}
vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_CS, "H. SYSENTER CS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_CR0_MASK, "CR0 Mask");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_CR4_MASK, "CR4 Mask");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_CR0_READ_SHADOW, "CR0 RD Shadow");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_CR4_READ_SHADOW, "CR4 RD Shadow");
DPRINTF("\n");
/* We assume all CPUs have the same max CR3 target ct */
cr3_tgt_ct = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr3_tgt_count;
DPRINTF("Max CR3 target count: 0x%x\n", cr3_tgt_ct);
if (cr3_tgt_ct <= VMX_MAX_CR3_TARGETS) {
for (i = 0 ; i < cr3_tgt_ct; i++) {
vmx_dump_vmcs_field(VMCS_CR3_TARGET_0 + (2 * i),
"CR3 Target");
DPRINTF("\n");
}
} else {
DPRINTF("(Bogus CR3 Target Count > %d", VMX_MAX_CR3_TARGETS);
}
vmx_dump_vmcs_field(VMCS_GUEST_EXIT_QUALIFICATION, "G. Exit Qual");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_RCX, "I/O RCX");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_RSI, "I/O RSI");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_RDI, "I/O RDI");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_IO_RIP, "I/O RIP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_LINEAR_ADDRESS, "G. Lin Addr");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR0, "G. CR0");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR3, "G. CR3");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR4, "G. CR4");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_BASE, "G. ES Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_BASE, "G. CS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_BASE, "G. SS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_BASE, "G. DS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_BASE, "G. FS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_BASE, "G. GS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_BASE, "G. LDTR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_BASE, "G. TR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_BASE, "G. GDTR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_BASE, "G. IDTR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_DR7, "G. DR7");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_RSP, "G. RSP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_RIP, "G. RIP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_RFLAGS, "G. RFLAGS");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_PENDING_DBG_EXC, "G. Pend Dbg Exc");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_ESP, "G. SYSENTER ESP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_EIP, "G. SYSENTER EIP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_CR0, "H. CR0");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_CR3, "H. CR3");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_CR4, "H. CR4");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_BASE, "H. FS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_BASE, "H. GS Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_TR_BASE, "H. TR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_GDTR_BASE, "H. GDTR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_IDTR_BASE, "H. IDTR Base");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_ESP, "H. SYSENTER ESP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_EIP, "H. SYSENTER EIP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_RSP, "H. RSP");
DPRINTF("\n");
vmx_dump_vmcs_field(VMCS_HOST_IA32_RIP, "H. RIP");
DPRINTF("\n");
}
/*
* vmx_vcpu_dump_regs
*
* Debug function to print vcpu regs from the current vcpu
* note - vmcs for 'vcpu' must be on this pcpu.
*
* Parameters:
* vcpu - vcpu whose registers should be dumped
*/
void
vmx_vcpu_dump_regs(struct vcpu *vcpu)
{
uint64_t r;
int i;
struct vmx_msr_store *msr_store;
/* XXX reformat this for 32 bit guest as needed */
DPRINTF("vcpu @ %p in %s mode\n", vcpu, vmm_decode_cpu_mode(vcpu));
i = vmm_get_guest_cpu_cpl(vcpu);
if (i == -1)
DPRINTF(" CPL=unknown\n");
else
DPRINTF(" CPL=%d\n", i);
DPRINTF(" rax=0x%016llx rbx=0x%016llx rcx=0x%016llx\n",
vcpu->vc_gueststate.vg_rax, vcpu->vc_gueststate.vg_rbx,
vcpu->vc_gueststate.vg_rcx);
DPRINTF(" rdx=0x%016llx rbp=0x%016llx rdi=0x%016llx\n",
vcpu->vc_gueststate.vg_rdx, vcpu->vc_gueststate.vg_rbp,
vcpu->vc_gueststate.vg_rdi);
DPRINTF(" rsi=0x%016llx r8=0x%016llx r9=0x%016llx\n",
vcpu->vc_gueststate.vg_rsi, vcpu->vc_gueststate.vg_r8,
vcpu->vc_gueststate.vg_r9);
DPRINTF(" r10=0x%016llx r11=0x%016llx r12=0x%016llx\n",
vcpu->vc_gueststate.vg_r10, vcpu->vc_gueststate.vg_r11,
vcpu->vc_gueststate.vg_r12);
DPRINTF(" r13=0x%016llx r14=0x%016llx r15=0x%016llx\n",
vcpu->vc_gueststate.vg_r13, vcpu->vc_gueststate.vg_r14,
vcpu->vc_gueststate.vg_r15);
DPRINTF(" rip=0x%016llx rsp=", vcpu->vc_gueststate.vg_rip);
if (vmread(VMCS_GUEST_IA32_RSP, &r))
DPRINTF("(error reading)\n");
else
DPRINTF("0x%016llx\n", r);
DPRINTF(" rflags=");
if (vmread(VMCS_GUEST_IA32_RFLAGS, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%016llx ", r);
vmm_decode_rflags(r);
}
DPRINTF(" cr0=");
if (vmread(VMCS_GUEST_IA32_CR0, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%016llx ", r);
vmm_decode_cr0(r);
}
DPRINTF(" cr2=0x%016llx\n", vcpu->vc_gueststate.vg_cr2);
DPRINTF(" cr3=");
if (vmread(VMCS_GUEST_IA32_CR3, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%016llx ", r);
vmm_decode_cr3(r);
}
DPRINTF(" cr4=");
if (vmread(VMCS_GUEST_IA32_CR4, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%016llx ", r);
vmm_decode_cr4(r);
}
DPRINTF(" --Guest Segment Info--\n");
DPRINTF(" cs=");
if (vmread(VMCS_GUEST_IA32_CS_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_CS_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_CS_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_CS_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" ds=");
if (vmread(VMCS_GUEST_IA32_DS_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_DS_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_DS_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_DS_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" es=");
if (vmread(VMCS_GUEST_IA32_ES_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_ES_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_ES_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_ES_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" fs=");
if (vmread(VMCS_GUEST_IA32_FS_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_FS_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_FS_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_FS_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" gs=");
if (vmread(VMCS_GUEST_IA32_GS_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_GS_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_GS_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_GS_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" ss=");
if (vmread(VMCS_GUEST_IA32_SS_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_SS_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_SS_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_SS_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" tr=");
if (vmread(VMCS_GUEST_IA32_TR_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx", r);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_TR_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_TR_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_TR_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" gdtr base=");
if (vmread(VMCS_GUEST_IA32_GDTR_BASE, &r))
DPRINTF("(error reading) ");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &r))
DPRINTF("(error reading)\n");
else
DPRINTF("0x%016llx\n", r);
DPRINTF(" idtr base=");
if (vmread(VMCS_GUEST_IA32_IDTR_BASE, &r))
DPRINTF("(error reading) ");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &r))
DPRINTF("(error reading)\n");
else
DPRINTF("0x%016llx\n", r);
DPRINTF(" ldtr=");
if (vmread(VMCS_GUEST_IA32_LDTR_SEL, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%04llx", r);
DPRINTF(" base=");
if (vmread(VMCS_GUEST_IA32_LDTR_BASE, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" limit=");
if (vmread(VMCS_GUEST_IA32_LDTR_LIMIT, &r))
DPRINTF("(error reading)");
else
DPRINTF("0x%016llx", r);
DPRINTF(" a/r=");
if (vmread(VMCS_GUEST_IA32_LDTR_AR, &r))
DPRINTF("(error reading)\n");
else {
DPRINTF("0x%04llx\n ", r);
vmm_segment_desc_decode(r);
}
DPRINTF(" --Guest MSRs @ 0x%016llx (paddr: 0x%016llx)--\n",
(uint64_t)vcpu->vc_vmx_msr_exit_save_va,
(uint64_t)vcpu->vc_vmx_msr_exit_save_pa);
msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
for (i = 0; i < VCPU_REGS_NMSRS; i++) {
DPRINTF(" MSR %d @ %p : 0x%08llx (%s), "
"value=0x%016llx ",
i, &msr_store[i], msr_store[i].vms_index,
msr_name_decode(msr_store[i].vms_index),
msr_store[i].vms_data);
vmm_decode_msr_value(msr_store[i].vms_index,
msr_store[i].vms_data);
}
}
/*
* msr_name_decode
*
* Returns a human-readable name for the MSR supplied in 'msr'.
*
* Parameters:
* msr - The MSR to decode
*
* Return value:
* NULL-terminated character string containing the name of the MSR requested
*/
const char *
msr_name_decode(uint32_t msr)
{
/*
* Add as needed. Also consider adding a decode function when
* adding to this table.
*/
switch (msr) {
case MSR_TSC: return "TSC";
case MSR_APICBASE: return "APIC base";
case MSR_IA32_FEATURE_CONTROL: return "IA32 feature control";
case MSR_PERFCTR0: return "perf counter 0";
case MSR_PERFCTR1: return "perf counter 1";
case MSR_TEMPERATURE_TARGET: return "temperature target";
case MSR_MTRRcap: return "MTRR cap";
case MSR_PERF_STATUS: return "perf status";
case MSR_PERF_CTL: return "perf control";
case MSR_MTRRvarBase: return "MTRR variable base";
case MSR_MTRRfix64K_00000: return "MTRR fixed 64K";
case MSR_MTRRfix16K_80000: return "MTRR fixed 16K";
case MSR_MTRRfix4K_C0000: return "MTRR fixed 4K";
case MSR_CR_PAT: return "PAT";
case MSR_MTRRdefType: return "MTRR default type";
case MSR_EFER: return "EFER";
case MSR_STAR: return "STAR";
case MSR_LSTAR: return "LSTAR";
case MSR_CSTAR: return "CSTAR";
case MSR_SFMASK: return "SFMASK";
case MSR_FSBASE: return "FSBASE";
case MSR_GSBASE: return "GSBASE";
case MSR_KERNELGSBASE: return "KGSBASE";
case MSR_MISC_ENABLE: return "Misc Enable";
default: return "Unknown MSR";
}
}
/*
* vmm_segment_desc_decode
*
* Debug function to print segment information for supplied descriptor
*
* Parameters:
* val - The A/R bytes for the segment descriptor to decode
*/
void
vmm_segment_desc_decode(uint64_t val)
{
uint16_t ar;
uint8_t g, type, s, dpl, p, dib, l;
uint32_t unusable;
/* Exit early on unusable descriptors */
unusable = val & 0x10000;
if (unusable) {
DPRINTF("(unusable)\n");
return;
}
ar = (uint16_t)val;
g = (ar & 0x8000) >> 15;
dib = (ar & 0x4000) >> 14;
l = (ar & 0x2000) >> 13;
p = (ar & 0x80) >> 7;
dpl = (ar & 0x60) >> 5;
s = (ar & 0x10) >> 4;
type = (ar & 0xf);
DPRINTF("granularity=%d dib=%d l(64 bit)=%d present=%d sys=%d ",
g, dib, l, p, s);
DPRINTF("type=");
if (!s) {
switch (type) {
case SDT_SYSLDT: DPRINTF("ldt\n"); break;
case SDT_SYS386TSS: DPRINTF("tss (available)\n"); break;
case SDT_SYS386BSY: DPRINTF("tss (busy)\n"); break;
case SDT_SYS386CGT: DPRINTF("call gate\n"); break;
case SDT_SYS386IGT: DPRINTF("interrupt gate\n"); break;
case SDT_SYS386TGT: DPRINTF("trap gate\n"); break;
/* XXX handle 32 bit segment types by inspecting mode */
default: DPRINTF("unknown");
}
} else {
switch (type + 16) {
case SDT_MEMRO: DPRINTF("data, r/o\n"); break;
case SDT_MEMROA: DPRINTF("data, r/o, accessed\n"); break;
case SDT_MEMRW: DPRINTF("data, r/w\n"); break;
case SDT_MEMRWA: DPRINTF("data, r/w, accessed\n"); break;
case SDT_MEMROD: DPRINTF("data, r/o, expand down\n"); break;
case SDT_MEMRODA: DPRINTF("data, r/o, expand down, "
"accessed\n");
break;
case SDT_MEMRWD: DPRINTF("data, r/w, expand down\n"); break;
case SDT_MEMRWDA: DPRINTF("data, r/w, expand down, "
"accessed\n");
break;
case SDT_MEME: DPRINTF("code, x only\n"); break;
case SDT_MEMEA: DPRINTF("code, x only, accessed\n");
case SDT_MEMER: DPRINTF("code, r/x\n"); break;
case SDT_MEMERA: DPRINTF("code, r/x, accessed\n"); break;
case SDT_MEMEC: DPRINTF("code, x only, conforming\n"); break;
case SDT_MEMEAC: DPRINTF("code, x only, conforming, "
"accessed\n");
break;
case SDT_MEMERC: DPRINTF("code, r/x, conforming\n"); break;
case SDT_MEMERAC: DPRINTF("code, r/x, conforming, accessed\n");
break;
}
}
}
void
vmm_decode_cr0(uint64_t cr0)
{
struct vmm_reg_debug_info cr0_info[11] = {
{ CR0_PG, "PG ", "pg " },
{ CR0_CD, "CD ", "cd " },
{ CR0_NW, "NW ", "nw " },
{ CR0_AM, "AM ", "am " },
{ CR0_WP, "WP ", "wp " },
{ CR0_NE, "NE ", "ne " },
{ CR0_ET, "ET ", "et " },
{ CR0_TS, "TS ", "ts " },
{ CR0_EM, "EM ", "em " },
{ CR0_MP, "MP ", "mp " },
{ CR0_PE, "PE", "pe" }
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(cr0_info); i++)
if (cr0 & cr0_info[i].vrdi_bit)
DPRINTF("%s", cr0_info[i].vrdi_present);
else
DPRINTF("%s", cr0_info[i].vrdi_absent);
DPRINTF(")\n");
}
void
vmm_decode_cr3(uint64_t cr3)
{
struct vmm_reg_debug_info cr3_info[2] = {
{ CR3_PWT, "PWT ", "pwt "},
{ CR3_PCD, "PCD", "pcd"}
};
uint64_t cr4;
uint8_t i;
if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
DPRINTF("(error)\n");
return;
}
/* If CR4.PCIDE = 0, interpret CR3.PWT and CR3.PCD */
if ((cr4 & CR4_PCIDE) == 0) {
DPRINTF("(");
for (i = 0 ; i < nitems(cr3_info) ; i++)
if (cr3 & cr3_info[i].vrdi_bit)
DPRINTF("%s", cr3_info[i].vrdi_present);
else
DPRINTF("%s", cr3_info[i].vrdi_absent);
DPRINTF(")\n");
} else {
DPRINTF("(pcid=0x%llx)\n", cr3 & 0xFFF);
}
}
void
vmm_decode_cr4(uint64_t cr4)
{
struct vmm_reg_debug_info cr4_info[19] = {
{ CR4_PKE, "PKE ", "pke "},
{ CR4_SMAP, "SMAP ", "smap "},
{ CR4_SMEP, "SMEP ", "smep "},
{ CR4_OSXSAVE, "OSXSAVE ", "osxsave "},
{ CR4_PCIDE, "PCIDE ", "pcide "},
{ CR4_FSGSBASE, "FSGSBASE ", "fsgsbase "},
{ CR4_SMXE, "SMXE ", "smxe "},
{ CR4_VMXE, "VMXE ", "vmxe "},
{ CR4_OSXMMEXCPT, "OSXMMEXCPT ", "osxmmexcpt "},
{ CR4_OSFXSR, "OSFXSR ", "osfxsr "},
{ CR4_PCE, "PCE ", "pce "},
{ CR4_PGE, "PGE ", "pge "},
{ CR4_MCE, "MCE ", "mce "},
{ CR4_PAE, "PAE ", "pae "},
{ CR4_PSE, "PSE ", "pse "},
{ CR4_DE, "DE ", "de "},
{ CR4_TSD, "TSD ", "tsd "},
{ CR4_PVI, "PVI ", "pvi "},
{ CR4_VME, "VME", "vme"}
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(cr4_info); i++)
if (cr4 & cr4_info[i].vrdi_bit)
DPRINTF("%s", cr4_info[i].vrdi_present);
else
DPRINTF("%s", cr4_info[i].vrdi_absent);
DPRINTF(")\n");
}
void
vmm_decode_apicbase_msr_value(uint64_t apicbase)
{
struct vmm_reg_debug_info apicbase_info[3] = {
{ APICBASE_BSP, "BSP ", "bsp "},
{ APICBASE_ENABLE_X2APIC, "X2APIC ", "x2apic "},
{ APICBASE_GLOBAL_ENABLE, "GLB_EN", "glb_en"}
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(apicbase_info); i++)
if (apicbase & apicbase_info[i].vrdi_bit)
DPRINTF("%s", apicbase_info[i].vrdi_present);
else
DPRINTF("%s", apicbase_info[i].vrdi_absent);
DPRINTF(")\n");
}
void
vmm_decode_ia32_fc_value(uint64_t fcr)
{
struct vmm_reg_debug_info fcr_info[4] = {
{ IA32_FEATURE_CONTROL_LOCK, "LOCK ", "lock "},
{ IA32_FEATURE_CONTROL_SMX_EN, "SMX ", "smx "},
{ IA32_FEATURE_CONTROL_VMX_EN, "VMX ", "vmx "},
{ IA32_FEATURE_CONTROL_SENTER_EN, "SENTER ", "senter "}
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(fcr_info); i++)
if (fcr & fcr_info[i].vrdi_bit)
DPRINTF("%s", fcr_info[i].vrdi_present);
else
DPRINTF("%s", fcr_info[i].vrdi_absent);
if (fcr & IA32_FEATURE_CONTROL_SENTER_EN)
DPRINTF(" [SENTER param = 0x%llx]",
(fcr & IA32_FEATURE_CONTROL_SENTER_PARAM_MASK) >> 8);
DPRINTF(")\n");
}
void
vmm_decode_mtrrcap_value(uint64_t val)
{
struct vmm_reg_debug_info mtrrcap_info[3] = {
{ MTRRcap_FIXED, "FIXED ", "fixed "},
{ MTRRcap_WC, "WC ", "wc "},
{ MTRRcap_SMRR, "SMRR ", "smrr "}
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(mtrrcap_info); i++)
if (val & mtrrcap_info[i].vrdi_bit)
DPRINTF("%s", mtrrcap_info[i].vrdi_present);
else
DPRINTF("%s", mtrrcap_info[i].vrdi_absent);
if (val & MTRRcap_FIXED)
DPRINTF(" [nr fixed ranges = 0x%llx]",
(val & 0xff));
DPRINTF(")\n");
}
void
vmm_decode_perf_status_value(uint64_t val)
{
DPRINTF("(pstate ratio = 0x%llx)\n", (val & 0xffff));
}
void vmm_decode_perf_ctl_value(uint64_t val)
{
DPRINTF("(%s ", (val & PERF_CTL_TURBO) ? "TURBO" : "turbo");
DPRINTF("pstate req = 0x%llx)\n", (val & 0xfffF));
}
void
vmm_decode_mtrrdeftype_value(uint64_t mtrrdeftype)
{
struct vmm_reg_debug_info mtrrdeftype_info[2] = {
{ MTRRdefType_FIXED_ENABLE, "FIXED ", "fixed "},
{ MTRRdefType_ENABLE, "ENABLED ", "enabled "},
};
uint8_t i;
int type;
DPRINTF("(");
for (i = 0; i < nitems(mtrrdeftype_info); i++)
if (mtrrdeftype & mtrrdeftype_info[i].vrdi_bit)
DPRINTF("%s", mtrrdeftype_info[i].vrdi_present);
else
DPRINTF("%s", mtrrdeftype_info[i].vrdi_absent);
DPRINTF("type = ");
type = mtrr2mrt(mtrrdeftype & 0xff);
switch (type) {
case MDF_UNCACHEABLE: DPRINTF("UC"); break;
case MDF_WRITECOMBINE: DPRINTF("WC"); break;
case MDF_WRITETHROUGH: DPRINTF("WT"); break;
case MDF_WRITEPROTECT: DPRINTF("RO"); break;
case MDF_WRITEBACK: DPRINTF("WB"); break;
case MDF_UNKNOWN:
default:
DPRINTF("??");
break;
}
DPRINTF(")\n");
}
void
vmm_decode_efer_value(uint64_t efer)
{
struct vmm_reg_debug_info efer_info[4] = {
{ EFER_SCE, "SCE ", "sce "},
{ EFER_LME, "LME ", "lme "},
{ EFER_LMA, "LMA ", "lma "},
{ EFER_NXE, "NXE", "nxe"},
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(efer_info); i++)
if (efer & efer_info[i].vrdi_bit)
DPRINTF("%s", efer_info[i].vrdi_present);
else
DPRINTF("%s", efer_info[i].vrdi_absent);
DPRINTF(")\n");
}
void
vmm_decode_msr_value(uint64_t msr, uint64_t val)
{
switch (msr) {
case MSR_APICBASE: vmm_decode_apicbase_msr_value(val); break;
case MSR_IA32_FEATURE_CONTROL: vmm_decode_ia32_fc_value(val); break;
case MSR_MTRRcap: vmm_decode_mtrrcap_value(val); break;
case MSR_PERF_STATUS: vmm_decode_perf_status_value(val); break;
case MSR_PERF_CTL: vmm_decode_perf_ctl_value(val); break;
case MSR_MTRRdefType: vmm_decode_mtrrdeftype_value(val); break;
case MSR_EFER: vmm_decode_efer_value(val); break;
case MSR_MISC_ENABLE: vmm_decode_misc_enable_value(val); break;
default: DPRINTF("\n");
}
}
void
vmm_decode_rflags(uint64_t rflags)
{
struct vmm_reg_debug_info rflags_info[16] = {
{ PSL_C, "CF ", "cf "},
{ PSL_PF, "PF ", "pf "},
{ PSL_AF, "AF ", "af "},
{ PSL_Z, "ZF ", "zf "},
{ PSL_N, "SF ", "sf "}, /* sign flag */
{ PSL_T, "TF ", "tf "},
{ PSL_I, "IF ", "if "},
{ PSL_D, "DF ", "df "},
{ PSL_V, "OF ", "of "}, /* overflow flag */
{ PSL_NT, "NT ", "nt "},
{ PSL_RF, "RF ", "rf "},
{ PSL_VM, "VM ", "vm "},
{ PSL_AC, "AC ", "ac "},
{ PSL_VIF, "VIF ", "vif "},
{ PSL_VIP, "VIP ", "vip "},
{ PSL_ID, "ID ", "id "},
};
uint8_t i, iopl;
DPRINTF("(");
for (i = 0; i < nitems(rflags_info); i++)
if (rflags & rflags_info[i].vrdi_bit)
DPRINTF("%s", rflags_info[i].vrdi_present);
else
DPRINTF("%s", rflags_info[i].vrdi_absent);
iopl = (rflags & PSL_IOPL) >> 12;
DPRINTF("IOPL=%d", iopl);
DPRINTF(")\n");
}
void
vmm_decode_misc_enable_value(uint64_t misc)
{
struct vmm_reg_debug_info misc_info[10] = {
{ MISC_ENABLE_FAST_STRINGS, "FSE ", "fse "},
{ MISC_ENABLE_TCC, "TCC ", "tcc "},
{ MISC_ENABLE_PERF_MON_AVAILABLE, "PERF ", "perf "},
{ MISC_ENABLE_BTS_UNAVAILABLE, "BTSU ", "btsu "},
{ MISC_ENABLE_PEBS_UNAVAILABLE, "PEBSU ", "pebsu "},
{ MISC_ENABLE_EIST_ENABLED, "EIST ", "eist "},
{ MISC_ENABLE_ENABLE_MONITOR_FSM, "MFSM ", "mfsm "},
{ MISC_ENABLE_LIMIT_CPUID_MAXVAL, "CMAX ", "cmax "},
{ MISC_ENABLE_xTPR_MESSAGE_DISABLE, "xTPRD ", "xtprd "},
{ MISC_ENABLE_XD_BIT_DISABLE, "NXD", "nxd"},
};
uint8_t i;
DPRINTF("(");
for (i = 0; i < nitems(misc_info); i++)
if (misc & misc_info[i].vrdi_bit)
DPRINTF("%s", misc_info[i].vrdi_present);
else
DPRINTF("%s", misc_info[i].vrdi_absent);
DPRINTF(")\n");
}
const char *
vmm_decode_cpu_mode(struct vcpu *vcpu)
{
int mode = vmm_get_guest_cpu_mode(vcpu);
switch (mode) {
case VMM_CPU_MODE_REAL: return "real";
case VMM_CPU_MODE_PROT: return "16 bit protected";
case VMM_CPU_MODE_PROT32: return "32 bit protected";
case VMM_CPU_MODE_COMPAT: return "compatibility";
case VMM_CPU_MODE_LONG: return "long";
default: return "unknown";
}
}
#endif /* VMM_DEBUG */