src/sys/dev/ic/an.c

1651 lines
43 KiB
C

/* $OpenBSD: an.c,v 1.80 2024/04/13 23:44:11 jsg Exp $ */
/* $NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
*/
/*
* Copyright (c) 2004, 2005 David Young. All rights reserved.
* Copyright (c) 2004, 2005 OJC Technologies. All rights reserved.
* Copyright (c) 2004, 2005 Dayton Data Center Services, LLC. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL David Young AND CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
* IETF meeting.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/ucred.h>
#include <sys/socket.h>
#include <sys/timeout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/tree.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_var.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/ic/anreg.h>
#include <dev/ic/anvar.h>
struct cfdriver an_cd = {
NULL, "an", DV_IFNET
};
int an_reset(struct an_softc *);
void an_wait(struct an_softc *);
int an_init(struct ifnet *);
void an_stop(struct ifnet *, int);
void an_start(struct ifnet *);
void an_watchdog(struct ifnet *);
int an_ioctl(struct ifnet *, u_long, caddr_t);
int an_media_change(struct ifnet *);
void an_media_status(struct ifnet *, struct ifmediareq *);
int an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
int an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
int an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
int an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
int);
void an_rxeof(struct an_softc *);
void an_txeof(struct an_softc *, u_int16_t);
void an_linkstat_intr(struct an_softc *);
int an_cmd(struct an_softc *, int, int);
int an_seek_bap(struct an_softc *, int, int);
int an_read_bap(struct an_softc *, int, int, void *, int, int);
int an_write_bap(struct an_softc *, int, int, void *, int);
int an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
int an_read_rid(struct an_softc *, int, void *, int *);
int an_write_rid(struct an_softc *, int, void *, int);
int an_alloc_nicmem(struct an_softc *, int, int *);
int an_newstate(struct ieee80211com *, enum ieee80211_state, int);
#ifdef AN_DEBUG
int an_debug = 0;
#define DPRINTF(X) if (an_debug) printf X
#define DPRINTF2(X) if (an_debug > 1) printf X
#else
#define DPRINTF(X)
#define DPRINTF2(X)
#endif
#if BYTE_ORDER == BIG_ENDIAN
static __inline void
an_swap16(u_int16_t *p, int cnt)
{
for (; cnt--; p++)
*p = swap16(*p);
}
#define an_switch32(val) (val >> 16 | (val & 0xFFFF) << 16)
#else
#define an_swap16(p, cnt)
#define an_switch32(val) val
#endif
int
an_attach(struct an_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i;
struct an_rid_wepkey *akey;
int buflen, kid, rid;
int chan, chan_min, chan_max;
sc->sc_invalid = 0;
/* disable interrupts */
CSR_WRITE_2(sc, AN_INT_EN, 0);
CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);
// an_wait(sc);
if (an_reset(sc) != 0) {
sc->sc_invalid = 1;
return 1;
}
/* Load factory config */
if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
printf("%s: failed to load config data\n",
sc->sc_dev.dv_xname);
return (EIO);
}
/* Read the current configuration */
buflen = sizeof(sc->sc_config);
if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
printf("%s: read config failed\n", sc->sc_dev.dv_xname);
return(EIO);
}
an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
/* Read the card capabilities */
buflen = sizeof(sc->sc_caps);
if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
return(EIO);
}
an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3);
an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);
/* Read WEP settings from persistent memory */
akey = &sc->sc_buf.sc_wepkey;
buflen = sizeof(struct an_rid_wepkey);
rid = AN_RID_WEP_VOLATILE; /* first persistent key */
while (an_read_rid(sc, rid, akey, &buflen) == 0) {
an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
an_swap16((u_int16_t *)&akey->an_key, 8);
kid = akey->an_key_index;
DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
"mac[0]=%02x keylen=%d\n",
rid, buflen, sizeof(*akey), kid,
akey->an_mac_addr[0], akey->an_key_len));
if (kid == 0xffff) {
sc->sc_tx_perskey = akey->an_mac_addr[0];
sc->sc_tx_key = -1;
break;
}
if (kid >= IEEE80211_WEP_NKID)
break;
sc->sc_perskeylen[kid] = akey->an_key_len;
sc->sc_wepkeys[kid].an_wep_keylen = -1;
rid = AN_RID_WEP_PERSISTENT; /* for next key */
buflen = sizeof(struct an_rid_wepkey);
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
sc->sc_caps.an_fwrev >> 8,
sc->sc_caps.an_fwrev & 0xff,
sc->sc_caps.an_fwsubrev);
if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
printf("802.11 FH");
else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
printf("802.11 DS");
else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
printf("LM2000 DS");
else
printf("unknown (%x)", sc->sc_config.an_radiotype);
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = an_ioctl;
ifp->if_start = an_start;
ifp->if_watchdog = an_watchdog;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
#ifndef IEEE80211_STA_ONLY
ic->ic_caps |= IEEE80211_C_IBSS;
#endif
ic->ic_state = IEEE80211_S_INIT;
IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
switch (sc->sc_caps.an_regdomain) {
default:
case AN_REGDOMAIN_USA:
case AN_REGDOMAIN_CANADA:
chan_min = 1; chan_max = 11; break;
case AN_REGDOMAIN_EUROPE:
case AN_REGDOMAIN_AUSTRALIA:
chan_min = 1; chan_max = 13; break;
case AN_REGDOMAIN_JAPAN:
chan_min = 14; chan_max = 14; break;
case AN_REGDOMAIN_SPAIN:
chan_min = 10; chan_max = 11; break;
case AN_REGDOMAIN_FRANCE:
chan_min = 10; chan_max = 13; break;
case AN_REGDOMAIN_JAPANWIDE:
chan_min = 1; chan_max = 14; break;
}
for (chan = chan_min; chan <= chan_max; chan++) {
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
}
ic->ic_ibss_chan = &ic->ic_channels[chan_min];
/* Find supported rate */
for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
if (sc->sc_caps.an_rates[i] == 0)
continue;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
sc->sc_caps.an_rates[i];
}
/*
* Call MI attach routine.
*/
if_attach(ifp);
ieee80211_ifattach(ifp);
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = an_newstate;
ieee80211_media_init(ifp, an_media_change, an_media_status);
#if NBPFILTER > 0
bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;
bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + 64);
#endif
sc->sc_attached = 1;
return(0);
}
void
an_rxeof(struct an_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct an_rxframe frmhdr;
struct mbuf *m;
u_int16_t status;
int fid, gaplen, len, off;
uint8_t *gap;
fid = CSR_READ_2(sc, AN_RX_FID);
/* First read in the frame header */
if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
ifp->if_ierrors++;
DPRINTF(("an_rxeof: read fid %x failed\n", fid));
return;
}
an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
status = frmhdr.an_rx_status;
if ((status & AN_STAT_ERRSTAT) != 0 &&
ic->ic_opmode != IEEE80211_M_MONITOR) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
ifp->if_ierrors++;
DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
return;
}
/* the payload length field includes a 16-bit "mystery field" */
len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
off = ALIGN(sizeof(struct ieee80211_frame));
if (off + len > MCLBYTES) {
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
ifp->if_ierrors++;
DPRINTF(("an_rxeof: oversized packet %d\n", len));
return;
}
len = 0;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
ifp->if_ierrors++;
DPRINTF(("an_rxeof: MGET failed\n"));
return;
}
if (off + len + AN_GAPLEN_MAX > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
m_freem(m);
ifp->if_ierrors++;
DPRINTF(("an_rxeof: MCLGET failed\n"));
return;
}
}
m->m_data += off - sizeof(struct ieee80211_frame);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
gaplen = frmhdr.an_gaplen;
if (gaplen > AN_GAPLEN_MAX) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
m_freem(m);
ifp->if_ierrors++;
DPRINTF(("%s: gap too long\n", __func__));
return;
}
/*
* We don't need the 16-bit mystery field (payload length?),
* so read it into the region reserved for the 802.11 header.
*
* When Cisco Aironet 350 cards w/ firmware version 5 or
* greater operate with certain Cisco 350 APs,
* the "gap" is filled with the SNAP header. Read
* it in after the 802.11 header.
*/
gap = m->m_data + sizeof(struct ieee80211_frame) -
sizeof(uint16_t);
an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
gaplen + sizeof(u_int16_t));
} else
gaplen = 0;
an_read_bap(sc, fid, -1,
m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
len;
memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
struct mbuf mb;
struct an_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->ar_rate = frmhdr.an_rx_rate;
tap->ar_antsignal = frmhdr.an_rx_signal_strength;
tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
mb.m_data = (caddr_t)tap;
mb.m_len = sizeof(sc->sc_rxtapu);
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
}
#endif /* NBPFILTER > 0 */
wh = mtod(m, struct ieee80211_frame *);
memset(&rxi, 0, sizeof(rxi));
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
/*
* WEP is decrypted by hardware. Clear WEP bit
* header for ieee80211_input().
*/
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
}
ni = ieee80211_find_rxnode(ic, wh);
rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
ieee80211_input(ifp, m, ni, &rxi);
ieee80211_release_node(ic, ni);
}
void
an_txeof(struct an_softc *sc, u_int16_t status)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int cur, id;
sc->sc_tx_timer = 0;
ifq_clr_oactive(&ifp->if_snd);
id = CSR_READ_2(sc, AN_TX_CMP_FID);
CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));
if (status & AN_EV_TX_EXC)
ifp->if_oerrors++;
cur = sc->sc_txcur;
if (sc->sc_txd[cur].d_fid == id) {
sc->sc_txd[cur].d_inuse = 0;
DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
AN_INC(cur, AN_TX_RING_CNT);
sc->sc_txcur = cur;
} else {
for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
if (id == sc->sc_txd[cur].d_fid) {
sc->sc_txd[cur].d_inuse = 0;
break;
}
}
if (ifp->if_flags & IFF_DEBUG)
printf("%s: tx mismatch: "
"expected %x(%d), actual %x(%d)\n",
sc->sc_dev.dv_xname,
sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
id, cur);
}
}
int
an_intr(void *arg)
{
struct an_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int i;
u_int16_t status;
if (!sc->sc_enabled || sc->sc_invalid ||
(sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
(ifp->if_flags & IFF_RUNNING) == 0)
return 0;
if ((ifp->if_flags & IFF_UP) == 0) {
CSR_WRITE_2(sc, AN_INT_EN, 0);
CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
return 1;
}
/* maximum 10 loops per interrupt */
for (i = 0; i < 10; i++) {
if (!sc->sc_enabled || sc->sc_invalid)
return 1;
if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
DPRINTF(("an_intr: magic number changed: %x\n",
CSR_READ_2(sc, AN_SW0)));
sc->sc_invalid = 1;
return 1;
}
status = CSR_READ_2(sc, AN_EVENT_STAT);
CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
if ((status & AN_INTRS) == 0)
break;
if (status & AN_EV_RX)
an_rxeof(sc);
if (status & (AN_EV_TX | AN_EV_TX_EXC))
an_txeof(sc, status);
if (status & AN_EV_LINKSTAT)
an_linkstat_intr(sc);
if (ifq_is_oactive(&ifp->if_snd) == 0 &&
sc->sc_ic.ic_state == IEEE80211_S_RUN &&
!ifq_empty(&ifp->if_snd))
an_start(ifp);
}
return 1;
}
/* Must be called at proper protection level! */
int
an_cmd(struct an_softc *sc, int cmd, int val)
{
int i, stat;
/* make sure previous command completed */
if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
CSR_READ_2(sc, AN_COMMAND));
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
}
CSR_WRITE_2(sc, AN_PARAM0, val);
CSR_WRITE_2(sc, AN_PARAM1, 0);
CSR_WRITE_2(sc, AN_PARAM2, 0);
CSR_WRITE_2(sc, AN_COMMAND, cmd);
if (cmd == AN_CMD_FW_RESTART) {
/* XXX: should sleep here */
DELAY(100*1000);
}
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
break;
DELAY(10);
}
stat = CSR_READ_2(sc, AN_STATUS);
/* clear stuck command busy if necessary */
if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
/* Ack the command */
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
if (i == AN_TIMEOUT) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf("%s: command 0x%x param 0x%x timeout\n",
sc->sc_dev.dv_xname, cmd, val);
return ETIMEDOUT;
}
if (stat & AN_STAT_CMD_RESULT) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf("%s: command 0x%x param 0x%x status 0x%x "
"resp 0x%x 0x%x 0x%x\n",
sc->sc_dev.dv_xname, cmd, val, stat,
CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
CSR_READ_2(sc, AN_RESP2));
return EIO;
}
return 0;
}
int
an_reset(struct an_softc *sc)
{
DPRINTF(("an_reset\n"));
if (!sc->sc_enabled)
return ENXIO;
an_cmd(sc, AN_CMD_ENABLE, 0);
an_cmd(sc, AN_CMD_FW_RESTART, 0);
an_cmd(sc, AN_CMD_NOOP2, 0);
if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
printf("%s: reset failed\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
an_cmd(sc, AN_CMD_DISABLE, 0);
return 0;
}
void
an_linkstat_intr(struct an_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int16_t status;
status = CSR_READ_2(sc, AN_LINKSTAT);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
DPRINTF(("an_linkstat_intr: status 0x%x\n", status));
if (status == AN_LINKSTAT_ASSOCIATED) {
if (ic->ic_state != IEEE80211_S_RUN
#ifndef IEEE80211_STA_ONLY
|| ic->ic_opmode == IEEE80211_M_IBSS
#endif
)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
} else {
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
}
/*
* Wait for firmware come up after power enabled.
*/
void
an_wait(struct an_softc *sc)
{
int i;
CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
for (i = 0; i < 3000; i += 100) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
break;
tsleep_nsec(sc, PWAIT, "anatch", MSEC_TO_NSEC(100));
}
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
}
int
an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
{
int error, cnt, cnt2;
if (len == 0 || blen == 0)
return 0;
if (off == -1)
off = sc->sc_bap_off;
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = an_seek_bap(sc, id, off)) != 0)
return EIO;
}
cnt = (blen + 1) / 2;
CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
(void) CSR_READ_2(sc, AN_DATA0);
sc->sc_bap_off += cnt * 2;
return 0;
}
int
an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
{
int error, cnt;
if (buflen == 0)
return 0;
if (off == -1)
off = sc->sc_bap_off;
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = an_seek_bap(sc, id, off)) != 0)
return EIO;
}
cnt = (buflen + 1) / 2;
CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
sc->sc_bap_off += cnt * 2;
return 0;
}
int
an_seek_bap(struct an_softc *sc, int id, int off)
{
int i, status;
CSR_WRITE_2(sc, AN_SEL0, id);
CSR_WRITE_2(sc, AN_OFF0, off);
for (i = 0; ; i++) {
status = CSR_READ_2(sc, AN_OFF0);
if ((status & AN_OFF_BUSY) == 0)
break;
if (i == AN_TIMEOUT) {
printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
sc->sc_dev.dv_xname, id, off);
sc->sc_bap_off = AN_OFF_ERR; /* invalidate */
return ETIMEDOUT;
}
DELAY(10);
}
if (status & AN_OFF_ERR) {
printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
sc->sc_dev.dv_xname, id, off);
sc->sc_bap_off = AN_OFF_ERR; /* invalidate */
return EIO;
}
sc->sc_bap_id = id;
sc->sc_bap_off = off;
return 0;
}
int
an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
{
int error, len, cnt;
if (off == -1)
off = sc->sc_bap_off;
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = an_seek_bap(sc, id, off)) != 0)
return EIO;
}
for (len = 0; m != NULL; m = m->m_next) {
if (m->m_len == 0)
continue;
len = min(m->m_len, totlen);
if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
m_copydata(m, 0, totlen, &sc->sc_buf.sc_txbuf);
cnt = (totlen + 1) / 2;
an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt);
CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
sc->sc_buf.sc_val, cnt);
off += cnt * 2;
break;
}
cnt = len / 2;
an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt);
CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
cnt);
off += len;
totlen -= len;
}
sc->sc_bap_off = off;
return 0;
}
int
an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
{
int i;
if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
printf("%s: failed to allocate %d bytes on NIC\n",
sc->sc_dev.dv_xname, len);
return(ENOMEM);
}
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
break;
if (i == AN_TIMEOUT) {
printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
DELAY(10);
}
*idp = CSR_READ_2(sc, AN_ALLOC_FID);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
return 0;
}
int
an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
{
int error;
u_int16_t len;
/* Tell the NIC to enter record read mode. */
error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
if (error)
return error;
/* length in byte, including length itself */
error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
if (error)
return error;
len -= 2;
return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
}
int
an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
{
int error;
u_int16_t len;
/* length in byte, including length itself */
len = buflen + 2;
error = an_write_bap(sc, rid, 0, &len, sizeof(len));
if (error)
return error;
error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
if (error)
return error;
return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
}
int
an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct an_softc *sc = ifp->if_softc;
int s, error = 0;
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return ENXIO;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
error = an_init(ifp);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (sc->sc_enabled) {
/*
* To avoid rescanning another access point,
* do not call an_init() here. Instead, only
* reflect promisc mode settings.
*/
error = an_cmd(sc, AN_CMD_SET_MODE,
(ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
} else
error = an_init(ifp);
} else if (sc->sc_enabled)
an_stop(ifp, 1);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* The Aironet has no multicast filter. */
error = 0;
break;
case SIOCS80211NWKEY:
if ((error = suser(curproc)) != 0)
break;
error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
case SIOCG80211NWKEY:
error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
default:
error = ieee80211_ioctl(ifp, command, data);
break;
}
if (error == ENETRESET) {
if (sc->sc_enabled)
error = an_init(ifp);
else
error = 0;
}
splx(s);
return(error);
}
int
an_init(struct ifnet *ifp)
{
struct an_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i, error, fid;
DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
if (!sc->sc_enabled) {
if (sc->sc_enable)
(*sc->sc_enable)(sc);
an_wait(sc);
sc->sc_enabled = 1;
} else {
an_stop(ifp, 0);
if ((error = an_reset(sc)) != 0) {
printf("%s: failed to reset\n", ifp->if_xname);
an_stop(ifp, 1);
return error;
}
}
CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);
/* Allocate the TX buffers */
for (i = 0; i < AN_TX_RING_CNT; i++) {
if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
printf("%s: failed to allocate nic memory\n",
ifp->if_xname);
an_stop(ifp, 1);
return error;
}
DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
sc->sc_txd[i].d_fid = fid;
sc->sc_txd[i].d_inuse = 0;
}
sc->sc_txcur = sc->sc_txnext = 0;
IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; /*XXX*/
if (ic->ic_flags & IEEE80211_F_WEPON) {
sc->sc_config.an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE;
}
sc->sc_config.an_listen_interval = ic->ic_lintval;
sc->sc_config.an_beacon_period = ic->ic_lintval;
if (ic->ic_flags & IEEE80211_F_PMGTON)
sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
else
sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
sc->sc_config.an_ds_channel =
ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->sc_config.an_opmode =
AN_OPMODE_INFRASTRUCTURE_STATION;
sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
break;
#endif
case IEEE80211_M_MONITOR:
sc->sc_config.an_opmode =
AN_OPMODE_INFRASTRUCTURE_STATION;
sc->sc_config.an_rxmode =
AN_RXMODE_80211_MONITOR_ANYBSS;
sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
if (ic->ic_flags & IEEE80211_F_WEPON)
sc->sc_config.an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE |
AN_AUTHTYPE_ALLOW_UNENCRYPTED;
break;
default:
printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
an_stop(ifp, 1);
return EIO;
}
sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;
/* Set the ssid list */
memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
ic->ic_des_esslen;
if (ic->ic_des_esslen)
memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
ic->ic_des_essid, ic->ic_des_esslen);
an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16);
if ((error = an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
sizeof(sc->sc_buf.sc_ssidlist)))) {
printf("%s: failed to write ssid list\n", ifp->if_xname);
an_stop(ifp, 1);
return error;
}
/* Set the AP list */
memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
(void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
sizeof(sc->sc_buf.sc_aplist));
/* Set the encapsulation */
for (i = 0; i < AN_ENCAP_NENTS; i++) {
sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
sc->sc_buf.sc_encap.an_entry[i].an_action =
AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
}
(void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
sizeof(sc->sc_buf.sc_encap));
/* Set the WEP Keys */
if (ic->ic_flags & IEEE80211_F_WEPON)
an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
sc->sc_tx_key);
/* Set the configuration */
if ((error = an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
sizeof(sc->sc_config)))) {
printf("%s: failed to write config\n", ifp->if_xname);
an_stop(ifp, 1);
return error;
}
/* Enable the MAC */
if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
an_stop(ifp, 1);
return ENXIO;
}
if (ifp->if_flags & IFF_PROMISC)
an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ic->ic_state = IEEE80211_S_INIT;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
/* enable interrupts */
CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
return 0;
}
void
an_start(struct ifnet *ifp)
{
struct an_softc *sc = (struct an_softc *)ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
struct an_txframe frmhdr;
struct mbuf *m;
u_int16_t len;
int cur, fid;
if (!sc->sc_enabled || sc->sc_invalid) {
DPRINTF(("an_start: noop: enabled %d invalid %d\n",
sc->sc_enabled, sc->sc_invalid));
return;
}
memset(&frmhdr, 0, sizeof(frmhdr));
cur = sc->sc_txnext;
for (;;) {
if (ic->ic_state != IEEE80211_S_RUN) {
DPRINTF(("an_start: not running %d\n", ic->ic_state));
break;
}
m = ifq_deq_begin(&ifp->if_snd);
if (m == NULL) {
DPRINTF2(("an_start: no pending mbuf\n"));
break;
}
if (sc->sc_txd[cur].d_inuse) {
ifq_deq_rollback(&ifp->if_snd, m);
DPRINTF2(("an_start: %x/%d busy\n",
sc->sc_txd[cur].d_fid, cur));
ifq_set_oactive(&ifp->if_snd);
break;
}
ifq_deq_commit(&ifp->if_snd, m);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
ifp->if_oerrors++;
continue;
}
if (ni != NULL)
ieee80211_release_node(ic, ni);
#if NBPFILTER > 0
if (ic->ic_rawbpf)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
wh = mtod(m, struct ieee80211_frame *);
if (ic->ic_flags & IEEE80211_F_WEPON)
wh->i_fc[1] |= IEEE80211_FC1_WEP;
m_copydata(m, 0, sizeof(struct ieee80211_frame),
&frmhdr.an_whdr);
an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
/* insert payload length in front of llc/snap */
len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
if (mtod(m, u_long) & 0x01)
memcpy(mtod(m, caddr_t), &len, sizeof(len));
else
*mtod(m, u_int16_t *) = len;
/*
* XXX Aironet firmware apparently convert the packet
* with longer than 1500 bytes in length into LLC/SNAP.
* If we have 1500 bytes in ethernet payload, it is
* 1508 bytes including LLC/SNAP and will be inserted
* additional LLC/SNAP header with 1501-1508 in its
* ethertype !!
* So we skip LLC/SNAP header and force firmware to
* convert it to LLC/SNAP again.
*/
m_adj(m, sizeof(struct llc));
frmhdr.an_tx_ctl = AN_TXCTL_80211;
frmhdr.an_tx_payload_len = m->m_pkthdr.len;
frmhdr.an_gaplen = AN_TXGAP_802_11;
if (ic->ic_fixed_rate != -1)
frmhdr.an_tx_rate =
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
else
frmhdr.an_tx_rate = 0;
if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
m->m_pkthdr.len > AN_TX_MAX_LEN) {
ifp->if_oerrors++;
m_freem(m);
continue;
}
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
struct mbuf mb;
struct an_tx_radiotap_header *tap = &sc->sc_txtap;
tap->at_rate =
ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
tap->at_chan_freq =
ic->ic_bss->ni_chan->ic_freq;
tap->at_chan_flags =
ic->ic_bss->ni_chan->ic_flags;
mb.m_data = (caddr_t)tap;
mb.m_len = sizeof(sc->sc_txtapu);
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
}
#endif
fid = sc->sc_txd[cur].d_fid;
if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
ifp->if_oerrors++;
m_freem(m);
continue;
}
/* dummy write to avoid seek. */
an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
m_freem(m);
DPRINTF2(("an_start: send %d byte via %x/%d\n",
ntohs(len) + sizeof(struct ieee80211_frame),
fid, cur));
sc->sc_txd[cur].d_inuse = 1;
if (an_cmd(sc, AN_CMD_TX, fid)) {
printf("%s: xmit failed\n", ifp->if_xname);
sc->sc_txd[cur].d_inuse = 0;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
AN_INC(cur, AN_TX_RING_CNT);
sc->sc_txnext = cur;
}
}
void
an_stop(struct ifnet *ifp, int disable)
{
struct an_softc *sc = ifp->if_softc;
int i, s;
if (!sc->sc_enabled)
return;
DPRINTF(("an_stop: disable %d\n", disable));
s = splnet();
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
if (!sc->sc_invalid) {
an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
CSR_WRITE_2(sc, AN_INT_EN, 0);
an_cmd(sc, AN_CMD_DISABLE, 0);
for (i = 0; i < AN_TX_RING_CNT; i++)
an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
}
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
if (disable) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
}
splx(s);
}
void
an_watchdog(struct ifnet *ifp)
{
struct an_softc *sc = ifp->if_softc;
if (!sc->sc_enabled)
return;
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", ifp->if_xname);
ifp->if_oerrors++;
an_init(ifp);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
/* TBD factor with ieee80211_media_change */
int
an_media_change(struct ifnet *ifp)
{
struct an_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifmedia_entry *ime;
enum ieee80211_opmode newmode;
int i, rate, error = 0;
ime = ic->ic_media.ifm_cur;
if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
i = -1;
} else {
struct ieee80211_rateset *rs =
&ic->ic_sup_rates[IEEE80211_MODE_11B];
rate = ieee80211_media2rate(ime->ifm_media);
if (rate == 0)
return EINVAL;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
break;
}
if (i == rs->rs_nrates)
return EINVAL;
}
if (ic->ic_fixed_rate != i) {
ic->ic_fixed_rate = i;
error = ENETRESET;
}
#ifndef IEEE80211_STA_ONLY
if (ime->ifm_media & IFM_IEEE80211_ADHOC)
newmode = IEEE80211_M_IBSS;
else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
newmode = IEEE80211_M_HOSTAP;
else
#endif
if (ime->ifm_media & IFM_IEEE80211_MONITOR)
newmode = IEEE80211_M_MONITOR;
else
newmode = IEEE80211_M_STA;
if (ic->ic_opmode != newmode) {
ic->ic_opmode = newmode;
error = ENETRESET;
}
if (error == ENETRESET) {
if (sc->sc_enabled)
error = an_init(ifp);
else
error = 0;
}
ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
return error;
}
void
an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct an_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int rate, buflen;
if (sc->sc_enabled == 0) {
imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
imr->ifm_status = 0;
return;
}
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
buflen = sizeof(sc->sc_buf);
if (ic->ic_fixed_rate != -1)
rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
rate = 0;
else
rate = sc->sc_buf.sc_status.an_current_tx_rate;
imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
#endif
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
break;
}
}
int
an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
int error;
struct ieee80211com *ic = &sc->sc_ic;
u_int16_t prevauth;
error = 0;
prevauth = sc->sc_config.an_authtype;
switch (nwkey->i_wepon) {
case IEEE80211_NWKEY_OPEN:
sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
ic->ic_flags &= ~IEEE80211_F_WEPON;
break;
case IEEE80211_NWKEY_WEP:
case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
error = an_set_nwkey_wep(sc, nwkey);
if (error == 0 || error == ENETRESET) {
sc->sc_config.an_authtype =
AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
ic->ic_flags |= IEEE80211_F_WEPON;
}
break;
default:
error = EINVAL;
break;
}
if (error == 0 && prevauth != sc->sc_config.an_authtype)
error = ENETRESET;
return error;
}
int
an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
int i, txkey, anysetkey, needreset, error;
struct an_wepkey keys[IEEE80211_WEP_NKID];
error = 0;
memset(keys, 0, sizeof(keys));
anysetkey = needreset = 0;
/* load argument and sanity check */
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
if (keys[i].an_wep_keylen < 0)
continue;
if (keys[i].an_wep_keylen != 0 &&
keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
return EINVAL;
if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
return EINVAL;
if ((error = copyin(nwkey->i_key[i].i_keydat,
keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
return error;
anysetkey++;
}
txkey = nwkey->i_defkid - 1;
if (txkey >= 0) {
if (txkey >= IEEE80211_WEP_NKID)
return EINVAL;
/* default key must have a valid value */
if (keys[txkey].an_wep_keylen == 0 ||
(keys[txkey].an_wep_keylen < 0 &&
sc->sc_perskeylen[txkey] == 0))
return EINVAL;
anysetkey++;
}
DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
"pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
sc->sc_dev.dv_xname,
((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
sc->sc_tx_key,
sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
sc->sc_tx_perskey,
sc->sc_perskeylen[0], sc->sc_perskeylen[1],
sc->sc_perskeylen[2], sc->sc_perskeylen[3],
txkey,
keys[0].an_wep_keylen, keys[1].an_wep_keylen,
keys[2].an_wep_keylen, keys[3].an_wep_keylen));
if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
/* set temporary keys */
sc->sc_tx_key = txkey;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (keys[i].an_wep_keylen < 0)
continue;
memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
}
} else {
/* set persist keys */
if (anysetkey) {
/* prepare to write nvram */
if (!sc->sc_enabled) {
if (sc->sc_enable)
(*sc->sc_enable)(sc);
an_wait(sc);
sc->sc_enabled = 1;
error = an_write_wepkey(sc,
AN_RID_WEP_PERSISTENT, keys, txkey);
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
} else {
an_cmd(sc, AN_CMD_DISABLE, 0);
error = an_write_wepkey(sc,
AN_RID_WEP_PERSISTENT, keys, txkey);
an_cmd(sc, AN_CMD_ENABLE, 0);
}
if (error)
return error;
}
if (txkey >= 0)
sc->sc_tx_perskey = txkey;
if (sc->sc_tx_key >= 0) {
sc->sc_tx_key = -1;
needreset++;
}
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
memset(&sc->sc_wepkeys[i].an_wep_key, 0,
sizeof(sc->sc_wepkeys[i].an_wep_key));
sc->sc_wepkeys[i].an_wep_keylen = -1;
needreset++;
}
if (keys[i].an_wep_keylen >= 0)
sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
}
}
if (needreset) {
/* firmware restart to reload persistent key */
an_reset(sc);
}
if (anysetkey || needreset)
error = ENETRESET;
return error;
}
int
an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
int i;
if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
nwkey->i_wepon = IEEE80211_NWKEY_EAP;
else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
nwkey->i_wepon = IEEE80211_NWKEY_WEP;
else
nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
if (sc->sc_tx_key == -1)
nwkey->i_defkid = sc->sc_tx_perskey + 1;
else
nwkey->i_defkid = sc->sc_tx_key + 1;
if (nwkey->i_key[0].i_keydat == NULL)
return 0;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (nwkey->i_key[i].i_keydat == NULL)
continue;
/* do not show any keys to userland */
return EPERM;
}
return 0;
}
int
an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
{
int i, error;
struct an_rid_wepkey *akey;
error = 0;
akey = &sc->sc_buf.sc_wepkey;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
memset(akey, 0, sizeof(struct an_rid_wepkey));
if (keys[i].an_wep_keylen < 0 ||
keys[i].an_wep_keylen > sizeof(akey->an_key))
continue;
akey->an_key_len = keys[i].an_wep_keylen;
akey->an_key_index = i;
akey->an_mac_addr[0] = 1; /* default mac */
an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
an_swap16((u_int16_t *)&akey->an_key, 8);
if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
return error;
}
if (kid >= 0) {
memset(akey, 0, sizeof(struct an_rid_wepkey));
akey->an_key_index = 0xffff;
akey->an_mac_addr[0] = kid;
an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
akey->an_key_len = 0;
memset(akey->an_key, 0, sizeof(akey->an_key));
error = an_write_rid(sc, type, akey, sizeof(*akey));
}
return error;
}
int
an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct an_softc *sc = ic->ic_softc;
struct ieee80211_node *ni = ic->ic_bss;
enum ieee80211_state ostate;
int buflen;
ostate = ic->ic_state;
DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
ieee80211_state_name[nstate]));
switch (nstate) {
case IEEE80211_S_INIT:
ic->ic_flags &= ~IEEE80211_F_IBSSON;
return (*sc->sc_newstate)(ic, nstate, arg);
case IEEE80211_S_RUN:
buflen = sizeof(sc->sc_buf);
an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3);
an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16);
IEEE80211_ADDR_COPY(ni->ni_bssid,
sc->sc_buf.sc_status.an_cur_bssid);
IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
ni->ni_chan = &ic->ic_channels[
sc->sc_buf.sc_status.an_cur_channel];
ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
if (ni->ni_esslen > IEEE80211_NWID_LEN)
ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
ni->ni_esslen);
ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B]; /*XXX*/
if (ic->ic_if.if_flags & IFF_DEBUG) {
printf("%s: ", sc->sc_dev.dv_xname);
if (ic->ic_opmode == IEEE80211_M_STA)
printf("associated ");
else
printf("synchronized ");
printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf(" channel %u start %uMb\n",
sc->sc_buf.sc_status.an_cur_channel,
sc->sc_buf.sc_status.an_current_tx_rate/2);
}
break;
default:
break;
}
ic->ic_state = nstate;
/* skip standard ieee80211 handling */
return 0;
}
int
an_detach(struct an_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
if (!sc->sc_attached)
return 0;
s = splnet();
sc->sc_invalid = 1;
an_stop(ifp, 1);
ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
ieee80211_ifdetach(ifp);
if_detach(ifp);
splx(s);
return 0;
}