src/sys/dev/ic/bwi.c

9479 lines
221 KiB
C

/* $OpenBSD: bwi.c,v 1.135 2024/04/13 23:44:11 jsg Exp $ */
/*
* Copyright (c) 2007 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Sepherosa Ziehau <sepherosa@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $DragonFly: src/sys/dev/netif/bwi/bwimac.c,v 1.1 2007/09/08 06:15:54 sephe Exp $
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/bwireg.h>
#include <dev/ic/bwivar.h>
#include <uvm/uvm_extern.h>
#ifdef BWI_DEBUG
int bwi_debug = 1;
#define DPRINTF(l, x...) do { if ((l) <= bwi_debug) printf(x); } while (0)
#else
#define DPRINTF(l, x...)
#endif
/* XXX temporary porting goop */
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
/* XXX does not belong here */
#define IEEE80211_OFDM_PLCP_RATE_MASK 0x0000000f
#define IEEE80211_OFDM_PLCP_LEN_MASK 0x0001ffe0
/*
* Contention window (slots).
*/
#define IEEE80211_CW_MAX 1023 /* aCWmax */
#define IEEE80211_CW_MIN_0 31 /* DS/CCK aCWmin, ERP aCWmin(0) */
#define IEEE80211_CW_MIN_1 15 /* OFDM aCWmin, ERP aCWmin(1) */
#define __unused __attribute__((__unused__))
extern int ticks;
/* XXX end porting goop */
/* MAC */
struct bwi_retry_lim {
uint16_t shretry;
uint16_t shretry_fb;
uint16_t lgretry;
uint16_t lgretry_fb;
};
struct bwi_clock_freq {
uint clkfreq_min;
uint clkfreq_max;
};
/* XXX does not belong here */
struct ieee80211_ds_plcp_hdr {
uint8_t i_signal;
uint8_t i_service;
uint16_t i_length;
uint16_t i_crc;
} __packed;
enum bwi_modtype {
IEEE80211_MODTYPE_DS = 0, /* DS/CCK modulation */
IEEE80211_MODTYPE_PBCC = 1, /* PBCC modulation */
IEEE80211_MODTYPE_OFDM = 2 /* OFDM modulation */
};
#define IEEE80211_MODTYPE_CCK IEEE80211_MODTYPE_DS
/* MAC */
void bwi_tmplt_write_4(struct bwi_mac *, uint32_t, uint32_t);
void bwi_hostflags_write(struct bwi_mac *, uint64_t);
uint64_t bwi_hostflags_read(struct bwi_mac *);
uint16_t bwi_memobj_read_2(struct bwi_mac *, uint16_t, uint16_t);
uint32_t bwi_memobj_read_4(struct bwi_mac *, uint16_t, uint16_t);
void bwi_memobj_write_2(struct bwi_mac *, uint16_t, uint16_t,
uint16_t);
void bwi_memobj_write_4(struct bwi_mac *, uint16_t, uint16_t,
uint32_t);
int bwi_mac_lateattach(struct bwi_mac *);
int bwi_mac_init(struct bwi_mac *);
void bwi_mac_reset(struct bwi_mac *, int);
void bwi_mac_set_tpctl_11bg(struct bwi_mac *,
const struct bwi_tpctl *);
int bwi_mac_test(struct bwi_mac *);
void bwi_mac_setup_tpctl(struct bwi_mac *);
void bwi_mac_dummy_xmit(struct bwi_mac *);
void bwi_mac_init_tpctl_11bg(struct bwi_mac *);
void bwi_mac_detach(struct bwi_mac *);
int bwi_get_firmware(const char *, const uint8_t *, size_t,
size_t *, size_t *);
int bwi_fwimage_is_valid(struct bwi_softc *, uint8_t *,
size_t, char *, uint8_t);
int bwi_mac_fw_alloc(struct bwi_mac *);
void bwi_mac_fw_free(struct bwi_mac *);
int bwi_mac_fw_load(struct bwi_mac *);
int bwi_mac_gpio_init(struct bwi_mac *);
int bwi_mac_gpio_fini(struct bwi_mac *);
int bwi_mac_fw_load_iv(struct bwi_mac *, uint8_t *, size_t);
int bwi_mac_fw_init(struct bwi_mac *);
void bwi_mac_opmode_init(struct bwi_mac *);
void bwi_mac_hostflags_init(struct bwi_mac *);
void bwi_mac_bss_param_init(struct bwi_mac *);
void bwi_mac_set_retry_lim(struct bwi_mac *,
const struct bwi_retry_lim *);
void bwi_mac_set_ackrates(struct bwi_mac *,
const struct ieee80211_rateset *);
int bwi_mac_start(struct bwi_mac *);
int bwi_mac_stop(struct bwi_mac *);
int bwi_mac_config_ps(struct bwi_mac *);
void bwi_mac_reset_hwkeys(struct bwi_mac *);
void bwi_mac_shutdown(struct bwi_mac *);
int bwi_mac_get_property(struct bwi_mac *);
void bwi_mac_updateslot(struct bwi_mac *, int);
int bwi_mac_attach(struct bwi_softc *, int, uint8_t);
void bwi_mac_balance_atten(int *, int *);
void bwi_mac_adjust_tpctl(struct bwi_mac *, int, int);
void bwi_mac_calibrate_txpower(struct bwi_mac *,
enum bwi_txpwrcb_type);
void bwi_mac_lock(struct bwi_mac *);
void bwi_mac_unlock(struct bwi_mac *);
void bwi_mac_set_promisc(struct bwi_mac *, int);
/* PHY */
void bwi_phy_write(struct bwi_mac *, uint16_t, uint16_t);
uint16_t bwi_phy_read(struct bwi_mac *, uint16_t);
int bwi_phy_attach(struct bwi_mac *);
void bwi_phy_set_bbp_atten(struct bwi_mac *, uint16_t);
int bwi_phy_calibrate(struct bwi_mac *);
void bwi_tbl_write_2(struct bwi_mac *mac, uint16_t, uint16_t);
void bwi_tbl_write_4(struct bwi_mac *mac, uint16_t, uint32_t);
void bwi_nrssi_write(struct bwi_mac *, uint16_t, int16_t);
int16_t bwi_nrssi_read(struct bwi_mac *, uint16_t);
void bwi_phy_init_11a(struct bwi_mac *);
void bwi_phy_init_11g(struct bwi_mac *);
void bwi_phy_init_11b_rev2(struct bwi_mac *);
void bwi_phy_init_11b_rev4(struct bwi_mac *);
void bwi_phy_init_11b_rev5(struct bwi_mac *);
void bwi_phy_init_11b_rev6(struct bwi_mac *);
void bwi_phy_config_11g(struct bwi_mac *);
void bwi_phy_config_agc(struct bwi_mac *);
void bwi_set_gains(struct bwi_mac *, const struct bwi_gains *);
void bwi_phy_clear_state(struct bwi_phy *);
/* RF */
int16_t bwi_nrssi_11g(struct bwi_mac *);
struct bwi_rf_lo
*bwi_get_rf_lo(struct bwi_mac *, uint16_t, uint16_t);
int bwi_rf_lo_isused(struct bwi_mac *, const struct bwi_rf_lo *);
void bwi_rf_write(struct bwi_mac *, uint16_t, uint16_t);
uint16_t bwi_rf_read(struct bwi_mac *, uint16_t);
int bwi_rf_attach(struct bwi_mac *);
void bwi_rf_set_chan(struct bwi_mac *, uint, int);
void bwi_rf_get_gains(struct bwi_mac *);
void bwi_rf_init(struct bwi_mac *);
void bwi_rf_off_11a(struct bwi_mac *);
void bwi_rf_off_11bg(struct bwi_mac *);
void bwi_rf_off_11g_rev5(struct bwi_mac *);
void bwi_rf_workaround(struct bwi_mac *, uint);
struct bwi_rf_lo
*bwi_rf_lo_find(struct bwi_mac *, const struct bwi_tpctl *);
void bwi_rf_lo_adjust(struct bwi_mac *, const struct bwi_tpctl *);
void bwi_rf_lo_write(struct bwi_mac *, const struct bwi_rf_lo *);
int bwi_rf_gain_max_reached(struct bwi_mac *, int);
uint16_t bwi_bitswap4(uint16_t);
uint16_t bwi_phy812_value(struct bwi_mac *, uint16_t);
void bwi_rf_init_bcm2050(struct bwi_mac *);
uint16_t bwi_rf_calibval(struct bwi_mac *);
int32_t _bwi_adjust_devide(int32_t, int32_t);
int bwi_rf_calc_txpower(int8_t *, uint8_t, const int16_t[]);
int bwi_rf_map_txpower(struct bwi_mac *);
void bwi_rf_lo_update_11g(struct bwi_mac *);
uint32_t bwi_rf_lo_devi_measure(struct bwi_mac *, uint16_t);
uint16_t bwi_rf_get_tp_ctrl2(struct bwi_mac *);
uint8_t _bwi_rf_lo_update_11g(struct bwi_mac *, uint16_t);
void bwi_rf_lo_measure_11g(struct bwi_mac *,
const struct bwi_rf_lo *, struct bwi_rf_lo *, uint8_t);
void bwi_rf_calc_nrssi_slope_11b(struct bwi_mac *);
void bwi_rf_set_nrssi_ofs_11g(struct bwi_mac *);
void bwi_rf_calc_nrssi_slope_11g(struct bwi_mac *);
void bwi_rf_init_sw_nrssi_table(struct bwi_mac *);
void bwi_rf_init_hw_nrssi_table(struct bwi_mac *, uint16_t);
void bwi_rf_set_nrssi_thr_11b(struct bwi_mac *);
int32_t _nrssi_threshold(const struct bwi_rf *, int32_t);
void bwi_rf_set_nrssi_thr_11g(struct bwi_mac *);
void bwi_rf_clear_tssi(struct bwi_mac *);
void bwi_rf_clear_state(struct bwi_rf *);
void bwi_rf_on_11a(struct bwi_mac *);
void bwi_rf_on_11bg(struct bwi_mac *);
void bwi_rf_set_ant_mode(struct bwi_mac *, int);
int bwi_rf_get_latest_tssi(struct bwi_mac *, int8_t[], uint16_t);
int bwi_rf_tssi2dbm(struct bwi_mac *, int8_t, int8_t *);
int bwi_rf_calc_rssi_bcm2050(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
int bwi_rf_calc_rssi_bcm2053(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
int bwi_rf_calc_rssi_bcm2060(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
uint16_t bwi_rf_lo_measure_11b(struct bwi_mac *);
void bwi_rf_lo_update_11b(struct bwi_mac *);
/* INTERFACE */
uint16_t bwi_read_sprom(struct bwi_softc *, uint16_t);
void bwi_setup_desc32(struct bwi_softc *, struct bwi_desc32 *, int,
int, bus_addr_t, int, int);
void bwi_power_on(struct bwi_softc *, int);
int bwi_power_off(struct bwi_softc *, int);
int bwi_regwin_switch(struct bwi_softc *, struct bwi_regwin *,
struct bwi_regwin **);
int bwi_regwin_select(struct bwi_softc *, int);
void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
void bwi_led_attach(struct bwi_softc *);
void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
uint16_t bwi_led_onoff(struct bwi_led *, uint16_t, int);
void bwi_led_event(struct bwi_softc *, int);
void bwi_led_blink_start(struct bwi_softc *, int, int);
void bwi_led_blink_next(void *);
void bwi_led_blink_end(void *);
int bwi_bbp_attach(struct bwi_softc *);
int bwi_bus_init(struct bwi_softc *, struct bwi_mac *);
void bwi_get_card_flags(struct bwi_softc *);
void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
void bwi_get_clock_freq(struct bwi_softc *,
struct bwi_clock_freq *);
int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
int bwi_set_clock_delay(struct bwi_softc *);
int bwi_ioctl(struct ifnet *, u_long, caddr_t);
void bwi_start(struct ifnet *);
void bwi_watchdog(struct ifnet *);
void bwi_newstate_begin(struct bwi_softc *, enum ieee80211_state);
void bwi_init_statechg(struct bwi_softc *, int);
int bwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
int bwi_media_change(struct ifnet *);
void bwi_iter_func(void *, struct ieee80211_node *);
void bwi_amrr_timeout(void *);
void bwi_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
struct ieee80211_node
*bwi_node_alloc(struct ieee80211com *ic);
int bwi_dma_alloc(struct bwi_softc *);
void bwi_dma_free(struct bwi_softc *);
int bwi_dma_ring_alloc(struct bwi_softc *,
struct bwi_ring_data *, bus_size_t, uint32_t);
int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t,
bus_size_t);
void bwi_dma_txstats_free(struct bwi_softc *);
int bwi_dma_mbuf_create30(struct bwi_softc *);
int bwi_dma_mbuf_create(struct bwi_softc *);
void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
void bwi_enable_intrs(struct bwi_softc *, uint32_t);
void bwi_disable_intrs(struct bwi_softc *, uint32_t);
int bwi_init_tx_ring32(struct bwi_softc *, int);
void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
bus_addr_t, int, int);
int bwi_init_rx_ring32(struct bwi_softc *);
int bwi_init_txstats32(struct bwi_softc *);
void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
int, bus_addr_t, int);
int bwi_newbuf30(struct bwi_softc *, int, int);
int bwi_newbuf(struct bwi_softc *, int, int);
void bwi_set_addr_filter(struct bwi_softc *, uint16_t,
const uint8_t *);
int bwi_set_chan(struct bwi_softc *, uint8_t);
void bwi_next_scan(void *);
int bwi_rxeof(struct bwi_softc *, int);
int bwi_rxeof32(struct bwi_softc *);
void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
void bwi_free_txstats32(struct bwi_softc *);
void bwi_free_rx_ring32(struct bwi_softc *);
void bwi_free_tx_ring32(struct bwi_softc *, int);
uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phymode);
void bwi_ofdm_plcp_header(uint32_t *, int, uint8_t);
void bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *, int,
uint8_t);
void bwi_plcp_header(void *, int, uint8_t);
int bwi_encap(struct bwi_softc *, int, struct mbuf *,
struct ieee80211_node *);
void bwi_start_tx32(struct bwi_softc *, uint32_t, int);
void bwi_txeof_status32(struct bwi_softc *);
void _bwi_txeof(struct bwi_softc *, uint16_t);
void bwi_txeof_status(struct bwi_softc *, int);
void bwi_txeof(struct bwi_softc *);
int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
void bwi_bbp_power_off(struct bwi_softc *);
int bwi_get_pwron_delay(struct bwi_softc *sc);
int bwi_bus_attach(struct bwi_softc *);
const char *bwi_regwin_name(const struct bwi_regwin *);
int bwi_regwin_is_enabled(struct bwi_softc *, struct bwi_regwin *);
uint32_t bwi_regwin_disable_bits(struct bwi_softc *);
void bwi_regwin_enable(struct bwi_softc *, struct bwi_regwin *,
uint32_t);
void bwi_regwin_disable(struct bwi_softc *, struct bwi_regwin *,
uint32_t);
void bwi_set_bssid(struct bwi_softc *, const uint8_t *);
void bwi_updateslot(struct ieee80211com *);
void bwi_calibrate(void *);
int bwi_calc_rssi(struct bwi_softc *,
const struct bwi_rxbuf_hdr *);
uint8_t bwi_ack_rate(struct ieee80211_node *, uint8_t);
uint16_t bwi_txtime(struct ieee80211com *, struct ieee80211_node *,
uint, uint8_t, uint32_t);
enum bwi_modtype
bwi_rate2modtype(uint8_t);
static const uint8_t bwi_sup_macrev[] = { 2, 4, 5, 6, 7, 9, 10 };
#define SUP_BPHY(num) { .rev = num, .init = bwi_phy_init_11b_rev##num }
static const struct {
uint8_t rev;
void (*init)(struct bwi_mac *);
} bwi_sup_bphy[] = {
SUP_BPHY(2),
SUP_BPHY(4),
SUP_BPHY(5),
SUP_BPHY(6)
};
#undef SUP_BPHY
#define BWI_PHYTBL_WRSSI 0x1000
#define BWI_PHYTBL_NOISE_SCALE 0x1400
#define BWI_PHYTBL_NOISE 0x1800
#define BWI_PHYTBL_ROTOR 0x2000
#define BWI_PHYTBL_DELAY 0x2400
#define BWI_PHYTBL_RSSI 0x4000
#define BWI_PHYTBL_SIGMA_SQ 0x5000
#define BWI_PHYTBL_WRSSI_REV1 0x5400
#define BWI_PHYTBL_FREQ 0x5800
static const uint16_t bwi_phy_freq_11g_rev1[] =
{ BWI_PHY_FREQ_11G_REV1 };
static const uint16_t bwi_phy_noise_11g_rev1[] =
{ BWI_PHY_NOISE_11G_REV1 };
static const uint16_t bwi_phy_noise_11g[] =
{ BWI_PHY_NOISE_11G };
static const uint32_t bwi_phy_rotor_11g_rev1[] =
{ BWI_PHY_ROTOR_11G_REV1 };
static const uint16_t bwi_phy_noise_scale_11g_rev2[] =
{ BWI_PHY_NOISE_SCALE_11G_REV2 };
static const uint16_t bwi_phy_noise_scale_11g_rev7[] =
{ BWI_PHY_NOISE_SCALE_11G_REV7 };
static const uint16_t bwi_phy_noise_scale_11g[] =
{ BWI_PHY_NOISE_SCALE_11G };
static const uint16_t bwi_phy_sigma_sq_11g_rev2[] =
{ BWI_PHY_SIGMA_SQ_11G_REV2 };
static const uint16_t bwi_phy_sigma_sq_11g_rev7[] =
{ BWI_PHY_SIGMA_SQ_11G_REV7 };
static const uint32_t bwi_phy_delay_11g_rev1[] =
{ BWI_PHY_DELAY_11G_REV1 };
/* RF */
#define RF_LO_WRITE(mac, lo) bwi_rf_lo_write((mac), (lo))
#define BWI_RF_2GHZ_CHAN(chan) \
(ieee80211_ieee2mhz((chan), IEEE80211_CHAN_2GHZ) - 2400)
#define BWI_DEFAULT_IDLE_TSSI 52
struct rf_saveregs {
uint16_t phy_01;
uint16_t phy_03;
uint16_t phy_0a;
uint16_t phy_15;
uint16_t phy_2a;
uint16_t phy_30;
uint16_t phy_35;
uint16_t phy_60;
uint16_t phy_429;
uint16_t phy_802;
uint16_t phy_811;
uint16_t phy_812;
uint16_t phy_814;
uint16_t phy_815;
uint16_t rf_43;
uint16_t rf_52;
uint16_t rf_7a;
};
#define SAVE_RF_REG(mac, regs, n) (regs)->rf_##n = RF_READ((mac), 0x##n)
#define RESTORE_RF_REG(mac, regs, n) RF_WRITE((mac), 0x##n, (regs)->rf_##n)
#define SAVE_PHY_REG(mac, regs, n) (regs)->phy_##n = PHY_READ((mac), 0x##n)
#define RESTORE_PHY_REG(mac, regs, n) PHY_WRITE((mac), 0x##n, (regs)->phy_##n)
static const int8_t bwi_txpower_map_11b[BWI_TSSI_MAX] =
{ BWI_TXPOWER_MAP_11B };
static const int8_t bwi_txpower_map_11g[BWI_TSSI_MAX] =
{ BWI_TXPOWER_MAP_11G };
/* IF_BWI */
struct bwi_myaddr_bssid {
uint8_t myaddr[IEEE80211_ADDR_LEN];
uint8_t bssid[IEEE80211_ADDR_LEN];
} __packed;
#define IEEE80211_DS_PLCP_SERVICE_LOCKED 0x04
#define IEEE80211_DS_PLCL_SERVICE_PBCC 0x08
#define IEEE80211_DS_PLCP_SERVICE_LENEXT5 0x20
#define IEEE80211_DS_PLCP_SERVICE_LENEXT6 0x40
#define IEEE80211_DS_PLCP_SERVICE_LENEXT7 0x80
struct cfdriver bwi_cd = {
NULL, "bwi", DV_IFNET
};
static const struct {
uint16_t did_min;
uint16_t did_max;
uint16_t bbp_id;
} bwi_bbpid_map[] = {
{ 0x4301, 0x4301, 0x4301 },
{ 0x4305, 0x4307, 0x4307 },
{ 0x4402, 0x4403, 0x4402 },
{ 0x4610, 0x4615, 0x4610 },
{ 0x4710, 0x4715, 0x4710 },
{ 0x4720, 0x4725, 0x4309 }
};
static const struct {
uint16_t bbp_id;
int nregwin;
} bwi_regwin_count[] = {
{ 0x4301, 5 },
{ 0x4306, 6 },
{ 0x4307, 5 },
{ 0x4310, 8 },
{ 0x4401, 3 },
{ 0x4402, 3 },
{ 0x4610, 9 },
{ 0x4704, 9 },
{ 0x4710, 9 },
{ 0x5365, 7 }
};
#define CLKSRC(src) \
[BWI_CLKSRC_ ## src] = { \
.freq_min = BWI_CLKSRC_ ##src## _FMIN, \
.freq_max = BWI_CLKSRC_ ##src## _FMAX \
}
static const struct {
uint freq_min;
uint freq_max;
} bwi_clkfreq[BWI_CLKSRC_MAX] = {
CLKSRC(LP_OSC),
CLKSRC(CS_OSC),
CLKSRC(PCI)
};
#undef CLKSRC
#define VENDOR_LED_ACT(vendor) \
{ \
.vid = PCI_VENDOR_##vendor, \
.led_act = { BWI_VENDOR_LED_ACT_##vendor } \
}
const struct {
uint16_t vid;
uint8_t led_act[BWI_LED_MAX];
} bwi_vendor_led_act[] = {
VENDOR_LED_ACT(COMPAQ),
VENDOR_LED_ACT(LINKSYS)
};
const uint8_t bwi_default_led_act[BWI_LED_MAX] =
{ BWI_VENDOR_LED_ACT_DEFAULT };
#undef VENDOR_LED_ACT
const struct {
int on_dur;
int off_dur;
} bwi_led_duration[109] = {
{ 400, 100 }, { 0, 0 }, { 150 , 75 }, { 0, 0 }, { 90, 45 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 66, 34 }, { 53, 26 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 42, 21 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 35, 17 }, { 0, 0 }, { 32, 16 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 21, 10 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 16, 8 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 11, 5 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 9, 4 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 7, 3 }
};
static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
/* CODE */
int
bwi_intr(void *xsc)
{
struct bwi_softc *sc = xsc;
struct bwi_mac *mac;
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t intr_status;
uint32_t txrx_intr_status[BWI_TXRX_NRING];
int i, txrx_error, tx = 0, rx_data = -1;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return (0);
/*
* Get interrupt status
*/
intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
if (intr_status == 0xffffffff) /* Not for us */
return (0);
intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
if (intr_status == 0) /* Nothing is interesting */
return (0);
DPRINTF(2, "%s: intr status 0x%08x\n",
sc->sc_dev.dv_xname, intr_status);
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
txrx_error = 0;
for (i = 0; i < BWI_TXRX_NRING; ++i) {
uint32_t mask;
if (BWI_TXRX_IS_RX(i))
mask = BWI_TXRX_RX_INTRS;
else
mask = BWI_TXRX_TX_INTRS;
txrx_intr_status[i] =
CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
printf("%s: intr fatal TX/RX (%d) error 0x%08x\n",
sc->sc_dev.dv_xname, i, txrx_intr_status[i]);
txrx_error = 1;
}
}
/*
* Acknowledge interrupt
*/
CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
for (i = 0; i < BWI_TXRX_NRING; ++i)
CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
/* Disable all interrupts */
bwi_disable_intrs(sc, BWI_ALL_INTRS);
if (intr_status & BWI_INTR_PHY_TXERR) {
if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
printf("intr PHY TX error\n");
/* XXX to netisr0? */
bwi_init_statechg(sc, 0);
return (1);
}
}
if (txrx_error) {
/* TODO: reset device */
}
if (intr_status & BWI_INTR_TBTT)
bwi_mac_config_ps(mac);
if (intr_status & BWI_INTR_EO_ATIM)
printf("%s: EO_ATIM\n", sc->sc_dev.dv_xname);
if (intr_status & BWI_INTR_PMQ) {
for (;;) {
if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
break;
}
CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
}
if (intr_status & BWI_INTR_NOISE)
printf("%s: intr noise\n", sc->sc_dev.dv_xname);
if (txrx_intr_status[0] & BWI_TXRX_INTR_RX)
rx_data = sc->sc_rxeof(sc);
if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
sc->sc_txeof_status(sc);
tx = 1;
}
if (intr_status & BWI_INTR_TX_DONE) {
bwi_txeof(sc);
tx = 1;
}
/* Re-enable interrupts */
bwi_enable_intrs(sc, BWI_INIT_INTRS);
if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
int evt = BWI_LED_EVENT_NONE;
if (tx && rx_data > 0) {
if (sc->sc_rx_rate > sc->sc_tx_rate)
evt = BWI_LED_EVENT_RX;
else
evt = BWI_LED_EVENT_TX;
} else if (tx) {
evt = BWI_LED_EVENT_TX;
} else if (rx_data > 0) {
evt = BWI_LED_EVENT_RX;
} else if (rx_data == 0) {
evt = BWI_LED_EVENT_POLL;
}
if (evt != BWI_LED_EVENT_NONE)
bwi_led_event(sc, evt);
}
return (1);
}
int
bwi_attach(struct bwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct bwi_mac *mac;
struct bwi_phy *phy;
int i, error;
DPRINTF(1, "\n");
/* Initialize LED vars */
sc->sc_led_idle = (2350 * hz) / 1000;
sc->sc_led_blink = 1;
/* AMRR rate control */
sc->sc_amrr.amrr_min_success_threshold = 1;
sc->sc_amrr.amrr_max_success_threshold = 15;
timeout_set(&sc->sc_amrr_ch, bwi_amrr_timeout, sc);
timeout_set(&sc->sc_scan_ch, bwi_next_scan, sc);
timeout_set(&sc->sc_calib_ch, bwi_calibrate, sc);
bwi_power_on(sc, 1);
error = bwi_bbp_attach(sc);
if (error)
goto fail;
error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
if (error)
goto fail;
if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
error = bwi_set_clock_delay(sc);
if (error)
goto fail;
error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
if (error)
goto fail;
error = bwi_get_pwron_delay(sc);
if (error)
goto fail;
}
error = bwi_bus_attach(sc);
if (error)
goto fail;
bwi_get_card_flags(sc);
bwi_led_attach(sc);
for (i = 0; i < sc->sc_nmac; ++i) {
struct bwi_regwin *old;
mac = &sc->sc_mac[i];
error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
if (error)
goto fail;
error = bwi_mac_lateattach(mac);
if (error)
goto fail;
error = bwi_regwin_switch(sc, old, NULL);
if (error)
goto fail;
}
/*
* XXX First MAC is known to exist
* TODO2
*/
mac = &sc->sc_mac[0];
phy = &mac->mac_phy;
bwi_bbp_power_off(sc);
error = bwi_dma_alloc(sc);
if (error)
goto fail;
/* setup interface */
ifp->if_softc = sc;
ifp->if_ioctl = bwi_ioctl;
ifp->if_start = bwi_start;
ifp->if_watchdog = bwi_watchdog;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifq_init_maxlen(&ifp->if_snd, IFQ_MAXLEN);
/* Get locale */
sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
BWI_SPROM_CARD_INFO_LOCALE);
DPRINTF(1, "%s: locale: %d\n", sc->sc_dev.dv_xname, sc->sc_locale);
/*
* Setup ratesets, phytype, channels and get MAC address
*/
if (phy->phy_mode == IEEE80211_MODE_11B ||
phy->phy_mode == IEEE80211_MODE_11G) {
uint16_t chan_flags;
ic->ic_sup_rates[IEEE80211_MODE_11B] =
ieee80211_std_rateset_11b;
if (phy->phy_mode == IEEE80211_MODE_11B) {
chan_flags = IEEE80211_CHAN_B;
ic->ic_phytype = IEEE80211_T_DS;
} else {
chan_flags = IEEE80211_CHAN_CCK |
IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN |
IEEE80211_CHAN_2GHZ;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_sup_rates[IEEE80211_MODE_11G] =
ieee80211_std_rateset_11g;
}
/* XXX depend on locale */
for (i = 1; i <= 14; ++i) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags = chan_flags;
}
bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_myaddr);
if (IEEE80211_IS_MULTICAST(ic->ic_myaddr)) {
bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_myaddr);
if (IEEE80211_IS_MULTICAST(ic->ic_myaddr)) {
printf("%s: invalid MAC address: %s\n",
sc->sc_dev.dv_xname,
ether_sprintf(ic->ic_myaddr));
}
}
} else if (phy->phy_mode == IEEE80211_MODE_11A) {
/* TODO: 11A */
error = ENXIO;
goto fail;
} else
panic("unknown phymode %d", phy->phy_mode);
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
sc->sc_fw_version = BWI_FW_VERSION3;
sc->sc_dwell_time = 200;
ic->ic_caps = IEEE80211_C_SHSLOT |
IEEE80211_C_SHPREAMBLE |
IEEE80211_C_WEP |
IEEE80211_C_RSN |
IEEE80211_C_MONITOR;
ic->ic_state = IEEE80211_S_INIT;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_updateslot = bwi_updateslot;
if_attach(ifp);
ieee80211_ifattach(ifp);
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = bwi_newstate;
ic->ic_newassoc = bwi_newassoc;
ic->ic_node_alloc = bwi_node_alloc;
ieee80211_media_init(ifp, bwi_media_change, ieee80211_media_status);
if (error) {
ieee80211_ifdetach(ifp);
goto fail;
}
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + 64);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(BWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(BWI_TX_RADIOTAP_PRESENT);
#endif
return (0);
fail:
return (error);
}
int
bwi_detach(void *arg)
{
struct bwi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s, i;
bwi_stop(sc, 1);
ieee80211_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < sc->sc_nmac; ++i)
bwi_mac_detach(&sc->sc_mac[i]);
s = splvm();
bwi_dma_free(sc);
splx(s);
bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
return (0);
}
/* MAC */
void
bwi_tmplt_write_4(struct bwi_mac *mac, uint32_t ofs, uint32_t val)
{
struct bwi_softc *sc = mac->mac_sc;
if (mac->mac_flags & BWI_MAC_F_BSWAP)
val = swap32(val);
CSR_WRITE_4(sc, BWI_MAC_TMPLT_CTRL, ofs);
CSR_WRITE_4(sc, BWI_MAC_TMPLT_DATA, val);
}
void
bwi_hostflags_write(struct bwi_mac *mac, uint64_t flags)
{
uint64_t val;
val = flags & 0xffff;
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_HFLAGS_LO, val);
val = (flags >> 16) & 0xffff;
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_HFLAGS_MI, val);
/* HI has unclear meaning, so leave it as it is */
}
uint64_t
bwi_hostflags_read(struct bwi_mac *mac)
{
uint64_t flags, val;
/* HI has unclear meaning, so don't touch it */
flags = 0;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_HFLAGS_MI);
flags |= val << 16;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_HFLAGS_LO);
flags |= val;
return (flags);
}
uint16_t
bwi_memobj_read_2(struct bwi_mac *mac, uint16_t obj_id, uint16_t ofs0)
{
struct bwi_softc *sc = mac->mac_sc;
uint32_t data_reg;
int ofs;
data_reg = BWI_MOBJ_DATA;
ofs = ofs0 / 4;
if (ofs0 % 4 != 0)
data_reg = BWI_MOBJ_DATA_UNALIGN;
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
return (CSR_READ_2(sc, data_reg));
}
uint32_t
bwi_memobj_read_4(struct bwi_mac *mac, uint16_t obj_id, uint16_t ofs0)
{
struct bwi_softc *sc = mac->mac_sc;
int ofs;
ofs = ofs0 / 4;
if (ofs0 % 4 != 0) {
uint32_t ret;
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
ret = CSR_READ_2(sc, BWI_MOBJ_DATA_UNALIGN);
ret <<= 16;
CSR_WRITE_4(sc, BWI_MOBJ_CTRL,
BWI_MOBJ_CTRL_VAL(obj_id, ofs + 1));
ret |= CSR_READ_2(sc, BWI_MOBJ_DATA);
return (ret);
} else {
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
return (CSR_READ_4(sc, BWI_MOBJ_DATA));
}
}
void
bwi_memobj_write_2(struct bwi_mac *mac, uint16_t obj_id, uint16_t ofs0,
uint16_t v)
{
struct bwi_softc *sc = mac->mac_sc;
uint32_t data_reg;
int ofs;
data_reg = BWI_MOBJ_DATA;
ofs = ofs0 / 4;
if (ofs0 % 4 != 0)
data_reg = BWI_MOBJ_DATA_UNALIGN;
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
CSR_WRITE_2(sc, data_reg, v);
}
void
bwi_memobj_write_4(struct bwi_mac *mac, uint16_t obj_id, uint16_t ofs0,
uint32_t v)
{
struct bwi_softc *sc = mac->mac_sc;
int ofs;
ofs = ofs0 / 4;
if (ofs0 % 4 != 0) {
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
CSR_WRITE_2(sc, BWI_MOBJ_DATA_UNALIGN, v >> 16);
CSR_WRITE_4(sc, BWI_MOBJ_CTRL,
BWI_MOBJ_CTRL_VAL(obj_id, ofs + 1));
CSR_WRITE_2(sc, BWI_MOBJ_DATA, v & 0xffff);
} else {
CSR_WRITE_4(sc, BWI_MOBJ_CTRL, BWI_MOBJ_CTRL_VAL(obj_id, ofs));
CSR_WRITE_4(sc, BWI_MOBJ_DATA, v);
}
}
int
bwi_mac_lateattach(struct bwi_mac *mac)
{
int error;
if (mac->mac_rev >= 5)
CSR_READ_4(mac->mac_sc, BWI_STATE_HI); /* dummy read */
bwi_mac_reset(mac, 1);
error = bwi_phy_attach(mac);
if (error)
return (error);
error = bwi_rf_attach(mac);
if (error)
return (error);
/* Link 11B/G PHY, unlink 11A PHY */
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11A)
bwi_mac_reset(mac, 0);
else
bwi_mac_reset(mac, 1);
error = bwi_mac_test(mac);
if (error)
return (error);
error = bwi_mac_get_property(mac);
if (error)
return (error);
error = bwi_rf_map_txpower(mac);
if (error)
return (error);
bwi_rf_off(mac);
CSR_WRITE_2(mac->mac_sc, BWI_BBP_ATTEN, BWI_BBP_ATTEN_MAGIC);
bwi_regwin_disable(mac->mac_sc, &mac->mac_regwin, 0);
return (0);
}
int
bwi_mac_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
int error, i;
/* Clear MAC/PHY/RF states */
bwi_mac_setup_tpctl(mac);
bwi_rf_clear_state(&mac->mac_rf);
bwi_phy_clear_state(&mac->mac_phy);
/* Enable MAC and linked it to PHY */
if (!bwi_regwin_is_enabled(sc, &mac->mac_regwin))
bwi_mac_reset(mac, 1);
/* Initialize backplane */
error = bwi_bus_init(sc, mac);
if (error)
return (error);
/* XXX work around for hardware bugs? */
if (sc->sc_bus_regwin.rw_rev <= 5 &&
sc->sc_bus_regwin.rw_type != BWI_REGWIN_T_BUSPCIE) {
CSR_SETBITS_4(sc, BWI_CONF_LO,
__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
}
/* Calibrate PHY */
error = bwi_phy_calibrate(mac);
if (error) {
printf("%s: PHY calibrate failed\n", sc->sc_dev.dv_xname);
return (error);
}
/* Prepare to initialize firmware */
CSR_WRITE_4(sc, BWI_MAC_STATUS,
BWI_MAC_STATUS_UCODE_JUMP0 |
BWI_MAC_STATUS_IHREN);
/*
* Load and initialize firmwares
*/
error = bwi_mac_fw_alloc(mac);
if (error)
return (error);
error = bwi_mac_fw_load(mac);
if (error)
return (error);
error = bwi_mac_gpio_init(mac);
if (error)
return (error);
error = bwi_mac_fw_init(mac);
if (error)
return (error);
/*
* Turn on RF
*/
bwi_rf_on(mac);
/* TODO: LED, hardware rf enabled is only related to LED setting */
/*
* Initialize PHY
*/
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0);
bwi_phy_init(mac);
/* TODO: interference mitigation */
/*
* Setup antenna mode
*/
bwi_rf_set_ant_mode(mac, mac->mac_rf.rf_ant_mode);
/*
* Initialize operation mode (RX configuration)
*/
bwi_mac_opmode_init(mac);
/* XXX what's these */
if (mac->mac_rev < 3) {
CSR_WRITE_2(sc, 0x60e, 0);
CSR_WRITE_2(sc, 0x610, 0x8000);
CSR_WRITE_2(sc, 0x604, 0);
CSR_WRITE_2(sc, 0x606, 0x200);
} else {
CSR_WRITE_4(sc, 0x188, 0x80000000);
CSR_WRITE_4(sc, 0x18c, 0x2000000);
}
/*
* Initialize TX/RX interrupts' mask
*/
CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, BWI_INTR_TIMER1);
for (i = 0; i < BWI_TXRX_NRING; ++i) {
uint32_t intrs;
if (BWI_TXRX_IS_RX(i))
intrs = BWI_TXRX_RX_INTRS;
else
intrs = BWI_TXRX_TX_INTRS;
CSR_WRITE_4(sc, BWI_TXRX_INTR_MASK(i), intrs);
}
/* XXX what's this */
CSR_SETBITS_4(sc, BWI_STATE_LO, 0x100000);
/* Setup MAC power up delay */
CSR_WRITE_2(sc, BWI_MAC_POWERUP_DELAY, sc->sc_pwron_delay);
/* Set MAC regwin revision */
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_MACREV, mac->mac_rev);
/*
* Initialize host flags
*/
bwi_mac_hostflags_init(mac);
/*
* Initialize BSS parameters
*/
bwi_mac_bss_param_init(mac);
/*
* Initialize TX rings
*/
for (i = 0; i < BWI_TX_NRING; ++i) {
error = sc->sc_init_tx_ring(sc, i);
if (error) {
printf("%s: can't initialize %dth TX ring\n",
sc->sc_dev.dv_xname, i);
return (error);
}
}
/*
* Initialize RX ring
*/
error = sc->sc_init_rx_ring(sc);
if (error) {
printf("%s: can't initialize RX ring\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* Initialize TX stats if the current MAC uses that
*/
if (mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) {
error = sc->sc_init_txstats(sc);
if (error) {
printf("%s: can't initialize TX stats ring\n",
sc->sc_dev.dv_xname);
return (error);
}
}
/* XXX what's these */
CSR_WRITE_2(sc, 0x612, 0x50); /* Force Pre-TBTT to 80? */
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, 0x416, 0x50);
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, 0x414, 0x1f4);
mac->mac_flags |= BWI_MAC_F_INITED;
return (0);
}
void
bwi_mac_reset(struct bwi_mac *mac, int link_phy)
{
struct bwi_softc *sc = mac->mac_sc;
uint32_t flags, state_lo, status;
flags = BWI_STATE_LO_FLAG_PHYRST | BWI_STATE_LO_FLAG_PHYCLKEN;
if (link_phy)
flags |= BWI_STATE_LO_FLAG_PHYLNK;
bwi_regwin_enable(sc, &mac->mac_regwin, flags);
DELAY(2000);
state_lo = CSR_READ_4(sc, BWI_STATE_LO);
state_lo |= BWI_STATE_LO_GATED_CLOCK;
state_lo &= ~__SHIFTIN(BWI_STATE_LO_FLAG_PHYRST,
BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1000);
state_lo &= ~BWI_STATE_LO_GATED_CLOCK;
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1000);
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0);
status = CSR_READ_4(sc, BWI_MAC_STATUS);
status |= BWI_MAC_STATUS_IHREN;
if (link_phy)
status |= BWI_MAC_STATUS_PHYLNK;
else
status &= ~BWI_MAC_STATUS_PHYLNK;
CSR_WRITE_4(sc, BWI_MAC_STATUS, status);
if (link_phy) {
DPRINTF(1, "%s: PHY is linked\n", sc->sc_dev.dv_xname);
mac->mac_phy.phy_flags |= BWI_PHY_F_LINKED;
} else {
DPRINTF(1, "%s: PHY is unlinked\n", sc->sc_dev.dv_xname);
mac->mac_phy.phy_flags &= ~BWI_PHY_F_LINKED;
}
}
void
bwi_mac_set_tpctl_11bg(struct bwi_mac *mac, const struct bwi_tpctl *new_tpctl)
{
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_tpctl *tpctl = &mac->mac_tpctl;
if (new_tpctl != NULL) {
KASSERT(new_tpctl->bbp_atten <= BWI_BBP_ATTEN_MAX);
KASSERT(new_tpctl->rf_atten <=
(rf->rf_rev < 6 ? BWI_RF_ATTEN_MAX0
: BWI_RF_ATTEN_MAX1));
KASSERT(new_tpctl->tp_ctrl1 <= BWI_TPCTL1_MAX);
tpctl->bbp_atten = new_tpctl->bbp_atten;
tpctl->rf_atten = new_tpctl->rf_atten;
tpctl->tp_ctrl1 = new_tpctl->tp_ctrl1;
}
/* Set BBP attenuation */
bwi_phy_set_bbp_atten(mac, tpctl->bbp_atten);
/* Set RF attenuation */
RF_WRITE(mac, BWI_RFR_ATTEN, tpctl->rf_atten);
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_RF_ATTEN,
tpctl->rf_atten);
/* Set TX power */
if (rf->rf_type == BWI_RF_T_BCM2050) {
RF_FILT_SETBITS(mac, BWI_RFR_TXPWR, ~BWI_RFR_TXPWR1_MASK,
__SHIFTIN(tpctl->tp_ctrl1, BWI_RFR_TXPWR1_MASK));
}
/* Adjust RF Local Oscillator */
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
bwi_rf_lo_adjust(mac, tpctl);
}
int
bwi_mac_test(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
uint32_t orig_val, val;
#define TEST_VAL1 0xaa5555aa
#define TEST_VAL2 0x55aaaa55
/* Save it for later restoring */
orig_val = MOBJ_READ_4(mac, BWI_COMM_MOBJ, 0);
/* Test 1 */
MOBJ_WRITE_4(mac, BWI_COMM_MOBJ, 0, TEST_VAL1);
val = MOBJ_READ_4(mac, BWI_COMM_MOBJ, 0);
if (val != TEST_VAL1) {
printf("%s: TEST1 failed\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
/* Test 2 */
MOBJ_WRITE_4(mac, BWI_COMM_MOBJ, 0, TEST_VAL2);
val = MOBJ_READ_4(mac, BWI_COMM_MOBJ, 0);
if (val != TEST_VAL2) {
printf("%s: TEST2 failed\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
/* Restore to the original value */
MOBJ_WRITE_4(mac, BWI_COMM_MOBJ, 0, orig_val);
val = CSR_READ_4(sc, BWI_MAC_STATUS);
if ((val & ~BWI_MAC_STATUS_PHYLNK) != BWI_MAC_STATUS_IHREN) {
printf("%s: %s failed, MAC status 0x%08x\n",
sc->sc_dev.dv_xname, __func__, val);
return (ENXIO);
}
val = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
if (val != 0) {
printf("%s: %s failed, intr status %08x\n",
sc->sc_dev.dv_xname, __func__, val);
return (ENXIO);
}
#undef TEST_VAL2
#undef TEST_VAL1
return (0);
}
void
bwi_mac_setup_tpctl(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_tpctl *tpctl = &mac->mac_tpctl;
/* Calc BBP attenuation */
if (rf->rf_type == BWI_RF_T_BCM2050 && rf->rf_rev < 6)
tpctl->bbp_atten = 0;
else
tpctl->bbp_atten = 2;
/* Calc TX power CTRL1?? */
tpctl->tp_ctrl1 = 0;
if (rf->rf_type == BWI_RF_T_BCM2050) {
if (rf->rf_rev == 1)
tpctl->tp_ctrl1 = 3;
else if (rf->rf_rev < 6)
tpctl->tp_ctrl1 = 2;
else if (rf->rf_rev == 8)
tpctl->tp_ctrl1 = 1;
}
/* Empty TX power CTRL2?? */
tpctl->tp_ctrl2 = 0xffff;
/*
* Calc RF attenuation
*/
if (phy->phy_mode == IEEE80211_MODE_11A) {
tpctl->rf_atten = 0x60;
goto back;
}
if (BWI_IS_BRCM_BCM4309G(sc) && sc->sc_pci_revid < 0x51) {
tpctl->rf_atten = sc->sc_pci_revid < 0x43 ? 2 : 3;
goto back;
}
tpctl->rf_atten = 5;
if (rf->rf_type != BWI_RF_T_BCM2050) {
if (rf->rf_type == BWI_RF_T_BCM2053 && rf->rf_rev == 1)
tpctl->rf_atten = 6;
goto back;
}
/*
* NB: If we reaches here and the card is BRCM_BCM4309G,
* then the card's PCI revision must >= 0x51
*/
/* BCM2050 RF */
switch (rf->rf_rev) {
case 1:
if (phy->phy_mode == IEEE80211_MODE_11G) {
if (BWI_IS_BRCM_BCM4309G(sc) || BWI_IS_BRCM_BU4306(sc))
tpctl->rf_atten = 3;
else
tpctl->rf_atten = 1;
} else {
if (BWI_IS_BRCM_BCM4309G(sc))
tpctl->rf_atten = 7;
else
tpctl->rf_atten = 6;
}
break;
case 2:
if (phy->phy_mode == IEEE80211_MODE_11G) {
/*
* NOTE: Order of following conditions is critical
*/
if (BWI_IS_BRCM_BCM4309G(sc))
tpctl->rf_atten = 3;
else if (BWI_IS_BRCM_BU4306(sc))
tpctl->rf_atten = 5;
else if (sc->sc_bbp_id == BWI_BBPID_BCM4320)
tpctl->rf_atten = 4;
else
tpctl->rf_atten = 3;
} else {
tpctl->rf_atten = 6;
}
break;
case 4:
case 5:
tpctl->rf_atten = 1;
break;
case 8:
tpctl->rf_atten = 0x1a;
break;
}
back:
DPRINTF(1, "%s: bbp atten: %u, rf atten: %u, ctrl1: %u, ctrl2: %u\n",
sc->sc_dev.dv_xname, tpctl->bbp_atten, tpctl->rf_atten,
tpctl->tp_ctrl1, tpctl->tp_ctrl2);
}
void
bwi_mac_dummy_xmit(struct bwi_mac *mac)
{
#define PACKET_LEN 5
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
const uint32_t *packet;
uint16_t val_50c;
int wait_max, i;
static const uint32_t packet_11a[PACKET_LEN] =
{ 0x000201cc, 0x00d40000, 0x00000000, 0x01000000, 0x00000000 };
static const uint32_t packet_11bg[PACKET_LEN] =
{ 0x000b846e, 0x00d40000, 0x00000000, 0x01000000, 0x00000000 };
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11A) {
wait_max = 30;
packet = packet_11a;
val_50c = 1;
} else {
wait_max = 250;
packet = packet_11bg;
val_50c = 0;
}
for (i = 0; i < PACKET_LEN; ++i)
TMPLT_WRITE_4(mac, i * 4, packet[i]);
CSR_READ_4(sc, BWI_MAC_STATUS); /* dummy read */
CSR_WRITE_2(sc, 0x568, 0);
CSR_WRITE_2(sc, 0x7c0, 0);
CSR_WRITE_2(sc, 0x50c, val_50c);
CSR_WRITE_2(sc, 0x508, 0);
CSR_WRITE_2(sc, 0x50a, 0);
CSR_WRITE_2(sc, 0x54c, 0);
CSR_WRITE_2(sc, 0x56a, 0x14);
CSR_WRITE_2(sc, 0x568, 0x826);
CSR_WRITE_2(sc, 0x500, 0);
CSR_WRITE_2(sc, 0x502, 0x30);
if (rf->rf_type == BWI_RF_T_BCM2050 && rf->rf_rev <= 5)
RF_WRITE(mac, 0x51, 0x17);
for (i = 0; i < wait_max; ++i) {
if (CSR_READ_2(sc, 0x50e) & 0x80)
break;
DELAY(10);
}
for (i = 0; i < 10; ++i) {
if (CSR_READ_2(sc, 0x50e) & 0x400)
break;
DELAY(10);
}
for (i = 0; i < 10; ++i) {
if ((CSR_READ_2(sc, 0x690) & 0x100) == 0)
break;
DELAY(10);
}
if (rf->rf_type == BWI_RF_T_BCM2050 && rf->rf_rev <= 5)
RF_WRITE(mac, 0x51, 0x37);
#undef PACKET_LEN
}
void
bwi_mac_init_tpctl_11bg(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_tpctl tpctl_orig;
int restore_tpctl = 0;
KASSERT(phy->phy_mode != IEEE80211_MODE_11A);
if (BWI_IS_BRCM_BU4306(sc))
return;
PHY_WRITE(mac, 0x28, 0x8018);
CSR_CLRBITS_2(sc, BWI_BBP_ATTEN, 0x20);
if (phy->phy_mode == IEEE80211_MODE_11G) {
if ((phy->phy_flags & BWI_PHY_F_LINKED) == 0)
return;
PHY_WRITE(mac, 0x47a, 0xc111);
}
if (mac->mac_flags & BWI_MAC_F_TPCTL_INITED)
return;
if (phy->phy_mode == IEEE80211_MODE_11B && phy->phy_rev >= 2 &&
rf->rf_type == BWI_RF_T_BCM2050) {
RF_SETBITS(mac, 0x76, 0x84);
} else {
struct bwi_tpctl tpctl;
/* Backup original TX power control variables */
bcopy(&mac->mac_tpctl, &tpctl_orig, sizeof(tpctl_orig));
restore_tpctl = 1;
bcopy(&mac->mac_tpctl, &tpctl, sizeof(tpctl));
tpctl.bbp_atten = 11;
tpctl.tp_ctrl1 = 0;
#ifdef notyet
if (rf->rf_rev >= 6 && rf->rf_rev <= 8)
tpctl.rf_atten = 31;
else
#endif
tpctl.rf_atten = 9;
bwi_mac_set_tpctl_11bg(mac, &tpctl);
}
bwi_mac_dummy_xmit(mac);
mac->mac_flags |= BWI_MAC_F_TPCTL_INITED;
rf->rf_base_tssi = PHY_READ(mac, 0x29);
DPRINTF(1, "%s: base tssi %d\n", sc->sc_dev.dv_xname, rf->rf_base_tssi);
if (abs(rf->rf_base_tssi - rf->rf_idle_tssi) >= 20) {
printf("%s: base tssi measure failed\n", sc->sc_dev.dv_xname);
mac->mac_flags |= BWI_MAC_F_TPCTL_ERROR;
}
if (restore_tpctl)
bwi_mac_set_tpctl_11bg(mac, &tpctl_orig);
else
RF_CLRBITS(mac, 0x76, 0x84);
bwi_rf_clear_tssi(mac);
}
void
bwi_mac_detach(struct bwi_mac *mac)
{
bwi_mac_fw_free(mac);
}
int
bwi_get_firmware(const char *name, const uint8_t *ucode, size_t size_ucode,
size_t *size, size_t *offset)
{
int i, nfiles, off = 0, ret = 1;
struct fwheader *h;
if ((h = malloc(sizeof(struct fwheader), M_DEVBUF, M_NOWAIT)) == NULL)
return (ret);
/* get number of firmware files */
bcopy(ucode, &nfiles, sizeof(nfiles));
nfiles = ntohl(nfiles);
off += sizeof(nfiles);
/* parse header and search the firmware */
for (i = 0; i < nfiles && off < size_ucode; i++) {
bzero(h, sizeof(struct fwheader));
bcopy(ucode + off, h, sizeof(struct fwheader));
off += sizeof(struct fwheader);
if (strcmp(name, h->filename) == 0) {
ret = 0;
*size = ntohl(h->filesize);
*offset = ntohl(h->fileoffset);
break;
}
}
free(h, M_DEVBUF, sizeof *h);
return (ret);
}
int
bwi_fwimage_is_valid(struct bwi_softc *sc, uint8_t *fw, size_t fw_len,
char *fw_name, uint8_t fw_type)
{
const struct bwi_fwhdr *hdr;
if (fw_len < sizeof(*hdr)) {
printf("%s: invalid firmware (%s): invalid size %zu\n",
sc->sc_dev.dv_xname, fw_name, fw_len);
return (1);
}
hdr = (const struct bwi_fwhdr *)fw;
if (fw_type != BWI_FW_T_IV) {
/*
* Don't verify IV's size, it has different meaning
*/
if (betoh32(hdr->fw_size) != fw_len - sizeof(*hdr)) {
printf("%s: invalid firmware (%s): size mismatch, "
"fw %u, real %zu\n",
sc->sc_dev.dv_xname,
fw_name,
betoh32(hdr->fw_size),
fw_len - sizeof(*hdr));
return (1);
}
}
if (hdr->fw_type != fw_type) {
printf("%s: invalid firmware (%s): type mismatch, "
"fw \'%c\', target \'%c\'\n",
sc->sc_dev.dv_xname, fw_name, hdr->fw_type, fw_type);
return (1);
}
if (hdr->fw_gen != BWI_FW_GEN_1) {
printf("%s: invalid firmware (%s): wrong generation, "
"fw %d, target %d\n",
sc->sc_dev.dv_xname, fw_name, hdr->fw_gen, BWI_FW_GEN_1);
return (1);
}
return (0);
}
int
bwi_mac_fw_alloc(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
char *name = "bwi-airforce";
size_t offset;
char fwname[64];
int idx, error;
if (mac->mac_fw == NULL) {
error = loadfirmware(name, &mac->mac_fw, &mac->mac_fw_size);
if (error != 0) {
printf("%s: error %d, could not read firmware %s\n",
sc->sc_dev.dv_xname, error, name);
mac->mac_fw = NULL;
return (EIO);
}
}
if (mac->mac_ucode == NULL) {
snprintf(fwname, sizeof(fwname), "ucode%d.fw",
mac->mac_rev >= 5 ? 5 : mac->mac_rev);
error = bwi_get_firmware(fwname, mac->mac_fw, mac->mac_fw_size,
&mac->mac_ucode_size, &offset);
if (error != 0) {
printf("%s: error %d, could not read firmware %s!\n",
sc->sc_dev.dv_xname, error, fwname);
return (ENOMEM);
}
mac->mac_ucode = (mac->mac_fw + offset);
DPRINTF(1, "%s: loaded firmware file %s\n",
sc->sc_dev.dv_xname, fwname);
if (bwi_fwimage_is_valid(sc, mac->mac_ucode,
mac->mac_ucode_size, fwname, BWI_FW_T_UCODE))
return (EINVAL);
}
if (mac->mac_pcm == NULL) {
snprintf(fwname, sizeof(fwname), "pcm%d.fw",
mac->mac_rev < 5 ? 4 : 5);
error = bwi_get_firmware(fwname, mac->mac_fw, mac->mac_fw_size,
&mac->mac_pcm_size, &offset);
if (error != 0) {
printf("%s: error %d, could not read firmware %s!\n",
sc->sc_dev.dv_xname, error, fwname);
return (ENOMEM);
}
mac->mac_pcm = (mac->mac_fw + offset);
DPRINTF(1, "%s: loaded firmware file %s\n",
sc->sc_dev.dv_xname, fwname);
if (bwi_fwimage_is_valid(sc, mac->mac_pcm,
mac->mac_pcm_size, fwname, BWI_FW_T_PCM))
return (EINVAL);
}
if (mac->mac_iv == NULL) {
/* TODO: 11A */
if (mac->mac_rev == 2 || mac->mac_rev == 4) {
idx = 2;
} else if (mac->mac_rev >= 5 && mac->mac_rev <= 10) {
idx = 5;
} else {
printf("%s: no suitable IV for MAC rev %d\n",
sc->sc_dev.dv_xname, mac->mac_rev);
return (ENODEV);
}
snprintf(fwname, sizeof(fwname), "b0g0initvals%d.fw", idx);
error = bwi_get_firmware(fwname, mac->mac_fw, mac->mac_fw_size,
&mac->mac_iv_size, &offset);
if (error != 0) {
printf("%s: error %d, could not read firmware %s!\n",
sc->sc_dev.dv_xname, error, fwname);
return (ENOMEM);
}
mac->mac_iv = (mac->mac_fw + offset);
DPRINTF(1, "%s: loaded firmware file %s\n",
sc->sc_dev.dv_xname, fwname);
if (bwi_fwimage_is_valid(sc, mac->mac_iv,
mac->mac_iv_size, fwname, BWI_FW_T_IV))
return (EINVAL);
}
if (mac->mac_iv_ext == NULL) {
/* TODO: 11A */
if (mac->mac_rev == 2 || mac->mac_rev == 4 ||
mac->mac_rev >= 11) {
/* No extended IV */
goto back;
} else if (mac->mac_rev >= 5 && mac->mac_rev <= 10) {
idx = 5;
} else {
printf("%s: no suitable ExtIV for MAC rev %d\n",
sc->sc_dev.dv_xname, mac->mac_rev);
return (ENODEV);
}
snprintf(fwname, sizeof(fwname), "b0g0bsinitvals%d.fw", idx);
error = bwi_get_firmware(fwname, mac->mac_fw, mac->mac_fw_size,
&mac->mac_iv_ext_size, &offset);
if (error != 0) {
printf("%s: error %d, could not read firmware %s!\n",
sc->sc_dev.dv_xname, error, fwname);
return (ENOMEM);
}
mac->mac_iv_ext = (mac->mac_fw + offset);
DPRINTF(1, "%s: loaded firmware file %s\n",
sc->sc_dev.dv_xname, fwname);
if (bwi_fwimage_is_valid(sc, mac->mac_iv_ext,
mac->mac_iv_ext_size, fwname, BWI_FW_T_IV))
return (EINVAL);
}
back:
return (0);
}
void
bwi_mac_fw_free(struct bwi_mac *mac)
{
if (mac->mac_fw != NULL) {
free(mac->mac_fw, M_DEVBUF, mac->mac_fw_size);
mac->mac_fw = NULL;
}
}
int
bwi_mac_fw_load(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
uint16_t fw_rev;
const uint32_t *fw;
int fw_len, i, error = 0;
/*
* Load FW image
*/
fw = (const uint32_t *)(mac->mac_ucode + BWI_FWHDR_SZ);
fw_len = (mac->mac_ucode_size - BWI_FWHDR_SZ) / sizeof(uint32_t);
CSR_WRITE_4(sc, BWI_MOBJ_CTRL,
BWI_MOBJ_CTRL_VAL(BWI_FW_UCODE_MOBJ | BWI_WR_MOBJ_AUTOINC, 0));
for (i = 0; i < fw_len; ++i) {
CSR_WRITE_4(sc, BWI_MOBJ_DATA, betoh32(fw[i]));
DELAY(10);
}
/*
* Load PCM image
*/
fw = (const uint32_t *)(mac->mac_pcm + BWI_FWHDR_SZ);
fw_len = (mac->mac_pcm_size - BWI_FWHDR_SZ) / sizeof(uint32_t);
CSR_WRITE_4(sc, BWI_MOBJ_CTRL,
BWI_MOBJ_CTRL_VAL(BWI_FW_PCM_MOBJ, 0x01ea));
CSR_WRITE_4(sc, BWI_MOBJ_DATA, 0x4000);
CSR_WRITE_4(sc, BWI_MOBJ_CTRL,
BWI_MOBJ_CTRL_VAL(BWI_FW_PCM_MOBJ, 0x01eb));
for (i = 0; i < fw_len; ++i) {
CSR_WRITE_4(sc, BWI_MOBJ_DATA, betoh32(fw[i]));
DELAY(10);
}
CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, BWI_ALL_INTRS);
CSR_WRITE_4(sc, BWI_MAC_STATUS,
BWI_MAC_STATUS_UCODE_START |
BWI_MAC_STATUS_IHREN |
BWI_MAC_STATUS_INFRA);
#define NRETRY 200
for (i = 0; i < NRETRY; ++i) {
uint32_t intr_status;
intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
if (intr_status == BWI_INTR_READY)
break;
DELAY(10);
}
if (i == NRETRY) {
printf("%s: firmware (fw & pcm) loading timed out\n",
sc->sc_dev.dv_xname);
error = ETIMEDOUT;
goto out;
}
#undef NRETRY
CSR_READ_4(sc, BWI_MAC_INTR_STATUS); /* dummy read */
fw_rev = MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_FWREV);
if (fw_rev > BWI_FW_VERSION3_REVMAX) {
printf("%s: firmware version 4 is not supported yet\n",
sc->sc_dev.dv_xname);
error = ENODEV;
goto out;
}
DPRINTF(1, "%s: firmware rev 0x%04x, patch level 0x%04x\n",
sc->sc_dev.dv_xname, fw_rev,
MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_FWPATCHLV));
out:
return (error);
}
int
bwi_mac_gpio_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_regwin *old, *gpio_rw;
uint32_t filt, bits;
int error;
CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_GPOSEL_MASK);
/* TODO: LED */
CSR_SETBITS_2(sc, BWI_MAC_GPIO_MASK, 0xf);
filt = 0x1f;
bits = 0xf;
if (sc->sc_bbp_id == BWI_BBPID_BCM4301) {
filt |= 0x60;
bits |= 0x60;
}
if (sc->sc_card_flags & BWI_CARD_F_PA_GPIO9) {
CSR_SETBITS_2(sc, BWI_MAC_GPIO_MASK, 0x200);
filt |= 0x200;
bits |= 0x200;
}
gpio_rw = BWI_GPIO_REGWIN(sc);
error = bwi_regwin_switch(sc, gpio_rw, &old);
if (error)
return (error);
CSR_FILT_SETBITS_4(sc, BWI_GPIO_CTRL, filt, bits);
return (bwi_regwin_switch(sc, old, NULL));
}
int
bwi_mac_gpio_fini(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_regwin *old, *gpio_rw;
int error;
gpio_rw = BWI_GPIO_REGWIN(sc);
error = bwi_regwin_switch(sc, gpio_rw, &old);
if (error)
return (error);
CSR_WRITE_4(sc, BWI_GPIO_CTRL, 0);
return (bwi_regwin_switch(sc, old, NULL));
}
int
bwi_mac_fw_load_iv(struct bwi_mac *mac, uint8_t *fw, size_t fw_len)
{
struct bwi_softc *sc = mac->mac_sc;
const struct bwi_fwhdr *hdr;
const struct bwi_fw_iv *iv;
int n, i, iv_img_size;
/* Get the number of IVs in the IV image */
hdr = (const struct bwi_fwhdr *)fw;
n = betoh32(hdr->fw_iv_cnt);
DPRINTF(1, "%s: IV count %d\n", sc->sc_dev.dv_xname, n);
/* Calculate the IV image size, for later sanity check */
iv_img_size = fw_len - sizeof(*hdr);
/* Locate the first IV */
iv = (const struct bwi_fw_iv *)(fw + sizeof(*hdr));
for (i = 0; i < n; ++i) {
uint16_t iv_ofs, ofs;
int sz = 0;
if (iv_img_size < sizeof(iv->iv_ofs)) {
printf("%s: invalid IV image, ofs\n",
sc->sc_dev.dv_xname);
return (EINVAL);
}
iv_img_size -= sizeof(iv->iv_ofs);
sz += sizeof(iv->iv_ofs);
iv_ofs = betoh16(iv->iv_ofs);
ofs = __SHIFTOUT(iv_ofs, BWI_FW_IV_OFS_MASK);
if (ofs >= 0x1000) {
printf("%s: invalid ofs (0x%04x) for %dth iv\n",
sc->sc_dev.dv_xname, ofs, i);
return (EINVAL);
}
if (iv_ofs & BWI_FW_IV_IS_32BIT) {
uint32_t val32;
if (iv_img_size < sizeof(iv->iv_val.val32)) {
printf("%s: invalid IV image, val32\n",
sc->sc_dev.dv_xname);
return (EINVAL);
}
iv_img_size -= sizeof(iv->iv_val.val32);
sz += sizeof(iv->iv_val.val32);
val32 = betoh32(iv->iv_val.val32);
CSR_WRITE_4(sc, ofs, val32);
} else {
uint16_t val16;
if (iv_img_size < sizeof(iv->iv_val.val16)) {
printf("%s: invalid IV image, val16\n",
sc->sc_dev.dv_xname);
return (EINVAL);
}
iv_img_size -= sizeof(iv->iv_val.val16);
sz += sizeof(iv->iv_val.val16);
val16 = betoh16(iv->iv_val.val16);
CSR_WRITE_2(sc, ofs, val16);
}
iv = (const struct bwi_fw_iv *)((const uint8_t *)iv + sz);
}
if (iv_img_size != 0) {
printf("%s: invalid IV image, size left %d\n",
sc->sc_dev.dv_xname, iv_img_size);
return (EINVAL);
}
return (0);
}
int
bwi_mac_fw_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
int error;
error = bwi_mac_fw_load_iv(mac, mac->mac_iv, mac->mac_iv_size);
if (error) {
printf("%s: load IV failed\n", sc->sc_dev.dv_xname);
return (error);
}
if (mac->mac_iv_ext != NULL) {
error = bwi_mac_fw_load_iv(mac, mac->mac_iv_ext,
mac->mac_iv_ext_size);
if (error)
printf("%s: load ExtIV failed\n", sc->sc_dev.dv_xname);
}
return (error);
}
void
bwi_mac_opmode_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t mac_status;
uint16_t pre_tbtt;
CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_INFRA);
CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_INFRA);
CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
/* Set probe resp timeout to infinite */
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_PROBE_RESP_TO, 0);
/*
* TODO: factor out following part
*/
mac_status = CSR_READ_4(sc, BWI_MAC_STATUS);
mac_status &= ~(BWI_MAC_STATUS_OPMODE_HOSTAP |
BWI_MAC_STATUS_PASS_CTL |
BWI_MAC_STATUS_PASS_BADPLCP |
BWI_MAC_STATUS_PASS_BADFCS |
BWI_MAC_STATUS_PROMISC);
mac_status |= BWI_MAC_STATUS_INFRA;
/* Always turn on PROMISC on old hardware */
if (mac->mac_rev < 5)
mac_status |= BWI_MAC_STATUS_PROMISC;
switch (ic->ic_opmode) {
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
mac_status &= ~BWI_MAC_STATUS_INFRA;
break;
case IEEE80211_M_HOSTAP:
mac_status |= BWI_MAC_STATUS_OPMODE_HOSTAP;
break;
#endif
case IEEE80211_M_MONITOR:
#if 0
/* Do you want data from your microwave oven? */
mac_status |= BWI_MAC_STATUS_PASS_CTL |
BWI_MAC_STATUS_PASS_BADPLCP |
BWI_MAC_STATUS_PASS_BADFCS;
#else
mac_status |= BWI_MAC_STATUS_PASS_CTL;
#endif
/* Promisc? */
break;
default:
break;
}
if (ic->ic_if.if_flags & IFF_PROMISC)
mac_status |= BWI_MAC_STATUS_PROMISC;
CSR_WRITE_4(sc, BWI_MAC_STATUS, mac_status);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode != IEEE80211_M_IBSS &&
ic->ic_opmode != IEEE80211_M_HOSTAP) {
#endif
if (sc->sc_bbp_id == BWI_BBPID_BCM4306 && sc->sc_bbp_rev == 3)
pre_tbtt = 100;
else
pre_tbtt = 50;
#ifndef IEEE80211_STA_ONLY
} else
pre_tbtt = 2;
#endif
CSR_WRITE_2(sc, BWI_MAC_PRE_TBTT, pre_tbtt);
}
void
bwi_mac_hostflags_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint64_t host_flags;
if (phy->phy_mode == IEEE80211_MODE_11A)
return;
host_flags = HFLAGS_READ(mac);
host_flags |= BWI_HFLAG_SYM_WA;
if (phy->phy_mode == IEEE80211_MODE_11G) {
if (phy->phy_rev == 1)
host_flags |= BWI_HFLAG_GDC_WA;
if (sc->sc_card_flags & BWI_CARD_F_PA_GPIO9)
host_flags |= BWI_HFLAG_OFDM_PA;
} else if (phy->phy_mode == IEEE80211_MODE_11B) {
if (phy->phy_rev >= 2 && rf->rf_type == BWI_RF_T_BCM2050)
host_flags &= ~BWI_HFLAG_GDC_WA;
} else {
panic("unknown PHY mode %u", phy->phy_mode);
}
HFLAGS_WRITE(mac, host_flags);
}
void
bwi_mac_bss_param_init(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_retry_lim lim;
uint16_t cw_min;
/*
* Set short/long retry limits
*/
bzero(&lim, sizeof(lim));
lim.shretry = BWI_SHRETRY;
lim.shretry_fb = BWI_SHRETRY_FB;
lim.lgretry = BWI_LGRETRY;
lim.lgretry_fb = BWI_LGRETRY_FB;
bwi_mac_set_retry_lim(mac, &lim);
/*
* Implicitly prevent firmware from sending probe response
* by setting its "probe response timeout" to 1us.
*/
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_PROBE_RESP_TO, 1);
/*
* XXX MAC level acknowledge and CW min/max should depend
* on the char rateset of the IBSS/BSS to join.
*/
/*
* Set MAC level acknowledge rates
*/
bwi_mac_set_ackrates(mac, &sc->sc_ic.ic_sup_rates[phy->phy_mode]);
/*
* Set CW min
*/
if (phy->phy_mode == IEEE80211_MODE_11B)
cw_min = IEEE80211_CW_MIN_0;
else
cw_min = IEEE80211_CW_MIN_1;
MOBJ_WRITE_2(mac, BWI_80211_MOBJ, BWI_80211_MOBJ_CWMIN, cw_min);
/*
* Set CW max
*/
MOBJ_WRITE_2(mac, BWI_80211_MOBJ, BWI_80211_MOBJ_CWMAX,
IEEE80211_CW_MAX);
}
void
bwi_mac_set_retry_lim(struct bwi_mac *mac, const struct bwi_retry_lim *lim)
{
/* Short/Long retry limit */
MOBJ_WRITE_2(mac, BWI_80211_MOBJ, BWI_80211_MOBJ_SHRETRY,
lim->shretry);
MOBJ_WRITE_2(mac, BWI_80211_MOBJ, BWI_80211_MOBJ_LGRETRY,
lim->lgretry);
/* Short/Long retry fallback limit */
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_SHRETRY_FB,
lim->shretry_fb);
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_LGRETEY_FB,
lim->lgretry_fb);
}
void
bwi_mac_set_ackrates(struct bwi_mac *mac, const struct ieee80211_rateset *rs)
{
struct bwi_softc *sc;
int i;
sc = mac->mac_sc;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
/* XXX not standard conforming */
for (i = 0; i < rs->rs_nrates; ++i) {
enum bwi_modtype modtype;
uint16_t ofs;
modtype = bwi_rate2modtype(rs->rs_rates[i]);
switch (modtype) {
case IEEE80211_MODTYPE_DS:
ofs = 0x4c0;
ofs += (ieee80211_rate2plcp(rs->rs_rates[i],
IEEE80211_MODE_11B) & 0xf) * 2;
break;
case IEEE80211_MODTYPE_OFDM:
ofs = 0x480;
ofs += (ieee80211_rate2plcp(rs->rs_rates[i],
IEEE80211_MODE_11G) & 0xf) * 2;
break;
default:
panic("unsupported modtype %u", modtype);
}
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, ofs + 0x20,
MOBJ_READ_2(mac, BWI_COMM_MOBJ, ofs));
}
}
int
bwi_mac_start(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_ENABLE);
CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, BWI_INTR_READY);
/* Flush pending bus writes */
CSR_READ_4(sc, BWI_MAC_STATUS);
CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
return (bwi_mac_config_ps(mac));
}
int
bwi_mac_stop(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
int error, i;
error = bwi_mac_config_ps(mac);
if (error)
return (error);
CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_ENABLE);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_MAC_STATUS);
#define NRETRY 10000
for (i = 0; i < NRETRY; ++i) {
if (CSR_READ_4(sc, BWI_MAC_INTR_STATUS) & BWI_INTR_READY)
break;
DELAY(1);
}
if (i == NRETRY) {
printf("%s: can't stop MAC\n", sc->sc_dev.dv_xname);
return (ETIMEDOUT);
}
#undef NRETRY
return (0);
}
int
bwi_mac_config_ps(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
uint32_t status;
status = CSR_READ_4(sc, BWI_MAC_STATUS);
status &= ~BWI_MAC_STATUS_HW_PS;
status |= BWI_MAC_STATUS_WAKEUP;
CSR_WRITE_4(sc, BWI_MAC_STATUS, status);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_MAC_STATUS);
if (mac->mac_rev >= 5) {
int i;
#define NRETRY 100
for (i = 0; i < NRETRY; ++i) {
if (MOBJ_READ_2(mac, BWI_COMM_MOBJ,
BWI_COMM_MOBJ_UCODE_STATE) != BWI_UCODE_STATE_PS)
break;
DELAY(10);
}
if (i == NRETRY) {
printf("%s: config PS failed\n", sc->sc_dev.dv_xname);
return (ETIMEDOUT);
}
#undef NRETRY
}
return (0);
}
void
bwi_mac_reset_hwkeys(struct bwi_mac *mac)
{
/* TODO: firmware crypto */
MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_KEYTABLE_OFS);
}
void
bwi_mac_shutdown(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
int i;
if (mac->mac_flags & BWI_MAC_F_HAS_TXSTATS)
sc->sc_free_txstats(sc);
sc->sc_free_rx_ring(sc);
for (i = 0; i < BWI_TX_NRING; ++i)
sc->sc_free_tx_ring(sc, i);
bwi_rf_off(mac);
/* TODO: LED */
bwi_mac_gpio_fini(mac);
bwi_rf_off(mac); /* XXX again */
CSR_WRITE_2(sc, BWI_BBP_ATTEN, BWI_BBP_ATTEN_MAGIC);
bwi_regwin_disable(sc, &mac->mac_regwin, 0);
mac->mac_flags &= ~BWI_MAC_F_INITED;
}
int
bwi_mac_get_property(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
enum bwi_bus_space old_bus_space;
uint32_t val;
/*
* Byte swap
*/
val = CSR_READ_4(sc, BWI_MAC_STATUS);
if (val & BWI_MAC_STATUS_BSWAP) {
DPRINTF(1, "%s: need byte swap\n", sc->sc_dev.dv_xname);
mac->mac_flags |= BWI_MAC_F_BSWAP;
}
/*
* DMA address space
*/
old_bus_space = sc->sc_bus_space;
val = CSR_READ_4(sc, BWI_STATE_HI);
if (__SHIFTOUT(val, BWI_STATE_HI_FLAGS_MASK) &
BWI_STATE_HI_FLAG_64BIT) {
/* 64bit address */
sc->sc_bus_space = BWI_BUS_SPACE_64BIT;
printf(": 64bit bus space not supported\n");
return (ENODEV);
} else {
uint32_t txrx_reg = BWI_TXRX_CTRL_BASE + BWI_TX32_CTRL;
CSR_WRITE_4(sc, txrx_reg, BWI_TXRX32_CTRL_ADDRHI_MASK);
if (CSR_READ_4(sc, txrx_reg) & BWI_TXRX32_CTRL_ADDRHI_MASK) {
/* 32bit address */
sc->sc_bus_space = BWI_BUS_SPACE_32BIT;
DPRINTF(1, "%s: 32bit bus space\n",
sc->sc_dev.dv_xname);
} else {
/* 30bit address */
sc->sc_bus_space = BWI_BUS_SPACE_30BIT;
DPRINTF(1, "%s: 30bit bus space\n",
sc->sc_dev.dv_xname);
}
}
if (old_bus_space != 0 && old_bus_space != sc->sc_bus_space) {
printf("%s: MACs bus space mismatch!\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
return (0);
}
void
bwi_mac_updateslot(struct bwi_mac *mac, int shslot)
{
struct bwi_softc *sc;
uint16_t slot_time;
sc = mac->mac_sc;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11B)
return;
if (shslot)
slot_time = IEEE80211_DUR_DS_SHSLOT;
else
slot_time = IEEE80211_DUR_DS_SLOT;
CSR_WRITE_2(mac->mac_sc, BWI_MAC_SLOTTIME,
slot_time + BWI_MAC_SLOTTIME_ADJUST);
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_SLOTTIME, slot_time);
}
int
bwi_mac_attach(struct bwi_softc *sc, int id, uint8_t rev)
{
struct bwi_mac *mac;
int i;
KASSERT(sc->sc_nmac <= BWI_MAC_MAX && sc->sc_nmac >= 0);
if (sc->sc_nmac == BWI_MAC_MAX) {
printf("%s: too many MACs\n", sc->sc_dev.dv_xname);
return (0);
}
/*
* More than one MAC is only supported by BCM4309
*/
if (sc->sc_nmac != 0 &&
sc->sc_pci_did != PCI_PRODUCT_BROADCOM_BCM4309) {
DPRINTF(1, "%s: ignore second MAC\n", sc->sc_dev.dv_xname);
return (0);
}
mac = &sc->sc_mac[sc->sc_nmac];
/* XXX will this happen? */
if (BWI_REGWIN_EXIST(&mac->mac_regwin)) {
printf("%s: %dth MAC already attached\n",
sc->sc_dev.dv_xname, sc->sc_nmac);
return (0);
}
/*
* Test whether the revision of this MAC is supported
*/
for (i = 0; i < nitems(bwi_sup_macrev); ++i) {
if (bwi_sup_macrev[i] == rev)
break;
}
if (i == nitems(bwi_sup_macrev)) {
printf("%s: MAC rev %u is not supported\n",
sc->sc_dev.dv_xname, rev);
return (ENXIO);
}
BWI_CREATE_MAC(mac, sc, id, rev);
sc->sc_nmac++;
if (mac->mac_rev < 5) {
mac->mac_flags |= BWI_MAC_F_HAS_TXSTATS;
DPRINTF(1, "%s: has TX stats\n", sc->sc_dev.dv_xname);
} else {
mac->mac_flags |= BWI_MAC_F_PHYE_RESET;
}
return (0);
}
void
bwi_mac_balance_atten(int *bbp_atten0, int *rf_atten0)
{
int bbp_atten, rf_atten, rf_atten_lim = -1;
bbp_atten = *bbp_atten0;
rf_atten = *rf_atten0;
/*
* RF attenuation affects TX power BWI_RF_ATTEN_FACTOR times
* as much as BBP attenuation, so we try our best to keep RF
* attenuation within range. BBP attenuation will be clamped
* later if it is out of range during balancing.
*
* BWI_RF_ATTEN_MAX0 is used as RF attenuation upper limit.
*/
/*
* Use BBP attenuation to balance RF attenuation
*/
if (rf_atten < 0)
rf_atten_lim = 0;
else if (rf_atten > BWI_RF_ATTEN_MAX0)
rf_atten_lim = BWI_RF_ATTEN_MAX0;
if (rf_atten_lim >= 0) {
bbp_atten += (BWI_RF_ATTEN_FACTOR * (rf_atten - rf_atten_lim));
rf_atten = rf_atten_lim;
}
/*
* If possible, use RF attenuation to balance BBP attenuation
* NOTE: RF attenuation is still kept within range.
*/
while (rf_atten < BWI_RF_ATTEN_MAX0 && bbp_atten > BWI_BBP_ATTEN_MAX) {
bbp_atten -= BWI_RF_ATTEN_FACTOR;
++rf_atten;
}
while (rf_atten > 0 && bbp_atten < 0) {
bbp_atten += BWI_RF_ATTEN_FACTOR;
--rf_atten;
}
/* RF attenuation MUST be within range */
KASSERT(rf_atten >= 0 && rf_atten <= BWI_RF_ATTEN_MAX0);
/*
* Clamp BBP attenuation
*/
if (bbp_atten < 0)
bbp_atten = 0;
else if (bbp_atten > BWI_BBP_ATTEN_MAX)
bbp_atten = BWI_BBP_ATTEN_MAX;
*rf_atten0 = rf_atten;
*bbp_atten0 = bbp_atten;
}
void
bwi_mac_adjust_tpctl(struct bwi_mac *mac, int rf_atten_adj, int bbp_atten_adj)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_tpctl tpctl;
int bbp_atten, rf_atten, tp_ctrl1;
bcopy(&mac->mac_tpctl, &tpctl, sizeof(tpctl));
/* NOTE: Use signed value to do calculation */
bbp_atten = tpctl.bbp_atten;
rf_atten = tpctl.rf_atten;
tp_ctrl1 = tpctl.tp_ctrl1;
bbp_atten += bbp_atten_adj;
rf_atten += rf_atten_adj;
bwi_mac_balance_atten(&bbp_atten, &rf_atten);
if (rf->rf_type == BWI_RF_T_BCM2050 && rf->rf_rev == 2) {
if (rf_atten <= 1) {
if (tp_ctrl1 == 0) {
tp_ctrl1 = 3;
bbp_atten += 2;
rf_atten += 2;
} else if (sc->sc_card_flags & BWI_CARD_F_PA_GPIO9) {
bbp_atten +=
(BWI_RF_ATTEN_FACTOR * (rf_atten - 2));
rf_atten = 2;
}
} else if (rf_atten > 4 && tp_ctrl1 != 0) {
tp_ctrl1 = 0;
if (bbp_atten < 3) {
bbp_atten += 2;
rf_atten -= 3;
} else {
bbp_atten -= 2;
rf_atten -= 2;
}
}
bwi_mac_balance_atten(&bbp_atten, &rf_atten);
}
tpctl.bbp_atten = bbp_atten;
tpctl.rf_atten = rf_atten;
tpctl.tp_ctrl1 = tp_ctrl1;
bwi_mac_lock(mac);
bwi_mac_set_tpctl_11bg(mac, &tpctl);
bwi_mac_unlock(mac);
}
/*
* http://bcm-specs.sipsolutions.net/RecalculateTransmissionPower
*/
void
bwi_mac_calibrate_txpower(struct bwi_mac *mac, enum bwi_txpwrcb_type type)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
int8_t tssi[4], tssi_avg, cur_txpwr;
int error, i, ofdm_tssi;
int txpwr_diff, rf_atten_adj, bbp_atten_adj;
if (mac->mac_flags & BWI_MAC_F_TPCTL_ERROR) {
DPRINTF(1, "%s: tpctl error happened, can't set txpower\n",
sc->sc_dev.dv_xname);
return;
}
if (BWI_IS_BRCM_BU4306(sc)) {
DPRINTF(1, "%s: BU4306, can't set txpower\n",
sc->sc_dev.dv_xname);
return;
}
/*
* Save latest TSSI and reset the related memory objects
*/
ofdm_tssi = 0;
error = bwi_rf_get_latest_tssi(mac, tssi, BWI_COMM_MOBJ_TSSI_DS);
if (error) {
DPRINTF(1, "%s: no DS tssi\n", sc->sc_dev.dv_xname);
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11B) {
if (type == BWI_TXPWR_FORCE) {
rf_atten_adj = 0;
bbp_atten_adj = 1;
goto calib;
} else {
return;
}
}
error = bwi_rf_get_latest_tssi(mac, tssi,
BWI_COMM_MOBJ_TSSI_OFDM);
if (error) {
DPRINTF(1, "%s: no OFDM tssi\n", sc->sc_dev.dv_xname);
if (type == BWI_TXPWR_FORCE) {
rf_atten_adj = 0;
bbp_atten_adj = 1;
goto calib;
} else {
return;
}
}
for (i = 0; i < 4; ++i) {
tssi[i] += 0x20;
tssi[i] &= 0x3f;
}
ofdm_tssi = 1;
}
bwi_rf_clear_tssi(mac);
DPRINTF(1, "%s: tssi0 %d, tssi1 %d, tssi2 %d, tssi3 %d\n",
sc->sc_dev.dv_xname, tssi[0], tssi[1], tssi[2], tssi[3]);
/*
* Calculate RF/BBP attenuation adjustment based on
* the difference between desired TX power and sampled
* TX power.
*/
/* +8 == "each incremented by 1/2" */
tssi_avg = (tssi[0] + tssi[1] + tssi[2] + tssi[3] + 8) / 4;
if (ofdm_tssi && (HFLAGS_READ(mac) & BWI_HFLAG_PWR_BOOST_DS))
tssi_avg -= 13;
DPRINTF(1, "%s: tssi avg %d\n", sc->sc_dev.dv_xname, tssi_avg);
error = bwi_rf_tssi2dbm(mac, tssi_avg, &cur_txpwr);
if (error)
return;
DPRINTF(1, "%s: current txpower %d\n", sc->sc_dev.dv_xname, cur_txpwr);
txpwr_diff = rf->rf_txpower_max - cur_txpwr; /* XXX ni_txpower */
rf_atten_adj = -howmany(txpwr_diff, 8);
if (type == BWI_TXPWR_INIT) {
/*
* Move toward EEPROM max TX power as fast as we can
*/
bbp_atten_adj = -txpwr_diff;
} else {
bbp_atten_adj = -(txpwr_diff / 2);
}
bbp_atten_adj -= (BWI_RF_ATTEN_FACTOR * rf_atten_adj);
if (rf_atten_adj == 0 && bbp_atten_adj == 0) {
DPRINTF(1, "%s: no need to adjust RF/BBP attenuation\n",
sc->sc_dev.dv_xname);
/* TODO: LO */
return;
}
calib:
DPRINTF(1, "%s: rf atten adjust %d, bbp atten adjust %d\n",
sc->sc_dev.dv_xname, rf_atten_adj, bbp_atten_adj);
bwi_mac_adjust_tpctl(mac, rf_atten_adj, bbp_atten_adj);
/* TODO: LO */
}
void
bwi_mac_lock(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
KASSERT((mac->mac_flags & BWI_MAC_F_LOCKED) == 0);
if (mac->mac_rev < 3)
bwi_mac_stop(mac);
else
#ifndef IEEE80211_STA_ONLY
if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP)
#endif
bwi_mac_config_ps(mac);
CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_RFLOCK);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_MAC_STATUS);
DELAY(10);
mac->mac_flags |= BWI_MAC_F_LOCKED;
}
void
bwi_mac_unlock(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
KASSERT(mac->mac_flags & BWI_MAC_F_LOCKED);
CSR_READ_2(sc, BWI_PHYINFO); /* dummy read */
CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_RFLOCK);
if (mac->mac_rev < 3)
bwi_mac_start(mac);
else
#ifndef IEEE80211_STA_ONLY
if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP)
#endif
bwi_mac_config_ps(mac);
mac->mac_flags &= ~BWI_MAC_F_LOCKED;
}
void
bwi_mac_set_promisc(struct bwi_mac *mac, int promisc)
{
struct bwi_softc *sc = mac->mac_sc;
if (mac->mac_rev < 5) /* Promisc is always on */
return;
if (promisc)
CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PROMISC);
else
CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PROMISC);
}
/* PHY */
void
bwi_phy_write(struct bwi_mac *mac, uint16_t ctrl, uint16_t data)
{
struct bwi_softc *sc = mac->mac_sc;
/* TODO: 11A */
CSR_WRITE_2(sc, BWI_PHY_CTRL, ctrl);
CSR_WRITE_2(sc, BWI_PHY_DATA, data);
}
uint16_t
bwi_phy_read(struct bwi_mac *mac, uint16_t ctrl)
{
struct bwi_softc *sc = mac->mac_sc;
/* TODO: 11A */
CSR_WRITE_2(sc, BWI_PHY_CTRL, ctrl);
return (CSR_READ_2(sc, BWI_PHY_DATA));
}
int
bwi_phy_attach(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
uint8_t phyrev, phytype, phyver;
uint16_t val;
int i;
/* Get PHY type/revision/version */
val = CSR_READ_2(sc, BWI_PHYINFO);
phyrev = __SHIFTOUT(val, BWI_PHYINFO_REV_MASK);
phytype = __SHIFTOUT(val, BWI_PHYINFO_TYPE_MASK);
phyver = __SHIFTOUT(val, BWI_PHYINFO_VER_MASK);
DPRINTF(1, "%s: PHY type %d, rev %d, ver %d\n",
sc->sc_dev.dv_xname, phytype, phyrev, phyver);
/*
* Verify whether the revision of the PHY type is supported
* Convert PHY type to ieee80211_phymode
*/
switch (phytype) {
case BWI_PHYINFO_TYPE_11A:
if (phyrev >= 4) {
printf("%s: unsupported 11A PHY, rev %u\n",
sc->sc_dev.dv_xname, phyrev);
return (ENXIO);
}
phy->phy_init = bwi_phy_init_11a;
phy->phy_mode = IEEE80211_MODE_11A;
phy->phy_tbl_ctrl = BWI_PHYR_TBL_CTRL_11A;
phy->phy_tbl_data_lo = BWI_PHYR_TBL_DATA_LO_11A;
phy->phy_tbl_data_hi = BWI_PHYR_TBL_DATA_HI_11A;
break;
case BWI_PHYINFO_TYPE_11B:
for (i = 0; i < nitems(bwi_sup_bphy); ++i) {
if (phyrev == bwi_sup_bphy[i].rev) {
phy->phy_init = bwi_sup_bphy[i].init;
break;
}
}
if (i == nitems(bwi_sup_bphy)) {
printf("%s: unsupported 11B PHY, rev %u\n",
sc->sc_dev.dv_xname, phyrev);
return (ENXIO);
}
phy->phy_mode = IEEE80211_MODE_11B;
break;
case BWI_PHYINFO_TYPE_11G:
if (phyrev > 8) {
printf("%s: unsupported 11G PHY, rev %u\n",
sc->sc_dev.dv_xname, phyrev);
return (ENXIO);
}
phy->phy_init = bwi_phy_init_11g;
phy->phy_mode = IEEE80211_MODE_11G;
phy->phy_tbl_ctrl = BWI_PHYR_TBL_CTRL_11G;
phy->phy_tbl_data_lo = BWI_PHYR_TBL_DATA_LO_11G;
phy->phy_tbl_data_hi = BWI_PHYR_TBL_DATA_HI_11G;
break;
default:
printf("%s: unsupported PHY type %d\n",
sc->sc_dev.dv_xname, phytype);
return (ENXIO);
}
phy->phy_rev = phyrev;
phy->phy_version = phyver;
return (0);
}
void
bwi_phy_set_bbp_atten(struct bwi_mac *mac, uint16_t bbp_atten)
{
struct bwi_phy *phy = &mac->mac_phy;
uint16_t mask = 0x000f;
if (phy->phy_version == 0) {
CSR_FILT_SETBITS_2(mac->mac_sc, BWI_BBP_ATTEN, ~mask,
__SHIFTIN(bbp_atten, mask));
} else {
if (phy->phy_version > 1)
mask <<= 2;
else
mask <<= 3;
PHY_FILT_SETBITS(mac, BWI_PHYR_BBP_ATTEN, ~mask,
__SHIFTIN(bbp_atten, mask));
}
}
int
bwi_phy_calibrate(struct bwi_mac *mac)
{
struct bwi_phy *phy = &mac->mac_phy;
/* Dummy read */
CSR_READ_4(mac->mac_sc, BWI_MAC_STATUS);
/* Don't re-init */
if (phy->phy_flags & BWI_PHY_F_CALIBRATED)
return (0);
if (phy->phy_mode == IEEE80211_MODE_11G && phy->phy_rev == 1) {
bwi_mac_reset(mac, 0);
bwi_phy_init_11g(mac);
bwi_mac_reset(mac, 1);
}
phy->phy_flags |= BWI_PHY_F_CALIBRATED;
return (0);
}
void
bwi_tbl_write_2(struct bwi_mac *mac, uint16_t ofs, uint16_t data)
{
struct bwi_phy *phy = &mac->mac_phy;
KASSERT(phy->phy_tbl_ctrl != 0 && phy->phy_tbl_data_lo != 0);
PHY_WRITE(mac, phy->phy_tbl_ctrl, ofs);
PHY_WRITE(mac, phy->phy_tbl_data_lo, data);
}
void
bwi_tbl_write_4(struct bwi_mac *mac, uint16_t ofs, uint32_t data)
{
struct bwi_phy *phy = &mac->mac_phy;
KASSERT(phy->phy_tbl_data_lo != 0 && phy->phy_tbl_data_hi != 0 &&
phy->phy_tbl_ctrl != 0);
PHY_WRITE(mac, phy->phy_tbl_ctrl, ofs);
PHY_WRITE(mac, phy->phy_tbl_data_hi, data >> 16);
PHY_WRITE(mac, phy->phy_tbl_data_lo, data & 0xffff);
}
void
bwi_nrssi_write(struct bwi_mac *mac, uint16_t ofs, int16_t data)
{
PHY_WRITE(mac, BWI_PHYR_NRSSI_CTRL, ofs);
PHY_WRITE(mac, BWI_PHYR_NRSSI_DATA, (uint16_t)data);
}
int16_t
bwi_nrssi_read(struct bwi_mac *mac, uint16_t ofs)
{
PHY_WRITE(mac, BWI_PHYR_NRSSI_CTRL, ofs);
return ((int16_t)PHY_READ(mac, BWI_PHYR_NRSSI_DATA));
}
void
bwi_phy_init_11a(struct bwi_mac *mac)
{
/* TODO: 11A */
}
void
bwi_phy_init_11g(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
const struct bwi_tpctl *tpctl = &mac->mac_tpctl;
if (phy->phy_rev == 1)
bwi_phy_init_11b_rev5(mac);
else
bwi_phy_init_11b_rev6(mac);
if (phy->phy_rev >= 2 || (phy->phy_flags & BWI_PHY_F_LINKED))
bwi_phy_config_11g(mac);
if (phy->phy_rev >= 2) {
PHY_WRITE(mac, 0x814, 0);
PHY_WRITE(mac, 0x815, 0);
if (phy->phy_rev == 2) {
PHY_WRITE(mac, 0x811, 0);
PHY_WRITE(mac, 0x15, 0xc0);
} else if (phy->phy_rev > 5) {
PHY_WRITE(mac, 0x811, 0x400);
PHY_WRITE(mac, 0x15, 0xc0);
}
}
if (phy->phy_rev >= 2 || (phy->phy_flags & BWI_PHY_F_LINKED)) {
uint16_t val;
val = PHY_READ(mac, 0x400) & 0xff;
if (val == 3 || val == 5) {
PHY_WRITE(mac, 0x4c2, 0x1816);
PHY_WRITE(mac, 0x4c3, 0x8006);
if (val == 5) {
PHY_FILT_SETBITS(mac, 0x4cc,
0xff, 0x1f00);
}
}
}
if ((phy->phy_rev <= 2 && (phy->phy_flags & BWI_PHY_F_LINKED)) ||
phy->phy_rev >= 2)
PHY_WRITE(mac, 0x47e, 0x78);
if (rf->rf_rev == 8) {
PHY_SETBITS(mac, 0x801, 0x80);
PHY_SETBITS(mac, 0x43e, 0x4);
}
if (phy->phy_rev >= 2 && (phy->phy_flags & BWI_PHY_F_LINKED))
bwi_rf_get_gains(mac);
if (rf->rf_rev != 8)
bwi_rf_init(mac);
if (tpctl->tp_ctrl2 == 0xffff) {
bwi_rf_lo_update(mac);
} else {
if (rf->rf_type == BWI_RF_T_BCM2050 && rf->rf_rev == 8) {
RF_WRITE(mac, 0x52,
(tpctl->tp_ctrl1 << 4) | tpctl->tp_ctrl2);
} else {
RF_FILT_SETBITS(mac, 0x52, 0xfff0, tpctl->tp_ctrl2);
}
if (phy->phy_rev >= 6) {
PHY_FILT_SETBITS(mac, 0x36, 0xfff,
tpctl->tp_ctrl2 << 12);
}
if (sc->sc_card_flags & BWI_CARD_F_PA_GPIO9)
PHY_WRITE(mac, 0x2e, 0x8075);
else
PHY_WRITE(mac, 0x2e, 0x807f);
if (phy->phy_rev < 2)
PHY_WRITE(mac, 0x2f, 0x101);
else
PHY_WRITE(mac, 0x2f, 0x202);
}
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
bwi_rf_lo_adjust(mac, tpctl);
PHY_WRITE(mac, 0x80f, 0x8078);
}
if ((sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) == 0) {
bwi_rf_init_hw_nrssi_table(mac, 0xffff /* XXX */);
bwi_rf_set_nrssi_thr(mac);
} else if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
if (rf->rf_nrssi[0] == BWI_INVALID_NRSSI) {
KASSERT(rf->rf_nrssi[1] == BWI_INVALID_NRSSI);
bwi_rf_calc_nrssi_slope(mac);
} else {
KASSERT(rf->rf_nrssi[1] != BWI_INVALID_NRSSI);
bwi_rf_set_nrssi_thr(mac);
}
}
if (rf->rf_rev == 8)
PHY_WRITE(mac, 0x805, 0x3230);
bwi_mac_init_tpctl_11bg(mac);
if (sc->sc_bbp_id == BWI_BBPID_BCM4306 && sc->sc_bbp_pkg == 2) {
PHY_CLRBITS(mac, 0x429, 0x4000);
PHY_CLRBITS(mac, 0x4c3, 0x8000);
}
}
void
bwi_phy_init_11b_rev2(struct bwi_mac *mac)
{
struct bwi_softc *sc;
sc = mac->mac_sc;
/* TODO: 11B */
printf("%s: %s is not implemented yet\n",
sc->sc_dev.dv_xname, __func__);
}
void
bwi_phy_init_11b_rev4(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t val, ofs;
u_int chan;
CSR_WRITE_2(sc, BWI_BPHY_CTRL, BWI_BPHY_CTRL_INIT);
PHY_WRITE(mac, 0x20, 0x301c);
PHY_WRITE(mac, 0x26, 0);
PHY_WRITE(mac, 0x30, 0xc6);
PHY_WRITE(mac, 0x88, 0x3e00);
for (ofs = 0, val = 0x3c3d; ofs < 30; ++ofs, val -= 0x202)
PHY_WRITE(mac, 0x89 + ofs, val);
CSR_WRITE_2(sc, BWI_PHY_MAGIC_REG1, BWI_PHY_MAGIC_REG1_VAL1);
chan = rf->rf_curchan;
if (chan == IEEE80211_CHAN_ANY)
chan = 6; /* Force to channel 6 */
bwi_rf_set_chan(mac, chan, 0);
if (rf->rf_type != BWI_RF_T_BCM2050) {
RF_WRITE(mac, 0x75, 0x80);
RF_WRITE(mac, 0x79, 0x81);
}
RF_WRITE(mac, 0x50, 0x20);
RF_WRITE(mac, 0x50, 0x23);
if (rf->rf_type == BWI_RF_T_BCM2050) {
RF_WRITE(mac, 0x50, 0x20);
RF_WRITE(mac, 0x5a, 0x70);
RF_WRITE(mac, 0x5b, 0x7b);
RF_WRITE(mac, 0x5c, 0xb0);
RF_WRITE(mac, 0x7a, 0xf);
PHY_WRITE(mac, 0x38, 0x677);
bwi_rf_init_bcm2050(mac);
}
PHY_WRITE(mac, 0x14, 0x80);
PHY_WRITE(mac, 0x32, 0xca);
if (rf->rf_type == BWI_RF_T_BCM2050)
PHY_WRITE(mac, 0x32, 0xe0);
PHY_WRITE(mac, 0x35, 0x7c2);
bwi_rf_lo_update(mac);
PHY_WRITE(mac, 0x26, 0xcc00);
if (rf->rf_type == BWI_RF_T_BCM2050)
PHY_WRITE(mac, 0x26, 0xce00);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, 0x1100);
PHY_WRITE(mac, 0x2a, 0x88a3);
if (rf->rf_type == BWI_RF_T_BCM2050)
PHY_WRITE(mac, 0x2a, 0x88c2);
bwi_mac_set_tpctl_11bg(mac, NULL);
if (sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
bwi_rf_calc_nrssi_slope(mac);
bwi_rf_set_nrssi_thr(mac);
}
bwi_mac_init_tpctl_11bg(mac);
}
void
bwi_phy_init_11b_rev5(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint orig_chan;
if (phy->phy_version == 1)
RF_SETBITS(mac, 0x7a, 0x50);
if (sc->sc_pci_subvid != PCI_VENDOR_BROADCOM &&
sc->sc_pci_subdid != BWI_PCI_SUBDEVICE_BU4306) {
uint16_t ofs, val;
val = 0x2120;
for (ofs = 0xa8; ofs < 0xc7; ++ofs) {
PHY_WRITE(mac, ofs, val);
val += 0x202;
}
}
PHY_FILT_SETBITS(mac, 0x35, 0xf0ff, 0x700);
if (rf->rf_type == BWI_RF_T_BCM2050)
PHY_WRITE(mac, 0x38, 0x667);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
if (rf->rf_type == BWI_RF_T_BCM2050) {
RF_SETBITS(mac, 0x7a, 0x20);
RF_SETBITS(mac, 0x51, 0x4);
}
CSR_WRITE_2(sc, BWI_RF_ANTDIV, 0);
PHY_SETBITS(mac, 0x802, 0x100);
PHY_SETBITS(mac, 0x42b, 0x2000);
PHY_WRITE(mac, 0x1c, 0x186a);
PHY_FILT_SETBITS(mac, 0x13, 0xff, 0x1900);
PHY_FILT_SETBITS(mac, 0x35, 0xffc0, 0x64);
PHY_FILT_SETBITS(mac, 0x5d, 0xff80, 0xa);
}
/* TODO: bad_frame_preempt? */
if (phy->phy_version == 1) {
PHY_WRITE(mac, 0x26, 0xce00);
PHY_WRITE(mac, 0x21, 0x3763);
PHY_WRITE(mac, 0x22, 0x1bc3);
PHY_WRITE(mac, 0x23, 0x6f9);
PHY_WRITE(mac, 0x24, 0x37e);
} else
PHY_WRITE(mac, 0x26, 0xcc00);
PHY_WRITE(mac, 0x30, 0xc6);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, BWI_BPHY_CTRL_INIT);
if (phy->phy_version == 1)
PHY_WRITE(mac, 0x20, 0x3e1c);
else
PHY_WRITE(mac, 0x20, 0x301c);
if (phy->phy_version == 0)
CSR_WRITE_2(sc, BWI_PHY_MAGIC_REG1, BWI_PHY_MAGIC_REG1_VAL1);
/* Force to channel 7 */
orig_chan = rf->rf_curchan;
bwi_rf_set_chan(mac, 7, 0);
if (rf->rf_type != BWI_RF_T_BCM2050) {
RF_WRITE(mac, 0x75, 0x80);
RF_WRITE(mac, 0x79, 0x81);
}
RF_WRITE(mac, 0x50, 0x20);
RF_WRITE(mac, 0x50, 0x23);
if (rf->rf_type == BWI_RF_T_BCM2050) {
RF_WRITE(mac, 0x50, 0x20);
RF_WRITE(mac, 0x5a, 0x70);
}
RF_WRITE(mac, 0x5b, 0x7b);
RF_WRITE(mac, 0x5c, 0xb0);
RF_SETBITS(mac, 0x7a, 0x7);
bwi_rf_set_chan(mac, orig_chan, 0);
PHY_WRITE(mac, 0x14, 0x80);
PHY_WRITE(mac, 0x32, 0xca);
PHY_WRITE(mac, 0x2a, 0x88a3);
bwi_mac_set_tpctl_11bg(mac, NULL);
if (rf->rf_type == BWI_RF_T_BCM2050)
RF_WRITE(mac, 0x5d, 0xd);
CSR_FILT_SETBITS_2(sc, BWI_PHY_MAGIC_REG1, 0xffc0, 0x4);
}
void
bwi_phy_init_11b_rev6(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t val, ofs;
uint orig_chan;
PHY_WRITE(mac, 0x3e, 0x817a);
RF_SETBITS(mac, 0x7a, 0x58);
if (rf->rf_rev == 4 || rf->rf_rev == 5) {
RF_WRITE(mac, 0x51, 0x37);
RF_WRITE(mac, 0x52, 0x70);
RF_WRITE(mac, 0x53, 0xb3);
RF_WRITE(mac, 0x54, 0x9b);
RF_WRITE(mac, 0x5a, 0x88);
RF_WRITE(mac, 0x5b, 0x88);
RF_WRITE(mac, 0x5d, 0x88);
RF_WRITE(mac, 0x5e, 0x88);
RF_WRITE(mac, 0x7d, 0x88);
HFLAGS_SETBITS(mac, BWI_HFLAG_MAGIC1);
} else if (rf->rf_rev == 8) {
RF_WRITE(mac, 0x51, 0);
RF_WRITE(mac, 0x52, 0x40);
RF_WRITE(mac, 0x53, 0xb7);
RF_WRITE(mac, 0x54, 0x98);
RF_WRITE(mac, 0x5a, 0x88);
RF_WRITE(mac, 0x5b, 0x6b);
RF_WRITE(mac, 0x5c, 0xf);
if (sc->sc_card_flags & BWI_CARD_F_ALT_IQ) {
RF_WRITE(mac, 0x5d, 0xfa);
RF_WRITE(mac, 0x5e, 0xd8);
} else {
RF_WRITE(mac, 0x5d, 0xf5);
RF_WRITE(mac, 0x5e, 0xb8);
}
RF_WRITE(mac, 0x73, 0x3);
RF_WRITE(mac, 0x7d, 0xa8);
RF_WRITE(mac, 0x7c, 0x1);
RF_WRITE(mac, 0x7e, 0x8);
}
val = 0x1e1f;
for (ofs = 0x88; ofs < 0x98; ++ofs) {
PHY_WRITE(mac, ofs, val);
val -= 0x202;
}
val = 0x3e3f;
for (ofs = 0x98; ofs < 0xa8; ++ofs) {
PHY_WRITE(mac, ofs, val);
val -= 0x202;
}
val = 0x2120;
for (ofs = 0xa8; ofs < 0xc8; ++ofs) {
PHY_WRITE(mac, ofs, (val & 0x3f3f));
val += 0x202;
/* XXX: delay 10 us to avoid PCI parity errors with BCM4318 */
DELAY(10);
}
if (phy->phy_mode == IEEE80211_MODE_11G) {
RF_SETBITS(mac, 0x7a, 0x20);
RF_SETBITS(mac, 0x51, 0x4);
PHY_SETBITS(mac, 0x802, 0x100);
PHY_SETBITS(mac, 0x42b, 0x2000);
PHY_WRITE(mac, 0x5b, 0);
PHY_WRITE(mac, 0x5c, 0);
}
/* Force to channel 7 */
orig_chan = rf->rf_curchan;
if (orig_chan >= 8)
bwi_rf_set_chan(mac, 1, 0);
else
bwi_rf_set_chan(mac, 13, 0);
RF_WRITE(mac, 0x50, 0x20);
RF_WRITE(mac, 0x50, 0x23);
DELAY(40);
if (rf->rf_rev < 6 || rf->rf_rev == 8) {
RF_SETBITS(mac, 0x7c, 0x2);
RF_WRITE(mac, 0x50, 0x20);
}
if (rf->rf_rev <= 2) {
RF_WRITE(mac, 0x7c, 0x20);
RF_WRITE(mac, 0x5a, 0x70);
RF_WRITE(mac, 0x5b, 0x7b);
RF_WRITE(mac, 0x5c, 0xb0);
}
RF_FILT_SETBITS(mac, 0x7a, 0xf8, 0x7);
bwi_rf_set_chan(mac, orig_chan, 0);
PHY_WRITE(mac, 0x14, 0x200);
if (rf->rf_rev >= 6)
PHY_WRITE(mac, 0x2a, 0x88c2);
else
PHY_WRITE(mac, 0x2a, 0x8ac0);
PHY_WRITE(mac, 0x38, 0x668);
bwi_mac_set_tpctl_11bg(mac, NULL);
if (rf->rf_rev <= 5) {
PHY_FILT_SETBITS(mac, 0x5d, 0xff80, 0x3);
if (rf->rf_rev <= 2)
RF_WRITE(mac, 0x5d, 0xd);
}
if (phy->phy_version == 4) {
CSR_WRITE_2(sc, BWI_PHY_MAGIC_REG1, BWI_PHY_MAGIC_REG1_VAL2);
PHY_CLRBITS(mac, 0x61, 0xf000);
} else {
PHY_FILT_SETBITS(mac, 0x2, 0xffc0, 0x4);
}
if (phy->phy_mode == IEEE80211_MODE_11B) {
CSR_WRITE_2(sc, BWI_BBP_ATTEN, BWI_BBP_ATTEN_MAGIC2);
PHY_WRITE(mac, 0x16, 0x410);
PHY_WRITE(mac, 0x17, 0x820);
PHY_WRITE(mac, 0x62, 0x7);
bwi_rf_init_bcm2050(mac);
bwi_rf_lo_update(mac);
if (sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
bwi_rf_calc_nrssi_slope(mac);
bwi_rf_set_nrssi_thr(mac);
}
bwi_mac_init_tpctl_11bg(mac);
} else
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0);
}
void
bwi_phy_config_11g(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
const uint16_t *tbl;
uint16_t wrd_ofs1, wrd_ofs2;
int i, n;
if (phy->phy_rev == 1) {
PHY_WRITE(mac, 0x406, 0x4f19);
PHY_FILT_SETBITS(mac, 0x429, 0xfc3f, 0x340);
PHY_WRITE(mac, 0x42c, 0x5a);
PHY_WRITE(mac, 0x427, 0x1a);
/* Fill frequency table */
for (i = 0; i < nitems(bwi_phy_freq_11g_rev1); ++i) {
bwi_tbl_write_2(mac, BWI_PHYTBL_FREQ + i,
bwi_phy_freq_11g_rev1[i]);
}
/* Fill noise table */
for (i = 0; i < nitems(bwi_phy_noise_11g_rev1); ++i) {
bwi_tbl_write_2(mac, BWI_PHYTBL_NOISE + i,
bwi_phy_noise_11g_rev1[i]);
}
/* Fill rotor table */
for (i = 0; i < nitems(bwi_phy_rotor_11g_rev1); ++i) {
/* NB: data length is 4 bytes */
bwi_tbl_write_4(mac, BWI_PHYTBL_ROTOR + i,
bwi_phy_rotor_11g_rev1[i]);
}
} else {
bwi_nrssi_write(mac, 0xba98, (int16_t)0x7654); /* XXX */
if (phy->phy_rev == 2) {
PHY_WRITE(mac, 0x4c0, 0x1861);
PHY_WRITE(mac, 0x4c1, 0x271);
} else if (phy->phy_rev > 2) {
PHY_WRITE(mac, 0x4c0, 0x98);
PHY_WRITE(mac, 0x4c1, 0x70);
PHY_WRITE(mac, 0x4c9, 0x80);
}
PHY_SETBITS(mac, 0x42b, 0x800);
/* Fill RSSI table */
for (i = 0; i < 64; ++i)
bwi_tbl_write_2(mac, BWI_PHYTBL_RSSI + i, i);
/* Fill noise table */
for (i = 0; i < nitems(bwi_phy_noise_11g); ++i) {
bwi_tbl_write_2(mac, BWI_PHYTBL_NOISE + i,
bwi_phy_noise_11g[i]);
}
}
/*
* Fill noise scale table
*/
if (phy->phy_rev <= 2) {
tbl = bwi_phy_noise_scale_11g_rev2;
n = nitems(bwi_phy_noise_scale_11g_rev2);
} else if (phy->phy_rev >= 7 && (PHY_READ(mac, 0x449) & 0x200)) {
tbl = bwi_phy_noise_scale_11g_rev7;
n = nitems(bwi_phy_noise_scale_11g_rev7);
} else {
tbl = bwi_phy_noise_scale_11g;
n = nitems(bwi_phy_noise_scale_11g);
}
for (i = 0; i < n; ++i)
bwi_tbl_write_2(mac, BWI_PHYTBL_NOISE_SCALE + i, tbl[i]);
/*
* Fill sigma square table
*/
if (phy->phy_rev == 2) {
tbl = bwi_phy_sigma_sq_11g_rev2;
n = nitems(bwi_phy_sigma_sq_11g_rev2);
} else if (phy->phy_rev > 2 && phy->phy_rev <= 8) {
tbl = bwi_phy_sigma_sq_11g_rev7;
n = nitems(bwi_phy_sigma_sq_11g_rev7);
} else {
tbl = NULL;
n = 0;
}
for (i = 0; i < n; ++i)
bwi_tbl_write_2(mac, BWI_PHYTBL_SIGMA_SQ + i, tbl[i]);
if (phy->phy_rev == 1) {
/* Fill delay table */
for (i = 0; i < nitems(bwi_phy_delay_11g_rev1); ++i) {
bwi_tbl_write_4(mac, BWI_PHYTBL_DELAY + i,
bwi_phy_delay_11g_rev1[i]);
}
/* Fill WRSSI (Wide-Band RSSI) table */
for (i = 4; i < 20; ++i)
bwi_tbl_write_2(mac, BWI_PHYTBL_WRSSI_REV1 + i, 0x20);
bwi_phy_config_agc(mac);
wrd_ofs1 = 0x5001;
wrd_ofs2 = 0x5002;
} else {
/* Fill WRSSI (Wide-Band RSSI) table */
for (i = 0; i < 0x20; ++i)
bwi_tbl_write_2(mac, BWI_PHYTBL_WRSSI + i, 0x820);
bwi_phy_config_agc(mac);
PHY_READ(mac, 0x400); /* Dummy read */
PHY_WRITE(mac, 0x403, 0x1000);
bwi_tbl_write_2(mac, 0x3c02, 0xf);
bwi_tbl_write_2(mac, 0x3c03, 0x14);
wrd_ofs1 = 0x401;
wrd_ofs2 = 0x402;
}
if (!(BWI_IS_BRCM_BU4306(sc) && sc->sc_pci_revid == 0x17)) {
bwi_tbl_write_2(mac, wrd_ofs1, 0x2);
bwi_tbl_write_2(mac, wrd_ofs2, 0x1);
}
/* phy->phy_flags & BWI_PHY_F_LINKED ? */
if (sc->sc_card_flags & BWI_CARD_F_PA_GPIO9)
PHY_WRITE(mac, 0x46e, 0x3cf);
}
#undef N
/*
* Configure Automatic Gain Controller
*/
void
bwi_phy_config_agc(struct bwi_mac *mac)
{
struct bwi_phy *phy = &mac->mac_phy;
uint16_t ofs;
ofs = phy->phy_rev == 1 ? 0x4c00 : 0;
bwi_tbl_write_2(mac, ofs, 0xfe);
bwi_tbl_write_2(mac, ofs + 1, 0xd);
bwi_tbl_write_2(mac, ofs + 2, 0x13);
bwi_tbl_write_2(mac, ofs + 3, 0x19);
if (phy->phy_rev == 1) {
bwi_tbl_write_2(mac, 0x1800, 0x2710);
bwi_tbl_write_2(mac, 0x1801, 0x9b83);
bwi_tbl_write_2(mac, 0x1802, 0x9b83);
bwi_tbl_write_2(mac, 0x1803, 0xf8d);
PHY_WRITE(mac, 0x455, 0x4);
}
PHY_FILT_SETBITS(mac, 0x4a5, 0xff, 0x5700);
PHY_FILT_SETBITS(mac, 0x41a, 0xff80, 0xf);
PHY_FILT_SETBITS(mac, 0x41a, 0xc07f, 0x2b80);
PHY_FILT_SETBITS(mac, 0x48c, 0xf0ff, 0x300);
RF_SETBITS(mac, 0x7a, 0x8);
PHY_FILT_SETBITS(mac, 0x4a0, 0xfff0, 0x8);
PHY_FILT_SETBITS(mac, 0x4a1, 0xf0ff, 0x600);
PHY_FILT_SETBITS(mac, 0x4a2, 0xf0ff, 0x700);
PHY_FILT_SETBITS(mac, 0x4a0, 0xf0ff, 0x100);
if (phy->phy_rev == 1)
PHY_FILT_SETBITS(mac, 0x4a2, 0xfff0, 0x7);
PHY_FILT_SETBITS(mac, 0x488, 0xff00, 0x1c);
PHY_FILT_SETBITS(mac, 0x488, 0xc0ff, 0x200);
PHY_FILT_SETBITS(mac, 0x496, 0xff00, 0x1c);
PHY_FILT_SETBITS(mac, 0x489, 0xff00, 0x20);
PHY_FILT_SETBITS(mac, 0x489, 0xc0ff, 0x200);
PHY_FILT_SETBITS(mac, 0x482, 0xff00, 0x2e);
PHY_FILT_SETBITS(mac, 0x496, 0xff, 0x1a00);
PHY_FILT_SETBITS(mac, 0x481, 0xff00, 0x28);
PHY_FILT_SETBITS(mac, 0x481, 0xff, 0x2c00);
if (phy->phy_rev == 1) {
PHY_WRITE(mac, 0x430, 0x92b);
PHY_FILT_SETBITS(mac, 0x41b, 0xffe1, 0x2);
} else {
PHY_CLRBITS(mac, 0x41b, 0x1e);
PHY_WRITE(mac, 0x41f, 0x287a);
PHY_FILT_SETBITS(mac, 0x420, 0xfff0, 0x4);
if (phy->phy_rev >= 6) {
PHY_WRITE(mac, 0x422, 0x287a);
PHY_FILT_SETBITS(mac, 0x420, 0xfff, 0x3000);
}
}
PHY_FILT_SETBITS(mac, 0x4a8, 0x8080, 0x7874);
PHY_WRITE(mac, 0x48e, 0x1c00);
if (phy->phy_rev == 1) {
PHY_FILT_SETBITS(mac, 0x4ab, 0xf0ff, 0x600);
PHY_WRITE(mac, 0x48b, 0x5e);
PHY_FILT_SETBITS(mac, 0x48c, 0xff00, 0x1e);
PHY_WRITE(mac, 0x48d, 0x2);
}
bwi_tbl_write_2(mac, ofs + 0x800, 0);
bwi_tbl_write_2(mac, ofs + 0x801, 7);
bwi_tbl_write_2(mac, ofs + 0x802, 16);
bwi_tbl_write_2(mac, ofs + 0x803, 28);
if (phy->phy_rev >= 6) {
PHY_CLRBITS(mac, 0x426, 0x3);
PHY_CLRBITS(mac, 0x426, 0x1000);
}
}
void
bwi_set_gains(struct bwi_mac *mac, const struct bwi_gains *gains)
{
struct bwi_phy *phy = &mac->mac_phy;
uint16_t tbl_gain_ofs1, tbl_gain_ofs2, tbl_gain;
int i;
if (phy->phy_rev <= 1) {
tbl_gain_ofs1 = 0x5000;
tbl_gain_ofs2 = tbl_gain_ofs1 + 16;
} else {
tbl_gain_ofs1 = 0x400;
tbl_gain_ofs2 = tbl_gain_ofs1 + 8;
}
for (i = 0; i < 4; ++i) {
if (gains != NULL) {
tbl_gain = gains->tbl_gain1;
} else {
/* Bit swap */
tbl_gain = (i & 0x1) << 1;
tbl_gain |= (i & 0x2) >> 1;
}
bwi_tbl_write_2(mac, tbl_gain_ofs1 + i, tbl_gain);
}
for (i = 0; i < 16; ++i) {
if (gains != NULL)
tbl_gain = gains->tbl_gain2;
else
tbl_gain = i;
bwi_tbl_write_2(mac, tbl_gain_ofs2 + i, tbl_gain);
}
if (gains == NULL || (gains != NULL && gains->phy_gain != -1)) {
uint16_t phy_gain1, phy_gain2;
if (gains != NULL) {
phy_gain1 =
((uint16_t)gains->phy_gain << 14) |
((uint16_t)gains->phy_gain << 6);
phy_gain2 = phy_gain1;
} else {
phy_gain1 = 0x4040;
phy_gain2 = 0x4000;
}
PHY_FILT_SETBITS(mac, 0x4a0, 0xbfbf, phy_gain1);
PHY_FILT_SETBITS(mac, 0x4a1, 0xbfbf, phy_gain1);
PHY_FILT_SETBITS(mac, 0x4a2, 0xbfbf, phy_gain2);
}
bwi_mac_dummy_xmit(mac);
}
void
bwi_phy_clear_state(struct bwi_phy *phy)
{
phy->phy_flags &= ~BWI_CLEAR_PHY_FLAGS;
}
/* RF */
int16_t
bwi_nrssi_11g(struct bwi_mac *mac)
{
int16_t val;
#define NRSSI_11G_MASK 0x3f00
val = (int16_t)__SHIFTOUT(PHY_READ(mac, 0x47f), NRSSI_11G_MASK);
if (val >= 32)
val -= 64;
return (val);
#undef NRSSI_11G_MASK
}
struct bwi_rf_lo *
bwi_get_rf_lo(struct bwi_mac *mac, uint16_t rf_atten, uint16_t bbp_atten)
{
int n;
n = rf_atten + (14 * (bbp_atten / 2));
KASSERT(n < BWI_RFLO_MAX);
return (&mac->mac_rf.rf_lo[n]);
}
int
bwi_rf_lo_isused(struct bwi_mac *mac, const struct bwi_rf_lo *lo)
{
struct bwi_rf *rf = &mac->mac_rf;
int idx;
idx = lo - rf->rf_lo;
KASSERT(idx >= 0 && idx < BWI_RFLO_MAX);
return (isset(rf->rf_lo_used, idx));
}
void
bwi_rf_write(struct bwi_mac *mac, uint16_t ctrl, uint16_t data)
{
struct bwi_softc *sc = mac->mac_sc;
CSR_WRITE_2(sc, BWI_RF_CTRL, ctrl);
CSR_WRITE_2(sc, BWI_RF_DATA_LO, data);
}
uint16_t
bwi_rf_read(struct bwi_mac *mac, uint16_t ctrl)
{
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_softc *sc = mac->mac_sc;
ctrl |= rf->rf_ctrl_rd;
if (rf->rf_ctrl_adj) {
/* XXX */
if (ctrl < 0x70)
ctrl += 0x80;
else if (ctrl < 0x80)
ctrl += 0x70;
}
CSR_WRITE_2(sc, BWI_RF_CTRL, ctrl);
return (CSR_READ_2(sc, BWI_RF_DATA_LO));
}
int
bwi_rf_attach(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t type, manu;
uint8_t rev;
/*
* Get RF manufacture/type/revision
*/
if (sc->sc_bbp_id == BWI_BBPID_BCM4317) {
/*
* Fake a BCM2050 RF
*/
manu = BWI_RF_MANUFACT_BCM;
type = BWI_RF_T_BCM2050;
if (sc->sc_bbp_rev == 0)
rev = 3;
else if (sc->sc_bbp_rev == 1)
rev = 4;
else
rev = 5;
} else {
uint32_t val;
CSR_WRITE_2(sc, BWI_RF_CTRL, BWI_RF_CTRL_RFINFO);
val = CSR_READ_2(sc, BWI_RF_DATA_HI);
val <<= 16;
CSR_WRITE_2(sc, BWI_RF_CTRL, BWI_RF_CTRL_RFINFO);
val |= CSR_READ_2(sc, BWI_RF_DATA_LO);
manu = __SHIFTOUT(val, BWI_RFINFO_MANUFACT_MASK);
type = __SHIFTOUT(val, BWI_RFINFO_TYPE_MASK);
rev = __SHIFTOUT(val, BWI_RFINFO_REV_MASK);
}
DPRINTF(1, "%s: RF manu 0x%03x, type 0x%04x, rev %u\n",
sc->sc_dev.dv_xname, manu, type, rev);
/*
* Verify whether the RF is supported
*/
rf->rf_ctrl_rd = 0;
rf->rf_ctrl_adj = 0;
switch (phy->phy_mode) {
case IEEE80211_MODE_11A:
if (manu != BWI_RF_MANUFACT_BCM ||
type != BWI_RF_T_BCM2060 ||
rev != 1) {
printf("%s: only BCM2060 rev 1 RF is supported for "
"11A PHY\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11A;
rf->rf_on = bwi_rf_on_11a;
rf->rf_off = bwi_rf_off_11a;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2060;
break;
case IEEE80211_MODE_11B:
if (type == BWI_RF_T_BCM2050) {
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11BG;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2050;
} else if (type == BWI_RF_T_BCM2053) {
rf->rf_ctrl_adj = 1;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2053;
} else {
printf("%s: only BCM2050/BCM2053 RF is supported "
"for supported for 11B PHY\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
rf->rf_on = bwi_rf_on_11bg;
rf->rf_off = bwi_rf_off_11bg;
rf->rf_calc_nrssi_slope = bwi_rf_calc_nrssi_slope_11b;
rf->rf_set_nrssi_thr = bwi_rf_set_nrssi_thr_11b;
if (phy->phy_rev == 6)
rf->rf_lo_update = bwi_rf_lo_update_11g;
else
rf->rf_lo_update = bwi_rf_lo_update_11b;
break;
case IEEE80211_MODE_11G:
if (type != BWI_RF_T_BCM2050) {
printf("%s: only BCM2050 RF is supported for 11G "
"PHY\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11BG;
rf->rf_on = bwi_rf_on_11bg;
if (mac->mac_rev >= 5)
rf->rf_off = bwi_rf_off_11g_rev5;
else
rf->rf_off = bwi_rf_off_11bg;
rf->rf_calc_nrssi_slope = bwi_rf_calc_nrssi_slope_11g;
rf->rf_set_nrssi_thr = bwi_rf_set_nrssi_thr_11g;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2050;
rf->rf_lo_update = bwi_rf_lo_update_11g;
break;
default:
printf("%s: unsupported PHY mode\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
rf->rf_type = type;
rf->rf_rev = rev;
rf->rf_manu = manu;
rf->rf_curchan = IEEE80211_CHAN_ANY;
rf->rf_ant_mode = BWI_ANT_MODE_AUTO;
return (0);
}
void
bwi_rf_set_chan(struct bwi_mac *mac, uint chan, int work_around)
{
struct bwi_softc *sc = mac->mac_sc;
if (chan == IEEE80211_CHAN_ANY)
return;
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_CHAN, chan);
/* TODO: 11A */
if (work_around)
bwi_rf_workaround(mac, chan);
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan));
if (chan == 14) {
if (sc->sc_locale == BWI_SPROM_LOCALE_JAPAN)
HFLAGS_CLRBITS(mac, BWI_HFLAG_NOT_JAPAN);
else
HFLAGS_SETBITS(mac, BWI_HFLAG_NOT_JAPAN);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, (1 << 11)); /* XXX */
} else {
CSR_CLRBITS_2(sc, BWI_RF_CHAN_EX, 0x840); /* XXX */
}
DELAY(8000); /* DELAY(2000); */
mac->mac_rf.rf_curchan = chan;
}
void
bwi_rf_get_gains(struct bwi_mac *mac)
{
#define SAVE_PHY_MAX 15
#define SAVE_RF_MAX 3
struct bwi_softc *sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t save_phy[SAVE_PHY_MAX];
uint16_t save_rf[SAVE_RF_MAX];
uint16_t trsw;
int i, j, loop1_max, loop1, loop2;
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x52, 0x43, 0x7a };
static const uint16_t save_phy_regs[SAVE_PHY_MAX] = {
0x0429, 0x0001, 0x0811, 0x0812,
0x0814, 0x0815, 0x005a, 0x0059,
0x0058, 0x000a, 0x0003, 0x080f,
0x0810, 0x002b, 0x0015
};
sc = mac->mac_sc;
/*
* Save PHY/RF registers for later restoration
*/
for (i = 0; i < SAVE_PHY_MAX; ++i)
save_phy[i] = PHY_READ(mac, save_phy_regs[i]);
PHY_READ(mac, 0x2d); /* dummy read */
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
PHY_CLRBITS(mac, 0x429, 0xc000);
PHY_SETBITS(mac, 0x1, 0x8000);
PHY_SETBITS(mac, 0x811, 0x2);
PHY_CLRBITS(mac, 0x812, 0x2);
PHY_SETBITS(mac, 0x811, 0x1);
PHY_CLRBITS(mac, 0x812, 0x1);
PHY_SETBITS(mac, 0x814, 0x1);
PHY_CLRBITS(mac, 0x815, 0x1);
PHY_SETBITS(mac, 0x814, 0x2);
PHY_CLRBITS(mac, 0x815, 0x2);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_SETBITS(mac, 0x812, 0xc);
PHY_SETBITS(mac, 0x811, 0x30);
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x10);
PHY_WRITE(mac, 0x5a, 0x780);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
PHY_SETBITS(mac, 0xa, 0x2000);
PHY_SETBITS(mac, 0x814, 0x4);
PHY_CLRBITS(mac, 0x815, 0x4);
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
if (rf->rf_rev == 8) {
loop1_max = 15;
RF_WRITE(mac, 0x43, loop1_max);
} else {
loop1_max = 9;
RF_WRITE(mac, 0x52, 0x0);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, loop1_max);
}
bwi_phy_set_bbp_atten(mac, 11);
if (phy->phy_rev >= 3)
PHY_WRITE(mac, 0x80f, 0xc020);
else
PHY_WRITE(mac, 0x80f, 0x8020);
PHY_WRITE(mac, 0x810, 0);
PHY_FILT_SETBITS(mac, 0x2b, 0xffc0, 0x1);
PHY_FILT_SETBITS(mac, 0x2b, 0xc0ff, 0x800);
PHY_SETBITS(mac, 0x811, 0x100);
PHY_CLRBITS(mac, 0x812, 0x3000);
if ((mac->mac_sc->sc_card_flags & BWI_CARD_F_EXT_LNA) &&
phy->phy_rev >= 7) {
PHY_SETBITS(mac, 0x811, 0x800);
PHY_SETBITS(mac, 0x812, 0x8000);
}
RF_CLRBITS(mac, 0x7a, 0xff08);
/*
* Find out 'loop1/loop2', which will be used to calculate
* max loopback gain later
*/
j = 0;
for (i = 0; i < loop1_max; ++i) {
for (j = 0; j < 16; ++j) {
RF_WRITE(mac, 0x43, i);
if (bwi_rf_gain_max_reached(mac, j))
goto loop1_exit;
}
}
loop1_exit:
loop1 = i;
loop2 = j;
/*
* Find out 'trsw', which will be used to calculate
* TRSW(TX/RX switch) RX gain later
*/
if (loop2 >= 8) {
PHY_SETBITS(mac, 0x812, 0x30);
trsw = 0x1b;
for (i = loop2 - 8; i < 16; ++i) {
trsw -= 3;
if (bwi_rf_gain_max_reached(mac, i))
break;
}
} else {
trsw = 0x18;
}
/*
* Restore saved PHY/RF registers
*/
/* First 4 saved PHY registers need special processing */
for (i = 4; i < SAVE_PHY_MAX; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
bwi_phy_set_bbp_atten(mac, mac->mac_tpctl.bbp_atten);
for (i = 0; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
PHY_WRITE(mac, save_phy_regs[2], save_phy[2] | 0x3);
DELAY(10);
PHY_WRITE(mac, save_phy_regs[2], save_phy[2]);
PHY_WRITE(mac, save_phy_regs[3], save_phy[3]);
PHY_WRITE(mac, save_phy_regs[0], save_phy[0]);
PHY_WRITE(mac, save_phy_regs[1], save_phy[1]);
/*
* Calculate gains
*/
rf->rf_lo_gain = (loop2 * 6) - (loop1 * 4) - 11;
rf->rf_rx_gain = trsw * 2;
DPRINTF(1, "%s: lo gain: %u, rx gain: %u\n",
sc->sc_dev.dv_xname, rf->rf_lo_gain, rf->rf_rx_gain);
#undef SAVE_RF_MAX
#undef SAVE_PHY_MAX
}
void
bwi_rf_init(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
if (rf->rf_type == BWI_RF_T_BCM2060) {
/* TODO: 11A */
} else {
if (rf->rf_flags & BWI_RF_F_INITED)
RF_WRITE(mac, 0x78, rf->rf_calib);
else
bwi_rf_init_bcm2050(mac);
}
}
void
bwi_rf_off_11a(struct bwi_mac *mac)
{
RF_WRITE(mac, 0x4, 0xff);
RF_WRITE(mac, 0x5, 0xfb);
PHY_SETBITS(mac, 0x10, 0x8);
PHY_SETBITS(mac, 0x11, 0x8);
PHY_WRITE(mac, 0x15, 0xaa00);
}
void
bwi_rf_off_11bg(struct bwi_mac *mac)
{
PHY_WRITE(mac, 0x15, 0xaa00);
}
void
bwi_rf_off_11g_rev5(struct bwi_mac *mac)
{
PHY_SETBITS(mac, 0x811, 0x8c);
PHY_CLRBITS(mac, 0x812, 0x8c);
}
void
bwi_rf_workaround(struct bwi_mac *mac, uint chan)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
if (chan == IEEE80211_CHAN_ANY) {
printf("%s: %s invalid channel!\n",
sc->sc_dev.dv_xname, __func__);
return;
}
if (rf->rf_type != BWI_RF_T_BCM2050 || rf->rf_rev >= 6)
return;
if (chan <= 10)
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan + 4));
else
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(1));
DELAY(1000);
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan));
}
struct bwi_rf_lo *
bwi_rf_lo_find(struct bwi_mac *mac, const struct bwi_tpctl *tpctl)
{
uint16_t rf_atten, bbp_atten;
int remap_rf_atten;
remap_rf_atten = 1;
if (tpctl == NULL) {
bbp_atten = 2;
rf_atten = 3;
} else {
if (tpctl->tp_ctrl1 == 3)
remap_rf_atten = 0;
bbp_atten = tpctl->bbp_atten;
rf_atten = tpctl->rf_atten;
if (bbp_atten > 6)
bbp_atten = 6;
}
if (remap_rf_atten) {
#define MAP_MAX 10
static const uint16_t map[MAP_MAX] =
{ 11, 10, 11, 12, 13, 12, 13, 12, 13, 12 };
#if 0
KASSERT(rf_atten < MAP_MAX);
rf_atten = map[rf_atten];
#else
if (rf_atten >= MAP_MAX) {
rf_atten = 0; /* XXX */
} else {
rf_atten = map[rf_atten];
}
#endif
#undef MAP_MAX
}
return (bwi_get_rf_lo(mac, rf_atten, bbp_atten));
}
void
bwi_rf_lo_adjust(struct bwi_mac *mac, const struct bwi_tpctl *tpctl)
{
const struct bwi_rf_lo *lo;
lo = bwi_rf_lo_find(mac, tpctl);
RF_LO_WRITE(mac, lo);
}
void
bwi_rf_lo_write(struct bwi_mac *mac, const struct bwi_rf_lo *lo)
{
uint16_t val;
val = (uint8_t)lo->ctrl_lo;
val |= ((uint8_t)lo->ctrl_hi) << 8;
PHY_WRITE(mac, BWI_PHYR_RF_LO, val);
}
int
bwi_rf_gain_max_reached(struct bwi_mac *mac, int idx)
{
PHY_FILT_SETBITS(mac, 0x812, 0xf0ff, idx << 8);
PHY_FILT_SETBITS(mac, 0x15, 0xfff, 0xa000);
PHY_SETBITS(mac, 0x15, 0xf000);
DELAY(20);
return ((PHY_READ(mac, 0x2d) >= 0xdfc));
}
/* XXX use bitmap array */
uint16_t
bwi_bitswap4(uint16_t val)
{
uint16_t ret;
ret = (val & 0x8) >> 3;
ret |= (val & 0x4) >> 1;
ret |= (val & 0x2) << 1;
ret |= (val & 0x1) << 3;
return (ret);
}
uint16_t
bwi_phy812_value(struct bwi_mac *mac, uint16_t lpd)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t lo_gain, ext_lna, loop;
if ((phy->phy_flags & BWI_PHY_F_LINKED) == 0)
return (0);
lo_gain = rf->rf_lo_gain;
if (rf->rf_rev == 8)
lo_gain += 0x3e;
else
lo_gain += 0x26;
if (lo_gain >= 0x46) {
lo_gain -= 0x46;
ext_lna = 0x3000;
} else if (lo_gain >= 0x3a) {
lo_gain -= 0x3a;
ext_lna = 0x1000;
} else if (lo_gain >= 0x2e) {
lo_gain -= 0x2e;
ext_lna = 0x2000;
} else {
lo_gain -= 0x10;
ext_lna = 0;
}
for (loop = 0; loop < 16; ++loop) {
lo_gain -= (6 * loop);
if (lo_gain < 6)
break;
}
if (phy->phy_rev >= 7 && (sc->sc_card_flags & BWI_CARD_F_EXT_LNA)) {
if (ext_lna)
ext_lna |= 0x8000;
ext_lna |= (loop << 8);
switch (lpd) {
case 0x011:
return (0x8f92);
case 0x001:
return ((0x8092 | ext_lna));
case 0x101:
return ((0x2092 | ext_lna));
case 0x100:
return ((0x2093 | ext_lna));
default:
panic("unsupported lpd");
}
} else {
ext_lna |= (loop << 8);
switch (lpd) {
case 0x011:
return (0xf92);
case 0x001:
case 0x101:
return ((0x92 | ext_lna));
case 0x100:
return ((0x93 | ext_lna));
default:
panic("unsupported lpd");
}
}
panic("never reached");
return (0);
}
void
bwi_rf_init_bcm2050(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_COMM_MAX 4
#define SAVE_PHY_11G_MAX 6
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy_11g[SAVE_PHY_11G_MAX];
uint16_t phyr_35, phyr_30 = 0, rfr_78, phyr_80f = 0, phyr_810 = 0;
uint16_t bphy_ctrl = 0, bbp_atten, rf_chan_ex;
uint16_t phy812_val;
uint16_t calib;
uint32_t test_lim, test;
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
int i;
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x0043, 0x0051, 0x0052 };
static const uint16_t save_phy_regs_comm[SAVE_PHY_COMM_MAX] =
{ 0x0015, 0x005a, 0x0059, 0x0058 };
static const uint16_t save_phy_regs_11g[SAVE_PHY_11G_MAX] =
{ 0x0811, 0x0812, 0x0814, 0x0815, 0x0429, 0x0802 };
/*
* Save registers for later restoring
*/
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_regs_comm[i]);
if (phy->phy_mode == IEEE80211_MODE_11B) {
phyr_30 = PHY_READ(mac, 0x30);
bphy_ctrl = CSR_READ_2(sc, BWI_BPHY_CTRL);
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, 0x3f3f);
} else if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
for (i = 0; i < SAVE_PHY_11G_MAX; ++i) {
save_phy_11g[i] =
PHY_READ(mac, save_phy_regs_11g[i]);
}
PHY_SETBITS(mac, 0x814, 0x3);
PHY_CLRBITS(mac, 0x815, 0x3);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_CLRBITS(mac, 0x802, 0x3);
phyr_80f = PHY_READ(mac, 0x80f);
phyr_810 = PHY_READ(mac, 0x810);
if (phy->phy_rev >= 3)
PHY_WRITE(mac, 0x80f, 0xc020);
else
PHY_WRITE(mac, 0x80f, 0x8020);
PHY_WRITE(mac, 0x810, 0);
phy812_val = bwi_phy812_value(mac, 0x011);
PHY_WRITE(mac, 0x812, phy812_val);
if (phy->phy_rev < 7 ||
(sc->sc_card_flags & BWI_CARD_F_EXT_LNA) == 0)
PHY_WRITE(mac, 0x811, 0x1b3);
else
PHY_WRITE(mac, 0x811, 0x9b3);
}
CSR_SETBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
phyr_35 = PHY_READ(mac, 0x35);
PHY_CLRBITS(mac, 0x35, 0x80);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
rf_chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
if (phy->phy_version == 0) {
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x122);
} else {
if (phy->phy_version >= 2)
PHY_FILT_SETBITS(mac, 0x3, 0xffbf, 0x40);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, 0x2000);
}
calib = bwi_rf_calibval(mac);
if (phy->phy_mode == IEEE80211_MODE_11B)
RF_WRITE(mac, 0x78, 0x26);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x011);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xbfaf);
PHY_WRITE(mac, 0x2b, 0x1403);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x001);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xbfa0);
RF_SETBITS(mac, 0x51, 0x4);
if (rf->rf_rev == 8)
RF_WRITE(mac, 0x43, 0x1f);
else {
RF_WRITE(mac, 0x52, 0);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, 0x9);
}
test_lim = 0;
PHY_WRITE(mac, 0x58, 0);
for (i = 0; i < 16; ++i) {
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xefb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x100);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xfff0);
DELAY(20);
test_lim += PHY_READ(mac, 0x2d);
PHY_WRITE(mac, 0x58, 0);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
}
++test_lim;
test_lim >>= 9;
DELAY(10);
test = 0;
PHY_WRITE(mac, 0x58, 0);
for (i = 0; i < 16; ++i) {
int j;
rfr_78 = (bwi_bitswap4(i) << 1) | 0x20;
RF_WRITE(mac, 0x78, rfr_78);
DELAY(10);
/* NB: This block is slight different than the above one */
for (j = 0; j < 16; ++j) {
PHY_WRITE(mac, 0x5a, 0xd80);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xefb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x100);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xfff0);
DELAY(10);
test += PHY_READ(mac, 0x2d);
PHY_WRITE(mac, 0x58, 0);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
}
++test;
test >>= 8;
if (test > test_lim)
break;
}
if (i > 15)
rf->rf_calib = rfr_78;
else
rf->rf_calib = calib;
if (rf->rf_calib != 0xffff) {
DPRINTF(1, "%s: RF calibration value: 0x%04x\n",
sc->sc_dev.dv_xname, rf->rf_calib);
rf->rf_flags |= BWI_RF_F_INITED;
}
/*
* Restore trashes registers
*/
PHY_WRITE(mac, save_phy_regs_comm[0], save_phy_comm[0]);
for (i = 0; i < SAVE_RF_MAX; ++i) {
int pos = (i + 1) % SAVE_RF_MAX;
RF_WRITE(mac, save_rf_regs[pos], save_rf[pos]);
}
for (i = 1; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_regs_comm[i], save_phy_comm[i]);
CSR_WRITE_2(sc, BWI_BBP_ATTEN, bbp_atten);
if (phy->phy_version != 0)
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, rf_chan_ex);
PHY_WRITE(mac, 0x35, phyr_35);
bwi_rf_workaround(mac, rf->rf_curchan);
if (phy->phy_mode == IEEE80211_MODE_11B) {
PHY_WRITE(mac, 0x30, phyr_30);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, bphy_ctrl);
} else if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
/* XXX Spec only says when PHY is linked (gmode) */
CSR_CLRBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
for (i = 0; i < SAVE_PHY_11G_MAX; ++i) {
PHY_WRITE(mac, save_phy_regs_11g[i],
save_phy_11g[i]);
}
PHY_WRITE(mac, 0x80f, phyr_80f);
PHY_WRITE(mac, 0x810, phyr_810);
}
#undef SAVE_PHY_11G_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_RF_MAX
}
uint16_t
bwi_rf_calibval(struct bwi_mac *mac)
{
uint16_t val, calib;
int idx;
/* http://bcm-specs.sipsolutions.net/RCCTable */
static const uint16_t rf_calibvals[] = {
0x2, 0x3, 0x1, 0xf, 0x6, 0x7, 0x5, 0xf,
0xa, 0xb, 0x9, 0xf, 0xe, 0xf, 0xd, 0xf
};
val = RF_READ(mac, BWI_RFR_BBP_ATTEN);
idx = __SHIFTOUT(val, BWI_RFR_BBP_ATTEN_CALIB_IDX);
KASSERT(idx < (int)(sizeof(rf_calibvals) / sizeof(rf_calibvals[0])));
calib = rf_calibvals[idx] << 1;
if (val & BWI_RFR_BBP_ATTEN_CALIB_BIT)
calib |= 0x1;
calib |= 0x20;
return (calib);
}
int32_t
_bwi_adjust_devide(int32_t num, int32_t den)
{
if (num < 0)
return ((num / den));
else
return ((num + den / 2) / den);
}
/*
* http://bcm-specs.sipsolutions.net/TSSI_to_DBM_Table
* "calculating table entries"
*/
int
bwi_rf_calc_txpower(int8_t *txpwr, uint8_t idx, const int16_t pa_params[])
{
int32_t m1, m2, f, dbm;
int i;
m1 = _bwi_adjust_devide(16 * pa_params[0] + idx * pa_params[1], 32);
m2 = imax(_bwi_adjust_devide(32768 + idx * pa_params[2], 256), 1);
#define ITER_MAX 16
f = 256;
for (i = 0; i < ITER_MAX; ++i) {
int32_t q, d;
q = _bwi_adjust_devide(
f * 4096 - _bwi_adjust_devide(m2 * f, 16) * f, 2048);
d = abs(q - f);
f = q;
if (d < 2)
break;
}
if (i == ITER_MAX)
return (EINVAL);
#undef ITER_MAX
dbm = _bwi_adjust_devide(m1 * f, 8192);
if (dbm < -127)
dbm = -127;
else if (dbm > 128)
dbm = 128;
*txpwr = dbm;
return (0);
}
int
bwi_rf_map_txpower(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t sprom_ofs, val, mask;
int16_t pa_params[3];
int error = 0, i, ant_gain, reg_txpower_max;
/*
* Find out max TX power
*/
val = bwi_read_sprom(sc, BWI_SPROM_MAX_TXPWR);
if (phy->phy_mode == IEEE80211_MODE_11A) {
rf->rf_txpower_max = __SHIFTOUT(val,
BWI_SPROM_MAX_TXPWR_MASK_11A);
} else {
rf->rf_txpower_max = __SHIFTOUT(val,
BWI_SPROM_MAX_TXPWR_MASK_11BG);
if ((sc->sc_card_flags & BWI_CARD_F_PA_GPIO9) &&
phy->phy_mode == IEEE80211_MODE_11G)
rf->rf_txpower_max -= 3;
}
if (rf->rf_txpower_max <= 0) {
printf("%s: invalid max txpower in sprom\n",
sc->sc_dev.dv_xname);
rf->rf_txpower_max = 74;
}
DPRINTF(1, "%s: max txpower from sprom: %d dBm\n",
sc->sc_dev.dv_xname, rf->rf_txpower_max);
/*
* Find out region/domain max TX power, which is adjusted
* by antenna gain and 1.5 dBm fluctuation as mentioned
* in v3 spec.
*/
val = bwi_read_sprom(sc, BWI_SPROM_ANT_GAIN);
if (phy->phy_mode == IEEE80211_MODE_11A)
ant_gain = __SHIFTOUT(val, BWI_SPROM_ANT_GAIN_MASK_11A);
else
ant_gain = __SHIFTOUT(val, BWI_SPROM_ANT_GAIN_MASK_11BG);
if (ant_gain == 0xff) {
/* XXX why this always invalid? */
DPRINTF(1, "%s: invalid antenna gain in sprom\n",
sc->sc_dev.dv_xname);
ant_gain = 2;
}
ant_gain *= 4;
DPRINTF(1, "%s: ant gain %d dBm\n", sc->sc_dev.dv_xname, ant_gain);
reg_txpower_max = 90 - ant_gain - 6; /* XXX magic number */
DPRINTF(1, "%s: region/domain max txpower %d dBm\n",
sc->sc_dev.dv_xname, reg_txpower_max);
/*
* Force max TX power within region/domain TX power limit
*/
if (rf->rf_txpower_max > reg_txpower_max)
rf->rf_txpower_max = reg_txpower_max;
DPRINTF(1, "%s: max txpower %d dBm\n",
sc->sc_dev.dv_xname, rf->rf_txpower_max);
/*
* Create TSSI to TX power mapping
*/
if (sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
rf->rf_type != BWI_RF_T_BCM2050) {
rf->rf_idle_tssi0 = BWI_DEFAULT_IDLE_TSSI;
bcopy(bwi_txpower_map_11b, rf->rf_txpower_map0,
sizeof(rf->rf_txpower_map0));
goto back;
}
#define IS_VALID_PA_PARAM(p) ((p) != 0 && (p) != -1)
/*
* Extract PA parameters
*/
if (phy->phy_mode == IEEE80211_MODE_11A)
sprom_ofs = BWI_SPROM_PA_PARAM_11A;
else
sprom_ofs = BWI_SPROM_PA_PARAM_11BG;
for (i = 0; i < nitems(pa_params); ++i)
pa_params[i] = (int16_t)bwi_read_sprom(sc, sprom_ofs + (i * 2));
for (i = 0; i < nitems(pa_params); ++i) {
/*
* If one of the PA parameters from SPROM is not valid,
* fall back to the default values, if there are any.
*/
if (!IS_VALID_PA_PARAM(pa_params[i])) {
const int8_t *txpower_map;
if (phy->phy_mode == IEEE80211_MODE_11A) {
printf("%s: no tssi2dbm table for 11a PHY\n",
sc->sc_dev.dv_xname);
return (ENXIO);
}
if (phy->phy_mode == IEEE80211_MODE_11G) {
DPRINTF(1, "%s: use default 11g TSSI map\n",
sc->sc_dev.dv_xname);
txpower_map = bwi_txpower_map_11g;
} else {
txpower_map = bwi_txpower_map_11b;
}
rf->rf_idle_tssi0 = BWI_DEFAULT_IDLE_TSSI;
bcopy(txpower_map, rf->rf_txpower_map0,
sizeof(rf->rf_txpower_map0));
goto back;
}
}
/*
* All of the PA parameters from SPROM are valid.
*/
/*
* Extract idle TSSI from SPROM.
*/
val = bwi_read_sprom(sc, BWI_SPROM_IDLE_TSSI);
DPRINTF(1, "%s: sprom idle tssi: 0x%04x\n", sc->sc_dev.dv_xname, val);
if (phy->phy_mode == IEEE80211_MODE_11A)
mask = BWI_SPROM_IDLE_TSSI_MASK_11A;
else
mask = BWI_SPROM_IDLE_TSSI_MASK_11BG;
rf->rf_idle_tssi0 = (int)__SHIFTOUT(val, mask);
if (!IS_VALID_PA_PARAM(rf->rf_idle_tssi0))
rf->rf_idle_tssi0 = 62;
#undef IS_VALID_PA_PARAM
/*
* Calculate TX power map, which is indexed by TSSI
*/
DPRINTF(1, "%s: TSSI-TX power map:\n", sc->sc_dev.dv_xname);
for (i = 0; i < BWI_TSSI_MAX; ++i) {
error = bwi_rf_calc_txpower(&rf->rf_txpower_map0[i], i,
pa_params);
if (error) {
printf("%s: bwi_rf_calc_txpower failed\n",
sc->sc_dev.dv_xname);
break;
}
if (i != 0 && i % 8 == 0)
DPRINTF(1, "\n");
DPRINTF(1, "%d ", rf->rf_txpower_map0[i]);
}
DPRINTF(1, "\n");
back:
DPRINTF(1, "%s: idle tssi0: %d\n",
sc->sc_dev.dv_xname, rf->rf_idle_tssi0);
return (error);
}
void
bwi_rf_lo_update_11g(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_tpctl *tpctl = &mac->mac_tpctl;
struct rf_saveregs regs;
uint16_t ant_div, chan_ex;
uint8_t devi_ctrl;
uint orig_chan;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
/*
* Save RF/PHY registers for later restoration
*/
orig_chan = rf->rf_curchan;
bzero(&regs, sizeof(regs));
if (phy->phy_flags & BWI_PHY_F_LINKED) {
SAVE_PHY_REG(mac, &regs, 429);
SAVE_PHY_REG(mac, &regs, 802);
PHY_WRITE(mac, 0x429, regs.phy_429 & 0x7fff);
PHY_WRITE(mac, 0x802, regs.phy_802 & 0xfffc);
}
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div | 0x8000);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
SAVE_PHY_REG(mac, &regs, 15);
SAVE_PHY_REG(mac, &regs, 2a);
SAVE_PHY_REG(mac, &regs, 35);
SAVE_PHY_REG(mac, &regs, 60);
SAVE_RF_REG(mac, &regs, 43);
SAVE_RF_REG(mac, &regs, 7a);
SAVE_RF_REG(mac, &regs, 52);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
SAVE_PHY_REG(mac, &regs, 811);
SAVE_PHY_REG(mac, &regs, 812);
SAVE_PHY_REG(mac, &regs, 814);
SAVE_PHY_REG(mac, &regs, 815);
}
/* Force to channel 6 */
bwi_rf_set_chan(mac, 6, 0);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x429, regs.phy_429 & 0x7fff);
PHY_WRITE(mac, 0x802, regs.phy_802 & 0xfffc);
bwi_mac_dummy_xmit(mac);
}
RF_WRITE(mac, 0x43, 0x6);
bwi_phy_set_bbp_atten(mac, 2);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, 0);
PHY_WRITE(mac, 0x2e, 0x7f);
PHY_WRITE(mac, 0x80f, 0x78);
PHY_WRITE(mac, 0x35, regs.phy_35 & 0xff7f);
RF_WRITE(mac, 0x7a, regs.rf_7a & 0xfff0);
PHY_WRITE(mac, 0x2b, 0x203);
PHY_WRITE(mac, 0x2a, 0x8a3);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x814, regs.phy_814 | 0x3);
PHY_WRITE(mac, 0x815, regs.phy_815 & 0xfffc);
PHY_WRITE(mac, 0x811, 0x1b3);
PHY_WRITE(mac, 0x812, 0xb2);
}
if ((ifp->if_flags & IFF_RUNNING) == 0)
tpctl->tp_ctrl2 = bwi_rf_get_tp_ctrl2(mac);
PHY_WRITE(mac, 0x80f, 0x8078);
/*
* Measure all RF LO
*/
devi_ctrl = _bwi_rf_lo_update_11g(mac, regs.rf_7a);
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x15, 0xe300);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa0);
DELAY(5);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa2);
DELAY(2);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa3);
} else
PHY_WRITE(mac, 0x15, devi_ctrl | 0xefa0);
if ((ifp->if_flags & IFF_RUNNING) == 0)
tpctl = NULL;
bwi_rf_lo_adjust(mac, tpctl);
PHY_WRITE(mac, 0x2e, 0x807f);
if (phy->phy_flags & BWI_PHY_F_LINKED)
PHY_WRITE(mac, 0x2f, 0x202);
else
PHY_WRITE(mac, 0x2f, 0x101);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
RESTORE_PHY_REG(mac, &regs, 15);
RESTORE_PHY_REG(mac, &regs, 2a);
RESTORE_PHY_REG(mac, &regs, 35);
RESTORE_PHY_REG(mac, &regs, 60);
RESTORE_RF_REG(mac, &regs, 43);
RESTORE_RF_REG(mac, &regs, 7a);
regs.rf_52 &= 0xf0;
regs.rf_52 |= (RF_READ(mac, 0x52) & 0xf);
RF_WRITE(mac, 0x52, regs.rf_52);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
RESTORE_PHY_REG(mac, &regs, 811);
RESTORE_PHY_REG(mac, &regs, 812);
RESTORE_PHY_REG(mac, &regs, 814);
RESTORE_PHY_REG(mac, &regs, 815);
RESTORE_PHY_REG(mac, &regs, 429);
RESTORE_PHY_REG(mac, &regs, 802);
}
bwi_rf_set_chan(mac, orig_chan, 1);
}
uint32_t
bwi_rf_lo_devi_measure(struct bwi_mac *mac, uint16_t ctrl)
{
struct bwi_phy *phy = &mac->mac_phy;
uint32_t devi = 0;
int i;
if (phy->phy_flags & BWI_PHY_F_LINKED)
ctrl <<= 8;
for (i = 0; i < 8; ++i) {
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x15, 0xe300);
PHY_WRITE(mac, 0x812, ctrl | 0xb0);
DELAY(5);
PHY_WRITE(mac, 0x812, ctrl | 0xb2);
DELAY(2);
PHY_WRITE(mac, 0x812, ctrl | 0xb3);
DELAY(4);
PHY_WRITE(mac, 0x15, 0xf300);
} else {
PHY_WRITE(mac, 0x15, ctrl | 0xefa0);
DELAY(2);
PHY_WRITE(mac, 0x15, ctrl | 0xefe0);
DELAY(4);
PHY_WRITE(mac, 0x15, ctrl | 0xffe0);
}
DELAY(8);
devi += PHY_READ(mac, 0x2d);
}
return (devi);
}
uint16_t
bwi_rf_get_tp_ctrl2(struct bwi_mac *mac)
{
uint32_t devi_min;
uint16_t tp_ctrl2 = 0;
int i;
RF_WRITE(mac, 0x52, 0);
DELAY(10);
devi_min = bwi_rf_lo_devi_measure(mac, 0);
for (i = 0; i < 16; ++i) {
uint32_t devi;
RF_WRITE(mac, 0x52, i);
DELAY(10);
devi = bwi_rf_lo_devi_measure(mac, 0);
if (devi < devi_min) {
devi_min = devi;
tp_ctrl2 = i;
}
}
return (tp_ctrl2);
}
uint8_t
_bwi_rf_lo_update_11g(struct bwi_mac *mac, uint16_t orig_rf7a)
{
#define RF_ATTEN_LISTSZ 14
#define BBP_ATTEN_MAX 4 /* half */
struct ifnet *ifp = &mac->mac_sc->sc_ic.ic_if;
struct bwi_rf_lo lo_save, *lo;
uint8_t devi_ctrl = 0;
int idx, adj_rf7a = 0;
static const int rf_atten_list[RF_ATTEN_LISTSZ] =
{ 3, 1, 5, 7, 9, 2, 0, 4, 6, 8, 1, 2, 3, 4 };
static const int rf_atten_init_list[RF_ATTEN_LISTSZ] =
{ 0, 3, 1, 5, 7, 3, 2, 0, 4, 6, -1, -1, -1, -1 };
static const int rf_lo_measure_order[RF_ATTEN_LISTSZ] =
{ 3, 1, 5, 7, 9, 2, 0, 4, 6, 8, 10, 11, 12, 13 };
bzero(&lo_save, sizeof(lo_save));
for (idx = 0; idx < RF_ATTEN_LISTSZ; ++idx) {
int init_rf_atten = rf_atten_init_list[idx];
int rf_atten = rf_atten_list[idx];
int bbp_atten;
for (bbp_atten = 0; bbp_atten < BBP_ATTEN_MAX; ++bbp_atten) {
uint16_t tp_ctrl2, rf7a;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
if (idx == 0) {
bzero(&lo_save, sizeof(lo_save));
} else if (init_rf_atten < 0) {
lo = bwi_get_rf_lo(mac,
rf_atten, 2 * bbp_atten);
bcopy(lo, &lo_save, sizeof(lo_save));
} else {
lo = bwi_get_rf_lo(mac,
init_rf_atten, 0);
bcopy(lo, &lo_save, sizeof(lo_save));
}
devi_ctrl = 0;
adj_rf7a = 0;
/*
* XXX
* Linux driver overflows 'val'
*/
if (init_rf_atten >= 0) {
int val;
val = rf_atten * 2 + bbp_atten;
if (val > 14) {
adj_rf7a = 1;
if (val > 17)
devi_ctrl = 1;
if (val > 19)
devi_ctrl = 2;
}
}
} else {
lo = bwi_get_rf_lo(mac,
rf_atten, 2 * bbp_atten);
if (!bwi_rf_lo_isused(mac, lo))
continue;
bcopy(lo, &lo_save, sizeof(lo_save));
devi_ctrl = 3;
adj_rf7a = 0;
}
RF_WRITE(mac, BWI_RFR_ATTEN, rf_atten);
tp_ctrl2 = mac->mac_tpctl.tp_ctrl2;
if (init_rf_atten < 0)
tp_ctrl2 |= (3 << 4);
RF_WRITE(mac, BWI_RFR_TXPWR, tp_ctrl2);
DELAY(10);
bwi_phy_set_bbp_atten(mac, bbp_atten * 2);
rf7a = orig_rf7a & 0xfff0;
if (adj_rf7a)
rf7a |= 0x8;
RF_WRITE(mac, 0x7a, rf7a);
lo = bwi_get_rf_lo(mac,
rf_lo_measure_order[idx], bbp_atten * 2);
bwi_rf_lo_measure_11g(mac, &lo_save, lo, devi_ctrl);
}
}
return (devi_ctrl);
#undef RF_ATTEN_LISTSZ
#undef BBP_ATTEN_MAX
}
void
bwi_rf_lo_measure_11g(struct bwi_mac *mac, const struct bwi_rf_lo *src_lo,
struct bwi_rf_lo *dst_lo, uint8_t devi_ctrl)
{
#define LO_ADJUST_MIN 1
#define LO_ADJUST_MAX 8
#define LO_ADJUST(hi, lo) { .ctrl_hi = hi, .ctrl_lo = lo }
static const struct bwi_rf_lo rf_lo_adjust[LO_ADJUST_MAX] = {
LO_ADJUST(1, 1),
LO_ADJUST(1, 0),
LO_ADJUST(1, -1),
LO_ADJUST(0, -1),
LO_ADJUST(-1, -1),
LO_ADJUST(-1, 0),
LO_ADJUST(-1, 1),
LO_ADJUST(0, 1)
};
#undef LO_ADJUST
struct bwi_rf_lo lo_min;
uint32_t devi_min;
int found, loop_count, adjust_state;
bcopy(src_lo, &lo_min, sizeof(lo_min));
RF_LO_WRITE(mac, &lo_min);
devi_min = bwi_rf_lo_devi_measure(mac, devi_ctrl);
loop_count = 12; /* XXX */
adjust_state = 0;
do {
struct bwi_rf_lo lo_base;
int i, fin;
found = 0;
if (adjust_state == 0) {
i = LO_ADJUST_MIN;
fin = LO_ADJUST_MAX;
} else if (adjust_state % 2 == 0) {
i = adjust_state - 1;
fin = adjust_state + 1;
} else {
i = adjust_state - 2;
fin = adjust_state + 2;
}
if (i < LO_ADJUST_MIN)
i += LO_ADJUST_MAX;
KASSERT(i <= LO_ADJUST_MAX && i >= LO_ADJUST_MIN);
if (fin > LO_ADJUST_MAX)
fin -= LO_ADJUST_MAX;
KASSERT(fin <= LO_ADJUST_MAX && fin >= LO_ADJUST_MIN);
bcopy(&lo_min, &lo_base, sizeof(lo_base));
for (;;) {
struct bwi_rf_lo lo;
lo.ctrl_hi = lo_base.ctrl_hi +
rf_lo_adjust[i - 1].ctrl_hi;
lo.ctrl_lo = lo_base.ctrl_lo +
rf_lo_adjust[i - 1].ctrl_lo;
if (abs(lo.ctrl_lo) < 9 && abs(lo.ctrl_hi) < 9) {
uint32_t devi;
RF_LO_WRITE(mac, &lo);
devi = bwi_rf_lo_devi_measure(mac, devi_ctrl);
if (devi < devi_min) {
devi_min = devi;
adjust_state = i;
found = 1;
bcopy(&lo, &lo_min, sizeof(lo_min));
}
}
if (i == fin)
break;
if (i == LO_ADJUST_MAX)
i = LO_ADJUST_MIN;
else
++i;
}
} while (loop_count-- && found);
bcopy(&lo_min, dst_lo, sizeof(*dst_lo));
#undef LO_ADJUST_MIN
#undef LO_ADJUST_MAX
}
void
bwi_rf_calc_nrssi_slope_11b(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_MAX 8
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy[SAVE_PHY_MAX];
uint16_t ant_div, bbp_atten, chan_ex;
int16_t nrssi[2];
int i;
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x7a, 0x52, 0x43 };
static const uint16_t save_phy_regs[SAVE_PHY_MAX] =
{ 0x30, 0x26, 0x15, 0x2a, 0x20, 0x5a, 0x59, 0x58 };
/*
* Save RF/PHY registers for later restoration
*/
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_MAX; ++i)
save_phy[i] = PHY_READ(mac, save_phy_regs[i]);
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
/*
* Calculate nrssi0
*/
if (phy->phy_rev >= 5)
RF_CLRBITS(mac, 0x7a, 0xff80);
else
RF_CLRBITS(mac, 0x7a, 0xfff0);
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, 0x7f7f);
PHY_WRITE(mac, 0x26, 0);
PHY_SETBITS(mac, 0x15, 0x20);
PHY_WRITE(mac, 0x2a, 0x8a3);
RF_SETBITS(mac, 0x7a, 0x80);
nrssi[0] = (int16_t)PHY_READ(mac, 0x27);
/*
* Calculate nrssi1
*/
RF_CLRBITS(mac, 0x7a, 0xff80);
if (phy->phy_version >= 2)
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x40);
else if (phy->phy_version == 0)
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x122);
else
CSR_CLRBITS_2(sc, BWI_RF_CHAN_EX, 0xdfff);
PHY_WRITE(mac, 0x20, 0x3f3f);
PHY_WRITE(mac, 0x15, 0xf330);
RF_WRITE(mac, 0x5a, 0x60);
RF_CLRBITS(mac, 0x43, 0xff0f);
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
DELAY(20);
nrssi[1] = (int16_t)PHY_READ(mac, 0x27);
/*
* Restore saved RF/PHY registers
*/
PHY_WRITE(mac, save_phy_regs[0], save_phy[0]);
RF_WRITE(mac, save_rf_regs[0], save_rf[0]);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
for (i = 1; i < 4; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
bwi_rf_workaround(mac, rf->rf_curchan);
if (phy->phy_version != 0)
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
for (; i < SAVE_PHY_MAX; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
for (i = 1; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
/*
* Install calculated narrow RSSI values
*/
if (nrssi[0] == nrssi[1])
rf->rf_nrssi_slope = 0x10000;
else
rf->rf_nrssi_slope = 0x400000 / (nrssi[0] - nrssi[1]);
if (nrssi[0] <= -4) {
rf->rf_nrssi[0] = nrssi[0];
rf->rf_nrssi[1] = nrssi[1];
}
#undef SAVE_RF_MAX
#undef SAVE_PHY_MAX
}
void
bwi_rf_set_nrssi_ofs_11g(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 2
#define SAVE_PHY_COMM_MAX 10
#define SAVE_PHY6_MAX 8
struct bwi_phy *phy = &mac->mac_phy;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy6[SAVE_PHY6_MAX];
uint16_t rf7b = 0xffff;
int16_t nrssi;
int i, phy6_idx = 0;
static const uint16_t save_rf_regs[SAVE_RF_MAX] = { 0x7a, 0x43 };
static const uint16_t save_phy_comm_regs[SAVE_PHY_COMM_MAX] = {
0x0001, 0x0811, 0x0812, 0x0814,
0x0815, 0x005a, 0x0059, 0x0058,
0x000a, 0x0003
};
static const uint16_t save_phy6_regs[SAVE_PHY6_MAX] = {
0x002e, 0x002f, 0x080f, 0x0810,
0x0801, 0x0060, 0x0014, 0x0478
};
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_comm_regs[i]);
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_FILT_SETBITS(mac, 0x1, 0x3fff, 0x4000);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_FILT_SETBITS(mac, 0x812, 0xfff3, 0x4);
PHY_CLRBITS(mac, 0x802, 0x3);
if (phy->phy_rev >= 6) {
for (i = 0; i < SAVE_PHY6_MAX; ++i)
save_phy6[i] = PHY_READ(mac, save_phy6_regs[i]);
PHY_WRITE(mac, 0x2e, 0);
PHY_WRITE(mac, 0x2f, 0);
PHY_WRITE(mac, 0x80f, 0);
PHY_WRITE(mac, 0x810, 0);
PHY_SETBITS(mac, 0x478, 0x100);
PHY_SETBITS(mac, 0x801, 0x40);
PHY_SETBITS(mac, 0x60, 0x40);
PHY_SETBITS(mac, 0x14, 0x200);
}
RF_SETBITS(mac, 0x7a, 0x70);
RF_SETBITS(mac, 0x7a, 0x80);
DELAY(30);
nrssi = bwi_nrssi_11g(mac);
if (nrssi == 31) {
for (i = 7; i >= 4; --i) {
RF_WRITE(mac, 0x7b, i);
DELAY(20);
nrssi = bwi_nrssi_11g(mac);
if (nrssi < 31 && rf7b == 0xffff)
rf7b = i;
}
if (rf7b == 0xffff)
rf7b = 4;
} else {
struct bwi_gains gains;
RF_CLRBITS(mac, 0x7a, 0xff80);
PHY_SETBITS(mac, 0x814, 0x1);
PHY_CLRBITS(mac, 0x815, 0x1);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_SETBITS(mac, 0x812, 0xc);
PHY_SETBITS(mac, 0x811, 0x30);
PHY_SETBITS(mac, 0x812, 0x30);
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
if (phy->phy_version == 0)
PHY_WRITE(mac, 0x3, 0x122);
else
PHY_SETBITS(mac, 0xa, 0x2000);
PHY_SETBITS(mac, 0x814, 0x4);
PHY_CLRBITS(mac, 0x815, 0x4);
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
RF_SETBITS(mac, 0x7a, 0xf);
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 3;
gains.tbl_gain2 = 0;
gains.phy_gain = 1;
bwi_set_gains(mac, &gains);
RF_FILT_SETBITS(mac, 0x43, 0xf0, 0xf);
DELAY(30);
nrssi = bwi_nrssi_11g(mac);
if (nrssi == -32) {
for (i = 0; i < 4; ++i) {
RF_WRITE(mac, 0x7b, i);
DELAY(20);
nrssi = bwi_nrssi_11g(mac);
if (nrssi > -31 && rf7b == 0xffff)
rf7b = i;
}
if (rf7b == 0xffff)
rf7b = 3;
} else {
rf7b = 0;
}
}
RF_WRITE(mac, 0x7b, rf7b);
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_rev >= 6) {
for (phy6_idx = 0; phy6_idx < 4; ++phy6_idx) {
PHY_WRITE(mac, save_phy6_regs[phy6_idx],
save_phy6[phy6_idx]);
}
}
/* Saved PHY registers 0, 1, 2 are handled later */
for (i = 3; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_comm_regs[i], save_phy_comm[i]);
for (i = SAVE_RF_MAX - 1; i >= 0; --i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
PHY_SETBITS(mac, 0x802, 0x3);
PHY_SETBITS(mac, 0x429, 0x8000);
bwi_set_gains(mac, NULL);
if (phy->phy_rev >= 6) {
for (; phy6_idx < SAVE_PHY6_MAX; ++phy6_idx) {
PHY_WRITE(mac, save_phy6_regs[phy6_idx],
save_phy6[phy6_idx]);
}
}
PHY_WRITE(mac, save_phy_comm_regs[0], save_phy_comm[0]);
PHY_WRITE(mac, save_phy_comm_regs[2], save_phy_comm[2]);
PHY_WRITE(mac, save_phy_comm_regs[1], save_phy_comm[1]);
#undef SAVE_RF_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_PHY6_MAX
}
void
bwi_rf_calc_nrssi_slope_11g(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_COMM_MAX 4
#define SAVE_PHY3_MAX 8
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy3[SAVE_PHY3_MAX];
uint16_t ant_div, bbp_atten, chan_ex;
struct bwi_gains gains;
int16_t nrssi[2];
int i, phy3_idx = 0;
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x7a, 0x52, 0x43 };
static const uint16_t save_phy_comm_regs[SAVE_PHY_COMM_MAX] =
{ 0x15, 0x5a, 0x59, 0x58 };
static const uint16_t save_phy3_regs[SAVE_PHY3_MAX] = {
0x002e, 0x002f, 0x080f, 0x0810,
0x0801, 0x0060, 0x0014, 0x0478
};
if (rf->rf_rev >= 9)
return;
else if (rf->rf_rev == 8)
bwi_rf_set_nrssi_ofs_11g(mac);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_CLRBITS(mac, 0x802, 0x3);
/*
* Save RF/PHY registers for later restoration
*/
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
CSR_SETBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_comm_regs[i]);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
if (phy->phy_rev >= 3) {
for (i = 0; i < SAVE_PHY3_MAX; ++i)
save_phy3[i] = PHY_READ(mac, save_phy3_regs[i]);
PHY_WRITE(mac, 0x2e, 0);
PHY_WRITE(mac, 0x810, 0);
if (phy->phy_rev == 4 || phy->phy_rev == 6 ||
phy->phy_rev == 7) {
PHY_SETBITS(mac, 0x478, 0x100);
PHY_SETBITS(mac, 0x810, 0x40);
} else if (phy->phy_rev == 3 || phy->phy_rev == 5)
PHY_CLRBITS(mac, 0x810, 0x40);
PHY_SETBITS(mac, 0x60, 0x40);
PHY_SETBITS(mac, 0x14, 0x200);
}
/*
* Calculate nrssi0
*/
RF_SETBITS(mac, 0x7a, 0x70);
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 0;
gains.tbl_gain2 = 8;
gains.phy_gain = 0;
bwi_set_gains(mac, &gains);
RF_CLRBITS(mac, 0x7a, 0xff08);
if (phy->phy_rev >= 2) {
PHY_FILT_SETBITS(mac, 0x811, 0xffcf, 0x30);
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x10);
}
RF_SETBITS(mac, 0x7a, 0x80);
DELAY(20);
nrssi[0] = bwi_nrssi_11g(mac);
/*
* Calculate nrssi1
*/
RF_CLRBITS(mac, 0x7a, 0xff80);
if (phy->phy_version >= 2)
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, 0x2000);
RF_SETBITS(mac, 0x7a, 0xf);
PHY_WRITE(mac, 0x15, 0xf330);
if (phy->phy_rev >= 2) {
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x20);
PHY_FILT_SETBITS(mac, 0x811, 0xffcf, 0x20);
}
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 3;
gains.tbl_gain2 = 0;
gains.phy_gain = 1;
bwi_set_gains(mac, &gains);
if (rf->rf_rev == 8) {
RF_WRITE(mac, 0x43, 0x1f);
} else {
RF_FILT_SETBITS(mac, 0x52, 0xff0f, 0x60);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, 0x9);
}
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
DELAY(20);
nrssi[1] = bwi_nrssi_11g(mac);
/*
* Install calculated narrow RSSI values
*/
if (nrssi[1] == nrssi[0])
rf->rf_nrssi_slope = 0x10000;
else
rf->rf_nrssi_slope = 0x400000 / (nrssi[0] - nrssi[1]);
if (nrssi[0] >= -4) {
rf->rf_nrssi[0] = nrssi[1];
rf->rf_nrssi[1] = nrssi[0];
}
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_rev >= 3) {
for (phy3_idx = 0; phy3_idx < 4; ++phy3_idx) {
PHY_WRITE(mac, save_phy3_regs[phy3_idx],
save_phy3[phy3_idx]);
}
}
if (phy->phy_rev >= 2) {
PHY_CLRBITS(mac, 0x812, 0x30);
PHY_CLRBITS(mac, 0x811, 0x30);
}
for (i = 0; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
CSR_WRITE_2(sc, BWI_BBP_ATTEN, bbp_atten);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_comm_regs[i], save_phy_comm[i]);
bwi_rf_workaround(mac, rf->rf_curchan);
PHY_SETBITS(mac, 0x802, 0x3);
bwi_set_gains(mac, NULL);
PHY_SETBITS(mac, 0x429, 0x8000);
if (phy->phy_rev >= 3) {
for (; phy3_idx < SAVE_PHY3_MAX; ++phy3_idx) {
PHY_WRITE(mac, save_phy3_regs[phy3_idx],
save_phy3[phy3_idx]);
}
}
bwi_rf_init_sw_nrssi_table(mac);
bwi_rf_set_nrssi_thr_11g(mac);
#undef SAVE_RF_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_PHY3_MAX
}
void
bwi_rf_init_sw_nrssi_table(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
int d, i;
d = 0x1f - rf->rf_nrssi[0];
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i) {
int val;
val = (((i - d) * rf->rf_nrssi_slope) / 0x10000) + 0x3a;
if (val < 0)
val = 0;
else if (val > 0x3f)
val = 0x3f;
rf->rf_nrssi_table[i] = val;
}
}
void
bwi_rf_init_hw_nrssi_table(struct bwi_mac *mac, uint16_t adjust)
{
int i;
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i) {
int16_t val;
val = bwi_nrssi_read(mac, i);
val -= adjust;
if (val < -32)
val = -32;
else if (val > 31)
val = 31;
bwi_nrssi_write(mac, i, val);
}
}
void
bwi_rf_set_nrssi_thr_11b(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
int32_t thr;
if (rf->rf_type != BWI_RF_T_BCM2050 ||
(mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) == 0)
return;
/*
* Calculate nrssi threshold
*/
if (rf->rf_rev >= 6) {
thr = (rf->rf_nrssi[1] - rf->rf_nrssi[0]) * 32;
thr += 20 * (rf->rf_nrssi[0] + 1);
thr /= 40;
} else {
thr = rf->rf_nrssi[1] - 5;
}
if (thr < 0)
thr = 0;
else if (thr > 0x3e)
thr = 0x3e;
PHY_READ(mac, BWI_PHYR_NRSSI_THR_11B); /* dummy read */
PHY_WRITE(mac, BWI_PHYR_NRSSI_THR_11B, (((uint16_t)thr) << 8) | 0x1c);
if (rf->rf_rev >= 6) {
PHY_WRITE(mac, 0x87, 0xe0d);
PHY_WRITE(mac, 0x86, 0xc0b);
PHY_WRITE(mac, 0x85, 0xa09);
PHY_WRITE(mac, 0x84, 0x808);
PHY_WRITE(mac, 0x83, 0x808);
PHY_WRITE(mac, 0x82, 0x604);
PHY_WRITE(mac, 0x81, 0x302);
PHY_WRITE(mac, 0x80, 0x100);
}
}
int32_t
_nrssi_threshold(const struct bwi_rf *rf, int32_t val)
{
val *= (rf->rf_nrssi[1] - rf->rf_nrssi[0]);
val += (rf->rf_nrssi[0] << 6);
if (val < 32)
val += 31;
else
val += 32;
val >>= 6;
if (val < -31)
val = -31;
else if (val > 31)
val = 31;
return (val);
}
void
bwi_rf_set_nrssi_thr_11g(struct bwi_mac *mac)
{
int32_t thr1, thr2;
uint16_t thr;
/*
* Find the two nrssi thresholds
*/
if ((mac->mac_phy.phy_flags & BWI_PHY_F_LINKED) == 0 ||
(mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) == 0) {
int16_t nrssi;
nrssi = bwi_nrssi_read(mac, 0x20);
if (nrssi >= 32)
nrssi -= 64;
if (nrssi < 3) {
thr1 = 0x2b;
thr2 = 0x27;
} else {
thr1 = 0x2d;
thr2 = 0x2b;
}
} else {
/* TODO Interfere mode */
thr1 = _nrssi_threshold(&mac->mac_rf, 0x11);
thr2 = _nrssi_threshold(&mac->mac_rf, 0xe);
}
#define NRSSI_THR1_MASK 0x003f
#define NRSSI_THR2_MASK 0x0fc0
thr = __SHIFTIN((uint32_t)thr1, NRSSI_THR1_MASK) |
__SHIFTIN((uint32_t)thr2, NRSSI_THR2_MASK);
PHY_FILT_SETBITS(mac, BWI_PHYR_NRSSI_THR_11G, 0xf000, thr);
#undef NRSSI_THR1_MASK
#undef NRSSI_THR2_MASK
}
void
bwi_rf_clear_tssi(struct bwi_mac *mac)
{
/* XXX use function pointer */
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11A) {
/* TODO: 11A */
} else {
uint16_t val;
int i;
val = __SHIFTIN(BWI_INVALID_TSSI, BWI_LO_TSSI_MASK) |
__SHIFTIN(BWI_INVALID_TSSI, BWI_HI_TSSI_MASK);
for (i = 0; i < 2; ++i) {
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ,
BWI_COMM_MOBJ_TSSI_DS + (i * 2), val);
}
for (i = 0; i < 2; ++i) {
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ,
BWI_COMM_MOBJ_TSSI_OFDM + (i * 2), val);
}
}
}
void
bwi_rf_clear_state(struct bwi_rf *rf)
{
int i;
rf->rf_flags &= ~BWI_RF_CLEAR_FLAGS;
bzero(rf->rf_lo, sizeof(rf->rf_lo));
bzero(rf->rf_lo_used, sizeof(rf->rf_lo_used));
rf->rf_nrssi_slope = 0;
rf->rf_nrssi[0] = BWI_INVALID_NRSSI;
rf->rf_nrssi[1] = BWI_INVALID_NRSSI;
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i)
rf->rf_nrssi_table[i] = i;
rf->rf_lo_gain = 0;
rf->rf_rx_gain = 0;
bcopy(rf->rf_txpower_map0, rf->rf_txpower_map,
sizeof(rf->rf_txpower_map));
rf->rf_idle_tssi = rf->rf_idle_tssi0;
}
void
bwi_rf_on_11a(struct bwi_mac *mac)
{
/* TODO: 11A */
}
void
bwi_rf_on_11bg(struct bwi_mac *mac)
{
struct bwi_phy *phy = &mac->mac_phy;
PHY_WRITE(mac, 0x15, 0x8000);
PHY_WRITE(mac, 0x15, 0xcc00);
if (phy->phy_flags & BWI_PHY_F_LINKED)
PHY_WRITE(mac, 0x15, 0xc0);
else
PHY_WRITE(mac, 0x15, 0);
bwi_rf_set_chan(mac, 6 /* XXX */, 1);
}
void
bwi_rf_set_ant_mode(struct bwi_mac *mac, int ant_mode)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t val;
KASSERT(ant_mode == BWI_ANT_MODE_0 ||
ant_mode == BWI_ANT_MODE_1 ||
ant_mode == BWI_ANT_MODE_AUTO);
HFLAGS_CLRBITS(mac, BWI_HFLAG_AUTO_ANTDIV);
if (phy->phy_mode == IEEE80211_MODE_11B) {
/* NOTE: v4/v3 conflicts, take v3 */
if (mac->mac_rev == 2)
val = BWI_ANT_MODE_AUTO;
else
val = ant_mode;
val <<= 7;
PHY_FILT_SETBITS(mac, 0x3e2, 0xfe7f, val);
} else { /* 11a/g */
/* XXX reg/value naming */
val = ant_mode << 7;
PHY_FILT_SETBITS(mac, 0x401, 0x7e7f, val);
if (ant_mode == BWI_ANT_MODE_AUTO)
PHY_CLRBITS(mac, 0x42b, 0x100);
if (phy->phy_mode == IEEE80211_MODE_11A) {
/* TODO: 11A */
} else { /* 11g */
if (ant_mode == BWI_ANT_MODE_AUTO)
PHY_SETBITS(mac, 0x48c, 0x2000);
else
PHY_CLRBITS(mac, 0x48c, 0x2000);
if (phy->phy_rev >= 2) {
PHY_SETBITS(mac, 0x461, 0x10);
PHY_FILT_SETBITS(mac, 0x4ad, 0xff00, 0x15);
if (phy->phy_rev == 2) {
PHY_WRITE(mac, 0x427, 0x8);
} else {
PHY_FILT_SETBITS(mac, 0x427,
0xff00, 0x8);
}
if (phy->phy_rev >= 6)
PHY_WRITE(mac, 0x49b, 0xdc);
}
}
}
/* XXX v4 set AUTO_ANTDIV unconditionally */
if (ant_mode == BWI_ANT_MODE_AUTO)
HFLAGS_SETBITS(mac, BWI_HFLAG_AUTO_ANTDIV);
val = ant_mode << 8;
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_BEACON,
0xfc3f, val);
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_ACK,
0xfc3f, val);
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_PROBE_RESP,
0xfc3f, val);
/* XXX what's these */
if (phy->phy_mode == IEEE80211_MODE_11B)
CSR_SETBITS_2(sc, 0x5e, 0x4);
CSR_WRITE_4(sc, 0x100, 0x1000000);
if (mac->mac_rev < 5)
CSR_WRITE_4(sc, 0x10c, 0x1000000);
mac->mac_rf.rf_ant_mode = ant_mode;
}
int
bwi_rf_get_latest_tssi(struct bwi_mac *mac, int8_t tssi[], uint16_t ofs)
{
int i;
for (i = 0; i < 4; ) {
uint16_t val;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, ofs + i);
tssi[i++] = (int8_t)__SHIFTOUT(val, BWI_LO_TSSI_MASK);
tssi[i++] = (int8_t)__SHIFTOUT(val, BWI_HI_TSSI_MASK);
}
for (i = 0; i < 4; ++i) {
if (tssi[i] == BWI_INVALID_TSSI)
return (EINVAL);
}
return (0);
}
int
bwi_rf_tssi2dbm(struct bwi_mac *mac, int8_t tssi, int8_t *txpwr)
{
struct bwi_rf *rf = &mac->mac_rf;
int pwr_idx;
pwr_idx = rf->rf_idle_tssi + (int)tssi - rf->rf_base_tssi;
#if 0
if (pwr_idx < 0 || pwr_idx >= BWI_TSSI_MAX)
return EINVAL;
#else
if (pwr_idx < 0)
pwr_idx = 0;
else if (pwr_idx >= BWI_TSSI_MAX)
pwr_idx = BWI_TSSI_MAX - 1;
#endif
*txpwr = rf->rf_txpower_map[pwr_idx];
return (0);
}
int
bwi_rf_calc_rssi_bcm2050(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
uint16_t flags1, flags3;
int rssi, lna_gain;
rssi = hdr->rxh_rssi;
flags1 = letoh16(hdr->rxh_flags1);
flags3 = letoh16(hdr->rxh_flags3);
#define NEW_BCM2050_RSSI
#ifdef NEW_BCM2050_RSSI
if (flags1 & BWI_RXH_F1_OFDM) {
if (rssi > 127)
rssi -= 256;
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 17;
else
rssi -= 4;
return (rssi);
}
if (mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
struct bwi_rf *rf = &mac->mac_rf;
if (rssi >= BWI_NRSSI_TBLSZ)
rssi = BWI_NRSSI_TBLSZ - 1;
rssi = ((31 - (int)rf->rf_nrssi_table[rssi]) * -131) / 128;
rssi -= 67;
} else {
rssi = ((31 - rssi) * -149) / 128;
rssi -= 68;
}
if (mac->mac_phy.phy_mode != IEEE80211_MODE_11G)
return (rssi);
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 20;
lna_gain = __SHIFTOUT(letoh16(hdr->rxh_phyinfo),
BWI_RXH_PHYINFO_LNAGAIN);
DPRINTF(3, "lna_gain %d, phyinfo 0x%04x\n",
lna_gain, letoh16(hdr->rxh_phyinfo));
switch (lna_gain) {
case 0:
rssi += 27;
break;
case 1:
rssi += 6;
break;
case 2:
rssi += 12;
break;
case 3:
/*
* XXX
* According to v3 spec, we should do _nothing_ here,
* but it seems that the result RSSI will be too low
* (relative to what ath(4) says). Raise it a little
* bit.
*/
rssi += 5;
break;
default:
panic("impossible lna gain %d", lna_gain);
}
#else /* !NEW_BCM2050_RSSI */
lna_gain = 0; /* shut up gcc warning */
if (flags1 & BWI_RXH_F1_OFDM) {
if (rssi > 127)
rssi -= 256;
rssi = (rssi * 73) / 64;
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 25;
else
rssi -= 3;
return (rssi);
}
if (mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
struct bwi_rf *rf = &mac->mac_rf;
if (rssi >= BWI_NRSSI_TBLSZ)
rssi = BWI_NRSSI_TBLSZ - 1;
rssi = ((31 - (int)rf->rf_nrssi_table[rssi]) * -131) / 128;
rssi -= 57;
} else {
rssi = ((31 - rssi) * -149) / 128;
rssi -= 68;
}
if (mac->mac_phy.phy_mode != IEEE80211_MODE_11G)
return (rssi);
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 25;
#endif /* NEW_BCM2050_RSSI */
return (rssi);
}
int
bwi_rf_calc_rssi_bcm2053(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
uint16_t flags1;
int rssi;
rssi = (((int)hdr->rxh_rssi - 11) * 103) / 64;
flags1 = letoh16(hdr->rxh_flags1);
if (flags1 & BWI_RXH_F1_BCM2053_RSSI)
rssi -= 109;
else
rssi -= 83;
return (rssi);
}
int
bwi_rf_calc_rssi_bcm2060(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
int rssi;
rssi = hdr->rxh_rssi;
if (rssi > 127)
rssi -= 256;
return (rssi);
}
uint16_t
bwi_rf_lo_measure_11b(struct bwi_mac *mac)
{
uint16_t val;
int i;
val = 0;
for (i = 0; i < 10; ++i) {
PHY_WRITE(mac, 0x15, 0xafa0);
DELAY(1);
PHY_WRITE(mac, 0x15, 0xefa0);
DELAY(10);
PHY_WRITE(mac, 0x15, 0xffa0);
DELAY(40);
val += PHY_READ(mac, 0x2c);
}
return (val);
}
void
bwi_rf_lo_update_11b(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct rf_saveregs regs;
uint16_t rf_val, phy_val, min_val, val;
uint16_t rf52, bphy_ctrl;
int i;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
bzero(&regs, sizeof(regs));
bphy_ctrl = 0;
/*
* Save RF/PHY registers for later restoration
*/
SAVE_PHY_REG(mac, &regs, 15);
rf52 = RF_READ(mac, 0x52) & 0xfff0;
if (rf->rf_type == BWI_RF_T_BCM2050) {
SAVE_PHY_REG(mac, &regs, 0a);
SAVE_PHY_REG(mac, &regs, 2a);
SAVE_PHY_REG(mac, &regs, 35);
SAVE_PHY_REG(mac, &regs, 03);
SAVE_PHY_REG(mac, &regs, 01);
SAVE_PHY_REG(mac, &regs, 30);
SAVE_RF_REG(mac, &regs, 43);
SAVE_RF_REG(mac, &regs, 7a);
bphy_ctrl = CSR_READ_2(sc, BWI_BPHY_CTRL);
SAVE_RF_REG(mac, &regs, 52);
regs.rf_52 &= 0xf0;
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_PHY_CTRL, 0x3f3f);
PHY_WRITE(mac, 0x35, regs.phy_35 & 0xff7f);
RF_WRITE(mac, 0x7a, regs.rf_7a & 0xfff0);
}
PHY_WRITE(mac, 0x15, 0xb000);
if (rf->rf_type == BWI_RF_T_BCM2050) {
PHY_WRITE(mac, 0x2b, 0x203);
PHY_WRITE(mac, 0x2a, 0x8a3);
} else {
PHY_WRITE(mac, 0x2b, 0x1402);
}
/*
* Setup RF signal
*/
rf_val = 0;
min_val = 65535;
for (i = 0; i < 4; ++i) {
RF_WRITE(mac, 0x52, rf52 | i);
bwi_rf_lo_measure_11b(mac); /* Ignore return value */
}
for (i = 0; i < 10; ++i) {
RF_WRITE(mac, 0x52, rf52 | i);
val = bwi_rf_lo_measure_11b(mac) / 10;
if (val < min_val) {
min_val = val;
rf_val = i;
}
}
RF_WRITE(mac, 0x52, rf52 | rf_val);
/*
* Setup PHY signal
*/
phy_val = 0;
min_val = 65535;
for (i = -4; i < 5; i += 2) {
int j;
for (j = -4; j < 5; j += 2) {
uint16_t phy2f;
phy2f = (0x100 * i) + j;
if (j < 0)
phy2f += 0x100;
PHY_WRITE(mac, 0x2f, phy2f);
val = bwi_rf_lo_measure_11b(mac) / 10;
if (val < min_val) {
min_val = val;
phy_val = phy2f;
}
}
}
PHY_WRITE(mac, 0x2f, phy_val + 0x101);
/*
* Restore saved RF/PHY registers
*/
if (rf->rf_type == BWI_RF_T_BCM2050) {
RESTORE_PHY_REG(mac, &regs, 0a);
RESTORE_PHY_REG(mac, &regs, 2a);
RESTORE_PHY_REG(mac, &regs, 35);
RESTORE_PHY_REG(mac, &regs, 03);
RESTORE_PHY_REG(mac, &regs, 01);
RESTORE_PHY_REG(mac, &regs, 30);
RESTORE_RF_REG(mac, &regs, 43);
RESTORE_RF_REG(mac, &regs, 7a);
RF_FILT_SETBITS(mac, 0x52, 0xf, regs.rf_52);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, bphy_ctrl);
}
RESTORE_PHY_REG(mac, &regs, 15);
bwi_rf_workaround(mac, rf->rf_curchan);
}
/* INTERFACE */
uint16_t
bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
{
return (CSR_READ_2(sc, ofs + BWI_SPROM_START));
}
void
bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, int tx)
{
struct bwi_desc32 *desc = &desc_array[desc_idx];
uint32_t ctrl, addr, addr_hi, addr_lo;
if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT && paddr >= 0x40000000)
panic("bad paddr 0x%lx", (long)paddr);
addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
__SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
__SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
if (desc_idx == ndesc - 1)
ctrl |= BWI_DESC32_C_EOR;
if (tx) {
/* XXX */
ctrl |= BWI_DESC32_C_FRAME_START |
BWI_DESC32_C_FRAME_END |
BWI_DESC32_C_INTR;
}
desc->addr = htole32(addr);
desc->ctrl = htole32(ctrl);
}
void
bwi_power_on(struct bwi_softc *sc, int with_pll)
{
uint32_t gpio_in, gpio_out, gpio_en, status;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
gpio_in = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_IN);
if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
goto back;
gpio_out = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_OUT);
gpio_en = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_ENABLE);
gpio_out |= BWI_PCIM_GPIO_PWR_ON;
gpio_en |= BWI_PCIM_GPIO_PWR_ON;
if (with_pll) {
/* Turn off PLL first */
gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
}
(sc->sc_conf_write)(sc, BWI_PCIR_GPIO_OUT, gpio_out);
(sc->sc_conf_write)(sc, BWI_PCIR_GPIO_ENABLE, gpio_en);
DELAY(1000);
if (with_pll) {
/* Turn on PLL */
gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
(sc->sc_conf_write)(sc, BWI_PCIR_GPIO_OUT, gpio_out);
DELAY(5000);
}
back:
/* Clear "Signaled Target Abort" */
status = (sc->sc_conf_read)(sc, PCI_COMMAND_STATUS_REG);
status &= ~PCI_STATUS_TARGET_TARGET_ABORT;
(sc->sc_conf_write)(sc, PCI_COMMAND_STATUS_REG, status);
}
int
bwi_power_off(struct bwi_softc *sc, int with_pll)
{
uint32_t gpio_out, gpio_en;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
(sc->sc_conf_read)(sc, BWI_PCIR_GPIO_IN); /* dummy read */
gpio_out = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_OUT);
gpio_en = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_ENABLE);
gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
gpio_en |= BWI_PCIM_GPIO_PWR_ON;
if (with_pll) {
gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
}
(sc->sc_conf_write)(sc, BWI_PCIR_GPIO_OUT, gpio_out);
(sc->sc_conf_write)(sc, BWI_PCIR_GPIO_ENABLE, gpio_en);
return (0);
}
int
bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
struct bwi_regwin **old_rw)
{
int error;
if (old_rw != NULL)
*old_rw = NULL;
if (!BWI_REGWIN_EXIST(rw))
return (EINVAL);
if (sc->sc_cur_regwin != rw) {
error = bwi_regwin_select(sc, rw->rw_id);
if (error) {
printf("%s: can't select regwin %d\n",
sc->sc_dev.dv_xname, rw->rw_id);
return (error);
}
}
if (old_rw != NULL)
*old_rw = sc->sc_cur_regwin;
sc->sc_cur_regwin = rw;
return (0);
}
int
bwi_regwin_select(struct bwi_softc *sc, int id)
{
uint32_t win = BWI_PCIM_REGWIN(id);
int i;
#define RETRY_MAX 50
for (i = 0; i < RETRY_MAX; ++i) {
(sc->sc_conf_write)(sc, BWI_PCIR_SEL_REGWIN, win);
if ((sc->sc_conf_read)(sc, BWI_PCIR_SEL_REGWIN) == win)
return (0);
DELAY(10);
}
#undef RETRY_MAX
return (ENXIO);
}
void
bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
{
uint32_t val;
val = CSR_READ_4(sc, BWI_ID_HI);
*type = BWI_ID_HI_REGWIN_TYPE(val);
*rev = BWI_ID_HI_REGWIN_REV(val);
DPRINTF(1, "%s: regwin: type 0x%03x, rev %d, vendor 0x%04x\n",
sc->sc_dev.dv_xname,
*type, *rev, __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
}
void
bwi_led_attach(struct bwi_softc *sc)
{
const uint8_t *led_act = NULL;
uint16_t gpio, val[BWI_LED_MAX];
int i;
for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
led_act = bwi_vendor_led_act[i].led_act;
break;
}
}
if (led_act == NULL)
led_act = bwi_default_led_act;
gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
for (i = 0; i < BWI_LED_MAX; ++i) {
struct bwi_led *led = &sc->sc_leds[i];
if (val[i] == 0xff) {
led->l_act = led_act[i];
} else {
if (val[i] & BWI_LED_ACT_LOW)
led->l_flags |= BWI_LED_F_ACTLOW;
led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
}
led->l_mask = (1 << i);
if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
led->l_act == BWI_LED_ACT_BLINK_POLL ||
led->l_act == BWI_LED_ACT_BLINK) {
led->l_flags |= BWI_LED_F_BLINK;
if (led->l_act == BWI_LED_ACT_BLINK_POLL)
led->l_flags |= BWI_LED_F_POLLABLE;
else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
led->l_flags |= BWI_LED_F_SLOW;
if (sc->sc_blink_led == NULL) {
sc->sc_blink_led = led;
if (led->l_flags & BWI_LED_F_SLOW)
BWI_LED_SLOWDOWN(sc->sc_led_idle);
}
}
DPRINTF(1, "%s: %dth led, act %d, lowact %d\n",
sc->sc_dev.dv_xname, i, led->l_act,
led->l_flags & BWI_LED_F_ACTLOW);
}
timeout_set(&sc->sc_led_blink_next_ch, bwi_led_blink_next, sc);
timeout_set(&sc->sc_led_blink_end_ch, bwi_led_blink_end, sc);
}
uint16_t
bwi_led_onoff(struct bwi_led *led, uint16_t val, int on)
{
if (led->l_flags & BWI_LED_F_ACTLOW)
on = !on;
if (on)
val |= led->l_mask;
else
val &= ~led->l_mask;
return (val);
}
void
bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int i;
if (nstate == IEEE80211_S_INIT) {
timeout_del(&sc->sc_led_blink_next_ch);
timeout_del(&sc->sc_led_blink_end_ch);
sc->sc_led_blinking = 0;
}
if ((ic->ic_if.if_flags & IFF_RUNNING) == 0)
return;
val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
for (i = 0; i < BWI_LED_MAX; ++i) {
struct bwi_led *led = &sc->sc_leds[i];
int on;
if (led->l_act == BWI_LED_ACT_UNKN ||
led->l_act == BWI_LED_ACT_NULL)
continue;
if ((led->l_flags & BWI_LED_F_BLINK) &&
nstate != IEEE80211_S_INIT)
continue;
switch (led->l_act) {
case BWI_LED_ACT_ON: /* Always on */
on = 1;
break;
case BWI_LED_ACT_OFF: /* Always off */
case BWI_LED_ACT_5GHZ: /* TODO: 11A */
on = 0;
break;
default:
on = 1;
switch (nstate) {
case IEEE80211_S_INIT:
on = 0;
break;
case IEEE80211_S_RUN:
if (led->l_act == BWI_LED_ACT_11G &&
ic->ic_curmode != IEEE80211_MODE_11G)
on = 0;
break;
default:
if (led->l_act == BWI_LED_ACT_ASSOC)
on = 0;
break;
}
break;
}
val = bwi_led_onoff(led, val, on);
}
CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
}
void
bwi_led_event(struct bwi_softc *sc, int event)
{
struct bwi_led *led = sc->sc_blink_led;
int rate;
if (event == BWI_LED_EVENT_POLL) {
if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
return;
if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
return;
}
sc->sc_led_ticks = ticks;
if (sc->sc_led_blinking)
return;
switch (event) {
case BWI_LED_EVENT_RX:
rate = sc->sc_rx_rate;
break;
case BWI_LED_EVENT_TX:
rate = sc->sc_tx_rate;
break;
case BWI_LED_EVENT_POLL:
rate = 0;
break;
default:
panic("unknown LED event %d", event);
break;
}
bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
bwi_led_duration[rate].off_dur);
}
void
bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
{
struct bwi_led *led = sc->sc_blink_led;
uint16_t val;
val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
val = bwi_led_onoff(led, val, 1);
CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
if (led->l_flags & BWI_LED_F_SLOW) {
BWI_LED_SLOWDOWN(on_dur);
BWI_LED_SLOWDOWN(off_dur);
}
sc->sc_led_blinking = 1;
sc->sc_led_blink_offdur = off_dur;
timeout_add(&sc->sc_led_blink_next_ch, on_dur);
}
void
bwi_led_blink_next(void *xsc)
{
struct bwi_softc *sc = xsc;
uint16_t val;
val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
val = bwi_led_onoff(sc->sc_blink_led, val, 0);
CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
timeout_add(&sc->sc_led_blink_end_ch, sc->sc_led_blink_offdur);
}
void
bwi_led_blink_end(void *xsc)
{
struct bwi_softc *sc = xsc;
sc->sc_led_blinking = 0;
}
int
bwi_bbp_attach(struct bwi_softc *sc)
{
uint16_t bbp_id, rw_type;
uint8_t rw_rev;
uint32_t info;
int error, nregwin, i;
/*
* Get 0th regwin information
* NOTE: 0th regwin should exist
*/
error = bwi_regwin_select(sc, 0);
if (error) {
printf("%s: can't select regwin 0\n", sc->sc_dev.dv_xname);
return (error);
}
bwi_regwin_info(sc, &rw_type, &rw_rev);
/*
* Find out BBP id
*/
bbp_id = 0;
info = 0;
if (rw_type == BWI_REGWIN_T_COM) {
info = CSR_READ_4(sc, BWI_INFO);
bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
} else {
uint16_t did = sc->sc_pci_did;
uint8_t revid = sc->sc_pci_revid;
for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
if (did >= bwi_bbpid_map[i].did_min &&
did <= bwi_bbpid_map[i].did_max) {
bbp_id = bwi_bbpid_map[i].bbp_id;
break;
}
}
if (bbp_id == 0) {
printf("%s: no BBP id for device id 0x%04x\n",
sc->sc_dev.dv_xname, did);
return (ENXIO);
}
info = __SHIFTIN(revid, BWI_INFO_BBPREV_MASK) |
__SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
}
/*
* Find out number of regwins
*/
nregwin = 0;
if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
} else {
for (i = 0; i < nitems(bwi_regwin_count); ++i) {
if (bwi_regwin_count[i].bbp_id == bbp_id) {
nregwin = bwi_regwin_count[i].nregwin;
break;
}
}
if (nregwin == 0) {
printf("%s: no number of win for BBP id 0x%04x\n",
sc->sc_dev.dv_xname, bbp_id);
return (ENXIO);
}
}
/* Record BBP id/rev for later using */
sc->sc_bbp_id = bbp_id;
sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
DPRINTF(1, "%s: BBP id 0x%04x, BBP rev 0x%x, BBP pkg %d\n",
sc->sc_dev.dv_xname, sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
DPRINTF(1, "%s: nregwin %d, cap 0x%08x\n",
sc->sc_dev.dv_xname, nregwin, sc->sc_cap);
/*
* Create rest of the regwins
*/
/* Don't re-create common regwin, if it is already created */
i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
for (; i < nregwin; ++i) {
/*
* Get regwin information
*/
error = bwi_regwin_select(sc, i);
if (error) {
printf("%s: can't select regwin %d\n",
sc->sc_dev.dv_xname, i);
return (error);
}
bwi_regwin_info(sc, &rw_type, &rw_rev);
/*
* Try attach:
* 1) Bus (PCI/PCIE) regwin
* 2) MAC regwin
* Ignore rest types of regwin
*/
if (rw_type == BWI_REGWIN_T_BUSPCI ||
rw_type == BWI_REGWIN_T_BUSPCIE) {
if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
printf("%s: bus regwin already exists\n",
sc->sc_dev.dv_xname);
} else {
BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
rw_type, rw_rev);
}
} else if (rw_type == BWI_REGWIN_T_MAC) {
/* XXX ignore return value */
bwi_mac_attach(sc, i, rw_rev);
}
}
/* At least one MAC should exist */
if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
printf("%s: no MAC was found\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
KASSERT(sc->sc_nmac > 0);
/* Bus regwin must exist */
if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
printf("%s: no bus regwin was found\n", sc->sc_dev.dv_xname);
return (ENXIO);
}
/* Start with first MAC */
error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
if (error)
return (error);
return (0);
}
int
bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
{
struct bwi_regwin *old, *bus;
uint32_t val;
int error;
bus = &sc->sc_bus_regwin;
KASSERT(sc->sc_cur_regwin == &mac->mac_regwin);
/*
* Tell bus to generate requested interrupts
*/
if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
/*
* NOTE: Read BWI_FLAGS from MAC regwin
*/
val = CSR_READ_4(sc, BWI_FLAGS);
error = bwi_regwin_switch(sc, bus, &old);
if (error)
return (error);
CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
} else {
uint32_t mac_mask;
mac_mask = 1 << mac->mac_id;
error = bwi_regwin_switch(sc, bus, &old);
if (error)
return (error);
val = (sc->sc_conf_read)(sc, BWI_PCIR_INTCTL);
val |= mac_mask << 8;
(sc->sc_conf_write)(sc, BWI_PCIR_INTCTL, val);
}
if (sc->sc_flags & BWI_F_BUS_INITED)
goto back;
if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
/*
* Enable prefetch and burst
*/
CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
if (bus->rw_rev < 5) {
struct bwi_regwin *com = &sc->sc_com_regwin;
/*
* Configure timeouts for bus operation
*/
/*
* Set service timeout and request timeout
*/
CSR_SETBITS_4(sc, BWI_CONF_LO,
__SHIFTIN(BWI_CONF_LO_SERVTO,
BWI_CONF_LO_SERVTO_MASK) |
__SHIFTIN(BWI_CONF_LO_REQTO,
BWI_CONF_LO_REQTO_MASK));
/*
* If there is common regwin, we switch to that regwin
* and switch back to bus regwin once we have done.
*/
if (BWI_REGWIN_EXIST(com)) {
error = bwi_regwin_switch(sc, com, NULL);
if (error)
return (error);
}
/* Let bus know what we have changed */
CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
if (BWI_REGWIN_EXIST(com)) {
error = bwi_regwin_switch(sc, bus, NULL);
if (error)
return (error);
}
} else if (bus->rw_rev >= 11) {
/*
* Enable memory read multiple
*/
CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
}
} else {
/* TODO: PCIE */
}
sc->sc_flags |= BWI_F_BUS_INITED;
back:
return (bwi_regwin_switch(sc, old, NULL));
}
void
bwi_get_card_flags(struct bwi_softc *sc)
{
sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
if (sc->sc_card_flags == 0xffff)
sc->sc_card_flags = 0;
if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
sc->sc_pci_subdid == 0x4e && /* XXX */
sc->sc_pci_revid > 0x40)
sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
DPRINTF(1, "%s: card flags 0x%04x\n",
sc->sc_dev.dv_xname, sc->sc_card_flags);
}
void
bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
{
int i;
for (i = 0; i < 3; ++i) {
*((uint16_t *)eaddr + i) =
htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
}
}
void
bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
{
struct bwi_regwin *com;
uint32_t val;
uint div;
int src;
bzero(freq, sizeof(*freq));
com = &sc->sc_com_regwin;
KASSERT(BWI_REGWIN_EXIST(com));
KASSERT(sc->sc_cur_regwin == com);
KASSERT(sc->sc_cap & BWI_CAP_CLKMODE);
/*
* Calculate clock frequency
*/
src = -1;
div = 0;
if (com->rw_rev < 6) {
val = (sc->sc_conf_read)(sc, BWI_PCIR_GPIO_OUT);
if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
src = BWI_CLKSRC_PCI;
div = 64;
} else {
src = BWI_CLKSRC_CS_OSC;
div = 32;
}
} else if (com->rw_rev < 10) {
val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
if (src == BWI_CLKSRC_LP_OSC)
div = 1;
else {
div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
/* Unknown source */
if (src >= BWI_CLKSRC_MAX)
src = BWI_CLKSRC_CS_OSC;
}
} else {
val = CSR_READ_4(sc, BWI_CLOCK_INFO);
src = BWI_CLKSRC_CS_OSC;
div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
}
KASSERT(src >= 0 && src < BWI_CLKSRC_MAX);
KASSERT(div != 0);
DPRINTF(1, "%s: clksrc %s\n",
sc->sc_dev.dv_xname,
src == BWI_CLKSRC_PCI ? "PCI" :
(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
DPRINTF(1, "%s: clkfreq min %u, max %u\n",
sc->sc_dev.dv_xname, freq->clkfreq_min, freq->clkfreq_max);
}
int
bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
{
struct bwi_regwin *old, *com;
uint32_t clk_ctrl, clk_src;
int error, pwr_off = 0;
com = &sc->sc_com_regwin;
if (!BWI_REGWIN_EXIST(com))
return (0);
if (com->rw_rev >= 10 || com->rw_rev < 6)
return (0);
/*
* For common regwin whose rev is [6, 10), the chip
* must be capable to change clock mode.
*/
if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
return (0);
error = bwi_regwin_switch(sc, com, &old);
if (error)
return (error);
if (clk_mode == BWI_CLOCK_MODE_FAST)
bwi_power_on(sc, 0); /* Don't turn on PLL */
clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
switch (clk_mode) {
case BWI_CLOCK_MODE_FAST:
clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
break;
case BWI_CLOCK_MODE_SLOW:
clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
break;
case BWI_CLOCK_MODE_DYN:
clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
BWI_CLOCK_CTRL_IGNPLL |
BWI_CLOCK_CTRL_NODYN);
if (clk_src != BWI_CLKSRC_CS_OSC) {
clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
pwr_off = 1;
}
break;
}
CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
if (pwr_off)
bwi_power_off(sc, 0); /* Leave PLL as it is */
return (bwi_regwin_switch(sc, old, NULL));
}
int
bwi_set_clock_delay(struct bwi_softc *sc)
{
struct bwi_regwin *old, *com;
int error;
com = &sc->sc_com_regwin;
if (!BWI_REGWIN_EXIST(com))
return (0);
error = bwi_regwin_switch(sc, com, &old);
if (error)
return (error);
if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
if (sc->sc_bbp_rev == 0)
CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
else if (sc->sc_bbp_rev == 1)
CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
}
if (sc->sc_cap & BWI_CAP_CLKMODE) {
if (com->rw_rev >= 10)
CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
else {
struct bwi_clock_freq freq;
bwi_get_clock_freq(sc, &freq);
CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
howmany(freq.clkfreq_max * 150, 1000000));
CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
howmany(freq.clkfreq_max * 15, 1000000));
}
}
return (bwi_regwin_switch(sc, old, NULL));
}
int
bwi_init(struct ifnet *ifp)
{
struct bwi_softc *sc = ifp->if_softc;
bwi_init_statechg(sc, 1);
return (0);
}
void
bwi_init_statechg(struct bwi_softc *sc, int statechg)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct bwi_mac *mac;
int error;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
error = bwi_stop(sc, statechg);
if (error) {
DPRINTF(1, "%s: can't stop\n", sc->sc_dev.dv_xname);
return;
}
/* power on cardbus socket */
if (sc->sc_enable != NULL)
(*sc->sc_enable)(sc);
bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
/* TODO: 2 MAC */
mac = &sc->sc_mac[0];
error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
if (error)
goto back;
error = bwi_mac_init(mac);
if (error)
goto back;
bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */
bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, ic->ic_myaddr);
bwi_mac_reset_hwkeys(mac);
if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
int i;
#define NRETRY 1000
/*
* Drain any possible pending TX status
*/
for (i = 0; i < NRETRY; ++i) {
if ((CSR_READ_4(sc, BWI_TXSTATUS_0) &
BWI_TXSTATUS_0_MORE) == 0)
break;
CSR_READ_4(sc, BWI_TXSTATUS_1);
}
if (i == NRETRY)
printf("%s: can't drain TX status\n",
sc->sc_dev.dv_xname);
#undef NRETRY
}
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
bwi_mac_updateslot(mac, 1);
/* Start MAC */
error = bwi_mac_start(mac);
if (error)
goto back;
/* Enable intrs */
bwi_enable_intrs(sc, BWI_INIT_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
if (statechg) {
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else {
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
}
} else {
ieee80211_new_state(ic, ic->ic_state, -1);
}
back:
if (error)
bwi_stop(sc, 1);
else
bwi_start(ifp);
}
int
bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct bwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
uint8_t chan;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
bwi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
bwi_stop(sc, 1);
}
break;
case SIOCS80211CHANNEL:
/* allow fast channel switching in monitor mode */
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
chan = ieee80211_chan2ieee(ic,
ic->ic_bss->ni_chan);
bwi_set_chan(sc, chan);
}
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
bwi_init(ifp);
error = 0;
}
splx(s);
return (error);
}
void
bwi_start(struct ifnet *ifp)
{
struct bwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
int trans, idx;
if (ifq_is_oactive(&ifp->if_snd) || (ifp->if_flags & IFF_RUNNING) == 0)
return;
trans = 0;
idx = tbd->tbd_idx;
while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct ieee80211_key *k;
struct mbuf *m;
int mgt_pkt = 0;
m = mq_dequeue(&ic->ic_mgtq);
if (m != NULL) {
ni = m->m_pkthdr.ph_cookie;
mgt_pkt = 1;
} else {
struct ether_header *eh;
if (ic->ic_state != IEEE80211_S_RUN)
break;
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
if (m->m_len < sizeof(*eh)) {
m = m_pullup(m, sizeof(*eh));
if (m == NULL) {
ifp->if_oerrors++;
continue;
}
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
/* TODO: PS */
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
m = ieee80211_encap(ifp, m, &ni);
if (m == NULL)
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return;
}
wh = NULL; /* Catch any invalid use */
if (mgt_pkt) {
ieee80211_release_node(ic, ni);
ni = NULL;
}
if (bwi_encap(sc, idx, m, ni) != 0) {
/* 'm' is freed in bwi_encap() if we reach here */
if (ni != NULL)
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
trans = 1;
tbd->tbd_used++;
idx = (idx + 1) % BWI_TX_NDESC;
if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
ifq_set_oactive(&ifp->if_snd);
break;
}
}
tbd->tbd_idx = idx;
if (trans)
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
void
bwi_watchdog(struct ifnet *ifp)
{
struct bwi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0) {
printf("%s: watchdog timeout\n",
sc->sc_dev.dv_xname);
ifp->if_oerrors++;
/* TODO */
} else
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
void
bwi_newstate_begin(struct bwi_softc *sc, enum ieee80211_state nstate)
{
timeout_del(&sc->sc_scan_ch);
timeout_del(&sc->sc_calib_ch);
bwi_led_newstate(sc, nstate);
if (nstate == IEEE80211_S_INIT)
sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
}
int
bwi_stop(struct bwi_softc *sc, int state_chg)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct bwi_mac *mac;
int i, error, pwr_off = 0;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
if (state_chg)
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
else
bwi_newstate_begin(sc, IEEE80211_S_INIT);
if (ifp->if_flags & IFF_RUNNING) {
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
bwi_disable_intrs(sc, BWI_ALL_INTRS);
CSR_READ_4(sc, BWI_MAC_INTR_MASK);
bwi_mac_stop(mac);
}
for (i = 0; i < sc->sc_nmac; ++i) {
struct bwi_regwin *old_rw;
mac = &sc->sc_mac[i];
if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
continue;
error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
if (error)
continue;
bwi_mac_shutdown(mac);
pwr_off = 1;
bwi_regwin_switch(sc, old_rw, NULL);
}
if (pwr_off)
bwi_bbp_power_off(sc);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
/* power off cardbus socket */
if (sc->sc_disable)
sc->sc_disable(sc);
return (0);
}
int
bwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct bwi_softc *sc = ic->ic_if.if_softc;
struct ieee80211_node *ni;
int error;
uint8_t chan;
timeout_del(&sc->sc_amrr_ch);
bwi_newstate_begin(sc, nstate);
if (nstate == IEEE80211_S_INIT)
goto back;
chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
error = bwi_set_chan(sc, chan);
if (error) {
printf("%s: can't set channel to %u\n",
sc->sc_dev.dv_xname,
ieee80211_chan2ieee(ic, ic->ic_des_chan));
return (error);
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Nothing to do */
} else if (nstate == IEEE80211_S_RUN) {
struct bwi_mac *mac;
ni = ic->ic_bss;
bwi_set_bssid(sc, ic->ic_bss->ni_bssid);
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
/* Initial TX power calibration */
bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
#ifdef notyet
sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
#else
sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
#endif
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
bwi_newassoc(ic, ni, 1);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
/* start automatic rate control timer */
if (ic->ic_fixed_rate == -1)
timeout_add_msec(&sc->sc_amrr_ch, 500);
}
} else
bwi_set_bssid(sc, bwi_zero_addr);
back:
error = sc->sc_newstate(ic, nstate, arg);
if (nstate == IEEE80211_S_SCAN) {
timeout_add_msec(&sc->sc_scan_ch, sc->sc_dwell_time);
} else if (nstate == IEEE80211_S_RUN) {
/* XXX 15 seconds */
timeout_add_sec(&sc->sc_calib_ch, 1);
}
return (error);
}
int
bwi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return (error);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
bwi_init(ifp);
return (0);
}
void
bwi_iter_func(void *arg, struct ieee80211_node *ni)
{
struct bwi_softc *sc = arg;
struct bwi_node *bn = (struct bwi_node *)ni;
ieee80211_amrr_choose(&sc->sc_amrr, ni, &bn->amn);
}
void
bwi_amrr_timeout(void *arg)
{
struct bwi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode == IEEE80211_M_STA)
bwi_iter_func(sc, ic->ic_bss);
#ifndef IEEE80211_STA_ONLY
else
ieee80211_iterate_nodes(ic, bwi_iter_func, sc);
#endif
timeout_add_msec(&sc->sc_amrr_ch, 500);
}
void
bwi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
struct bwi_softc *sc = ic->ic_if.if_softc;
int i;
DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
ieee80211_amrr_node_init(&sc->sc_amrr, &((struct bwi_node *)ni)->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
struct ieee80211_node *
bwi_node_alloc(struct ieee80211com *ic)
{
struct bwi_node *bn;
bn = malloc(sizeof(*bn), M_DEVBUF, M_NOWAIT | M_ZERO);
if (bn == NULL)
return (NULL);
return ((struct ieee80211_node *)bn);
}
struct uvm_constraint_range bwi_constraint = { 0x0, (0x40000000 - 1) };
struct kmem_pa_mode bwi_pa_mode = {
.kp_align = BWI_RING_ALIGN,
.kp_constraint = &bwi_constraint,
.kp_zero = 1
};
int
bwi_dma_alloc(struct bwi_softc *sc)
{
int error, i, has_txstats;
bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
uint32_t txrx_ctrl_step = 0;
int s;
has_txstats = 0;
for (i = 0; i < sc->sc_nmac; ++i) {
if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
has_txstats = 1;
break;
}
}
switch (sc->sc_bus_space) {
case BWI_BUS_SPACE_30BIT:
/*
* 30bit devices must use bounce buffers but
* otherwise work like 32bit devices.
*/
sc->sc_newbuf = bwi_newbuf30;
/* XXX implement txstats for 30bit? */
has_txstats = 0;
/* FALLTHROUGH */
case BWI_BUS_SPACE_32BIT:
desc_sz = sizeof(struct bwi_desc32);
txrx_ctrl_step = 0x20;
sc->sc_init_tx_ring = bwi_init_tx_ring32;
sc->sc_free_tx_ring = bwi_free_tx_ring32;
sc->sc_init_rx_ring = bwi_init_rx_ring32;
sc->sc_free_rx_ring = bwi_free_rx_ring32;
if (sc->sc_newbuf == NULL)
sc->sc_newbuf = bwi_newbuf;
sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
sc->sc_setup_txdesc = bwi_setup_tx_desc32;
sc->sc_rxeof = bwi_rxeof32;
sc->sc_start_tx = bwi_start_tx32;
if (has_txstats) {
sc->sc_init_txstats = bwi_init_txstats32;
sc->sc_free_txstats = bwi_free_txstats32;
sc->sc_txeof_status = bwi_txeof_status32;
}
break;
default:
panic("unsupported bus space type %d", sc->sc_bus_space);
}
KASSERT(desc_sz != 0);
KASSERT(txrx_ctrl_step != 0);
tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
s = splvm();
#define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
/*
* Create TX ring DMA stuffs
*/
for (i = 0; i < BWI_TX_NRING; ++i) {
error = bwi_dma_ring_alloc(sc,
&sc->sc_tx_rdata[i], tx_ring_sz, TXRX_CTRL(i));
if (error) {
printf("%s: %dth TX ring DMA alloc failed\n",
sc->sc_dev.dv_xname, i);
bwi_dma_free(sc);
splx(s);
return (error);
}
}
/*
* Create RX ring DMA stuffs
*/
error = bwi_dma_ring_alloc(sc, &sc->sc_rx_rdata,
rx_ring_sz, TXRX_CTRL(0));
if (error) {
printf("%s: RX ring DMA alloc failed\n", sc->sc_dev.dv_xname);
bwi_dma_free(sc);
splx(s);
return (error);
}
if (has_txstats) {
error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
if (error) {
printf("%s: TX stats DMA alloc failed\n",
sc->sc_dev.dv_xname);
bwi_dma_free(sc);
splx(s);
return (error);
}
}
#undef TXRX_CTRL
if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
error = bwi_dma_mbuf_create30(sc);
else
error = bwi_dma_mbuf_create(sc);
if (error)
bwi_dma_free(sc);
splx(s);
return (error);
}
void
bwi_dma_free(struct bwi_softc *sc)
{
struct bwi_ring_data *rd;
int i;
for (i = 0; i < BWI_TX_NRING; ++i) {
rd = &sc->sc_tx_rdata[i];
if (rd->rdata_desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, rd->rdata_dmap);
km_free(rd->rdata_desc, rd->rdata_ring_sz,
&kv_intrsafe, &bwi_pa_mode);
rd->rdata_desc = NULL;
}
}
rd = &sc->sc_rx_rdata;
if (rd->rdata_desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, rd->rdata_dmap);
km_free(rd->rdata_desc, rd->rdata_ring_sz,
&kv_intrsafe, &bwi_pa_mode);
rd->rdata_desc = NULL;
}
bwi_dma_txstats_free(sc);
if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) {
for (i = 0; i < BWI_TX_NRING; ++i) {
if (sc->sc_bounce_tx_data[i] != NULL) {
km_free(sc->sc_bounce_tx_data[i],
BWI_TX_NDESC * MCLBYTES,
&kv_intrsafe, &bwi_pa_mode);
sc->sc_bounce_tx_data[i] = NULL;
}
}
if (sc->sc_bounce_rx_data != NULL) {
km_free(sc->sc_bounce_rx_data, BWI_RX_NDESC * MCLBYTES,
&kv_intrsafe, &bwi_pa_mode);
sc->sc_bounce_rx_data = NULL;
}
}
}
int
bwi_dma_ring_alloc(struct bwi_softc *sc,
struct bwi_ring_data *rd, bus_size_t size, uint32_t txrx_ctrl)
{
int error;
/* Allocate rings below 1GB so 30bit devices can access them.*/
rd->rdata_desc = (caddr_t)km_alloc(size, &kv_intrsafe, &bwi_pa_mode,
&kd_nowait);
if (rd->rdata_desc == NULL) {
printf(": could not allocate ring DMA memory\n");
return (ENOMEM);
}
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &rd->rdata_dmap);
if (error) {
printf(": cannot create ring DMA map (error %d)\n", error);
km_free(rd->rdata_desc, size, &kv_intrsafe, &bwi_pa_mode);
rd->rdata_desc = NULL;
return (error);
}
error = bus_dmamap_load(sc->sc_dmat, rd->rdata_dmap, rd->rdata_desc,
size, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: can't load DMA mem\n", sc->sc_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmat, rd->rdata_dmap);
km_free(rd->rdata_desc, size, &kv_intrsafe, &bwi_pa_mode);
rd->rdata_desc = NULL;
return (error);
}
rd->rdata_ring_sz = size;
rd->rdata_paddr = rd->rdata_dmap->dm_segs[0].ds_addr;
rd->rdata_txrx_ctrl = txrx_ctrl;
return (0);
}
int
bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
bus_size_t desc_sz)
{
struct bwi_txstats_data *st;
bus_size_t dma_size;
int error, nsegs;
st = malloc(sizeof(*st), M_DEVBUF, M_WAITOK | M_ZERO);
sc->sc_txstats = st;
/*
* Create TX stats descriptor DMA stuffs
*/
dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
error = bus_dmamap_create(sc->sc_dmat, dma_size, 1, dma_size, 0,
BUS_DMA_NOWAIT, &st->stats_ring_dmap);
if (error) {
printf("%s: can't create txstats ring DMA mem\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_alloc(sc->sc_dmat, dma_size, BWI_RING_ALIGN, 0,
&st->stats_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error) {
printf("%s: can't allocate txstats ring DMA mem\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_map(sc->sc_dmat, &st->stats_ring_seg, nsegs,
dma_size, (caddr_t *)&st->stats_ring, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't map txstats ring DMA mem\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamap_load(sc->sc_dmat, st->stats_ring_dmap,
st->stats_ring, dma_size, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: can't load txstats ring DMA mem\n",
sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat, &st->stats_ring_seg, nsegs);
return (error);
}
st->stats_ring_paddr = st->stats_ring_dmap->dm_segs[0].ds_addr;
/*
* Create TX stats DMA stuffs
*/
dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
BWI_ALIGN);
error = bus_dmamap_create(sc->sc_dmat, dma_size, 1, dma_size, 0,
BUS_DMA_NOWAIT, &st->stats_dmap);
if (error) {
printf("%s: can't create txstats ring DMA mem\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_alloc(sc->sc_dmat, dma_size, BWI_ALIGN, 0,
&st->stats_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error) {
printf("%s: can't allocate txstats DMA mem\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_map(sc->sc_dmat, &st->stats_seg, nsegs,
dma_size, (caddr_t *)&st->stats, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't map txstats DMA mem\n", sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamap_load(sc->sc_dmat, st->stats_dmap, st->stats,
dma_size, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: can't load txstats DMA mem\n", sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat, &st->stats_seg, nsegs);
return (error);
}
st->stats_paddr = st->stats_dmap->dm_segs[0].ds_addr;
st->stats_ctrl_base = ctrl_base;
return (0);
}
void
bwi_dma_txstats_free(struct bwi_softc *sc)
{
struct bwi_txstats_data *st;
if (sc->sc_txstats == NULL)
return;
st = sc->sc_txstats;
bus_dmamap_unload(sc->sc_dmat, st->stats_ring_dmap);
bus_dmamem_free(sc->sc_dmat, &st->stats_ring_seg, 1);
bus_dmamap_unload(sc->sc_dmat, st->stats_dmap);
bus_dmamem_free(sc->sc_dmat, &st->stats_seg, 1);
free(st, M_DEVBUF, sizeof *st);
}
int
bwi_dma_mbuf_create30(struct bwi_softc *sc)
{
int i, j, k, error;
for (i = 0; i < BWI_TX_NRING; ++i) {
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
sc->sc_bounce_tx_data[i] = (caddr_t)km_alloc(
BWI_TX_NDESC * MCLBYTES, &kv_intrsafe,
&bwi_pa_mode, &kd_waitok);
if (sc->sc_bounce_tx_data[i] == NULL) {
printf(": could not allocate TX mbuf bounce buffer\n");
error = ENOMEM;
break;
}
for (j = 0; j < BWI_TX_NDESC; ++j) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&tbd->tbd_buf[j].tb_dmap);
if (error) {
printf(": cannot create TX mbuf DMA map\n");
for (k = 0; k < j; ++k) {
bus_dmamap_destroy(sc->sc_dmat,
tbd->tbd_buf[k].tb_dmap);
}
break;
}
}
}
if (error) {
bwi_dma_mbuf_destroy(sc, i, 0);
for (j = 0; j < i; ++j)
km_free(sc->sc_bounce_tx_data[j], BWI_TX_NDESC,
&kv_intrsafe, &bwi_pa_mode);
return (error);
}
for (i = 0; i < BWI_TX_NRING; ++i) {
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
for (j = 0; j < BWI_TX_NDESC; ++j) {
struct bwi_txbuf *tb = &tbd->tbd_buf[j];
error = bus_dmamap_load(sc->sc_dmat, tb->tb_dmap,
sc->sc_bounce_tx_data[i] + (MCLBYTES * j),
MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error) {
printf(": cannot create TX mbuf DMA map\n");
for (k = 0; k < j; ++k) {
bus_dmamap_destroy(sc->sc_dmat,
tbd->tbd_buf[k].tb_dmap);
}
break;
}
}
}
if (error) {
bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 0);
for (i = 0; i < BWI_TX_NRING; ++i)
km_free(sc->sc_bounce_tx_data[i], BWI_TX_NDESC,
&kv_intrsafe, &bwi_pa_mode);
return (error);
}
sc->sc_bounce_rx_data = (caddr_t)km_alloc(BWI_RX_NDESC * MCLBYTES,
&kv_intrsafe, &bwi_pa_mode, &kd_waitok);
if (sc->sc_bounce_rx_data == NULL) {
printf(": could not allocate RX mbuf bounce buffer\n");
bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 0);
for (i = 0; i < BWI_TX_NRING; ++i)
km_free(sc->sc_bounce_tx_data[i], BWI_TX_NDESC,
&kv_intrsafe, &bwi_pa_mode);
return (ENOMEM);
}
for (i = 0; i < BWI_RX_NDESC; ++i) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_rx_bdata.rbd_buf[i].rb_dmap);
if (error) {
printf(": cannot create RX mbuf DMA map\n");
for (j = 0; j < i; ++j) {
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rx_bdata.rbd_buf[j].rb_dmap);
}
break;
}
}
if (error) {
bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 0);
for (i = 0; i < BWI_TX_NRING; ++i)
km_free(sc->sc_bounce_tx_data[i], BWI_TX_NDESC,
&kv_intrsafe, &bwi_pa_mode);
km_free(sc->sc_bounce_rx_data, BWI_RX_NDESC * MCLBYTES,
&kv_intrsafe, &bwi_pa_mode);
return (error);
}
for (i = 0; i < BWI_RX_NDESC; ++i) {
error = bwi_newbuf30(sc, i, 1);
if (error) {
printf(": cannot create RX mbuf DMA map\n");
break;
}
}
if (error) {
bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
for (i = 0; i < BWI_TX_NRING; ++i)
km_free(sc->sc_bounce_tx_data[i], BWI_TX_NDESC,
&kv_intrsafe, &bwi_pa_mode);
km_free(sc->sc_bounce_rx_data, BWI_RX_NDESC * MCLBYTES,
&kv_intrsafe, &bwi_pa_mode);
return (error);
}
return (0);
}
int
bwi_dma_mbuf_create(struct bwi_softc *sc)
{
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
int i, j, k, ntx, error;
ntx = 0;
/*
* Create TX mbuf DMA map
*/
for (i = 0; i < BWI_TX_NRING; ++i) {
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
for (j = 0; j < BWI_TX_NDESC; ++j) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &tbd->tbd_buf[j].tb_dmap);
if (error) {
printf(
"%s: can't create %dth tbd, %dth DMA map\n",
sc->sc_dev.dv_xname, i, j);
ntx = i;
for (k = 0; k < j; ++k) {
bus_dmamap_destroy(sc->sc_dmat,
tbd->tbd_buf[k].tb_dmap);
}
goto fail;
}
}
}
ntx = BWI_TX_NRING;
/*
* Create RX mbuf DMA map and a spare DMA map
*/
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &rbd->rbd_tmp_dmap);
if (error) {
printf("%s: can't create spare RX buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
for (j = 0; j < BWI_RX_NDESC; ++j) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &rbd->rbd_buf[j].rb_dmap);
if (error) {
printf("%s: can't create %dth RX buf DMA map\n",
sc->sc_dev.dv_xname, j);
for (k = 0; k < j; ++k) {
bus_dmamap_destroy(sc->sc_dmat,
rbd->rbd_buf[k].rb_dmap);
}
bus_dmamap_destroy(sc->sc_dmat,
rbd->rbd_tmp_dmap);
goto fail;
}
}
return 0;
fail:
bwi_dma_mbuf_destroy(sc, ntx, 0);
return (error);
}
void
bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
{
struct ieee80211com *ic = &sc->sc_ic;
int i, j;
for (i = 0; i < ntx; ++i) {
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
for (j = 0; j < BWI_TX_NDESC; ++j) {
struct bwi_txbuf *tb = &tbd->tbd_buf[j];
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat,
tb->tb_dmap);
m_freem(tb->tb_mbuf);
}
if (tb->tb_ni != NULL)
ieee80211_release_node(ic, tb->tb_ni);
bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
}
}
if (nrx) {
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
bus_dmamap_destroy(sc->sc_dmat, rbd->rbd_tmp_dmap);
for (j = 0; j < BWI_RX_NDESC; ++j) {
struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
if (rb->rb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat,
rb->rb_dmap);
m_freem(rb->rb_mbuf);
}
bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
}
}
}
void
bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
{
CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
}
void
bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
{
CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
}
int
bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
{
struct bwi_ring_data *rd;
struct bwi_txbuf_data *tbd;
uint32_t val, addr_hi, addr_lo;
KASSERT(ring_idx < BWI_TX_NRING);
rd = &sc->sc_tx_rdata[ring_idx];
tbd = &sc->sc_tx_bdata[ring_idx];
tbd->tbd_idx = 0;
tbd->tbd_used = 0;
bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
bus_dmamap_sync(sc->sc_dmat, rd->rdata_dmap, 0,
rd->rdata_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
__SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
BWI_TXRX32_RINGINFO_FUNC_MASK);
CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
BWI_TXRX32_CTRL_ENABLE;
CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
return (0);
}
void
bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
bus_addr_t paddr, int hdr_size, int ndesc)
{
uint32_t val, addr_hi, addr_lo;
addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
__SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
BWI_TXRX32_RINGINFO_FUNC_MASK);
CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
__SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
BWI_TXRX32_CTRL_ENABLE;
CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
(ndesc - 1) * sizeof(struct bwi_desc32));
}
int
bwi_init_rx_ring32(struct bwi_softc *sc)
{
struct bwi_ring_data *rd = &sc->sc_rx_rdata;
int i, error;
sc->sc_rx_bdata.rbd_idx = 0;
bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_RX_NDESC);
for (i = 0; i < BWI_RX_NDESC; ++i) {
error = sc->sc_newbuf(sc, i, 1);
if (error) {
printf("%s: can't allocate %dth RX buffer\n",
sc->sc_dev.dv_xname, i);
return (error);
}
}
bus_dmamap_sync(sc->sc_dmat, rd->rdata_dmap, 0,
rd->rdata_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
return (0);
}
int
bwi_init_txstats32(struct bwi_softc *sc)
{
struct bwi_txstats_data *st = sc->sc_txstats;
bus_addr_t stats_paddr;
int i;
bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
bus_dmamap_sync(sc->sc_dmat, st->stats_dmap, 0,
st->stats_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
st->stats_idx = 0;
stats_paddr = st->stats_paddr;
for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
stats_paddr, sizeof(struct bwi_txstats), 0);
stats_paddr += sizeof(struct bwi_txstats);
}
bus_dmamap_sync(sc->sc_dmat, st->stats_ring_dmap, 0,
st->stats_ring_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
return (0);
}
void
bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
int buf_len)
{
struct bwi_ring_data *rd = &sc->sc_rx_rdata;
KASSERT(buf_idx < BWI_RX_NDESC);
bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
paddr, buf_len, 0);
}
void
bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
int buf_idx, bus_addr_t paddr, int buf_len)
{
KASSERT(buf_idx < BWI_TX_NDESC);
bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
paddr, buf_len, 1);
}
int
bwi_newbuf30(struct bwi_softc *sc, int buf_idx, int init)
{
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
struct bwi_rxbuf *rb = &rbd->rbd_buf[buf_idx];
struct mbuf *m;
struct bwi_rxbuf_hdr *hdr;
int error;
KASSERT(buf_idx < BWI_RX_NDESC);
/* Create host-side mbuf. */
MGETHDR(m, init ? M_WAITOK : M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, init ? M_WAITOK : M_NOWAIT);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
if (init) {
/* Load device-side RX DMA buffer. */
error = bus_dmamap_load(sc->sc_dmat, rb->rb_dmap,
sc->sc_bounce_rx_data + (MCLBYTES * buf_idx),
MCLBYTES, NULL, BUS_DMA_WAITOK);
if (error) {
m_freem(m);
return (error);
}
}
rb->rb_mbuf = m;
rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
/*
* Clear RX buf header
*/
hdr = (struct bwi_rxbuf_hdr *)(sc->sc_bounce_rx_data +
(MCLBYTES * buf_idx));
bzero(hdr, sizeof(*hdr));
bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
rb->rb_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
/*
* Setup RX buf descriptor
*/
sc->sc_setup_rxdesc(sc, buf_idx, rb->rb_paddr,
m->m_len - sizeof(*hdr));
return (0);
}
int
bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
{
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
struct bwi_rxbuf_hdr *hdr;
bus_dmamap_t map;
bus_addr_t paddr;
struct mbuf *m;
int error;
KASSERT(buf_idx < BWI_RX_NDESC);
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
if (m == NULL) {
error = ENOBUFS;
/*
* If the NIC is up and running, we need to:
* - Clear RX buffer's header.
* - Restore RX descriptor settings.
*/
if (init)
return error;
else
goto back;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
/*
* Try to load RX buf into temporary DMA map
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, rbd->rbd_tmp_dmap, m,
init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
/*
* See the comment above
*/
if (init)
return error;
else
goto back;
}
if (!init)
bus_dmamap_unload(sc->sc_dmat, rxbuf->rb_dmap);
rxbuf->rb_mbuf = m;
/*
* Swap RX buf's DMA map with the loaded temporary one
*/
map = rxbuf->rb_dmap;
rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
rbd->rbd_tmp_dmap = map;
paddr = rxbuf->rb_dmap->dm_segs[0].ds_addr;
rxbuf->rb_paddr = paddr;
back:
/*
* Clear RX buf header
*/
hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
bzero(hdr, sizeof(*hdr));
bus_dmamap_sync(sc->sc_dmat, rxbuf->rb_dmap, 0,
rxbuf->rb_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
/*
* Setup RX buf descriptor
*/
sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
rxbuf->rb_mbuf->m_len - sizeof(*hdr));
return error;
}
void
bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
const uint8_t *addr)
{
int i;
CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
uint16_t addr_val;
addr_val = (uint16_t)addr[i * 2] |
(((uint16_t)addr[(i * 2) + 1]) << 8);
CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
}
}
int
bwi_set_chan(struct bwi_softc *sc, uint8_t chan)
{
struct bwi_mac *mac;
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
bwi_rf_set_chan(mac, chan, 0);
return (0);
}
void
bwi_next_scan(void *xsc)
{
struct bwi_softc *sc = xsc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int s;
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ifp);
splx(s);
}
int
bwi_rxeof(struct bwi_softc *sc, int end_idx)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct bwi_ring_data *rd = &sc->sc_rx_rdata;
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int idx, rx_data = 0;
idx = rbd->rbd_idx;
while (idx != end_idx) {
struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
struct bwi_rxbuf_hdr *hdr;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct mbuf *m;
uint32_t plcp;
uint16_t flags2;
int buflen, wh_ofs, hdr_extra, rssi, type, rate;
bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) {
/* Bounce for 30bit devices. */
if (m_copyback(rb->rb_mbuf, 0, MCLBYTES,
sc->sc_bounce_rx_data + (MCLBYTES * idx),
M_NOWAIT) == ENOBUFS) {
ifp->if_ierrors++;
goto next;
}
}
m = rb->rb_mbuf;
if (sc->sc_newbuf(sc, idx, 0)) {
ifp->if_ierrors++;
goto next;
}
hdr = mtod(m, struct bwi_rxbuf_hdr *);
flags2 = letoh16(hdr->rxh_flags2);
hdr_extra = 0;
if (flags2 & BWI_RXH_F2_TYPE2FRAME)
hdr_extra = 2;
wh_ofs = hdr_extra + 6;
buflen = letoh16(hdr->rxh_buflen);
if (buflen <= wh_ofs) {
printf("%s: zero length data, hdr_extra %d\n",
sc->sc_dev.dv_xname, hdr_extra);
ifp->if_ierrors++;
m_freem(m);
goto next;
}
bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
rssi = bwi_calc_rssi(sc, hdr);
m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
m_adj(m, sizeof(*hdr) + wh_ofs);
if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
rate = bwi_plcp2rate(plcp, IEEE80211_MODE_11G);
else
rate = bwi_plcp2rate(plcp, IEEE80211_MODE_11B);
#if NBPFILTER > 0
/* RX radio tap */
if (sc->sc_drvbpf != NULL) {
struct mbuf mb;
struct bwi_rx_radiotap_hdr *tap = &sc->sc_rxtap;
tap->wr_tsf = hdr->rxh_tsf;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_rate = rate;
tap->wr_chan_freq =
htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_bss->ni_chan->ic_flags);
tap->wr_antsignal = rssi;
tap->wr_antnoise = BWI_NOISE_FLOOR;
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
}
#endif
m_adj(m, -IEEE80211_CRC_LEN);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = hdr->rxh_rssi;
rxi.rxi_tstamp = letoh16(hdr->rxh_tsf);
ieee80211_inputm(ifp, m, ni, &rxi, &ml);
ieee80211_release_node(ic, ni);
if (type == IEEE80211_FC0_TYPE_DATA) {
rx_data = 1;
sc->sc_rx_rate = rate;
}
next:
idx = (idx + 1) % BWI_RX_NDESC;
}
if_input(ifp, &ml);
rbd->rbd_idx = idx;
bus_dmamap_sync(sc->sc_dmat, rd->rdata_dmap, 0,
rd->rdata_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
return (rx_data);
}
int
bwi_rxeof32(struct bwi_softc *sc)
{
uint32_t val, rx_ctrl;
int end_idx, rx_data;
rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
sizeof(struct bwi_desc32);
rx_data = bwi_rxeof(sc, end_idx);
CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
end_idx * sizeof(struct bwi_desc32));
return (rx_data);
}
void
bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
{
int i;
CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
#define NRETRY 10
for (i = 0; i < NRETRY; ++i) {
uint32_t status;
status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
BWI_RX32_STATUS_STATE_DISABLED)
break;
DELAY(1000);
}
if (i == NRETRY)
printf("%s: reset rx ring timedout\n", sc->sc_dev.dv_xname);
#undef NRETRY
CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
}
void
bwi_free_txstats32(struct bwi_softc *sc)
{
bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
}
void
bwi_free_rx_ring32(struct bwi_softc *sc)
{
struct bwi_ring_data *rd = &sc->sc_rx_rdata;
struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
int i;
bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
for (i = 0; i < BWI_RX_NDESC; ++i) {
struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
if (rb->rb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
m_freem(rb->rb_mbuf);
rb->rb_mbuf = NULL;
}
}
}
void
bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
{
struct ieee80211com *ic = &sc->sc_ic;
struct bwi_ring_data *rd;
struct bwi_txbuf_data *tbd;
uint32_t state, val;
int i;
KASSERT(ring_idx < BWI_TX_NRING);
rd = &sc->sc_tx_rdata[ring_idx];
tbd = &sc->sc_tx_bdata[ring_idx];
#define NRETRY 10
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
if (state == BWI_TX32_STATUS_STATE_DISABLED ||
state == BWI_TX32_STATUS_STATE_IDLE ||
state == BWI_TX32_STATUS_STATE_STOPPED)
break;
DELAY(1000);
}
if (i == NRETRY) {
printf("%s: wait for TX ring(%d) stable timed out\n",
sc->sc_dev.dv_xname, ring_idx);
}
CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
if (state == BWI_TX32_STATUS_STATE_DISABLED)
break;
DELAY(1000);
}
if (i == NRETRY)
printf("%s: reset TX ring (%d) timed out\n",
sc->sc_dev.dv_xname, ring_idx);
#undef NRETRY
DELAY(1000);
CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
for (i = 0; i < BWI_TX_NDESC; ++i) {
struct bwi_txbuf *tb = &tbd->tbd_buf[i];
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
}
if (tb->tb_ni != NULL) {
ieee80211_release_node(ic, tb->tb_ni);
tb->tb_ni = NULL;
}
}
}
uint8_t
bwi_plcp2rate(uint32_t plcp0, enum ieee80211_phymode phymode)
{
uint32_t plcp = letoh32(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
return (ieee80211_plcp2rate(plcp, phymode));
}
void
bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
{
uint32_t plcp;
plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_MODE_11G),
IEEE80211_OFDM_PLCP_RATE_MASK) |
__SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
*plcp0 = htole32(plcp);
}
void
bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
uint8_t rate)
{
int len, service, pkt_bitlen;
pkt_bitlen = pkt_len * NBBY;
len = howmany(pkt_bitlen * 2, rate);
service = IEEE80211_DS_PLCP_SERVICE_LOCKED;
if (rate == (11 * 2)) {
int pkt_bitlen1;
/*
* PLCP service field needs to be adjusted,
* if TX rate is 11Mbytes/s
*/
pkt_bitlen1 = len * 11;
if (pkt_bitlen1 - pkt_bitlen >= NBBY)
service |= IEEE80211_DS_PLCP_SERVICE_LENEXT7;
}
plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_MODE_11B);
plcp->i_service = service;
plcp->i_length = htole16(len);
/* NOTE: do NOT touch i_crc */
}
void
bwi_plcp_header(void *plcp, int pkt_len, uint8_t rate)
{
enum bwi_modtype modtype;
/*
* Assume caller has zeroed 'plcp'
*/
modtype = bwi_rate2modtype(rate);
if (modtype == IEEE80211_MODTYPE_OFDM)
bwi_ofdm_plcp_header(plcp, pkt_len, rate);
else if (modtype == IEEE80211_MODTYPE_DS)
bwi_ds_plcp_header(plcp, pkt_len, rate);
else
panic("unsupported modulation type %u", modtype);
}
enum bwi_modtype
bwi_rate2modtype(uint8_t rate)
{
rate &= IEEE80211_RATE_VAL;
if (rate == 44)
return IEEE80211_MODTYPE_PBCC;
else if (rate == 22 || rate < 12)
return IEEE80211_MODTYPE_DS;
else
return IEEE80211_MODTYPE_OFDM;
}
uint8_t
bwi_ack_rate(struct ieee80211_node *ni, uint8_t rate)
{
const struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t ack_rate = 0;
enum bwi_modtype modtype;
int i;
rate &= IEEE80211_RATE_VAL;
modtype = bwi_rate2modtype(rate);
for (i = 0; i < rs->rs_nrates; ++i) {
uint8_t rate1 = rs->rs_rates[i] & IEEE80211_RATE_VAL;
if (rate1 > rate) {
if (ack_rate != 0)
return ack_rate;
else
break;
}
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
bwi_rate2modtype(rate1) == modtype)
ack_rate = rate1;
}
switch (rate) {
/* CCK */
case 2:
case 4:
case 11:
case 22:
ack_rate = rate;
break;
/* PBCC */
case 44:
ack_rate = 22;
break;
/* OFDM */
case 12:
case 18:
ack_rate = 12;
break;
case 24:
case 36:
ack_rate = 24;
break;
case 48:
case 72:
case 96:
case 108:
ack_rate = 48;
break;
default:
panic("unsupported rate %d", rate);
}
return ack_rate;
}
#define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
(IEEE80211_OFDM_PREAMBLE_TIME + \
IEEE80211_OFDM_SIGNAL_TIME + \
(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
#define IEEE80211_OFDM_SYM_TIME 4
#define IEEE80211_OFDM_PREAMBLE_TIME 16
#define IEEE80211_OFDM_SIGNAL_EXT_TIME 6
#define IEEE80211_OFDM_SIGNAL_TIME 4
#define IEEE80211_OFDM_PLCP_SERVICE_NBITS 16
#define IEEE80211_OFDM_TAIL_NBITS 6
#define IEEE80211_OFDM_NBITS(frmlen) \
(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
((frmlen) * NBBY) + \
IEEE80211_OFDM_TAIL_NBITS)
#define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
#define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
howmany(IEEE80211_OFDM_NBITS((frmlen)), \
IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
#define IEEE80211_CCK_TXTIME(kbps, frmlen) \
(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
#define IEEE80211_CCK_PREAMBLE_LEN 144
#define IEEE80211_CCK_PLCP_HDR_TIME 48
#define IEEE80211_CCK_SHPREAMBLE_LEN 72
#define IEEE80211_CCK_SHPLCP_HDR_TIME 24
#define IEEE80211_CCK_NBITS(frmlen) ((frmlen) * NBBY)
uint16_t
bwi_txtime(struct ieee80211com *ic, struct ieee80211_node *ni, uint len,
uint8_t rs_rate, uint32_t flags)
{
enum bwi_modtype modtype;
uint16_t txtime;
int rate;
rs_rate &= IEEE80211_RATE_VAL;
rate = rs_rate * 500; /* ieee80211 rate -> kbps */
modtype = bwi_rate2modtype(rs_rate);
if (modtype == IEEE80211_MODTYPE_OFDM) {
/*
* IEEE Std 802.11a-1999, page 37, equation (29)
* IEEE Std 802.11g-2003, page 44, equation (42)
*/
txtime = IEEE80211_OFDM_TXTIME(rate, len);
if (ic->ic_curmode == IEEE80211_MODE_11G)
txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
} else {
/*
* IEEE Std 802.11b-1999, page 28, subclause 18.3.4
* IEEE Std 802.11g-2003, page 45, equation (43)
*/
if (modtype == IEEE80211_MODTYPE_PBCC)
++len;
txtime = IEEE80211_CCK_TXTIME(rate, len);
/*
* Short preamble is not applicable for DS 1Mbits/s
*/
if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
IEEE80211_CCK_SHPLCP_HDR_TIME;
} else {
txtime += IEEE80211_CCK_PREAMBLE_LEN +
IEEE80211_CCK_PLCP_HDR_TIME;
}
}
return txtime;
}
int
bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
struct ieee80211_node *ni)
{
DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
struct ieee80211com *ic = &sc->sc_ic;
struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
struct bwi_mac *mac;
struct bwi_txbuf_hdr *hdr;
struct ieee80211_frame *wh;
uint8_t rate;
uint32_t mac_ctrl;
uint16_t phy_ctrl;
bus_addr_t paddr;
int pkt_len, error = 0;
#if 0
const uint8_t *p;
int i;
#endif
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
wh = mtod(m, struct ieee80211_frame *);
/* Get 802.11 frame len before prepending TX header */
pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/*
* Find TX rate
*/
bzero(tb->tb_rate_idx, sizeof(tb->tb_rate_idx));
if (ni != NULL) {
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate];
} else {
/* AMRR rate control */
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
}
} else {
/* Fixed at 1Mbytes/s for mgt frames */
rate = (1 * 2);
}
rate &= IEEE80211_RATE_VAL;
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = (1 * 2);
if (rate == 0) {
printf("%s: invalid rate %u or fallback rate",
sc->sc_dev.dv_xname, rate);
rate = (1 * 2); /* Force 1Mbytes/s */
}
sc->sc_tx_rate = rate;
#if NBPFILTER > 0
/* TX radio tap */
if (sc->sc_drvbpf != NULL) {
struct mbuf mb;
struct bwi_tx_radiotap_hdr *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq =
htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags =
htole16(ic->ic_bss->ni_chan->ic_flags);
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_txtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
}
#endif
/*
* Setup the embedded TX header
*/
M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
if (m == NULL) {
printf("%s: prepend TX header failed\n", sc->sc_dev.dv_xname);
return (ENOBUFS);
}
hdr = mtod(m, struct bwi_txbuf_hdr *);
bzero(hdr, sizeof(*hdr));
bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
if (ni != NULL && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
uint16_t dur;
uint8_t ack_rate;
ack_rate = bwi_ack_rate(ni, rate);
dur = bwi_txtime(ic, ni,
sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN,
ack_rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
hdr->txh_fb_duration = htole16(dur);
}
hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
__SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
bwi_plcp_header(hdr->txh_plcp, pkt_len, rate);
bwi_plcp_header(hdr->txh_fb_plcp, pkt_len, rate);
phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
BWI_TXH_PHY_C_ANTMODE_MASK);
if (bwi_rate2modtype(rate) == IEEE80211_MODTYPE_OFDM)
phy_ctrl |= BWI_TXH_PHY_C_OFDM;
else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
mac_ctrl |= BWI_TXH_MAC_C_ACK;
if (bwi_rate2modtype(rate) == IEEE80211_MODTYPE_OFDM)
mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
hdr->txh_mac_ctrl = htole32(mac_ctrl);
hdr->txh_phy_ctrl = htole16(phy_ctrl);
/* Catch any further usage */
hdr = NULL;
wh = NULL;
if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) {
/* Bounce for 30bit devices. */
m_copydata(m, 0, m->m_pkthdr.len,
sc->sc_bounce_tx_data[BWI_TX_DATA_RING] +
(MCLBYTES * idx));
} else {
/* DMA load */
error = bus_dmamap_load_mbuf(sc->sc_dmat, tb->tb_dmap, m,
BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
printf("%s: can't load TX buffer (1) %d\n",
sc->sc_dev.dv_xname, error);
goto back;
}
if (error) { /* error == EFBIG */
if (m_defrag(m, M_DONTWAIT)) {
printf("%s: can't defrag TX buffer\n",
sc->sc_dev.dv_xname);
goto back;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, tb->tb_dmap,
m, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load TX buffer (2) %d\n",
sc->sc_dev.dv_xname, error);
goto back;
}
}
error = 0;
}
bus_dmamap_sync(sc->sc_dmat, tb->tb_dmap, 0,
tb->tb_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
tb->tb_mbuf = m;
tb->tb_ni = ni;
#if 0
p = mtod(m, const uint8_t *);
for (i = 0; i < m->m_pkthdr.len; ++i) {
if (i != 0 && i % 8 == 0)
printf("\n");
printf("%02x ", p[i]);
}
printf("\n");
DPRINTF(1, "%s: idx %d, pkt_len %d, buflen %d\n",
sc->sc_dev.dv_xname, idx, pkt_len, m->m_pkthdr.len);
#endif
/* Setup TX descriptor */
paddr = tb->tb_dmap->dm_segs[0].ds_addr;
sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
bus_dmamap_sync(sc->sc_dmat, rd->rdata_dmap, 0,
rd->rdata_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
/* Kick start */
sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
back:
if (error)
m_freem(m);
return (error);
}
void
bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
{
idx = (idx + 1) % BWI_TX_NDESC;
CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
idx * sizeof(struct bwi_desc32));
}
void
bwi_txeof_status32(struct bwi_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t val, ctrl_base;
int end_idx;
ctrl_base = sc->sc_txstats->stats_ctrl_base;
val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
sizeof(struct bwi_desc32);
bwi_txeof_status(sc, end_idx);
CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
end_idx * sizeof(struct bwi_desc32));
if (ifq_is_oactive(&ifp->if_snd) == 0)
ifp->if_start(ifp);
}
void
_bwi_txeof(struct bwi_softc *sc, uint16_t tx_id)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct bwi_txbuf_data *tbd;
struct bwi_txbuf *tb;
int ring_idx, buf_idx;
if (tx_id == 0) {
printf("%s: zero tx id\n", sc->sc_dev.dv_xname);
return;
}
ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
KASSERT(ring_idx == BWI_TX_DATA_RING);
KASSERT(buf_idx < BWI_TX_NDESC);
#if 0
DPRINTF(1, "%s: txeof idx %d\n", sc->sc_dev.dv_xname, buf_idx);
#endif
tbd = &sc->sc_tx_bdata[ring_idx];
KASSERT(tbd->tbd_used > 0);
tbd->tbd_used--;
tb = &tbd->tbd_buf[buf_idx];
bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
if (tb->tb_ni != NULL) {
ieee80211_release_node(ic, tb->tb_ni);
tb->tb_ni = NULL;
}
if (tbd->tbd_used == 0)
sc->sc_tx_timer = 0;
ifq_clr_oactive(&ifp->if_snd);
}
void
bwi_txeof_status(struct bwi_softc *sc, int end_idx)
{
struct bwi_txstats_data *st = sc->sc_txstats;
int idx;
bus_dmamap_sync(sc->sc_dmat, st->stats_dmap, 0,
st->stats_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
idx = st->stats_idx;
while (idx != end_idx) {
_bwi_txeof(sc, letoh16(st->stats[idx].txs_id));
idx = (idx + 1) % BWI_TXSTATS_NDESC;
}
st->stats_idx = idx;
}
void
bwi_txeof(struct bwi_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
for (;;) {
uint32_t tx_status0, tx_status1;
uint16_t tx_id, tx_info;
tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS_0);
if (tx_status0 == 0)
break;
tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS_1);
tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS_0_TXID_MASK);
tx_info = BWI_TXSTATUS_0_INFO(tx_status0);
if (tx_info & 0x30) /* XXX */
continue;
_bwi_txeof(sc, letoh16(tx_id));
}
if (ifq_is_oactive(&ifp->if_snd) == 0)
ifp->if_start(ifp);
}
int
bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
{
bwi_power_on(sc, 1);
return (bwi_set_clock_mode(sc, clk_mode));
}
void
bwi_bbp_power_off(struct bwi_softc *sc)
{
bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
bwi_power_off(sc, 1);
}
int
bwi_get_pwron_delay(struct bwi_softc *sc)
{
struct bwi_regwin *com, *old;
struct bwi_clock_freq freq;
uint32_t val;
int error;
com = &sc->sc_com_regwin;
KASSERT(BWI_REGWIN_EXIST(com));
if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
return (0);
error = bwi_regwin_switch(sc, com, &old);
if (error)
return (error);
bwi_get_clock_freq(sc, &freq);
val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
DPRINTF(1, "%s: power on delay %u\n",
sc->sc_dev.dv_xname, sc->sc_pwron_delay);
return (bwi_regwin_switch(sc, old, NULL));
}
int
bwi_bus_attach(struct bwi_softc *sc)
{
struct bwi_regwin *bus, *old;
int error;
bus = &sc->sc_bus_regwin;
error = bwi_regwin_switch(sc, bus, &old);
if (error)
return (error);
if (!bwi_regwin_is_enabled(sc, bus))
bwi_regwin_enable(sc, bus, 0);
/* Disable interrupts */
CSR_WRITE_4(sc, BWI_INTRVEC, 0);
return (bwi_regwin_switch(sc, old, NULL));
}
const char *
bwi_regwin_name(const struct bwi_regwin *rw)
{
switch (rw->rw_type) {
case BWI_REGWIN_T_COM:
return ("COM");
case BWI_REGWIN_T_BUSPCI:
return ("PCI");
case BWI_REGWIN_T_MAC:
return ("MAC");
case BWI_REGWIN_T_BUSPCIE:
return ("PCIE");
}
panic("unknown regwin type 0x%04x", rw->rw_type);
return (NULL);
}
uint32_t
bwi_regwin_disable_bits(struct bwi_softc *sc)
{
uint32_t busrev;
/* XXX cache this */
busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
DPRINTF(1, "%s: bus rev %u\n", sc->sc_dev.dv_xname, busrev);
if (busrev == BWI_BUSREV_0)
return (BWI_STATE_LO_DISABLE1);
else if (busrev == BWI_BUSREV_1)
return (BWI_STATE_LO_DISABLE2);
else
return ((BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2));
}
int
bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
{
uint32_t val, disable_bits;
disable_bits = bwi_regwin_disable_bits(sc);
val = CSR_READ_4(sc, BWI_STATE_LO);
if ((val & (BWI_STATE_LO_CLOCK |
BWI_STATE_LO_RESET |
disable_bits)) == BWI_STATE_LO_CLOCK) {
DPRINTF(1, "%s: %s is enabled\n",
sc->sc_dev.dv_xname, bwi_regwin_name(rw));
return (1);
} else {
DPRINTF(1, "%s: %s is disabled\n",
sc->sc_dev.dv_xname, bwi_regwin_name(rw));
return (0);
}
}
void
bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
{
uint32_t state_lo, disable_bits;
int i;
state_lo = CSR_READ_4(sc, BWI_STATE_LO);
/*
* If current regwin is in 'reset' state, it was already disabled.
*/
if (state_lo & BWI_STATE_LO_RESET) {
DPRINTF(1, "%s: %s was already disabled\n",
sc->sc_dev.dv_xname, bwi_regwin_name(rw));
return;
}
disable_bits = bwi_regwin_disable_bits(sc);
/*
* Disable normal clock
*/
state_lo = BWI_STATE_LO_CLOCK | disable_bits;
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/*
* Wait until normal clock is disabled
*/
#define NRETRY 1000
for (i = 0; i < NRETRY; ++i) {
state_lo = CSR_READ_4(sc, BWI_STATE_LO);
if (state_lo & disable_bits)
break;
DELAY(10);
}
if (i == NRETRY) {
printf("%s: %s disable clock timeout\n",
sc->sc_dev.dv_xname, bwi_regwin_name(rw));
}
for (i = 0; i < NRETRY; ++i) {
uint32_t state_hi;
state_hi = CSR_READ_4(sc, BWI_STATE_HI);
if ((state_hi & BWI_STATE_HI_BUSY) == 0)
break;
DELAY(10);
}
if (i == NRETRY) {
printf("%s: %s wait BUSY unset timeout\n",
sc->sc_dev.dv_xname, bwi_regwin_name(rw));
}
#undef NRETRY
/*
* Reset and disable regwin with gated clock
*/
state_lo = BWI_STATE_LO_RESET | disable_bits |
BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
__SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1);
/* Reset and disable regwin */
state_lo = BWI_STATE_LO_RESET | disable_bits |
__SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1);
}
void
bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
{
uint32_t state_lo, state_hi, imstate;
bwi_regwin_disable(sc, rw, flags);
/* Reset regwin with gated clock */
state_lo = BWI_STATE_LO_RESET |
BWI_STATE_LO_CLOCK |
BWI_STATE_LO_GATED_CLOCK |
__SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1);
state_hi = CSR_READ_4(sc, BWI_STATE_HI);
if (state_hi & BWI_STATE_HI_SERROR)
CSR_WRITE_4(sc, BWI_STATE_HI, 0);
imstate = CSR_READ_4(sc, BWI_IMSTATE);
if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
}
/* Enable regwin with gated clock */
state_lo = BWI_STATE_LO_CLOCK |
BWI_STATE_LO_GATED_CLOCK |
__SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1);
/* Enable regwin with normal clock */
state_lo = BWI_STATE_LO_CLOCK |
__SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
/* Flush pending bus write */
CSR_READ_4(sc, BWI_STATE_LO);
DELAY(1);
}
void
bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
{
struct ieee80211com *ic = &sc->sc_ic;
struct bwi_mac *mac;
struct bwi_myaddr_bssid buf;
const uint8_t *p;
uint32_t val;
int n, i;
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
bcopy(ic->ic_myaddr, buf.myaddr, sizeof(buf.myaddr));
bcopy(bssid, buf.bssid, sizeof(buf.bssid));
n = sizeof(buf) / sizeof(val);
p = (const uint8_t *)&buf;
for (i = 0; i < n; ++i) {
int j;
val = 0;
for (j = 0; j < sizeof(val); ++j)
val |= ((uint32_t)(*p++)) << (j * 8);
TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
}
}
void
bwi_updateslot(struct ieee80211com *ic)
{
struct bwi_softc *sc = ic->ic_if.if_softc;
struct bwi_mac *mac;
struct ifnet *ifp = &ic->ic_if;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
}
void
bwi_calibrate(void *xsc)
{
struct bwi_softc *sc = xsc;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_state == IEEE80211_S_RUN) {
struct bwi_mac *mac;
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
}
/* XXX 15 seconds */
timeout_add_sec(&sc->sc_calib_ch, 15);
}
splx(s);
}
int
bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
{
struct bwi_mac *mac;
KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC);
mac = (struct bwi_mac *)sc->sc_cur_regwin;
return (bwi_rf_calc_rssi(mac, hdr));
}