src/sys/dev/pci/if_iwm.c

12196 lines
333 KiB
C

/* $OpenBSD: if_iwm.c,v 1.415 2024/04/13 23:44:11 jsg Exp $ */
/*
* Copyright (c) 2014, 2016 genua gmbh <info@genua.de>
* Author: Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2014 Fixup Software Ltd.
* Copyright (c) 2017 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Based on BSD-licensed source modules in the Linux iwlwifi driver,
* which were used as the reference documentation for this implementation.
*
***********************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 Intel Deutschland GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 Intel Deutschland GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/refcnt.h>
#include <sys/task.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_ra.h>
#include <net80211/ieee80211_ra_vht.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_priv.h> /* for SEQ_LT */
#undef DPRINTF /* defined in ieee80211_priv.h */
#define DEVNAME(_s) ((_s)->sc_dev.dv_xname)
#define IC2IFP(_ic_) (&(_ic_)->ic_if)
#define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_)))
#define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_)))
#ifdef IWM_DEBUG
#define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0)
int iwm_debug = 1;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#include <dev/pci/if_iwmreg.h>
#include <dev/pci/if_iwmvar.h>
const uint8_t iwm_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44 , 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
const uint8_t iwm_nvm_channels_8000[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
#define IWM_NUM_2GHZ_CHANNELS 14
const struct iwm_rate {
uint16_t rate;
uint8_t plcp;
uint8_t ht_plcp;
} iwm_rates[] = {
/* Legacy */ /* HT */
{ 2, IWM_RATE_1M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 4, IWM_RATE_2M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 11, IWM_RATE_5M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 22, IWM_RATE_11M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 12, IWM_RATE_6M_PLCP, IWM_RATE_HT_SISO_MCS_0_PLCP },
{ 18, IWM_RATE_9M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 24, IWM_RATE_12M_PLCP, IWM_RATE_HT_SISO_MCS_1_PLCP },
{ 26, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_8_PLCP },
{ 36, IWM_RATE_18M_PLCP, IWM_RATE_HT_SISO_MCS_2_PLCP },
{ 48, IWM_RATE_24M_PLCP, IWM_RATE_HT_SISO_MCS_3_PLCP },
{ 52, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_9_PLCP },
{ 72, IWM_RATE_36M_PLCP, IWM_RATE_HT_SISO_MCS_4_PLCP },
{ 78, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_10_PLCP },
{ 96, IWM_RATE_48M_PLCP, IWM_RATE_HT_SISO_MCS_5_PLCP },
{ 104, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_11_PLCP },
{ 108, IWM_RATE_54M_PLCP, IWM_RATE_HT_SISO_MCS_6_PLCP },
{ 128, IWM_RATE_INVM_PLCP, IWM_RATE_HT_SISO_MCS_7_PLCP },
{ 156, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_12_PLCP },
{ 208, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_13_PLCP },
{ 234, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_14_PLCP },
{ 260, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_15_PLCP },
};
#define IWM_RIDX_CCK 0
#define IWM_RIDX_OFDM 4
#define IWM_RIDX_MAX (nitems(iwm_rates)-1)
#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
#define IWM_RVAL_IS_OFDM(_i_) ((_i_) >= 12 && (_i_) != 22)
/* Convert an MCS index into an iwm_rates[] index. */
const int iwm_ht_mcs2ridx[] = {
IWM_RATE_MCS_0_INDEX,
IWM_RATE_MCS_1_INDEX,
IWM_RATE_MCS_2_INDEX,
IWM_RATE_MCS_3_INDEX,
IWM_RATE_MCS_4_INDEX,
IWM_RATE_MCS_5_INDEX,
IWM_RATE_MCS_6_INDEX,
IWM_RATE_MCS_7_INDEX,
IWM_RATE_MCS_8_INDEX,
IWM_RATE_MCS_9_INDEX,
IWM_RATE_MCS_10_INDEX,
IWM_RATE_MCS_11_INDEX,
IWM_RATE_MCS_12_INDEX,
IWM_RATE_MCS_13_INDEX,
IWM_RATE_MCS_14_INDEX,
IWM_RATE_MCS_15_INDEX,
};
struct iwm_nvm_section {
uint16_t length;
uint8_t *data;
};
int iwm_is_mimo_ht_plcp(uint8_t);
int iwm_is_mimo_ht_mcs(int);
int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t);
int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type,
uint8_t *, size_t);
int iwm_set_default_calib(struct iwm_softc *, const void *);
void iwm_fw_info_free(struct iwm_fw_info *);
void iwm_fw_version_str(char *, size_t, uint32_t, uint32_t, uint32_t);
int iwm_read_firmware(struct iwm_softc *);
uint32_t iwm_read_prph_unlocked(struct iwm_softc *, uint32_t);
uint32_t iwm_read_prph(struct iwm_softc *, uint32_t);
void iwm_write_prph_unlocked(struct iwm_softc *, uint32_t, uint32_t);
void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t);
int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int);
int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int);
int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t);
int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int);
int iwm_nic_lock(struct iwm_softc *);
void iwm_nic_assert_locked(struct iwm_softc *);
void iwm_nic_unlock(struct iwm_softc *);
int iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t,
uint32_t);
int iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
int iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, bus_size_t,
bus_size_t);
void iwm_dma_contig_free(struct iwm_dma_info *);
int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
void iwm_disable_rx_dma(struct iwm_softc *);
void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int);
void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
void iwm_enable_rfkill_int(struct iwm_softc *);
int iwm_check_rfkill(struct iwm_softc *);
void iwm_enable_interrupts(struct iwm_softc *);
void iwm_enable_fwload_interrupt(struct iwm_softc *);
void iwm_restore_interrupts(struct iwm_softc *);
void iwm_disable_interrupts(struct iwm_softc *);
void iwm_ict_reset(struct iwm_softc *);
int iwm_set_hw_ready(struct iwm_softc *);
int iwm_prepare_card_hw(struct iwm_softc *);
void iwm_apm_config(struct iwm_softc *);
int iwm_apm_init(struct iwm_softc *);
void iwm_apm_stop(struct iwm_softc *);
int iwm_allow_mcast(struct iwm_softc *);
void iwm_init_msix_hw(struct iwm_softc *);
void iwm_conf_msix_hw(struct iwm_softc *, int);
int iwm_clear_persistence_bit(struct iwm_softc *);
int iwm_start_hw(struct iwm_softc *);
void iwm_stop_device(struct iwm_softc *);
void iwm_nic_config(struct iwm_softc *);
int iwm_nic_rx_init(struct iwm_softc *);
int iwm_nic_rx_legacy_init(struct iwm_softc *);
int iwm_nic_rx_mq_init(struct iwm_softc *);
int iwm_nic_tx_init(struct iwm_softc *);
int iwm_nic_init(struct iwm_softc *);
int iwm_enable_ac_txq(struct iwm_softc *, int, int);
int iwm_enable_txq(struct iwm_softc *, int, int, int, int, uint8_t,
uint16_t);
int iwm_disable_txq(struct iwm_softc *, int, int, uint8_t);
int iwm_post_alive(struct iwm_softc *);
struct iwm_phy_db_entry *iwm_phy_db_get_section(struct iwm_softc *, uint16_t,
uint16_t);
int iwm_phy_db_set_section(struct iwm_softc *,
struct iwm_calib_res_notif_phy_db *);
int iwm_is_valid_channel(uint16_t);
uint8_t iwm_ch_id_to_ch_index(uint16_t);
uint16_t iwm_channel_id_to_papd(uint16_t);
uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t);
int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t, uint8_t **,
uint16_t *, uint16_t);
int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t, void *);
int iwm_phy_db_send_all_channel_groups(struct iwm_softc *, uint16_t,
uint8_t);
int iwm_send_phy_db_data(struct iwm_softc *);
void iwm_protect_session(struct iwm_softc *, struct iwm_node *, uint32_t,
uint32_t);
void iwm_unprotect_session(struct iwm_softc *, struct iwm_node *);
int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t,
uint8_t *, uint16_t *);
int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
uint16_t *, size_t);
uint8_t iwm_fw_valid_tx_ant(struct iwm_softc *);
uint8_t iwm_fw_valid_rx_ant(struct iwm_softc *);
int iwm_valid_siso_ant_rate_mask(struct iwm_softc *);
void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const,
const uint8_t *nvm_channels, int nchan);
int iwm_mimo_enabled(struct iwm_softc *);
void iwm_setup_ht_rates(struct iwm_softc *);
void iwm_setup_vht_rates(struct iwm_softc *);
void iwm_mac_ctxt_task(void *);
void iwm_phy_ctxt_task(void *);
void iwm_updateprot(struct ieee80211com *);
void iwm_updateslot(struct ieee80211com *);
void iwm_updateedca(struct ieee80211com *);
void iwm_updatechan(struct ieee80211com *);
void iwm_updatedtim(struct ieee80211com *);
void iwm_init_reorder_buffer(struct iwm_reorder_buffer *, uint16_t,
uint16_t);
void iwm_clear_reorder_buffer(struct iwm_softc *, struct iwm_rxba_data *);
int iwm_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *,
uint8_t);
void iwm_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *,
uint8_t);
void iwm_rx_ba_session_expired(void *);
void iwm_reorder_timer_expired(void *);
int iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *, uint8_t,
uint16_t, uint16_t, int, int);
int iwm_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *,
uint8_t);
void iwm_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *,
uint8_t);
void iwm_ba_task(void *);
int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
const uint16_t *, const uint16_t *,
const uint16_t *, const uint16_t *,
const uint16_t *, int);
void iwm_set_hw_address_8000(struct iwm_softc *, struct iwm_nvm_data *,
const uint16_t *, const uint16_t *);
int iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
int iwm_nvm_init(struct iwm_softc *);
int iwm_firmware_load_sect(struct iwm_softc *, uint32_t, const uint8_t *,
uint32_t);
int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, const uint8_t *,
uint32_t);
int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
int iwm_load_cpu_sections_8000(struct iwm_softc *, struct iwm_fw_sects *,
int , int *);
int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
int iwm_send_phy_cfg_cmd(struct iwm_softc *);
int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type);
int iwm_send_dqa_cmd(struct iwm_softc *);
int iwm_run_init_mvm_ucode(struct iwm_softc *, int);
int iwm_config_ltr(struct iwm_softc *);
int iwm_rx_addbuf(struct iwm_softc *, int, int);
int iwm_get_signal_strength(struct iwm_softc *, struct iwm_rx_phy_info *);
int iwm_rxmq_get_signal_strength(struct iwm_softc *, struct iwm_rx_mpdu_desc *);
void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
int iwm_get_noise(const struct iwm_statistics_rx_non_phy *);
int iwm_rx_hwdecrypt(struct iwm_softc *, struct mbuf *, uint32_t,
struct ieee80211_rxinfo *);
int iwm_ccmp_decap(struct iwm_softc *, struct mbuf *,
struct ieee80211_node *, struct ieee80211_rxinfo *);
void iwm_rx_frame(struct iwm_softc *, struct mbuf *, int, uint32_t, int, int,
uint32_t, struct ieee80211_rxinfo *, struct mbuf_list *);
void iwm_ht_single_rate_control(struct iwm_softc *, struct ieee80211_node *,
int, uint8_t, int);
void iwm_vht_single_rate_control(struct iwm_softc *, struct ieee80211_node *,
int, int, uint8_t, int);
void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_node *, int, int);
void iwm_txd_done(struct iwm_softc *, struct iwm_tx_data *);
void iwm_txq_advance(struct iwm_softc *, struct iwm_tx_ring *, int);
void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
void iwm_clear_oactive(struct iwm_softc *, struct iwm_tx_ring *);
void iwm_ampdu_rate_control(struct iwm_softc *, struct ieee80211_node *,
struct iwm_tx_ring *, int, uint16_t, uint16_t);
void iwm_rx_compressed_ba(struct iwm_softc *, struct iwm_rx_packet *);
void iwm_rx_bmiss(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *, uint32_t);
uint8_t iwm_get_vht_ctrl_pos(struct ieee80211com *, struct ieee80211_channel *);
int iwm_phy_ctxt_cmd_uhb(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t,
uint8_t, uint32_t, uint32_t, uint8_t, uint8_t);
void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *,
struct iwm_phy_context_cmd *, uint32_t, uint32_t);
void iwm_phy_ctxt_cmd_data(struct iwm_softc *, struct iwm_phy_context_cmd *,
struct ieee80211_channel *, uint8_t, uint8_t, uint8_t, uint8_t);
int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t,
uint8_t, uint32_t, uint32_t, uint8_t, uint8_t);
int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *);
int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t, uint16_t,
const void *);
int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *,
uint32_t *);
int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t,
const void *, uint32_t *);
void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *);
void iwm_cmd_done(struct iwm_softc *, int, int, int);
void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t);
void iwm_reset_sched(struct iwm_softc *, int, int, uint8_t);
uint8_t iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
struct ieee80211_frame *, struct iwm_tx_cmd *);
int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int);
int iwm_flush_tx_path(struct iwm_softc *, int);
int iwm_wait_tx_queues_empty(struct iwm_softc *);
void iwm_led_enable(struct iwm_softc *);
void iwm_led_disable(struct iwm_softc *);
int iwm_led_is_enabled(struct iwm_softc *);
void iwm_led_blink_timeout(void *);
void iwm_led_blink_start(struct iwm_softc *);
void iwm_led_blink_stop(struct iwm_softc *);
int iwm_beacon_filter_send_cmd(struct iwm_softc *,
struct iwm_beacon_filter_cmd *);
void iwm_beacon_filter_set_cqm_params(struct iwm_softc *, struct iwm_node *,
struct iwm_beacon_filter_cmd *);
int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *, int);
void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_power_cmd *);
int iwm_power_mac_update_mode(struct iwm_softc *, struct iwm_node *);
int iwm_power_update_device(struct iwm_softc *);
int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *);
int iwm_disable_beacon_filter(struct iwm_softc *);
int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int);
int iwm_add_aux_sta(struct iwm_softc *);
int iwm_drain_sta(struct iwm_softc *sc, struct iwm_node *, int);
int iwm_flush_sta(struct iwm_softc *, struct iwm_node *);
int iwm_rm_sta_cmd(struct iwm_softc *, struct iwm_node *);
uint16_t iwm_scan_rx_chain(struct iwm_softc *);
uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int);
uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *,
struct iwm_scan_channel_cfg_lmac *, int, int);
int iwm_fill_probe_req(struct iwm_softc *, struct iwm_scan_probe_req *);
int iwm_lmac_scan(struct iwm_softc *, int);
int iwm_config_umac_scan(struct iwm_softc *);
int iwm_umac_scan(struct iwm_softc *, int);
void iwm_mcc_update(struct iwm_softc *, struct iwm_mcc_chub_notif *);
uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int);
int iwm_rval2ridx(int);
void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *, int *);
void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_ctx_cmd *, uint32_t);
void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_data_sta *, int);
int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *, uint32_t, int);
int iwm_update_quotas(struct iwm_softc *, struct iwm_node *, int);
void iwm_add_task(struct iwm_softc *, struct taskq *, struct task *);
void iwm_del_task(struct iwm_softc *, struct taskq *, struct task *);
int iwm_scan(struct iwm_softc *);
int iwm_bgscan(struct ieee80211com *);
void iwm_bgscan_done(struct ieee80211com *,
struct ieee80211_node_switch_bss_arg *, size_t);
void iwm_bgscan_done_task(void *);
int iwm_umac_scan_abort(struct iwm_softc *);
int iwm_lmac_scan_abort(struct iwm_softc *);
int iwm_scan_abort(struct iwm_softc *);
int iwm_phy_ctxt_update(struct iwm_softc *, struct iwm_phy_ctxt *,
struct ieee80211_channel *, uint8_t, uint8_t, uint32_t, uint8_t,
uint8_t);
int iwm_auth(struct iwm_softc *);
int iwm_deauth(struct iwm_softc *);
int iwm_run(struct iwm_softc *);
int iwm_run_stop(struct iwm_softc *);
struct ieee80211_node *iwm_node_alloc(struct ieee80211com *);
int iwm_set_key_v1(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
int iwm_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void iwm_delete_key_v1(struct ieee80211com *,
struct ieee80211_node *, struct ieee80211_key *);
void iwm_delete_key(struct ieee80211com *,
struct ieee80211_node *, struct ieee80211_key *);
void iwm_calib_timeout(void *);
void iwm_set_rate_table_vht(struct iwm_node *, struct iwm_lq_cmd *);
void iwm_set_rate_table(struct iwm_node *, struct iwm_lq_cmd *);
void iwm_setrates(struct iwm_node *, int);
int iwm_media_change(struct ifnet *);
void iwm_newstate_task(void *);
int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int);
void iwm_endscan(struct iwm_softc *);
void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *,
struct ieee80211_node *);
int iwm_sf_config(struct iwm_softc *, int);
int iwm_send_bt_init_conf(struct iwm_softc *);
int iwm_send_soc_conf(struct iwm_softc *);
int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
int iwm_send_temp_report_ths_cmd(struct iwm_softc *);
void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t);
void iwm_free_fw_paging(struct iwm_softc *);
int iwm_save_fw_paging(struct iwm_softc *, const struct iwm_fw_sects *);
int iwm_send_paging_cmd(struct iwm_softc *, const struct iwm_fw_sects *);
int iwm_init_hw(struct iwm_softc *);
int iwm_init(struct ifnet *);
void iwm_start(struct ifnet *);
void iwm_stop(struct ifnet *);
void iwm_watchdog(struct ifnet *);
int iwm_ioctl(struct ifnet *, u_long, caddr_t);
const char *iwm_desc_lookup(uint32_t);
void iwm_nic_error(struct iwm_softc *);
void iwm_dump_driver_status(struct iwm_softc *);
void iwm_nic_umac_error(struct iwm_softc *);
void iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, void *, size_t,
struct mbuf_list *);
void iwm_flip_address(uint8_t *);
int iwm_detect_duplicate(struct iwm_softc *, struct mbuf *,
struct iwm_rx_mpdu_desc *, struct ieee80211_rxinfo *);
int iwm_is_sn_less(uint16_t, uint16_t, uint16_t);
void iwm_release_frames(struct iwm_softc *, struct ieee80211_node *,
struct iwm_rxba_data *, struct iwm_reorder_buffer *, uint16_t,
struct mbuf_list *);
int iwm_oldsn_workaround(struct iwm_softc *, struct ieee80211_node *,
int, struct iwm_reorder_buffer *, uint32_t, uint32_t);
int iwm_rx_reorder(struct iwm_softc *, struct mbuf *, int,
struct iwm_rx_mpdu_desc *, int, int, uint32_t,
struct ieee80211_rxinfo *, struct mbuf_list *);
void iwm_rx_mpdu_mq(struct iwm_softc *, struct mbuf *, void *, size_t,
struct mbuf_list *);
int iwm_rx_pkt_valid(struct iwm_rx_packet *);
void iwm_rx_pkt(struct iwm_softc *, struct iwm_rx_data *,
struct mbuf_list *);
void iwm_notif_intr(struct iwm_softc *);
int iwm_intr(void *);
int iwm_intr_msix(void *);
int iwm_match(struct device *, void *, void *);
int iwm_preinit(struct iwm_softc *);
void iwm_attach_hook(struct device *);
void iwm_attach(struct device *, struct device *, void *);
void iwm_init_task(void *);
int iwm_activate(struct device *, int);
void iwm_resume(struct iwm_softc *);
int iwm_wakeup(struct iwm_softc *);
#if NBPFILTER > 0
void iwm_radiotap_attach(struct iwm_softc *);
#endif
uint8_t
iwm_lookup_cmd_ver(struct iwm_softc *sc, uint8_t grp, uint8_t cmd)
{
const struct iwm_fw_cmd_version *entry;
int i;
for (i = 0; i < sc->n_cmd_versions; i++) {
entry = &sc->cmd_versions[i];
if (entry->group == grp && entry->cmd == cmd)
return entry->cmd_ver;
}
return IWM_FW_CMD_VER_UNKNOWN;
}
int
iwm_is_mimo_ht_plcp(uint8_t ht_plcp)
{
return (ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP &&
(ht_plcp & IWM_RATE_HT_MCS_NSS_MSK));
}
int
iwm_is_mimo_ht_mcs(int mcs)
{
int ridx = iwm_ht_mcs2ridx[mcs];
return iwm_is_mimo_ht_plcp(iwm_rates[ridx].ht_plcp);
}
int
iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen)
{
struct iwm_fw_cscheme_list *l = (void *)data;
if (dlen < sizeof(*l) ||
dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
return EINVAL;
/* we don't actually store anything for now, always use s/w crypto */
return 0;
}
int
iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type,
uint8_t *data, size_t dlen)
{
struct iwm_fw_sects *fws;
struct iwm_fw_onesect *fwone;
if (type >= IWM_UCODE_TYPE_MAX)
return EINVAL;
if (dlen < sizeof(uint32_t))
return EINVAL;
fws = &sc->sc_fw.fw_sects[type];
if (fws->fw_count >= IWM_UCODE_SECT_MAX)
return EINVAL;
fwone = &fws->fw_sect[fws->fw_count];
/* first 32bit are device load offset */
memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
/* rest is data */
fwone->fws_data = data + sizeof(uint32_t);
fwone->fws_len = dlen - sizeof(uint32_t);
fws->fw_count++;
fws->fw_totlen += fwone->fws_len;
return 0;
}
#define IWM_DEFAULT_SCAN_CHANNELS 40
/* Newer firmware might support more channels. Raise this value if needed. */
#define IWM_MAX_SCAN_CHANNELS 52 /* as of 8265-34 firmware image */
struct iwm_tlv_calib_data {
uint32_t ucode_type;
struct iwm_tlv_calib_ctrl calib;
} __packed;
int
iwm_set_default_calib(struct iwm_softc *sc, const void *data)
{
const struct iwm_tlv_calib_data *def_calib = data;
uint32_t ucode_type = le32toh(def_calib->ucode_type);
if (ucode_type >= IWM_UCODE_TYPE_MAX)
return EINVAL;
sc->sc_default_calib[ucode_type].flow_trigger =
def_calib->calib.flow_trigger;
sc->sc_default_calib[ucode_type].event_trigger =
def_calib->calib.event_trigger;
return 0;
}
void
iwm_fw_info_free(struct iwm_fw_info *fw)
{
free(fw->fw_rawdata, M_DEVBUF, fw->fw_rawsize);
fw->fw_rawdata = NULL;
fw->fw_rawsize = 0;
/* don't touch fw->fw_status */
memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
}
void
iwm_fw_version_str(char *buf, size_t bufsize,
uint32_t major, uint32_t minor, uint32_t api)
{
/*
* Starting with major version 35 the Linux driver prints the minor
* version in hexadecimal.
*/
if (major >= 35)
snprintf(buf, bufsize, "%u.%08x.%u", major, minor, api);
else
snprintf(buf, bufsize, "%u.%u.%u", major, minor, api);
}
int
iwm_read_firmware(struct iwm_softc *sc)
{
struct iwm_fw_info *fw = &sc->sc_fw;
struct iwm_tlv_ucode_header *uhdr;
struct iwm_ucode_tlv tlv;
uint32_t tlv_type;
uint8_t *data;
uint32_t usniffer_img;
uint32_t paging_mem_size;
int err;
size_t len;
if (fw->fw_status == IWM_FW_STATUS_DONE)
return 0;
while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
tsleep_nsec(&sc->sc_fw, 0, "iwmfwp", INFSLP);
fw->fw_status = IWM_FW_STATUS_INPROGRESS;
if (fw->fw_rawdata != NULL)
iwm_fw_info_free(fw);
err = loadfirmware(sc->sc_fwname,
(u_char **)&fw->fw_rawdata, &fw->fw_rawsize);
if (err) {
printf("%s: could not read firmware %s (error %d)\n",
DEVNAME(sc), sc->sc_fwname, err);
goto out;
}
sc->sc_capaflags = 0;
sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
memset(sc->sc_ucode_api, 0, sizeof(sc->sc_ucode_api));
sc->n_cmd_versions = 0;
uhdr = (void *)fw->fw_rawdata;
if (*(uint32_t *)fw->fw_rawdata != 0
|| le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
printf("%s: invalid firmware %s\n",
DEVNAME(sc), sc->sc_fwname);
err = EINVAL;
goto out;
}
iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver),
IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
IWM_UCODE_MINOR(le32toh(uhdr->ver)),
IWM_UCODE_API(le32toh(uhdr->ver)));
data = uhdr->data;
len = fw->fw_rawsize - sizeof(*uhdr);
while (len >= sizeof(tlv)) {
size_t tlv_len;
void *tlv_data;
memcpy(&tlv, data, sizeof(tlv));
tlv_len = le32toh(tlv.length);
tlv_type = le32toh(tlv.type);
len -= sizeof(tlv);
data += sizeof(tlv);
tlv_data = data;
if (len < tlv_len) {
printf("%s: firmware too short: %zu bytes\n",
DEVNAME(sc), len);
err = EINVAL;
goto parse_out;
}
switch (tlv_type) {
case IWM_UCODE_TLV_PROBE_MAX_LEN:
if (tlv_len < sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_capa_max_probe_len
= le32toh(*(uint32_t *)tlv_data);
if (sc->sc_capa_max_probe_len >
IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
err = EINVAL;
goto parse_out;
}
break;
case IWM_UCODE_TLV_PAN:
if (tlv_len) {
err = EINVAL;
goto parse_out;
}
sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
break;
case IWM_UCODE_TLV_FLAGS:
if (tlv_len < sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
/*
* Apparently there can be many flags, but Linux driver
* parses only the first one, and so do we.
*
* XXX: why does this override IWM_UCODE_TLV_PAN?
* Intentional or a bug? Observations from
* current firmware file:
* 1) TLV_PAN is parsed first
* 2) TLV_FLAGS contains TLV_FLAGS_PAN
* ==> this resets TLV_PAN to itself... hnnnk
*/
sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_CSCHEME:
err = iwm_store_cscheme(sc, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_NUM_OF_CPU: {
uint32_t num_cpu;
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
num_cpu = le32toh(*(uint32_t *)tlv_data);
if (num_cpu < 1 || num_cpu > 2) {
err = EINVAL;
goto parse_out;
}
break;
}
case IWM_UCODE_TLV_SEC_RT:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_SEC_INIT:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_INIT, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_SEC_WOWLAN:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_WOW, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_DEF_CALIB:
if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
err = EINVAL;
goto parse_out;
}
err = iwm_set_default_calib(sc, tlv_data);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_PHY_SKU:
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_API_CHANGES_SET: {
struct iwm_ucode_api *api;
int idx, i;
if (tlv_len != sizeof(*api)) {
err = EINVAL;
goto parse_out;
}
api = (struct iwm_ucode_api *)tlv_data;
idx = le32toh(api->api_index);
if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
err = EINVAL;
goto parse_out;
}
for (i = 0; i < 32; i++) {
if ((le32toh(api->api_flags) & (1 << i)) == 0)
continue;
setbit(sc->sc_ucode_api, i + (32 * idx));
}
break;
}
case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
struct iwm_ucode_capa *capa;
int idx, i;
if (tlv_len != sizeof(*capa)) {
err = EINVAL;
goto parse_out;
}
capa = (struct iwm_ucode_capa *)tlv_data;
idx = le32toh(capa->api_index);
if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
goto parse_out;
}
for (i = 0; i < 32; i++) {
if ((le32toh(capa->api_capa) & (1 << i)) == 0)
continue;
setbit(sc->sc_enabled_capa, i + (32 * idx));
}
break;
}
case IWM_UCODE_TLV_CMD_VERSIONS:
if (tlv_len % sizeof(struct iwm_fw_cmd_version)) {
tlv_len /= sizeof(struct iwm_fw_cmd_version);
tlv_len *= sizeof(struct iwm_fw_cmd_version);
}
if (sc->n_cmd_versions != 0) {
err = EINVAL;
goto parse_out;
}
if (tlv_len > sizeof(sc->cmd_versions)) {
err = EINVAL;
goto parse_out;
}
memcpy(&sc->cmd_versions[0], tlv_data, tlv_len);
sc->n_cmd_versions = tlv_len / sizeof(struct iwm_fw_cmd_version);
break;
case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
case IWM_UCODE_TLV_FW_GSCAN_CAPA:
/* ignore, not used by current driver */
break;
case IWM_UCODE_TLV_SEC_RT_USNIFFER:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_PAGING:
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
paging_mem_size = le32toh(*(const uint32_t *)tlv_data);
DPRINTF(("%s: Paging: paging enabled (size = %u bytes)\n",
DEVNAME(sc), paging_mem_size));
if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
printf("%s: Driver only supports up to %u"
" bytes for paging image (%u requested)\n",
DEVNAME(sc), IWM_MAX_PAGING_IMAGE_SIZE,
paging_mem_size);
err = EINVAL;
goto out;
}
if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
printf("%s: Paging: image isn't multiple of %u\n",
DEVNAME(sc), IWM_FW_PAGING_SIZE);
err = EINVAL;
goto out;
}
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size =
paging_mem_size;
usniffer_img = IWM_UCODE_TYPE_REGULAR_USNIFFER;
fw->fw_sects[usniffer_img].paging_mem_size =
paging_mem_size;
break;
case IWM_UCODE_TLV_N_SCAN_CHANNELS:
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_capa_n_scan_channels =
le32toh(*(uint32_t *)tlv_data);
if (sc->sc_capa_n_scan_channels > IWM_MAX_SCAN_CHANNELS) {
err = ERANGE;
goto parse_out;
}
break;
case IWM_UCODE_TLV_FW_VERSION:
if (tlv_len != sizeof(uint32_t) * 3) {
err = EINVAL;
goto parse_out;
}
iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver),
le32toh(((uint32_t *)tlv_data)[0]),
le32toh(((uint32_t *)tlv_data)[1]),
le32toh(((uint32_t *)tlv_data)[2]));
break;
case IWM_UCODE_TLV_FW_DBG_DEST:
case IWM_UCODE_TLV_FW_DBG_CONF:
case IWM_UCODE_TLV_UMAC_DEBUG_ADDRS:
case IWM_UCODE_TLV_LMAC_DEBUG_ADDRS:
case IWM_UCODE_TLV_TYPE_DEBUG_INFO:
case IWM_UCODE_TLV_TYPE_BUFFER_ALLOCATION:
case IWM_UCODE_TLV_TYPE_HCMD:
case IWM_UCODE_TLV_TYPE_REGIONS:
case IWM_UCODE_TLV_TYPE_TRIGGERS:
break;
case IWM_UCODE_TLV_HW_TYPE:
break;
case IWM_UCODE_TLV_FW_MEM_SEG:
break;
/* undocumented TLVs found in iwm-9000-43 image */
case 0x1000003:
case 0x1000004:
break;
default:
err = EINVAL;
goto parse_out;
}
/*
* Check for size_t overflow and ignore missing padding at
* end of firmware file.
*/
if (roundup(tlv_len, 4) > len)
break;
len -= roundup(tlv_len, 4);
data += roundup(tlv_len, 4);
}
KASSERT(err == 0);
parse_out:
if (err) {
printf("%s: firmware parse error %d, "
"section type %d\n", DEVNAME(sc), err, tlv_type);
}
out:
if (err) {
fw->fw_status = IWM_FW_STATUS_NONE;
if (fw->fw_rawdata != NULL)
iwm_fw_info_free(fw);
} else
fw->fw_status = IWM_FW_STATUS_DONE;
wakeup(&sc->sc_fw);
return err;
}
uint32_t
iwm_read_prph_unlocked(struct iwm_softc *sc, uint32_t addr)
{
IWM_WRITE(sc,
IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24)));
IWM_BARRIER_READ_WRITE(sc);
return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT);
}
uint32_t
iwm_read_prph(struct iwm_softc *sc, uint32_t addr)
{
iwm_nic_assert_locked(sc);
return iwm_read_prph_unlocked(sc, addr);
}
void
iwm_write_prph_unlocked(struct iwm_softc *sc, uint32_t addr, uint32_t val)
{
IWM_WRITE(sc,
IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24)));
IWM_BARRIER_WRITE(sc);
IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val);
}
void
iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val)
{
iwm_nic_assert_locked(sc);
iwm_write_prph_unlocked(sc, addr, val);
}
void
iwm_write_prph64(struct iwm_softc *sc, uint64_t addr, uint64_t val)
{
iwm_write_prph(sc, (uint32_t)addr, val & 0xffffffff);
iwm_write_prph(sc, (uint32_t)addr + 4, val >> 32);
}
int
iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords)
{
int offs, err = 0;
uint32_t *vals = buf;
if (iwm_nic_lock(sc)) {
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr);
for (offs = 0; offs < dwords; offs++)
vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT);
iwm_nic_unlock(sc);
} else {
err = EBUSY;
}
return err;
}
int
iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords)
{
int offs;
const uint32_t *vals = buf;
if (iwm_nic_lock(sc)) {
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr);
/* WADDR auto-increments */
for (offs = 0; offs < dwords; offs++) {
uint32_t val = vals ? vals[offs] : 0;
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val);
}
iwm_nic_unlock(sc);
} else {
return EBUSY;
}
return 0;
}
int
iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val)
{
return iwm_write_mem(sc, addr, &val, 1);
}
int
iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask,
int timo)
{
for (;;) {
if ((IWM_READ(sc, reg) & mask) == (bits & mask)) {
return 1;
}
if (timo < 10) {
return 0;
}
timo -= 10;
DELAY(10);
}
}
int
iwm_nic_lock(struct iwm_softc *sc)
{
if (sc->sc_nic_locks > 0) {
iwm_nic_assert_locked(sc);
sc->sc_nic_locks++;
return 1; /* already locked */
}
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000)
DELAY(2);
if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
| IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 150000)) {
sc->sc_nic_locks++;
return 1;
}
printf("%s: acquiring device failed\n", DEVNAME(sc));
return 0;
}
void
iwm_nic_assert_locked(struct iwm_softc *sc)
{
if (sc->sc_nic_locks <= 0)
panic("%s: nic locks counter %d", DEVNAME(sc), sc->sc_nic_locks);
}
void
iwm_nic_unlock(struct iwm_softc *sc)
{
if (sc->sc_nic_locks > 0) {
if (--sc->sc_nic_locks == 0)
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
} else
printf("%s: NIC already unlocked\n", DEVNAME(sc));
}
int
iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits,
uint32_t mask)
{
uint32_t val;
if (iwm_nic_lock(sc)) {
val = iwm_read_prph(sc, reg) & mask;
val |= bits;
iwm_write_prph(sc, reg, val);
iwm_nic_unlock(sc);
return 0;
}
return EBUSY;
}
int
iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
{
return iwm_set_bits_mask_prph(sc, reg, bits, ~0);
}
int
iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
{
return iwm_set_bits_mask_prph(sc, reg, 0, ~bits);
}
int
iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
bus_size_t size, bus_size_t alignment)
{
int nsegs, err;
caddr_t va;
dma->tag = tag;
dma->size = size;
err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&dma->map);
if (err)
goto fail;
err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
BUS_DMA_NOWAIT);
if (err)
goto fail;
err = bus_dmamem_map(tag, &dma->seg, 1, size, &va,
BUS_DMA_NOWAIT);
if (err)
goto fail;
dma->vaddr = va;
err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
BUS_DMA_NOWAIT);
if (err)
goto fail;
memset(dma->vaddr, 0, size);
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
dma->paddr = dma->map->dm_segs[0].ds_addr;
return 0;
fail: iwm_dma_contig_free(dma);
return err;
}
void
iwm_dma_contig_free(struct iwm_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
int
iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
bus_size_t size;
size_t descsz;
int count, i, err;
ring->cur = 0;
if (sc->sc_mqrx_supported) {
count = IWM_RX_MQ_RING_COUNT;
descsz = sizeof(uint64_t);
} else {
count = IWM_RX_RING_COUNT;
descsz = sizeof(uint32_t);
}
/* Allocate RX descriptors (256-byte aligned). */
size = count * descsz;
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256);
if (err) {
printf("%s: could not allocate RX ring DMA memory\n",
DEVNAME(sc));
goto fail;
}
ring->desc = ring->free_desc_dma.vaddr;
/* Allocate RX status area (16-byte aligned). */
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
sizeof(*ring->stat), 16);
if (err) {
printf("%s: could not allocate RX status DMA memory\n",
DEVNAME(sc));
goto fail;
}
ring->stat = ring->stat_dma.vaddr;
if (sc->sc_mqrx_supported) {
size = count * sizeof(uint32_t);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma,
size, 256);
if (err) {
printf("%s: could not allocate RX ring DMA memory\n",
DEVNAME(sc));
goto fail;
}
}
for (i = 0; i < count; i++) {
struct iwm_rx_data *data = &ring->data[i];
memset(data, 0, sizeof(*data));
err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1,
IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&data->map);
if (err) {
printf("%s: could not create RX buf DMA map\n",
DEVNAME(sc));
goto fail;
}
err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i);
if (err)
goto fail;
}
return 0;
fail: iwm_free_rx_ring(sc, ring);
return err;
}
void
iwm_disable_rx_dma(struct iwm_softc *sc)
{
int ntries;
if (iwm_nic_lock(sc)) {
if (sc->sc_mqrx_supported) {
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (iwm_read_prph(sc, IWM_RFH_GEN_STATUS) &
IWM_RXF_DMA_IDLE)
break;
DELAY(10);
}
} else {
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG)&
IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE)
break;
DELAY(10);
}
}
iwm_nic_unlock(sc);
}
}
void
iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
ring->cur = 0;
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
ring->stat_dma.size, BUS_DMASYNC_PREWRITE);
memset(ring->stat, 0, sizeof(*ring->stat));
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
ring->stat_dma.size, BUS_DMASYNC_POSTWRITE);
}
void
iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
int count, i;
iwm_dma_contig_free(&ring->free_desc_dma);
iwm_dma_contig_free(&ring->stat_dma);
iwm_dma_contig_free(&ring->used_desc_dma);
if (sc->sc_mqrx_supported)
count = IWM_RX_MQ_RING_COUNT;
else
count = IWM_RX_RING_COUNT;
for (i = 0; i < count; i++) {
struct iwm_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
int
iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
int i, err;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
ring->tail = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
if (err) {
printf("%s: could not allocate TX ring DMA memory\n",
DEVNAME(sc));
goto fail;
}
ring->desc = ring->desc_dma.vaddr;
/*
* There is no need to allocate DMA buffers for unused rings.
* 7k/8k/9k hardware supports up to 31 Tx rings which is more
* than we currently need.
*
* In DQA mode we use 1 command queue + 4 DQA mgmt/data queues.
* The command is queue 0 (sc->txq[0]), and 4 mgmt/data frame queues
* are sc->tqx[IWM_DQA_MIN_MGMT_QUEUE + ac], i.e. sc->txq[5:8],
* in order to provide one queue per EDCA category.
* Tx aggregation requires additional queues, one queue per TID for
* which aggregation is enabled. We map TID 0-7 to sc->txq[10:17].
*
* In non-DQA mode, we use rings 0 through 9 (0-3 are EDCA, 9 is cmd),
* and Tx aggregation is not supported.
*
* Unfortunately, we cannot tell if DQA will be used until the
* firmware gets loaded later, so just allocate sufficient rings
* in order to satisfy both cases.
*/
if (qid > IWM_LAST_AGG_TX_QUEUE)
return 0;
size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
if (err) {
printf("%s: could not allocate cmd DMA memory\n", DEVNAME(sc));
goto fail;
}
ring->cmd = ring->cmd_dma.vaddr;
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
size_t mapsize;
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
+ offsetof(struct iwm_tx_cmd, scratch);
paddr += sizeof(struct iwm_device_cmd);
/* FW commands may require more mapped space than packets. */
if (qid == IWM_CMD_QUEUE || qid == IWM_DQA_CMD_QUEUE)
mapsize = (sizeof(struct iwm_cmd_header) +
IWM_MAX_CMD_PAYLOAD_SIZE);
else
mapsize = MCLBYTES;
err = bus_dmamap_create(sc->sc_dmat, mapsize,
IWM_NUM_OF_TBS - 2, mapsize, 0, BUS_DMA_NOWAIT,
&data->map);
if (err) {
printf("%s: could not create TX buf DMA map\n",
DEVNAME(sc));
goto fail;
}
}
KASSERT(paddr == ring->cmd_dma.paddr + size);
return 0;
fail: iwm_free_tx_ring(sc, ring);
return err;
}
void
iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
sc->qenablemsk &= ~(1 << ring->qid);
/* 7000 family NICs are locked while commands are in progress. */
if (ring->qid == sc->cmdqid && ring->queued > 0) {
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_nic_unlock(sc);
}
ring->queued = 0;
ring->cur = 0;
ring->tail = 0;
}
void
iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
iwm_dma_contig_free(&ring->desc_dma);
iwm_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
void
iwm_enable_rfkill_int(struct iwm_softc *sc)
{
if (!sc->sc_msix) {
sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
} else {
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
sc->sc_fh_init_mask);
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
~IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL);
sc->sc_hw_mask = IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL;
}
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_9000)
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
}
int
iwm_check_rfkill(struct iwm_softc *sc)
{
uint32_t v;
int rv;
/*
* "documentation" is not really helpful here:
* 27: HW_RF_KILL_SW
* Indicates state of (platform's) hardware RF-Kill switch
*
* But apparently when it's off, it's on ...
*/
v = IWM_READ(sc, IWM_CSR_GP_CNTRL);
rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0;
if (rv) {
sc->sc_flags |= IWM_FLAG_RFKILL;
} else {
sc->sc_flags &= ~IWM_FLAG_RFKILL;
}
return rv;
}
void
iwm_enable_interrupts(struct iwm_softc *sc)
{
if (!sc->sc_msix) {
sc->sc_intmask = IWM_CSR_INI_SET_MASK;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
} else {
/*
* fh/hw_mask keeps all the unmasked causes.
* Unlike msi, in msix cause is enabled when it is unset.
*/
sc->sc_hw_mask = sc->sc_hw_init_mask;
sc->sc_fh_mask = sc->sc_fh_init_mask;
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
~sc->sc_fh_mask);
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
~sc->sc_hw_mask);
}
}
void
iwm_enable_fwload_interrupt(struct iwm_softc *sc)
{
if (!sc->sc_msix) {
sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
} else {
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
sc->sc_hw_init_mask);
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
~IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
sc->sc_fh_mask = IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM;
}
}
void
iwm_restore_interrupts(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
void
iwm_disable_interrupts(struct iwm_softc *sc)
{
if (!sc->sc_msix) {
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
/* acknowledge all interrupts */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
} else {
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
sc->sc_fh_init_mask);
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
sc->sc_hw_init_mask);
}
}
void
iwm_ict_reset(struct iwm_softc *sc)
{
iwm_disable_interrupts(sc);
memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT (4KB aligned). */
IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
IWM_CSR_DRAM_INT_TBL_ENABLE
| IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
| IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
| sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWM_FLAG_USE_ICT;
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_interrupts(sc);
}
#define IWM_HW_READY_TIMEOUT 50
int
iwm_set_hw_ready(struct iwm_softc *sc)
{
int ready;
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
IWM_HW_READY_TIMEOUT);
if (ready)
IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG,
IWM_CSR_MBOX_SET_REG_OS_ALIVE);
return ready;
}
#undef IWM_HW_READY_TIMEOUT
int
iwm_prepare_card_hw(struct iwm_softc *sc)
{
int t = 0;
int ntries;
if (iwm_set_hw_ready(sc))
return 0;
IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
DELAY(1000);
for (ntries = 0; ntries < 10; ntries++) {
/* If HW is not ready, prepare the conditions to check again */
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_PREPARE);
do {
if (iwm_set_hw_ready(sc))
return 0;
DELAY(200);
t += 200;
} while (t < 150000);
DELAY(25000);
}
return ETIMEDOUT;
}
void
iwm_apm_config(struct iwm_softc *sc)
{
pcireg_t lctl, cap;
/*
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
* Check if BIOS (or OS) enabled L1-ASPM on this device.
* If so (likely), disable L0S, so device moves directly L0->L1;
* costs negligible amount of power savings.
* If not (unlikely), enable L0S, so there is at least some
* power savings, even without L1.
*/
lctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_LCSR);
if (lctl & PCI_PCIE_LCSR_ASPM_L1) {
IWM_SETBITS(sc, IWM_CSR_GIO_REG,
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
} else {
IWM_CLRBITS(sc, IWM_CSR_GIO_REG,
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
}
cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_DCSR2);
sc->sc_ltr_enabled = (cap & PCI_PCIE_DCSR2_LTREN) ? 1 : 0;
DPRINTF(("%s: L1 %sabled - LTR %sabled\n",
DEVNAME(sc),
(lctl & PCI_PCIE_LCSR_ASPM_L1) ? "En" : "Dis",
sc->sc_ltr_enabled ? "En" : "Dis"));
}
/*
* Start up NIC's basic functionality after it has been reset
* e.g. after platform boot or shutdown.
* NOTE: This does not load uCode nor start the embedded processor
*/
int
iwm_apm_init(struct iwm_softc *sc)
{
int err = 0;
/* Disable L0S exit timer (platform NMI workaround) */
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000)
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
*/
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
iwm_apm_config(sc);
#if 0 /* not for 7k/8k */
/* Configure analog phase-lock-loop before activating to D0A */
if (trans->cfg->base_params->pll_cfg_val)
IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG,
trans->cfg->base_params->pll_cfg_val);
#endif
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. iwm_write_prph()
* and accesses to uCode SRAM.
*/
if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) {
printf("%s: timeout waiting for clock stabilization\n",
DEVNAME(sc));
err = ETIMEDOUT;
goto out;
}
if (sc->host_interrupt_operation_mode) {
/*
* This is a bit of an abuse - This is needed for 7260 / 3160
* only check host_interrupt_operation_mode even if this is
* not related to host_interrupt_operation_mode.
*
* Enable the oscillator to count wake up time for L1 exit. This
* consumes slightly more power (100uA) - but allows to be sure
* that we wake up from L1 on time.
*
* This looks weird: read twice the same register, discard the
* value, set a bit, and yet again, read that same register
* just to discard the value. But that's the way the hardware
* seems to like it.
*/
if (iwm_nic_lock(sc)) {
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_nic_unlock(sc);
}
err = iwm_set_bits_prph(sc, IWM_OSC_CLK,
IWM_OSC_CLK_FORCE_CONTROL);
if (err)
goto out;
if (iwm_nic_lock(sc)) {
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_nic_unlock(sc);
}
}
/*
* Enable DMA clock and wait for it to stabilize.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
* do not disable clocks. This preserves any hardware bits already
* set by default in "CLK_CTRL_REG" after reset.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_APMG_CLK_EN_REG,
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
iwm_nic_unlock(sc);
}
DELAY(20);
/* Disable L1-Active */
err = iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
if (err)
goto out;
/* Clear the interrupt in APMG if the NIC is in RFKILL */
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG,
IWM_APMG_RTC_INT_STT_RFKILL);
iwm_nic_unlock(sc);
}
}
out:
if (err)
printf("%s: apm init error %d\n", DEVNAME(sc), err);
return err;
}
void
iwm_apm_stop(struct iwm_softc *sc)
{
IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_PREPARE |
IWM_CSR_HW_IF_CONFIG_REG_ENABLE_PME);
DELAY(1000);
IWM_CLRBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
DELAY(5000);
/* stop device's busmaster DMA activity */
IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER);
if (!iwm_poll_bit(sc, IWM_CSR_RESET,
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED,
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100))
printf("%s: timeout waiting for master\n", DEVNAME(sc));
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
}
void
iwm_init_msix_hw(struct iwm_softc *sc)
{
iwm_conf_msix_hw(sc, 0);
if (!sc->sc_msix)
return;
sc->sc_fh_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_FH_INT_MASK_AD);
sc->sc_fh_mask = sc->sc_fh_init_mask;
sc->sc_hw_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_HW_INT_MASK_AD);
sc->sc_hw_mask = sc->sc_hw_init_mask;
}
void
iwm_conf_msix_hw(struct iwm_softc *sc, int stopped)
{
int vector = 0;
if (!sc->sc_msix) {
/* Newer chips default to MSIX. */
if (sc->sc_mqrx_supported && !stopped && iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_UREG_CHICK,
IWM_UREG_CHICK_MSI_ENABLE);
iwm_nic_unlock(sc);
}
return;
}
if (!stopped && iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_UREG_CHICK, IWM_UREG_CHICK_MSIX_ENABLE);
iwm_nic_unlock(sc);
}
/* Disable all interrupts */
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD, ~0);
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD, ~0);
/* Map fallback-queue (command/mgmt) to a single vector */
IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(0),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
/* Map RSS queue (data) to the same vector */
IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(1),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
/* Enable the RX queues cause interrupts */
IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
IWM_MSIX_FH_INT_CAUSES_Q0 | IWM_MSIX_FH_INT_CAUSES_Q1);
/* Map non-RX causes to the same vector */
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_S2D),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_FH_ERR),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_ALIVE),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_WAKEUP),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_IML),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_CT_KILL),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_RF_KILL),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_PERIODIC),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SW_ERR),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SCD),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_FH_TX),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HW_ERR),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HAP),
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
/* Enable non-RX causes interrupts */
IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM |
IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM |
IWM_MSIX_FH_INT_CAUSES_S2D |
IWM_MSIX_FH_INT_CAUSES_FH_ERR);
IWM_CLRBITS(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
IWM_MSIX_HW_INT_CAUSES_REG_ALIVE |
IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP |
IWM_MSIX_HW_INT_CAUSES_REG_IML |
IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL |
IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL |
IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC |
IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR |
IWM_MSIX_HW_INT_CAUSES_REG_SCD |
IWM_MSIX_HW_INT_CAUSES_REG_FH_TX |
IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR |
IWM_MSIX_HW_INT_CAUSES_REG_HAP);
}
int
iwm_clear_persistence_bit(struct iwm_softc *sc)
{
uint32_t hpm, wprot;
hpm = iwm_read_prph_unlocked(sc, IWM_HPM_DEBUG);
if (hpm != 0xa5a5a5a0 && (hpm & IWM_HPM_PERSISTENCE_BIT)) {
wprot = iwm_read_prph_unlocked(sc, IWM_PREG_PRPH_WPROT_9000);
if (wprot & IWM_PREG_WFPM_ACCESS) {
printf("%s: cannot clear persistence bit\n",
DEVNAME(sc));
return EPERM;
}
iwm_write_prph_unlocked(sc, IWM_HPM_DEBUG,
hpm & ~IWM_HPM_PERSISTENCE_BIT);
}
return 0;
}
int
iwm_start_hw(struct iwm_softc *sc)
{
int err;
err = iwm_prepare_card_hw(sc);
if (err)
return err;
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000) {
err = iwm_clear_persistence_bit(sc);
if (err)
return err;
}
/* Reset the entire device */
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
DELAY(5000);
err = iwm_apm_init(sc);
if (err)
return err;
iwm_init_msix_hw(sc);
iwm_enable_rfkill_int(sc);
iwm_check_rfkill(sc);
return 0;
}
void
iwm_stop_device(struct iwm_softc *sc)
{
int chnl, ntries;
int qid;
iwm_disable_interrupts(sc);
sc->sc_flags &= ~IWM_FLAG_USE_ICT;
/* Stop all DMA channels. */
if (iwm_nic_lock(sc)) {
/* Deactivate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc,
IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
uint32_t r;
r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
chnl))
break;
DELAY(20);
}
}
iwm_nic_unlock(sc);
}
iwm_disable_rx_dma(sc);
iwm_reset_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < nitems(sc->txq); qid++)
iwm_reset_tx_ring(sc, &sc->txq[qid]);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (iwm_nic_lock(sc)) {
/* Power-down device's busmaster DMA clocks */
iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
iwm_nic_unlock(sc);
}
DELAY(5);
}
/* Make sure (redundant) we've released our request to stay awake */
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
if (sc->sc_nic_locks > 0)
printf("%s: %d active NIC locks forcefully cleared\n",
DEVNAME(sc), sc->sc_nic_locks);
sc->sc_nic_locks = 0;
/* Stop the device, and put it in low power state */
iwm_apm_stop(sc);
/* Reset the on-board processor. */
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
DELAY(5000);
/*
* Upon stop, the IVAR table gets erased, so msi-x won't
* work. This causes a bug in RF-KILL flows, since the interrupt
* that enables radio won't fire on the correct irq, and the
* driver won't be able to handle the interrupt.
* Configure the IVAR table again after reset.
*/
iwm_conf_msix_hw(sc, 1);
/*
* Upon stop, the APM issues an interrupt if HW RF kill is set.
* Clear the interrupt again.
*/
iwm_disable_interrupts(sc);
/* Even though we stop the HW we still want the RF kill interrupt. */
iwm_enable_rfkill_int(sc);
iwm_check_rfkill(sc);
iwm_prepare_card_hw(sc);
}
void
iwm_nic_config(struct iwm_softc *sc)
{
uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
uint32_t mask, val, reg_val = 0;
radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
IWM_FW_PHY_CFG_RADIO_TYPE_POS;
radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
IWM_FW_PHY_CFG_RADIO_STEP_POS;
radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
IWM_FW_PHY_CFG_RADIO_DASH_POS;
reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
/* radio configuration */
reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
mask = IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP |
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH |
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI;
val = IWM_READ(sc, IWM_CSR_HW_IF_CONFIG_REG);
val &= ~mask;
val |= reg_val;
IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, val);
/*
* W/A : NIC is stuck in a reset state after Early PCIe power off
* (PCIe power is lost before PERST# is asserted), causing ME FW
* to lose ownership and not being able to obtain it back.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
}
int
iwm_nic_rx_init(struct iwm_softc *sc)
{
if (sc->sc_mqrx_supported)
return iwm_nic_rx_mq_init(sc);
else
return iwm_nic_rx_legacy_init(sc);
}
int
iwm_nic_rx_mq_init(struct iwm_softc *sc)
{
int enabled;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Stop RX DMA. */
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0);
/* Disable RX used and free queue operation. */
iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0);
iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB,
sc->rxq.free_desc_dma.paddr);
iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB,
sc->rxq.used_desc_dma.paddr);
iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB,
sc->rxq.stat_dma.paddr);
iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0);
iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0);
iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0);
/* We configure only queue 0 for now. */
enabled = ((1 << 0) << 16) | (1 << 0);
/* Enable RX DMA, 4KB buffer size. */
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG,
IWM_RFH_DMA_EN_ENABLE_VAL |
IWM_RFH_RXF_DMA_RB_SIZE_4K |
IWM_RFH_RXF_DMA_MIN_RB_4_8 |
IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
IWM_RFH_RXF_DMA_RBDCB_SIZE_512);
/* Enable RX DMA snooping. */
iwm_write_prph(sc, IWM_RFH_GEN_CFG,
IWM_RFH_GEN_CFG_RFH_DMA_SNOOP |
IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP |
(sc->sc_integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128));
/* Enable the configured queue(s). */
iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled);
iwm_nic_unlock(sc);
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8);
return 0;
}
int
iwm_nic_rx_legacy_init(struct iwm_softc *sc)
{
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
iwm_disable_rx_dma(sc);
if (!iwm_nic_lock(sc))
return EBUSY;
/* reset and flush pointers */
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.free_desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */
IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
(IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
/* W/A for interrupt coalescing bug in 7260 and 3160 */
if (sc->host_interrupt_operation_mode)
IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
iwm_nic_unlock(sc);
/*
* This value should initially be 0 (before preparing any RBs),
* and should be 8 after preparing the first 8 RBs (for example).
*/
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
return 0;
}
int
iwm_nic_tx_init(struct iwm_softc *sc)
{
int qid, err;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Deactivate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
for (qid = 0; qid < nitems(sc->txq); qid++) {
struct iwm_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
}
err = iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL,
IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE |
IWM_SCD_GP_CTRL_ENABLE_31_QUEUES);
iwm_nic_unlock(sc);
return err;
}
int
iwm_nic_init(struct iwm_softc *sc)
{
int err;
iwm_apm_init(sc);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~IWM_APMG_PS_CTRL_MSK_PWR_SRC);
iwm_nic_config(sc);
err = iwm_nic_rx_init(sc);
if (err)
return err;
err = iwm_nic_tx_init(sc);
if (err)
return err;
IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
return 0;
}
/* Map a TID to an ieee80211_edca_ac category. */
const uint8_t iwm_tid_to_ac[IWM_MAX_TID_COUNT] = {
EDCA_AC_BE,
EDCA_AC_BK,
EDCA_AC_BK,
EDCA_AC_BE,
EDCA_AC_VI,
EDCA_AC_VI,
EDCA_AC_VO,
EDCA_AC_VO,
};
/* Map ieee80211_edca_ac categories to firmware Tx FIFO. */
const uint8_t iwm_ac_to_tx_fifo[] = {
IWM_TX_FIFO_BE,
IWM_TX_FIFO_BK,
IWM_TX_FIFO_VI,
IWM_TX_FIFO_VO,
};
int
iwm_enable_ac_txq(struct iwm_softc *sc, int qid, int fifo)
{
int err;
iwm_nic_assert_locked(sc);
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
| (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
err = iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
if (err) {
return err;
}
iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
iwm_write_mem32(sc,
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwm_write_mem32(sc,
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
sizeof(uint32_t),
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
((IWM_FRAME_LIMIT
<< IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
(fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
(1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
IWM_SCD_QUEUE_STTS_REG_MSK);
if (qid == sc->cmdqid)
iwm_write_prph(sc, IWM_SCD_EN_CTRL,
iwm_read_prph(sc, IWM_SCD_EN_CTRL) | (1 << qid));
return 0;
}
int
iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo,
int aggregate, uint8_t tid, uint16_t ssn)
{
struct iwm_tx_ring *ring = &sc->txq[qid];
struct iwm_scd_txq_cfg_cmd cmd;
int err, idx, scd_bug;
iwm_nic_assert_locked(sc);
/*
* If we need to move the SCD write pointer by steps of
* 0x40, 0x80 or 0xc0, it gets stuck.
* This is really ugly, but this is the easiest way out for
* this sad hardware issue.
* This bug has been fixed on devices 9000 and up.
*/
scd_bug = !sc->sc_mqrx_supported &&
!((ssn - ring->cur) & 0x3f) &&
(ssn != ring->cur);
if (scd_bug)
ssn = (ssn + 1) & 0xfff;
idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn);
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | idx);
ring->cur = idx;
ring->tail = idx;
memset(&cmd, 0, sizeof(cmd));
cmd.tid = tid;
cmd.scd_queue = qid;
cmd.enable = 1;
cmd.sta_id = sta_id;
cmd.tx_fifo = fifo;
cmd.aggregate = aggregate;
cmd.ssn = htole16(ssn);
cmd.window = IWM_FRAME_LIMIT;
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0,
sizeof(cmd), &cmd);
if (err)
return err;
sc->qenablemsk |= (1 << qid);
return 0;
}
int
iwm_disable_txq(struct iwm_softc *sc, int sta_id, int qid, uint8_t tid)
{
struct iwm_scd_txq_cfg_cmd cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.tid = tid;
cmd.scd_queue = qid;
cmd.enable = 0;
cmd.sta_id = sta_id;
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd);
if (err)
return err;
sc->qenablemsk &= ~(1 << qid);
return 0;
}
int
iwm_post_alive(struct iwm_softc *sc)
{
int nwords;
int err, chnl;
uint32_t base;
if (!iwm_nic_lock(sc))
return EBUSY;
base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
iwm_ict_reset(sc);
iwm_nic_unlock(sc);
/* Clear TX scheduler state in SRAM. */
nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
/ sizeof(uint32_t);
err = iwm_write_mem(sc,
sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
NULL, nwords);
if (err)
return err;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Set physical address of TX scheduler rings (1KB aligned). */
iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
/* enable command channel */
err = iwm_enable_ac_txq(sc, sc->cmdqid, IWM_TX_FIFO_CMD);
if (err) {
iwm_nic_unlock(sc);
return err;
}
/* Activate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
/* Enable DMA channels. */
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
}
IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
iwm_nic_unlock(sc);
/* Enable L1-Active */
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000) {
err = iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
}
return err;
}
struct iwm_phy_db_entry *
iwm_phy_db_get_section(struct iwm_softc *sc, uint16_t type, uint16_t chg_id)
{
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
if (type >= IWM_PHY_DB_MAX)
return NULL;
switch (type) {
case IWM_PHY_DB_CFG:
return &phy_db->cfg;
case IWM_PHY_DB_CALIB_NCH:
return &phy_db->calib_nch;
case IWM_PHY_DB_CALIB_CHG_PAPD:
if (chg_id >= IWM_NUM_PAPD_CH_GROUPS)
return NULL;
return &phy_db->calib_ch_group_papd[chg_id];
case IWM_PHY_DB_CALIB_CHG_TXP:
if (chg_id >= IWM_NUM_TXP_CH_GROUPS)
return NULL;
return &phy_db->calib_ch_group_txp[chg_id];
default:
return NULL;
}
return NULL;
}
int
iwm_phy_db_set_section(struct iwm_softc *sc,
struct iwm_calib_res_notif_phy_db *phy_db_notif)
{
uint16_t type = le16toh(phy_db_notif->type);
uint16_t size = le16toh(phy_db_notif->length);
struct iwm_phy_db_entry *entry;
uint16_t chg_id = 0;
if (type == IWM_PHY_DB_CALIB_CHG_PAPD ||
type == IWM_PHY_DB_CALIB_CHG_TXP)
chg_id = le16toh(*(uint16_t *)phy_db_notif->data);
entry = iwm_phy_db_get_section(sc, type, chg_id);
if (!entry)
return EINVAL;
if (entry->data)
free(entry->data, M_DEVBUF, entry->size);
entry->data = malloc(size, M_DEVBUF, M_NOWAIT);
if (!entry->data) {
entry->size = 0;
return ENOMEM;
}
memcpy(entry->data, phy_db_notif->data, size);
entry->size = size;
return 0;
}
int
iwm_is_valid_channel(uint16_t ch_id)
{
if (ch_id <= 14 ||
(36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) ||
(100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) ||
(145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1))
return 1;
return 0;
}
uint8_t
iwm_ch_id_to_ch_index(uint16_t ch_id)
{
if (!iwm_is_valid_channel(ch_id))
return 0xff;
if (ch_id <= 14)
return ch_id - 1;
if (ch_id <= 64)
return (ch_id + 20) / 4;
if (ch_id <= 140)
return (ch_id - 12) / 4;
return (ch_id - 13) / 4;
}
uint16_t
iwm_channel_id_to_papd(uint16_t ch_id)
{
if (!iwm_is_valid_channel(ch_id))
return 0xff;
if (1 <= ch_id && ch_id <= 14)
return 0;
if (36 <= ch_id && ch_id <= 64)
return 1;
if (100 <= ch_id && ch_id <= 140)
return 2;
return 3;
}
uint16_t
iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id)
{
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
struct iwm_phy_db_chg_txp *txp_chg;
int i;
uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id);
if (ch_index == 0xff)
return 0xff;
for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) {
txp_chg = (void *)phy_db->calib_ch_group_txp[i].data;
if (!txp_chg)
return 0xff;
/*
* Looking for the first channel group the max channel
* of which is higher than the requested channel.
*/
if (le16toh(txp_chg->max_channel_idx) >= ch_index)
return i;
}
return 0xff;
}
int
iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data,
uint16_t *size, uint16_t ch_id)
{
struct iwm_phy_db_entry *entry;
uint16_t ch_group_id = 0;
if (type == IWM_PHY_DB_CALIB_CHG_PAPD)
ch_group_id = iwm_channel_id_to_papd(ch_id);
else if (type == IWM_PHY_DB_CALIB_CHG_TXP)
ch_group_id = iwm_channel_id_to_txp(sc, ch_id);
entry = iwm_phy_db_get_section(sc, type, ch_group_id);
if (!entry)
return EINVAL;
*data = entry->data;
*size = entry->size;
return 0;
}
int
iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length,
void *data)
{
struct iwm_phy_db_cmd phy_db_cmd;
struct iwm_host_cmd cmd = {
.id = IWM_PHY_DB_CMD,
.flags = IWM_CMD_ASYNC,
};
phy_db_cmd.type = le16toh(type);
phy_db_cmd.length = le16toh(length);
cmd.data[0] = &phy_db_cmd;
cmd.len[0] = sizeof(struct iwm_phy_db_cmd);
cmd.data[1] = data;
cmd.len[1] = length;
return iwm_send_cmd(sc, &cmd);
}
int
iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc, uint16_t type,
uint8_t max_ch_groups)
{
uint16_t i;
int err;
struct iwm_phy_db_entry *entry;
for (i = 0; i < max_ch_groups; i++) {
entry = iwm_phy_db_get_section(sc, type, i);
if (!entry)
return EINVAL;
if (!entry->size)
continue;
err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data);
if (err)
return err;
DELAY(1000);
}
return 0;
}
int
iwm_send_phy_db_data(struct iwm_softc *sc)
{
uint8_t *data = NULL;
uint16_t size = 0;
int err;
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0);
if (err)
return err;
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data);
if (err)
return err;
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH,
&data, &size, 0);
if (err)
return err;
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data);
if (err)
return err;
err = iwm_phy_db_send_all_channel_groups(sc,
IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS);
if (err)
return err;
err = iwm_phy_db_send_all_channel_groups(sc,
IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS);
if (err)
return err;
return 0;
}
/*
* For the high priority TE use a time event type that has similar priority to
* the FW's action scan priority.
*/
#define IWM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE
#define IWM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC
int
iwm_send_time_event_cmd(struct iwm_softc *sc,
const struct iwm_time_event_cmd *cmd)
{
struct iwm_rx_packet *pkt;
struct iwm_time_event_resp *resp;
struct iwm_host_cmd hcmd = {
.id = IWM_TIME_EVENT_CMD,
.flags = IWM_CMD_WANT_RESP,
.resp_pkt_len = sizeof(*pkt) + sizeof(*resp),
};
uint32_t resp_len;
int err;
hcmd.data[0] = cmd;
hcmd.len[0] = sizeof(*cmd);
err = iwm_send_cmd(sc, &hcmd);
if (err)
return err;
pkt = hcmd.resp_pkt;
if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK)) {
err = EIO;
goto out;
}
resp_len = iwm_rx_packet_payload_len(pkt);
if (resp_len != sizeof(*resp)) {
err = EIO;
goto out;
}
resp = (void *)pkt->data;
if (le32toh(resp->status) == 0)
sc->sc_time_event_uid = le32toh(resp->unique_id);
else
err = EIO;
out:
iwm_free_resp(sc, &hcmd);
return err;
}
void
iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in,
uint32_t duration, uint32_t max_delay)
{
struct iwm_time_event_cmd time_cmd;
/* Do nothing if a time event is already scheduled. */
if (sc->sc_flags & IWM_FLAG_TE_ACTIVE)
return;
memset(&time_cmd, 0, sizeof(time_cmd));
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD);
time_cmd.id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC);
time_cmd.apply_time = htole32(0);
time_cmd.max_frags = IWM_TE_V2_FRAG_NONE;
time_cmd.max_delay = htole32(max_delay);
/* TODO: why do we need to interval = bi if it is not periodic? */
time_cmd.interval = htole32(1);
time_cmd.duration = htole32(duration);
time_cmd.repeat = 1;
time_cmd.policy
= htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START |
IWM_TE_V2_NOTIF_HOST_EVENT_END |
IWM_T2_V2_START_IMMEDIATELY);
if (iwm_send_time_event_cmd(sc, &time_cmd) == 0)
sc->sc_flags |= IWM_FLAG_TE_ACTIVE;
DELAY(100);
}
void
iwm_unprotect_session(struct iwm_softc *sc, struct iwm_node *in)
{
struct iwm_time_event_cmd time_cmd;
/* Do nothing if the time event has already ended. */
if ((sc->sc_flags & IWM_FLAG_TE_ACTIVE) == 0)
return;
memset(&time_cmd, 0, sizeof(time_cmd));
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_REMOVE);
time_cmd.id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
time_cmd.id = htole32(sc->sc_time_event_uid);
if (iwm_send_time_event_cmd(sc, &time_cmd) == 0)
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
DELAY(100);
}
/*
* NVM read access and content parsing. We do not support
* external NVM or writing NVM.
*/
/* list of NVM sections we are allowed/need to read */
const int iwm_nvm_to_read[] = {
IWM_NVM_SECTION_TYPE_HW,
IWM_NVM_SECTION_TYPE_SW,
IWM_NVM_SECTION_TYPE_REGULATORY,
IWM_NVM_SECTION_TYPE_CALIBRATION,
IWM_NVM_SECTION_TYPE_PRODUCTION,
IWM_NVM_SECTION_TYPE_REGULATORY_SDP,
IWM_NVM_SECTION_TYPE_HW_8000,
IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
IWM_NVM_SECTION_TYPE_PHY_SKU,
};
#define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
#define IWM_NVM_WRITE_OPCODE 1
#define IWM_NVM_READ_OPCODE 0
int
iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset,
uint16_t length, uint8_t *data, uint16_t *len)
{
offset = 0;
struct iwm_nvm_access_cmd nvm_access_cmd = {
.offset = htole16(offset),
.length = htole16(length),
.type = htole16(section),
.op_code = IWM_NVM_READ_OPCODE,
};
struct iwm_nvm_access_resp *nvm_resp;
struct iwm_rx_packet *pkt;
struct iwm_host_cmd cmd = {
.id = IWM_NVM_ACCESS_CMD,
.flags = (IWM_CMD_WANT_RESP | IWM_CMD_SEND_IN_RFKILL),
.resp_pkt_len = IWM_CMD_RESP_MAX,
.data = { &nvm_access_cmd, },
};
int err, offset_read;
size_t bytes_read;
uint8_t *resp_data;
cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
err = iwm_send_cmd(sc, &cmd);
if (err)
return err;
pkt = cmd.resp_pkt;
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
err = EIO;
goto exit;
}
/* Extract NVM response */
nvm_resp = (void *)pkt->data;
if (nvm_resp == NULL)
return EIO;
err = le16toh(nvm_resp->status);
bytes_read = le16toh(nvm_resp->length);
offset_read = le16toh(nvm_resp->offset);
resp_data = nvm_resp->data;
if (err) {
err = EINVAL;
goto exit;
}
if (offset_read != offset) {
err = EINVAL;
goto exit;
}
if (bytes_read > length) {
err = EINVAL;
goto exit;
}
memcpy(data + offset, resp_data, bytes_read);
*len = bytes_read;
exit:
iwm_free_resp(sc, &cmd);
return err;
}
/*
* Reads an NVM section completely.
* NICs prior to 7000 family doesn't have a real NVM, but just read
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
* by uCode, we need to manually check in this case that we don't
* overflow and try to read more than the EEPROM size.
*/
int
iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data,
uint16_t *len, size_t max_len)
{
uint16_t chunklen, seglen;
int err = 0;
chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
*len = 0;
/* Read NVM chunks until exhausted (reading less than requested) */
while (seglen == chunklen && *len < max_len) {
err = iwm_nvm_read_chunk(sc,
section, *len, chunklen, data, &seglen);
if (err)
return err;
*len += seglen;
}
return err;
}
uint8_t
iwm_fw_valid_tx_ant(struct iwm_softc *sc)
{
uint8_t tx_ant;
tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
>> IWM_FW_PHY_CFG_TX_CHAIN_POS);
if (sc->sc_nvm.valid_tx_ant)
tx_ant &= sc->sc_nvm.valid_tx_ant;
return tx_ant;
}
uint8_t
iwm_fw_valid_rx_ant(struct iwm_softc *sc)
{
uint8_t rx_ant;
rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN)
>> IWM_FW_PHY_CFG_RX_CHAIN_POS);
if (sc->sc_nvm.valid_rx_ant)
rx_ant &= sc->sc_nvm.valid_rx_ant;
return rx_ant;
}
int
iwm_valid_siso_ant_rate_mask(struct iwm_softc *sc)
{
uint8_t valid_tx_ant = iwm_fw_valid_tx_ant(sc);
/*
* According to the Linux driver, antenna B should be preferred
* on 9k devices since it is not shared with bluetooth. However,
* there are 9k devices which do not support antenna B at all.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000 &&
(valid_tx_ant & IWM_ANT_B))
return IWM_RATE_MCS_ANT_B_MSK;
return IWM_RATE_MCS_ANT_A_MSK;
}
void
iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags,
const uint8_t *nvm_channels, int nchan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_nvm_data *data = &sc->sc_nvm;
int ch_idx;
struct ieee80211_channel *channel;
uint16_t ch_flags;
int is_5ghz;
int flags, hw_value;
for (ch_idx = 0; ch_idx < nchan; ch_idx++) {
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
!data->sku_cap_band_52GHz_enable)
ch_flags &= ~IWM_NVM_CHANNEL_VALID;
if (!(ch_flags & IWM_NVM_CHANNEL_VALID))
continue;
hw_value = nvm_channels[ch_idx];
channel = &ic->ic_channels[hw_value];
is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
if (!is_5ghz) {
flags = IEEE80211_CHAN_2GHZ;
channel->ic_flags
= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ;
} else {
flags = IEEE80211_CHAN_5GHZ;
channel->ic_flags =
IEEE80211_CHAN_A;
}
channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags);
if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
if (data->sku_cap_11n_enable) {
channel->ic_flags |= IEEE80211_CHAN_HT;
if (ch_flags & IWM_NVM_CHANNEL_40MHZ)
channel->ic_flags |= IEEE80211_CHAN_40MHZ;
}
if (is_5ghz && data->sku_cap_11ac_enable) {
channel->ic_flags |= IEEE80211_CHAN_VHT;
if (ch_flags & IWM_NVM_CHANNEL_80MHZ)
channel->ic_xflags |= IEEE80211_CHANX_80MHZ;
}
}
}
int
iwm_mimo_enabled(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
return !sc->sc_nvm.sku_cap_mimo_disable &&
(ic->ic_userflags & IEEE80211_F_NOMIMO) == 0;
}
void
iwm_setup_ht_rates(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rx_ant;
/* TX is supported with the same MCS as RX. */
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs));
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
if (!iwm_mimo_enabled(sc))
return;
rx_ant = iwm_fw_valid_rx_ant(sc);
if ((rx_ant & IWM_ANT_AB) == IWM_ANT_AB ||
(rx_ant & IWM_ANT_BC) == IWM_ANT_BC)
ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
}
void
iwm_setup_vht_rates(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rx_ant = iwm_fw_valid_rx_ant(sc);
int n;
ic->ic_vht_rxmcs = (IEEE80211_VHT_MCS_0_9 <<
IEEE80211_VHT_MCS_FOR_SS_SHIFT(1));
if (iwm_mimo_enabled(sc) &&
((rx_ant & IWM_ANT_AB) == IWM_ANT_AB ||
(rx_ant & IWM_ANT_BC) == IWM_ANT_BC)) {
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_0_9 <<
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2));
} else {
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP <<
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2));
}
for (n = 3; n <= IEEE80211_VHT_NUM_SS; n++) {
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP <<
IEEE80211_VHT_MCS_FOR_SS_SHIFT(n));
}
ic->ic_vht_txmcs = ic->ic_vht_rxmcs;
}
void
iwm_init_reorder_buffer(struct iwm_reorder_buffer *reorder_buf,
uint16_t ssn, uint16_t buf_size)
{
reorder_buf->head_sn = ssn;
reorder_buf->num_stored = 0;
reorder_buf->buf_size = buf_size;
reorder_buf->last_amsdu = 0;
reorder_buf->last_sub_index = 0;
reorder_buf->removed = 0;
reorder_buf->valid = 0;
reorder_buf->consec_oldsn_drops = 0;
reorder_buf->consec_oldsn_ampdu_gp2 = 0;
reorder_buf->consec_oldsn_prev_drop = 0;
}
void
iwm_clear_reorder_buffer(struct iwm_softc *sc, struct iwm_rxba_data *rxba)
{
int i;
struct iwm_reorder_buffer *reorder_buf = &rxba->reorder_buf;
struct iwm_reorder_buf_entry *entry;
for (i = 0; i < reorder_buf->buf_size; i++) {
entry = &rxba->entries[i];
ml_purge(&entry->frames);
timerclear(&entry->reorder_time);
}
reorder_buf->removed = 1;
timeout_del(&reorder_buf->reorder_timer);
timerclear(&rxba->last_rx);
timeout_del(&rxba->session_timer);
rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID;
}
#define RX_REORDER_BUF_TIMEOUT_MQ_USEC (100000ULL)
void
iwm_rx_ba_session_expired(void *arg)
{
struct iwm_rxba_data *rxba = arg;
struct iwm_softc *sc = rxba->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct timeval now, timeout, expiry;
int s;
s = splnet();
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0 &&
ic->ic_state == IEEE80211_S_RUN &&
rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID) {
getmicrouptime(&now);
USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout);
timeradd(&rxba->last_rx, &timeout, &expiry);
if (timercmp(&now, &expiry, <)) {
timeout_add_usec(&rxba->session_timer, rxba->timeout);
} else {
ic->ic_stats.is_ht_rx_ba_timeout++;
ieee80211_delba_request(ic, ni,
IEEE80211_REASON_TIMEOUT, 0, rxba->tid);
}
}
splx(s);
}
void
iwm_reorder_timer_expired(void *arg)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct iwm_reorder_buffer *buf = arg;
struct iwm_rxba_data *rxba = iwm_rxba_data_from_reorder_buf(buf);
struct iwm_reorder_buf_entry *entries = &rxba->entries[0];
struct iwm_softc *sc = rxba->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int i, s;
uint16_t sn = 0, index = 0;
int expired = 0;
int cont = 0;
struct timeval now, timeout, expiry;
if (!buf->num_stored || buf->removed)
return;
s = splnet();
getmicrouptime(&now);
USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout);
for (i = 0; i < buf->buf_size ; i++) {
index = (buf->head_sn + i) % buf->buf_size;
if (ml_empty(&entries[index].frames)) {
/*
* If there is a hole and the next frame didn't expire
* we want to break and not advance SN.
*/
cont = 0;
continue;
}
timeradd(&entries[index].reorder_time, &timeout, &expiry);
if (!cont && timercmp(&now, &expiry, <))
break;
expired = 1;
/* continue until next hole after this expired frame */
cont = 1;
sn = (buf->head_sn + (i + 1)) & 0xfff;
}
if (expired) {
/* SN is set to the last expired frame + 1 */
iwm_release_frames(sc, ni, rxba, buf, sn, &ml);
if_input(&sc->sc_ic.ic_if, &ml);
ic->ic_stats.is_ht_rx_ba_window_gap_timeout++;
} else {
/*
* If no frame expired and there are stored frames, index is now
* pointing to the first unexpired frame - modify reorder timeout
* accordingly.
*/
timeout_add_usec(&buf->reorder_timer,
RX_REORDER_BUF_TIMEOUT_MQ_USEC);
}
splx(s);
}
#define IWM_MAX_RX_BA_SESSIONS 16
int
iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
uint16_t ssn, uint16_t winsize, int timeout_val, int start)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_add_sta_cmd cmd;
struct iwm_node *in = (void *)ni;
int err, s;
uint32_t status;
size_t cmdsize;
struct iwm_rxba_data *rxba = NULL;
uint8_t baid = 0;
s = splnet();
if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) {
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
return 0;
}
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = IWM_STATION_ID;
cmd.mac_id_n_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
cmd.add_modify = IWM_STA_MODE_MODIFY;
if (start) {
cmd.add_immediate_ba_tid = (uint8_t)tid;
cmd.add_immediate_ba_ssn = ssn;
cmd.rx_ba_window = winsize;
} else {
cmd.remove_immediate_ba_tid = (uint8_t)tid;
}
cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID :
IWM_STA_MODIFY_REMOVE_BA_TID;
status = IWM_ADD_STA_SUCCESS;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmdsize = sizeof(cmd);
else
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd,
&status);
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
err = EIO;
if (err) {
if (start)
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
return err;
}
if (sc->sc_mqrx_supported) {
/* Deaggregation is done in hardware. */
if (start) {
if (!(status & IWM_ADD_STA_BAID_VALID_MASK)) {
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
return EIO;
}
baid = (status & IWM_ADD_STA_BAID_MASK) >>
IWM_ADD_STA_BAID_SHIFT;
if (baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
baid >= nitems(sc->sc_rxba_data)) {
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
return EIO;
}
rxba = &sc->sc_rxba_data[baid];
if (rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID) {
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
return 0;
}
rxba->sta_id = IWM_STATION_ID;
rxba->tid = tid;
rxba->baid = baid;
rxba->timeout = timeout_val;
getmicrouptime(&rxba->last_rx);
iwm_init_reorder_buffer(&rxba->reorder_buf, ssn,
winsize);
if (timeout_val != 0) {
struct ieee80211_rx_ba *ba;
timeout_add_usec(&rxba->session_timer,
timeout_val);
/* XXX disable net80211's BA timeout handler */
ba = &ni->ni_rx_ba[tid];
ba->ba_timeout_val = 0;
}
} else {
int i;
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
rxba = &sc->sc_rxba_data[i];
if (rxba->baid ==
IWM_RX_REORDER_DATA_INVALID_BAID)
continue;
if (rxba->tid != tid)
continue;
iwm_clear_reorder_buffer(sc, rxba);
break;
}
}
}
if (start) {
sc->sc_rx_ba_sessions++;
ieee80211_addba_req_accept(ic, ni, tid);
} else if (sc->sc_rx_ba_sessions > 0)
sc->sc_rx_ba_sessions--;
splx(s);
return 0;
}
void
iwm_mac_ctxt_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
int err, s = splnet();
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
ic->ic_state != IEEE80211_S_RUN) {
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
if (err)
printf("%s: failed to update MAC\n", DEVNAME(sc));
iwm_unprotect_session(sc, in);
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
void
iwm_updateprot(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
if (ic->ic_state == IEEE80211_S_RUN &&
!task_pending(&sc->newstate_task))
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
}
void
iwm_updateslot(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
if (ic->ic_state == IEEE80211_S_RUN &&
!task_pending(&sc->newstate_task))
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
}
void
iwm_updateedca(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
if (ic->ic_state == IEEE80211_S_RUN &&
!task_pending(&sc->newstate_task))
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
}
void
iwm_phy_ctxt_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct ieee80211_node *ni = &in->in_ni;
uint8_t chains, sco, vht_chan_width;
int err, s = splnet();
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
ic->ic_state != IEEE80211_S_RUN ||
in->in_phyctxt == NULL) {
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
chains = iwm_mimo_enabled(sc) ? 2 : 1;
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan) &&
ieee80211_node_supports_ht_chan40(ni))
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
else
sco = IEEE80211_HTOP0_SCO_SCN;
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
ieee80211_node_supports_vht_chan80(ni))
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
else
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
if (in->in_phyctxt->sco != sco ||
in->in_phyctxt->vht_chan_width != vht_chan_width) {
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
in->in_phyctxt->channel, chains, chains, 0, sco,
vht_chan_width);
if (err)
printf("%s: failed to update PHY\n", DEVNAME(sc));
iwm_setrates(in, 0);
}
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
void
iwm_updatechan(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
if (ic->ic_state == IEEE80211_S_RUN &&
!task_pending(&sc->newstate_task))
iwm_add_task(sc, systq, &sc->phy_ctxt_task);
}
void
iwm_updatedtim(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
if (ic->ic_state == IEEE80211_S_RUN &&
!task_pending(&sc->newstate_task))
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
}
int
iwm_sta_tx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
uint16_t ssn, uint16_t winsize, int start)
{
struct iwm_add_sta_cmd cmd;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
struct iwm_tx_ring *ring;
enum ieee80211_edca_ac ac;
int fifo;
uint32_t status;
int err;
size_t cmdsize;
/* Ensure we can map this TID to an aggregation queue. */
if (tid >= IWM_MAX_TID_COUNT || qid > IWM_LAST_AGG_TX_QUEUE)
return ENOSPC;
if (start) {
if ((sc->tx_ba_queue_mask & (1 << qid)) != 0)
return 0;
} else {
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
return 0;
}
ring = &sc->txq[qid];
ac = iwm_tid_to_ac[tid];
fifo = iwm_ac_to_tx_fifo[ac];
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = IWM_STATION_ID;
cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
cmd.add_modify = IWM_STA_MODE_MODIFY;
if (start) {
/* Enable Tx aggregation for this queue. */
in->tid_disable_ampdu &= ~(1 << tid);
in->tfd_queue_msk |= (1 << qid);
} else {
in->tid_disable_ampdu |= (1 << tid);
/*
* Queue remains enabled in the TFD queue mask
* until we leave RUN state.
*/
err = iwm_flush_sta(sc, in);
if (err)
return err;
}
cmd.tfd_queue_msk |= htole32(in->tfd_queue_msk);
cmd.tid_disable_tx = htole16(in->tid_disable_ampdu);
cmd.modify_mask = (IWM_STA_MODIFY_QUEUES |
IWM_STA_MODIFY_TID_DISABLE_TX);
if (start && (sc->qenablemsk & (1 << qid)) == 0) {
if (!iwm_nic_lock(sc)) {
if (start)
ieee80211_addba_resp_refuse(ic, ni, tid,
IEEE80211_STATUS_UNSPECIFIED);
return EBUSY;
}
err = iwm_enable_txq(sc, IWM_STATION_ID, qid, fifo, 1, tid,
ssn);
iwm_nic_unlock(sc);
if (err) {
printf("%s: could not enable Tx queue %d (error %d)\n",
DEVNAME(sc), qid, err);
if (start)
ieee80211_addba_resp_refuse(ic, ni, tid,
IEEE80211_STATUS_UNSPECIFIED);
return err;
}
/*
* If iwm_enable_txq() employed the SCD hardware bug
* workaround we must skip the frame with seqnum SSN.
*/
if (ring->cur != IWM_AGG_SSN_TO_TXQ_IDX(ssn)) {
ssn = (ssn + 1) & 0xfff;
KASSERT(ring->cur == IWM_AGG_SSN_TO_TXQ_IDX(ssn));
ieee80211_output_ba_move_window(ic, ni, tid, ssn);
ni->ni_qos_txseqs[tid] = ssn;
}
}
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmdsize = sizeof(cmd);
else
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
status = 0;
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd, &status);
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
err = EIO;
if (err) {
printf("%s: could not update sta (error %d)\n",
DEVNAME(sc), err);
if (start)
ieee80211_addba_resp_refuse(ic, ni, tid,
IEEE80211_STATUS_UNSPECIFIED);
return err;
}
if (start) {
sc->tx_ba_queue_mask |= (1 << qid);
ieee80211_addba_resp_accept(ic, ni, tid);
} else {
sc->tx_ba_queue_mask &= ~(1 << qid);
/*
* Clear pending frames but keep the queue enabled.
* Firmware panics if we disable the queue here.
*/
iwm_txq_advance(sc, ring, ring->cur);
iwm_clear_oactive(sc, ring);
}
return 0;
}
void
iwm_ba_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int s = splnet();
int tid, err = 0;
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
ic->ic_state != IEEE80211_S_RUN) {
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
for (tid = 0; tid < IWM_MAX_TID_COUNT && !err; tid++) {
if (sc->sc_flags & IWM_FLAG_SHUTDOWN)
break;
if (sc->ba_rx.start_tidmask & (1 << tid)) {
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
err = iwm_sta_rx_agg(sc, ni, tid, ba->ba_winstart,
ba->ba_winsize, ba->ba_timeout_val, 1);
sc->ba_rx.start_tidmask &= ~(1 << tid);
} else if (sc->ba_rx.stop_tidmask & (1 << tid)) {
err = iwm_sta_rx_agg(sc, ni, tid, 0, 0, 0, 0);
sc->ba_rx.stop_tidmask &= ~(1 << tid);
}
}
for (tid = 0; tid < IWM_MAX_TID_COUNT && !err; tid++) {
if (sc->sc_flags & IWM_FLAG_SHUTDOWN)
break;
if (sc->ba_tx.start_tidmask & (1 << tid)) {
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
err = iwm_sta_tx_agg(sc, ni, tid, ba->ba_winstart,
ba->ba_winsize, 1);
sc->ba_tx.start_tidmask &= ~(1 << tid);
} else if (sc->ba_tx.stop_tidmask & (1 << tid)) {
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
sc->ba_tx.stop_tidmask &= ~(1 << tid);
}
}
/*
* We "recover" from failure to start or stop a BA session
* by resetting the device.
*/
if (err && (sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
task_add(systq, &sc->init_task);
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
int
iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS ||
tid > IWM_MAX_TID_COUNT)
return ENOSPC;
if (sc->ba_rx.start_tidmask & (1 << tid))
return EBUSY;
sc->ba_rx.start_tidmask |= (1 << tid);
iwm_add_task(sc, systq, &sc->ba_task);
return EBUSY;
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (eg. upon receipt of a DELBA frame).
*/
void
iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
if (tid > IWM_MAX_TID_COUNT || sc->ba_rx.stop_tidmask & (1 << tid))
return;
sc->ba_rx.stop_tidmask |= (1 << tid);
iwm_add_task(sc, systq, &sc->ba_task);
}
int
iwm_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
/* We only implement Tx aggregation with DQA-capable firmware. */
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
return ENOTSUP;
/* Ensure we can map this TID to an aggregation queue. */
if (tid >= IWM_MAX_TID_COUNT)
return EINVAL;
/* We only support a fixed Tx aggregation window size, for now. */
if (ba->ba_winsize != IWM_FRAME_LIMIT)
return ENOTSUP;
/* Is firmware already using Tx aggregation on this queue? */
if ((sc->tx_ba_queue_mask & (1 << qid)) != 0)
return ENOSPC;
/* Are we already processing an ADDBA request? */
if (sc->ba_tx.start_tidmask & (1 << tid))
return EBUSY;
sc->ba_tx.start_tidmask |= (1 << tid);
iwm_add_task(sc, systq, &sc->ba_task);
return EBUSY;
}
void
iwm_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
if (tid > IWM_MAX_TID_COUNT || sc->ba_tx.stop_tidmask & (1 << tid))
return;
/* Is firmware currently using Tx aggregation on this queue? */
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
return;
sc->ba_tx.stop_tidmask |= (1 << tid);
iwm_add_task(sc, systq, &sc->ba_task);
}
void
iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
const uint16_t *mac_override, const uint16_t *nvm_hw)
{
const uint8_t *hw_addr;
if (mac_override) {
static const uint8_t reserved_mac[] = {
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
};
hw_addr = (const uint8_t *)(mac_override +
IWM_MAC_ADDRESS_OVERRIDE_8000);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN) != 0 &&
(memcmp(etherbroadcastaddr, data->hw_addr,
sizeof(etherbroadcastaddr)) != 0) &&
(memcmp(etheranyaddr, data->hw_addr,
sizeof(etheranyaddr)) != 0) &&
!ETHER_IS_MULTICAST(data->hw_addr))
return;
}
if (nvm_hw) {
/* Read the mac address from WFMP registers. */
uint32_t mac_addr0, mac_addr1;
if (!iwm_nic_lock(sc))
goto out;
mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
iwm_nic_unlock(sc);
hw_addr = (const uint8_t *)&mac_addr0;
data->hw_addr[0] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[2] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const uint8_t *)&mac_addr1;
data->hw_addr[4] = hw_addr[1];
data->hw_addr[5] = hw_addr[0];
return;
}
out:
printf("%s: mac address not found\n", DEVNAME(sc));
memset(data->hw_addr, 0, sizeof(data->hw_addr));
}
int
iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw,
const uint16_t *nvm_sw, const uint16_t *nvm_calib,
const uint16_t *mac_override, const uint16_t *phy_sku,
const uint16_t *regulatory, int n_regulatory)
{
struct iwm_nvm_data *data = &sc->sc_nvm;
uint8_t hw_addr[ETHER_ADDR_LEN];
uint32_t sku;
uint16_t lar_config;
data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
sku = le16_to_cpup(nvm_sw + IWM_SKU);
} else {
uint32_t radio_cfg =
le32_to_cpup((uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg);
data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
sku = le32_to_cpup((uint32_t *)(phy_sku + IWM_SKU_8000));
}
data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE;
data->sku_cap_11ac_enable = sku & IWM_NVM_SKU_CAP_11AC_ENABLE;
data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE;
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
uint16_t lar_offset = data->nvm_version < 0xE39 ?
IWM_NVM_LAR_OFFSET_8000_OLD :
IWM_NVM_LAR_OFFSET_8000;
lar_config = le16_to_cpup(regulatory + lar_offset);
data->lar_enabled = !!(lar_config &
IWM_NVM_LAR_ENABLED_8000);
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS_8000);
} else
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
/* The byte order is little endian 16 bit, meaning 214365 */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN);
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else
iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (sc->nvm_type == IWM_NVM_SDP) {
iwm_init_channel_map(sc, regulatory, iwm_nvm_channels,
MIN(n_regulatory, nitems(iwm_nvm_channels)));
} else {
iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS],
iwm_nvm_channels, nitems(iwm_nvm_channels));
}
} else
iwm_init_channel_map(sc, &regulatory[IWM_NVM_CHANNELS_8000],
iwm_nvm_channels_8000,
MIN(n_regulatory, nitems(iwm_nvm_channels_8000)));
data->calib_version = 255; /* TODO:
this value will prevent some checks from
failing, we need to check if this
field is still needed, and if it does,
where is it in the NVM */
return 0;
}
int
iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
{
const uint16_t *hw, *sw, *calib, *mac_override = NULL, *phy_sku = NULL;
const uint16_t *regulatory = NULL;
int n_regulatory = 0;
/* Checking for required sections */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_HW].data) {
return ENOENT;
}
hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
if (sc->nvm_type == IWM_NVM_SDP) {
if (!sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data)
return ENOENT;
regulatory = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data;
n_regulatory =
sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].length;
}
} else if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
/* SW and REGULATORY sections are mandatory */
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
return ENOENT;
}
/* MAC_OVERRIDE or at least HW section must exist */
if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
!sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
return ENOENT;
}
/* PHY_SKU section is mandatory in B0 */
if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
return ENOENT;
}
regulatory = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
n_regulatory = sections[IWM_NVM_SECTION_TYPE_REGULATORY].length;
hw = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
mac_override =
(const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
phy_sku = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
} else {
panic("unknown device family %d", sc->sc_device_family);
}
sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
calib = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
/* XXX should pass in the length of every section */
return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
phy_sku, regulatory, n_regulatory);
}
int
iwm_nvm_init(struct iwm_softc *sc)
{
struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
int i, section, err;
uint16_t len;
uint8_t *buf;
const size_t bufsz = sc->sc_nvm_max_section_size;
memset(nvm_sections, 0, sizeof(nvm_sections));
buf = malloc(bufsz, M_DEVBUF, M_WAIT);
if (buf == NULL)
return ENOMEM;
for (i = 0; i < nitems(iwm_nvm_to_read); i++) {
section = iwm_nvm_to_read[i];
KASSERT(section <= nitems(nvm_sections));
err = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
if (err) {
err = 0;
continue;
}
nvm_sections[section].data = malloc(len, M_DEVBUF, M_WAIT);
if (nvm_sections[section].data == NULL) {
err = ENOMEM;
break;
}
memcpy(nvm_sections[section].data, buf, len);
nvm_sections[section].length = len;
}
free(buf, M_DEVBUF, bufsz);
if (err == 0)
err = iwm_parse_nvm_sections(sc, nvm_sections);
for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
if (nvm_sections[i].data != NULL)
free(nvm_sections[i].data, M_DEVBUF,
nvm_sections[i].length);
}
return err;
}
int
iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *section, uint32_t byte_cnt)
{
int err = EINVAL;
uint32_t chunk_sz, offset;
chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
uint32_t addr, len;
const uint8_t *data;
addr = dst_addr + offset;
len = MIN(chunk_sz, byte_cnt - offset);
data = section + offset;
err = iwm_firmware_load_chunk(sc, addr, data, len);
if (err)
break;
}
return err;
}
int
iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *chunk, uint32_t byte_cnt)
{
struct iwm_dma_info *dma = &sc->fw_dma;
int err;
/* Copy firmware chunk into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, chunk, byte_cnt);
bus_dmamap_sync(sc->sc_dmat,
dma->map, 0, byte_cnt, BUS_DMASYNC_PREWRITE);
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
dst_addr <= IWM_FW_MEM_EXTENDED_END) {
err = iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
if (err)
return err;
}
sc->sc_fw_chunk_done = 0;
if (!iwm_nic_lock(sc))
return EBUSY;
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
dst_addr);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
(iwm_get_dma_hi_addr(dma->paddr)
<< IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
iwm_nic_unlock(sc);
/* Wait for this segment to load. */
err = 0;
while (!sc->sc_fw_chunk_done) {
err = tsleep_nsec(&sc->sc_fw, 0, "iwmfw", SEC_TO_NSEC(1));
if (err)
break;
}
if (!sc->sc_fw_chunk_done)
printf("%s: fw chunk addr 0x%x len %d failed to load\n",
DEVNAME(sc), dst_addr, byte_cnt);
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
dst_addr <= IWM_FW_MEM_EXTENDED_END) {
int err2 = iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
if (!err)
err = err2;
}
return err;
}
int
iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int err, i;
void *data;
uint32_t dlen;
uint32_t offset;
fws = &sc->sc_fw.fw_sects[ucode_type];
for (i = 0; i < fws->fw_count; i++) {
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
if (dlen > sc->sc_fwdmasegsz) {
err = EFBIG;
} else
err = iwm_firmware_load_sect(sc, offset, data, dlen);
if (err) {
printf("%s: could not load firmware chunk %u of %u\n",
DEVNAME(sc), i, fws->fw_count);
return err;
}
}
iwm_enable_interrupts(sc);
IWM_WRITE(sc, IWM_CSR_RESET, 0);
return 0;
}
int
iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
int cpu, int *first_ucode_section)
{
int shift_param;
int i, err = 0, sec_num = 0x1;
uint32_t val, last_read_idx = 0;
void *data;
uint32_t dlen;
uint32_t offset;
if (cpu == 1) {
shift_param = 0;
*first_ucode_section = 0;
} else {
shift_param = 16;
(*first_ucode_section)++;
}
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
last_read_idx = i;
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
offset == IWM_PAGING_SEPARATOR_SECTION)
break;
if (dlen > sc->sc_fwdmasegsz) {
err = EFBIG;
} else
err = iwm_firmware_load_sect(sc, offset, data, dlen);
if (err) {
printf("%s: could not load firmware chunk %d "
"(error %d)\n", DEVNAME(sc), i, err);
return err;
}
/* Notify the ucode of the loaded section number and status */
if (iwm_nic_lock(sc)) {
val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
val = val | (sec_num << shift_param);
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
sec_num = (sec_num << 1) | 0x1;
iwm_nic_unlock(sc);
} else {
err = EBUSY;
printf("%s: could not load firmware chunk %d "
"(error %d)\n", DEVNAME(sc), i, err);
return err;
}
}
*first_ucode_section = last_read_idx;
if (iwm_nic_lock(sc)) {
if (cpu == 1)
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
else
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
iwm_nic_unlock(sc);
} else {
err = EBUSY;
printf("%s: could not finalize firmware loading (error %d)\n",
DEVNAME(sc), err);
return err;
}
return 0;
}
int
iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int err = 0;
int first_ucode_section;
fws = &sc->sc_fw.fw_sects[ucode_type];
/* configure the ucode to be ready to get the secured image */
/* release CPU reset */
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
IWM_RELEASE_CPU_RESET_BIT);
iwm_nic_unlock(sc);
}
/* load to FW the binary Secured sections of CPU1 */
err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
if (err)
return err;
/* load to FW the binary sections of CPU2 */
err = iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
if (err)
return err;
iwm_enable_interrupts(sc);
return 0;
}
int
iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int err;
splassert(IPL_NET);
sc->sc_uc.uc_intr = 0;
sc->sc_uc.uc_ok = 0;
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000)
err = iwm_load_firmware_8000(sc, ucode_type);
else
err = iwm_load_firmware_7000(sc, ucode_type);
if (err)
return err;
/* wait for the firmware to load */
err = tsleep_nsec(&sc->sc_uc, 0, "iwmuc", SEC_TO_NSEC(1));
if (err || !sc->sc_uc.uc_ok)
printf("%s: could not load firmware\n", DEVNAME(sc));
return err;
}
int
iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int err;
IWM_WRITE(sc, IWM_CSR_INT, ~0);
err = iwm_nic_init(sc);
if (err) {
printf("%s: unable to init nic\n", DEVNAME(sc));
return err;
}
/* make sure rfkill handshake bits are cleared */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear (again), then enable firmware load interrupt */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_fwload_interrupt(sc);
/* really make sure rfkill handshake bits are cleared */
/* maybe we should write a few times more? just to make sure */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
return iwm_load_firmware(sc, ucode_type);
}
int
iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
{
struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
.valid = htole32(valid_tx_ant),
};
return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
0, sizeof(tx_ant_cmd), &tx_ant_cmd);
}
int
iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
{
struct iwm_phy_cfg_cmd phy_cfg_cmd;
enum iwm_ucode_type ucode_type = sc->sc_uc_current;
phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config |
sc->sc_extra_phy_config);
phy_cfg_cmd.calib_control.event_trigger =
sc->sc_default_calib[ucode_type].event_trigger;
phy_cfg_cmd.calib_control.flow_trigger =
sc->sc_default_calib[ucode_type].flow_trigger;
return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, 0,
sizeof(phy_cfg_cmd), &phy_cfg_cmd);
}
int
iwm_send_dqa_cmd(struct iwm_softc *sc)
{
struct iwm_dqa_enable_cmd dqa_cmd = {
.cmd_queue = htole32(IWM_DQA_CMD_QUEUE),
};
uint32_t cmd_id;
cmd_id = iwm_cmd_id(IWM_DQA_ENABLE_CMD, IWM_DATA_PATH_GROUP, 0);
return iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(dqa_cmd), &dqa_cmd);
}
int
iwm_load_ucode_wait_alive(struct iwm_softc *sc,
enum iwm_ucode_type ucode_type)
{
enum iwm_ucode_type old_type = sc->sc_uc_current;
struct iwm_fw_sects *fw = &sc->sc_fw.fw_sects[ucode_type];
int err;
err = iwm_read_firmware(sc);
if (err)
return err;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
sc->cmdqid = IWM_DQA_CMD_QUEUE;
else
sc->cmdqid = IWM_CMD_QUEUE;
sc->sc_uc_current = ucode_type;
err = iwm_start_fw(sc, ucode_type);
if (err) {
sc->sc_uc_current = old_type;
return err;
}
err = iwm_post_alive(sc);
if (err)
return err;
/*
* configure and operate fw paging mechanism.
* driver configures the paging flow only once, CPU2 paging image
* included in the IWM_UCODE_INIT image.
*/
if (fw->paging_mem_size) {
err = iwm_save_fw_paging(sc, fw);
if (err) {
printf("%s: failed to save the FW paging image\n",
DEVNAME(sc));
return err;
}
err = iwm_send_paging_cmd(sc, fw);
if (err) {
printf("%s: failed to send the paging cmd\n",
DEVNAME(sc));
iwm_free_fw_paging(sc);
return err;
}
}
return 0;
}
int
iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
{
const int wait_flags = (IWM_INIT_COMPLETE | IWM_CALIB_COMPLETE);
int err, s;
if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
printf("%s: radio is disabled by hardware switch\n",
DEVNAME(sc));
return EPERM;
}
s = splnet();
sc->sc_init_complete = 0;
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT);
if (err) {
printf("%s: failed to load init firmware\n", DEVNAME(sc));
splx(s);
return err;
}
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000) {
err = iwm_send_bt_init_conf(sc);
if (err) {
printf("%s: could not init bt coex (error %d)\n",
DEVNAME(sc), err);
splx(s);
return err;
}
}
if (justnvm) {
err = iwm_nvm_init(sc);
if (err) {
printf("%s: failed to read nvm\n", DEVNAME(sc));
splx(s);
return err;
}
if (IEEE80211_ADDR_EQ(etheranyaddr, sc->sc_ic.ic_myaddr))
IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,
sc->sc_nvm.hw_addr);
splx(s);
return 0;
}
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
if (err) {
splx(s);
return err;
}
/* Send TX valid antennas before triggering calibrations */
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
if (err) {
splx(s);
return err;
}
/*
* Send phy configurations command to init uCode
* to start the 16.0 uCode init image internal calibrations.
*/
err = iwm_send_phy_cfg_cmd(sc);
if (err) {
splx(s);
return err;
}
/*
* Nothing to do but wait for the init complete and phy DB
* notifications from the firmware.
*/
while ((sc->sc_init_complete & wait_flags) != wait_flags) {
err = tsleep_nsec(&sc->sc_init_complete, 0, "iwminit",
SEC_TO_NSEC(2));
if (err)
break;
}
splx(s);
return err;
}
int
iwm_config_ltr(struct iwm_softc *sc)
{
struct iwm_ltr_config_cmd cmd = {
.flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE),
};
if (!sc->sc_ltr_enabled)
return 0;
return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd);
}
int
iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
{
struct iwm_rx_ring *ring = &sc->rxq;
struct iwm_rx_data *data = &ring->data[idx];
struct mbuf *m;
int err;
int fatal = 0;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOBUFS;
if (size <= MCLBYTES) {
MCLGET(m, M_DONTWAIT);
} else {
MCLGETL(m, M_DONTWAIT, IWM_RBUF_SIZE);
}
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return ENOBUFS;
}
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
fatal = 1;
}
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (err) {
/* XXX */
if (fatal)
panic("iwm: could not load RX mbuf");
m_freem(m);
return err;
}
data->m = m;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD);
/* Update RX descriptor. */
if (sc->sc_mqrx_supported) {
((uint64_t *)ring->desc)[idx] =
htole64(data->map->dm_segs[0].ds_addr);
bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,
idx * sizeof(uint64_t), sizeof(uint64_t),
BUS_DMASYNC_PREWRITE);
} else {
((uint32_t *)ring->desc)[idx] =
htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,
idx * sizeof(uint32_t), sizeof(uint32_t),
BUS_DMASYNC_PREWRITE);
}
return 0;
}
/*
* RSSI values are reported by the FW as positive values - need to negate
* to obtain their dBM. Account for missing antennas by replacing 0
* values by -256dBm: practically 0 power and a non-feasible 8 bit value.
*/
int
iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
{
int energy_a, energy_b, energy_c, max_energy;
uint32_t val;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
IWM_RX_INFO_ENERGY_ANT_A_POS;
energy_a = energy_a ? -energy_a : -256;
energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
IWM_RX_INFO_ENERGY_ANT_B_POS;
energy_b = energy_b ? -energy_b : -256;
energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
IWM_RX_INFO_ENERGY_ANT_C_POS;
energy_c = energy_c ? -energy_c : -256;
max_energy = MAX(energy_a, energy_b);
max_energy = MAX(max_energy, energy_c);
return max_energy;
}
int
iwm_rxmq_get_signal_strength(struct iwm_softc *sc,
struct iwm_rx_mpdu_desc *desc)
{
int energy_a, energy_b;
energy_a = desc->v1.energy_a;
energy_b = desc->v1.energy_b;
energy_a = energy_a ? -energy_a : -256;
energy_b = energy_b ? -energy_b : -256;
return MAX(energy_a, energy_b);
}
void
iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
sizeof(*phy_info), BUS_DMASYNC_POSTREAD);
memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
int
iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats)
{
int i, total, nbant, noise;
total = nbant = noise = 0;
for (i = 0; i < 3; i++) {
noise = letoh32(stats->beacon_silence_rssi[i]) & 0xff;
if (noise) {
total += noise;
nbant++;
}
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
int
iwm_ccmp_decap(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
struct ieee80211_rxinfo *rxi)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k = &ni->ni_pairwise_key;
struct ieee80211_frame *wh;
uint64_t pn, *prsc;
uint8_t *ivp;
uint8_t tid;
int hdrlen, hasqos;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
ivp = (uint8_t *)wh + hdrlen;
/* Check that ExtIV bit is set. */
if (!(ivp[3] & IEEE80211_WEP_EXTIV))
return 1;
hasqos = ieee80211_has_qos(wh);
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
prsc = &k->k_rsc[tid];
/* Extract the 48-bit PN from the CCMP header. */
pn = (uint64_t)ivp[0] |
(uint64_t)ivp[1] << 8 |
(uint64_t)ivp[4] << 16 |
(uint64_t)ivp[5] << 24 |
(uint64_t)ivp[6] << 32 |
(uint64_t)ivp[7] << 40;
if (rxi->rxi_flags & IEEE80211_RXI_HWDEC_SAME_PN) {
if (pn < *prsc) {
ic->ic_stats.is_ccmp_replays++;
return 1;
}
} else if (pn <= *prsc) {
ic->ic_stats.is_ccmp_replays++;
return 1;
}
/* Last seen packet number is updated in ieee80211_inputm(). */
/*
* Some firmware versions strip the MIC, and some don't. It is not
* clear which of the capability flags could tell us what to expect.
* For now, keep things simple and just leave the MIC in place if
* it is present.
*
* The IV will be stripped by ieee80211_inputm().
*/
return 0;
}
int
iwm_rx_hwdecrypt(struct iwm_softc *sc, struct mbuf *m, uint32_t rx_pkt_status,
struct ieee80211_rxinfo *rxi)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
int ret = 0;
uint8_t type, subtype;
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (type == IEEE80211_FC0_TYPE_CTL)
return 0;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (ieee80211_has_qos(wh) && (subtype & IEEE80211_FC0_SUBTYPE_NODATA))
return 0;
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
!(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
return 0;
ni = ieee80211_find_rxnode(ic, wh);
/* Handle hardware decryption. */
if ((ni->ni_flags & IEEE80211_NODE_RXPROT) &&
ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
if ((rx_pkt_status & IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK) !=
IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC) {
ic->ic_stats.is_ccmp_dec_errs++;
ret = 1;
goto out;
}
/* Check whether decryption was successful or not. */
if ((rx_pkt_status &
(IWM_RX_MPDU_RES_STATUS_DEC_DONE |
IWM_RX_MPDU_RES_STATUS_MIC_OK)) !=
(IWM_RX_MPDU_RES_STATUS_DEC_DONE |
IWM_RX_MPDU_RES_STATUS_MIC_OK)) {
ic->ic_stats.is_ccmp_dec_errs++;
ret = 1;
goto out;
}
rxi->rxi_flags |= IEEE80211_RXI_HWDEC;
}
out:
if (ret)
ifp->if_ierrors++;
ieee80211_release_node(ic, ni);
return ret;
}
void
iwm_rx_frame(struct iwm_softc *sc, struct mbuf *m, int chanidx,
uint32_t rx_pkt_status, int is_shortpre, int rate_n_flags,
uint32_t device_timestamp, struct ieee80211_rxinfo *rxi,
struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
if (chanidx < 0 || chanidx >= nitems(ic->ic_channels))
chanidx = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, wh);
if ((rxi->rxi_flags & IEEE80211_RXI_HWDEC) &&
iwm_ccmp_decap(sc, m, ni, rxi) != 0) {
ifp->if_ierrors++;
m_freem(m);
ieee80211_release_node(ic, ni);
return;
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
uint16_t chan_flags;
tap->wr_flags = 0;
if (is_shortpre)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_chan_freq =
htole16(ic->ic_channels[chanidx].ic_freq);
chan_flags = ic->ic_channels[chanidx].ic_flags;
if (ic->ic_curmode != IEEE80211_MODE_11N &&
ic->ic_curmode != IEEE80211_MODE_11AC) {
chan_flags &= ~IEEE80211_CHAN_HT;
chan_flags &= ~IEEE80211_CHAN_40MHZ;
}
if (ic->ic_curmode != IEEE80211_MODE_11AC)
chan_flags &= ~IEEE80211_CHAN_VHT;
tap->wr_chan_flags = htole16(chan_flags);
tap->wr_dbm_antsignal = (int8_t)rxi->rxi_rssi;
tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
tap->wr_tsft = device_timestamp;
if (rate_n_flags & IWM_RATE_MCS_HT_MSK) {
uint8_t mcs = (rate_n_flags &
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
IWM_RATE_HT_MCS_NSS_MSK));
tap->wr_rate = (0x80 | mcs);
} else {
uint8_t rate = (rate_n_flags &
IWM_RATE_LEGACY_RATE_MSK);
switch (rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
}
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
m, BPF_DIRECTION_IN);
}
#endif
ieee80211_inputm(IC2IFP(ic), m, ni, rxi, ml);
ieee80211_release_node(ic, ni);
}
void
iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, void *pktdata,
size_t maxlen, struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_rxinfo rxi;
struct iwm_rx_phy_info *phy_info;
struct iwm_rx_mpdu_res_start *rx_res;
int device_timestamp;
uint16_t phy_flags;
uint32_t len;
uint32_t rx_pkt_status;
int rssi, chanidx, rate_n_flags;
memset(&rxi, 0, sizeof(rxi));
phy_info = &sc->sc_last_phy_info;
rx_res = (struct iwm_rx_mpdu_res_start *)pktdata;
len = le16toh(rx_res->byte_count);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Allow control frames in monitor mode. */
if (len < sizeof(struct ieee80211_frame_cts)) {
ic->ic_stats.is_rx_tooshort++;
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
} else if (len < sizeof(struct ieee80211_frame)) {
ic->ic_stats.is_rx_tooshort++;
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
if (len > maxlen - sizeof(*rx_res)) {
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
m_freem(m);
return;
}
rx_pkt_status = le32toh(*(uint32_t *)(pktdata + sizeof(*rx_res) + len));
if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
m_freem(m);
return; /* drop */
}
m->m_data = pktdata + sizeof(*rx_res);
m->m_pkthdr.len = m->m_len = len;
if (iwm_rx_hwdecrypt(sc, m, rx_pkt_status, &rxi)) {
m_freem(m);
return;
}
chanidx = letoh32(phy_info->channel);
device_timestamp = le32toh(phy_info->system_timestamp);
phy_flags = letoh16(phy_info->phy_flags);
rate_n_flags = le32toh(phy_info->rate_n_flags);
rssi = iwm_get_signal_strength(sc, phy_info);
rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */
rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */
rxi.rxi_rssi = rssi;
rxi.rxi_tstamp = device_timestamp;
rxi.rxi_chan = chanidx;
iwm_rx_frame(sc, m, chanidx, rx_pkt_status,
(phy_flags & IWM_PHY_INFO_FLAG_SHPREAMBLE),
rate_n_flags, device_timestamp, &rxi, ml);
}
void
iwm_flip_address(uint8_t *addr)
{
int i;
uint8_t mac_addr[ETHER_ADDR_LEN];
for (i = 0; i < ETHER_ADDR_LEN; i++)
mac_addr[i] = addr[ETHER_ADDR_LEN - i - 1];
IEEE80211_ADDR_COPY(addr, mac_addr);
}
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
* and handle pseudo-duplicate frames which result from deaggregation
* of A-MSDU frames in hardware.
*/
int
iwm_detect_duplicate(struct iwm_softc *sc, struct mbuf *m,
struct iwm_rx_mpdu_desc *desc, struct ieee80211_rxinfo *rxi)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct iwm_rxq_dup_data *dup_data = &in->dup_data;
uint8_t tid = IWM_MAX_TID_COUNT, subframe_idx;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
int hasqos = ieee80211_has_qos(wh);
uint16_t seq;
if (type == IEEE80211_FC0_TYPE_CTL ||
(hasqos && (subtype & IEEE80211_FC0_SUBTYPE_NODATA)) ||
IEEE80211_IS_MULTICAST(wh->i_addr1))
return 0;
if (hasqos) {
tid = (ieee80211_get_qos(wh) & IEEE80211_QOS_TID);
if (tid > IWM_MAX_TID_COUNT)
tid = IWM_MAX_TID_COUNT;
}
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
subframe_idx = desc->amsdu_info &
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
seq = letoh16(*(u_int16_t *)wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
if ((wh->i_fc[1] & IEEE80211_FC1_RETRY) &&
dup_data->last_seq[tid] == seq &&
dup_data->last_sub_frame[tid] >= subframe_idx)
return 1;
/*
* Allow the same frame sequence number for all A-MSDU subframes
* following the first subframe.
* Otherwise these subframes would be discarded as replays.
*/
if (dup_data->last_seq[tid] == seq &&
subframe_idx > dup_data->last_sub_frame[tid] &&
(desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU)) {
rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ;
}
dup_data->last_seq[tid] = seq;
dup_data->last_sub_frame[tid] = subframe_idx;
return 0;
}
/*
* Returns true if sn2 - buffer_size < sn1 < sn2.
* To be used only in order to compare reorder buffer head with NSSN.
* We fully trust NSSN unless it is behind us due to reorder timeout.
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
*/
int
iwm_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size)
{
return SEQ_LT(sn1, sn2) && !SEQ_LT(sn1, sn2 - buffer_size);
}
void
iwm_release_frames(struct iwm_softc *sc, struct ieee80211_node *ni,
struct iwm_rxba_data *rxba, struct iwm_reorder_buffer *reorder_buf,
uint16_t nssn, struct mbuf_list *ml)
{
struct iwm_reorder_buf_entry *entries = &rxba->entries[0];
uint16_t ssn = reorder_buf->head_sn;
/* ignore nssn smaller than head sn - this can happen due to timeout */
if (iwm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
goto set_timer;
while (iwm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
int index = ssn % reorder_buf->buf_size;
struct mbuf *m;
int chanidx, is_shortpre;
uint32_t rx_pkt_status, rate_n_flags, device_timestamp;
struct ieee80211_rxinfo *rxi;
/* This data is the same for all A-MSDU subframes. */
chanidx = entries[index].chanidx;
rx_pkt_status = entries[index].rx_pkt_status;
is_shortpre = entries[index].is_shortpre;
rate_n_flags = entries[index].rate_n_flags;
device_timestamp = entries[index].device_timestamp;
rxi = &entries[index].rxi;
/*
* Empty the list. Will have more than one frame for A-MSDU.
* Empty list is valid as well since nssn indicates frames were
* received.
*/
while ((m = ml_dequeue(&entries[index].frames)) != NULL) {
iwm_rx_frame(sc, m, chanidx, rx_pkt_status, is_shortpre,
rate_n_flags, device_timestamp, rxi, ml);
reorder_buf->num_stored--;
/*
* Allow the same frame sequence number and CCMP PN for
* all A-MSDU subframes following the first subframe.
* Otherwise they would be discarded as replays.
*/
rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ;
rxi->rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN;
}
ssn = (ssn + 1) & 0xfff;
}
reorder_buf->head_sn = nssn;
set_timer:
if (reorder_buf->num_stored && !reorder_buf->removed) {
timeout_add_usec(&reorder_buf->reorder_timer,
RX_REORDER_BUF_TIMEOUT_MQ_USEC);
} else
timeout_del(&reorder_buf->reorder_timer);
}
int
iwm_oldsn_workaround(struct iwm_softc *sc, struct ieee80211_node *ni, int tid,
struct iwm_reorder_buffer *buffer, uint32_t reorder_data, uint32_t gp2)
{
struct ieee80211com *ic = &sc->sc_ic;
if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
/* we have a new (A-)MPDU ... */
/*
* reset counter to 0 if we didn't have any oldsn in
* the last A-MPDU (as detected by GP2 being identical)
*/
if (!buffer->consec_oldsn_prev_drop)
buffer->consec_oldsn_drops = 0;
/* either way, update our tracking state */
buffer->consec_oldsn_ampdu_gp2 = gp2;
} else if (buffer->consec_oldsn_prev_drop) {
/*
* tracking state didn't change, and we had an old SN
* indication before - do nothing in this case, we
* already noted this one down and are waiting for the
* next A-MPDU (by GP2)
*/
return 0;
}
/* return unless this MPDU has old SN */
if (!(reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN))
return 0;
/* update state */
buffer->consec_oldsn_prev_drop = 1;
buffer->consec_oldsn_drops++;
/* if limit is reached, send del BA and reset state */
if (buffer->consec_oldsn_drops == IWM_AMPDU_CONSEC_DROPS_DELBA) {
ieee80211_delba_request(ic, ni, IEEE80211_REASON_UNSPECIFIED,
0, tid);
buffer->consec_oldsn_prev_drop = 0;
buffer->consec_oldsn_drops = 0;
return 1;
}
return 0;
}
/*
* Handle re-ordering of frames which were de-aggregated in hardware.
* Returns 1 if the MPDU was consumed (buffered or dropped).
* Returns 0 if the MPDU should be passed to upper layer.
*/
int
iwm_rx_reorder(struct iwm_softc *sc, struct mbuf *m, int chanidx,
struct iwm_rx_mpdu_desc *desc, int is_shortpre, int rate_n_flags,
uint32_t device_timestamp, struct ieee80211_rxinfo *rxi,
struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct iwm_rxba_data *rxba;
struct iwm_reorder_buffer *buffer;
uint32_t reorder_data = le32toh(desc->reorder_data);
int is_amsdu = (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU);
int last_subframe =
(desc->amsdu_info & IWM_RX_MPDU_AMSDU_LAST_SUBFRAME);
uint8_t tid;
uint8_t subframe_idx = (desc->amsdu_info &
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK);
struct iwm_reorder_buf_entry *entries;
int index;
uint16_t nssn, sn;
uint8_t baid, type, subtype;
int hasqos;
wh = mtod(m, struct ieee80211_frame *);
hasqos = ieee80211_has_qos(wh);
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/*
* We are only interested in Block Ack requests and unicast QoS data.
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
return 0;
if (hasqos) {
if (subtype & IEEE80211_FC0_SUBTYPE_NODATA)
return 0;
} else {
if (type != IEEE80211_FC0_TYPE_CTL ||
subtype != IEEE80211_FC0_SUBTYPE_BAR)
return 0;
}
baid = (reorder_data & IWM_RX_MPDU_REORDER_BAID_MASK) >>
IWM_RX_MPDU_REORDER_BAID_SHIFT;
if (baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
baid >= nitems(sc->sc_rxba_data))
return 0;
rxba = &sc->sc_rxba_data[baid];
if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
tid != rxba->tid || rxba->sta_id != IWM_STATION_ID)
return 0;
if (rxba->timeout != 0)
getmicrouptime(&rxba->last_rx);
/* Bypass A-MPDU re-ordering in net80211. */
rxi->rxi_flags |= IEEE80211_RXI_AMPDU_DONE;
nssn = reorder_data & IWM_RX_MPDU_REORDER_NSSN_MASK;
sn = (reorder_data & IWM_RX_MPDU_REORDER_SN_MASK) >>
IWM_RX_MPDU_REORDER_SN_SHIFT;
buffer = &rxba->reorder_buf;
entries = &rxba->entries[0];
if (!buffer->valid) {
if (reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN)
return 0;
buffer->valid = 1;
}
ni = ieee80211_find_rxnode(ic, wh);
if (type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
iwm_release_frames(sc, ni, rxba, buffer, nssn, ml);
goto drop;
}
/*
* If there was a significant jump in the nssn - adjust.
* If the SN is smaller than the NSSN it might need to first go into
* the reorder buffer, in which case we just release up to it and the
* rest of the function will take care of storing it and releasing up to
* the nssn.
*/
if (!iwm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
buffer->buf_size) ||
!SEQ_LT(sn, buffer->head_sn + buffer->buf_size)) {
uint16_t min_sn = SEQ_LT(sn, nssn) ? sn : nssn;
ic->ic_stats.is_ht_rx_frame_above_ba_winend++;
iwm_release_frames(sc, ni, rxba, buffer, min_sn, ml);
}
if (iwm_oldsn_workaround(sc, ni, tid, buffer, reorder_data,
device_timestamp)) {
/* BA session will be torn down. */
ic->ic_stats.is_ht_rx_ba_window_jump++;
goto drop;
}
/* drop any outdated packets */
if (SEQ_LT(sn, buffer->head_sn)) {
ic->ic_stats.is_ht_rx_frame_below_ba_winstart++;
goto drop;
}
/* release immediately if allowed by nssn and no stored frames */
if (!buffer->num_stored && SEQ_LT(sn, nssn)) {
if (iwm_is_sn_less(buffer->head_sn, nssn, buffer->buf_size) &&
(!is_amsdu || last_subframe))
buffer->head_sn = nssn;
ieee80211_release_node(ic, ni);
return 0;
}
/*
* release immediately if there are no stored frames, and the sn is
* equal to the head.
* This can happen due to reorder timer, where NSSN is behind head_sn.
* When we released everything, and we got the next frame in the
* sequence, according to the NSSN we can't release immediately,
* while technically there is no hole and we can move forward.
*/
if (!buffer->num_stored && sn == buffer->head_sn) {
if (!is_amsdu || last_subframe)
buffer->head_sn = (buffer->head_sn + 1) & 0xfff;
ieee80211_release_node(ic, ni);
return 0;
}
index = sn % buffer->buf_size;
/*
* Check if we already stored this frame
* As AMSDU is either received or not as whole, logic is simple:
* If we have frames in that position in the buffer and the last frame
* originated from AMSDU had a different SN then it is a retransmission.
* If it is the same SN then if the subframe index is incrementing it
* is the same AMSDU - otherwise it is a retransmission.
*/
if (!ml_empty(&entries[index].frames)) {
if (!is_amsdu) {
ic->ic_stats.is_ht_rx_ba_no_buf++;
goto drop;
} else if (sn != buffer->last_amsdu ||
buffer->last_sub_index >= subframe_idx) {
ic->ic_stats.is_ht_rx_ba_no_buf++;
goto drop;
}
} else {
/* This data is the same for all A-MSDU subframes. */
entries[index].chanidx = chanidx;
entries[index].is_shortpre = is_shortpre;
entries[index].rate_n_flags = rate_n_flags;
entries[index].device_timestamp = device_timestamp;
memcpy(&entries[index].rxi, rxi, sizeof(entries[index].rxi));
}
/* put in reorder buffer */
ml_enqueue(&entries[index].frames, m);
buffer->num_stored++;
getmicrouptime(&entries[index].reorder_time);
if (is_amsdu) {
buffer->last_amsdu = sn;
buffer->last_sub_index = subframe_idx;
}
/*
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
* The reason is that NSSN advances on the first sub-frame, and may
* cause the reorder buffer to advance before all the sub-frames arrive.
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
* SN 1. NSSN for first sub frame will be 3 with the result of driver
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
* already ahead and it will be dropped.
* If the last sub-frame is not on this queue - we will get frame
* release notification with up to date NSSN.
*/
if (!is_amsdu || last_subframe)
iwm_release_frames(sc, ni, rxba, buffer, nssn, ml);
ieee80211_release_node(ic, ni);
return 1;
drop:
m_freem(m);
ieee80211_release_node(ic, ni);
return 1;
}
void
iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, void *pktdata,
size_t maxlen, struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_rxinfo rxi;
struct iwm_rx_mpdu_desc *desc;
uint32_t len, hdrlen, rate_n_flags, device_timestamp;
int rssi;
uint8_t chanidx;
uint16_t phy_info;
memset(&rxi, 0, sizeof(rxi));
desc = (struct iwm_rx_mpdu_desc *)pktdata;
if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) ||
!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) {
m_freem(m);
return; /* drop */
}
len = le16toh(desc->mpdu_len);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Allow control frames in monitor mode. */
if (len < sizeof(struct ieee80211_frame_cts)) {
ic->ic_stats.is_rx_tooshort++;
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
} else if (len < sizeof(struct ieee80211_frame)) {
ic->ic_stats.is_rx_tooshort++;
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
if (len > maxlen - sizeof(*desc)) {
IC2IFP(ic)->if_ierrors++;
m_freem(m);
return;
}
m->m_data = pktdata + sizeof(*desc);
m->m_pkthdr.len = m->m_len = len;
/* Account for padding following the frame header. */
if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD) {
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (type == IEEE80211_FC0_TYPE_CTL) {
switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
case IEEE80211_FC0_SUBTYPE_CTS:
hdrlen = sizeof(struct ieee80211_frame_cts);
break;
case IEEE80211_FC0_SUBTYPE_ACK:
hdrlen = sizeof(struct ieee80211_frame_ack);
break;
default:
hdrlen = sizeof(struct ieee80211_frame_min);
break;
}
} else
hdrlen = ieee80211_get_hdrlen(wh);
if ((le16toh(desc->status) &
IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK) ==
IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC) {
/* Padding is inserted after the IV. */
hdrlen += IEEE80211_CCMP_HDRLEN;
}
memmove(m->m_data + 2, m->m_data, hdrlen);
m_adj(m, 2);
}
/*
* Hardware de-aggregates A-MSDUs and copies the same MAC header
* in place for each subframe. But it leaves the 'A-MSDU present'
* bit set in the frame header. We need to clear this bit ourselves.
*
* And we must allow the same CCMP PN for subframes following the
* first subframe. Otherwise they would be discarded as replays.
*/
if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU) {
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
uint8_t subframe_idx = (desc->amsdu_info &
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK);
if (subframe_idx > 0)
rxi.rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN;
if (ieee80211_has_qos(wh) && ieee80211_has_addr4(wh) &&
m->m_len >= sizeof(struct ieee80211_qosframe_addr4)) {
struct ieee80211_qosframe_addr4 *qwh4 = mtod(m,
struct ieee80211_qosframe_addr4 *);
qwh4->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU);
/* HW reverses addr3 and addr4. */
iwm_flip_address(qwh4->i_addr3);
iwm_flip_address(qwh4->i_addr4);
} else if (ieee80211_has_qos(wh) &&
m->m_len >= sizeof(struct ieee80211_qosframe)) {
struct ieee80211_qosframe *qwh = mtod(m,
struct ieee80211_qosframe *);
qwh->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU);
/* HW reverses addr3. */
iwm_flip_address(qwh->i_addr3);
}
}
/*
* Verify decryption before duplicate detection. The latter uses
* the TID supplied in QoS frame headers and this TID is implicitly
* verified as part of the CCMP nonce.
*/
if (iwm_rx_hwdecrypt(sc, m, le16toh(desc->status), &rxi)) {
m_freem(m);
return;
}
if (iwm_detect_duplicate(sc, m, desc, &rxi)) {
m_freem(m);
return;
}
phy_info = le16toh(desc->phy_info);
rate_n_flags = le32toh(desc->v1.rate_n_flags);
chanidx = desc->v1.channel;
device_timestamp = desc->v1.gp2_on_air_rise;
rssi = iwm_rxmq_get_signal_strength(sc, desc);
rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */
rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */
rxi.rxi_rssi = rssi;
rxi.rxi_tstamp = le64toh(desc->v1.tsf_on_air_rise);
rxi.rxi_chan = chanidx;
if (iwm_rx_reorder(sc, m, chanidx, desc,
(phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE),
rate_n_flags, device_timestamp, &rxi, ml))
return;
iwm_rx_frame(sc, m, chanidx, le16toh(desc->status),
(phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE),
rate_n_flags, device_timestamp, &rxi, ml);
}
void
iwm_ra_choose(struct iwm_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
int old_txmcs = ni->ni_txmcs;
int old_nss = ni->ni_vht_ss;
if (ni->ni_flags & IEEE80211_NODE_VHT)
ieee80211_ra_vht_choose(&in->in_rn_vht, ic, ni);
else
ieee80211_ra_choose(&in->in_rn, ic, ni);
/*
* If RA has chosen a new TX rate we must update
* the firmware's LQ rate table.
*/
if (ni->ni_txmcs != old_txmcs || ni->ni_vht_ss != old_nss)
iwm_setrates(in, 1);
}
void
iwm_ht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
int txmcs, uint8_t failure_frame, int txfail)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
/* Ignore Tx reports which don't match our last LQ command. */
if (txmcs != ni->ni_txmcs) {
if (++in->lq_rate_mismatch > 15) {
/* Try to sync firmware with the driver... */
iwm_setrates(in, 1);
in->lq_rate_mismatch = 0;
}
} else {
int mcs = txmcs;
const struct ieee80211_ht_rateset *rs =
ieee80211_ra_get_ht_rateset(txmcs,
ieee80211_node_supports_ht_chan40(ni),
ieee80211_ra_use_ht_sgi(ni));
unsigned int retries = 0, i;
in->lq_rate_mismatch = 0;
for (i = 0; i < failure_frame; i++) {
if (mcs > rs->min_mcs) {
ieee80211_ra_add_stats_ht(&in->in_rn,
ic, ni, mcs, 1, 1);
mcs--;
} else
retries++;
}
if (txfail && failure_frame == 0) {
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
txmcs, 1, 1);
} else {
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
mcs, retries + 1, retries);
}
iwm_ra_choose(sc, ni);
}
}
void
iwm_vht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
int txmcs, int nss, uint8_t failure_frame, int txfail)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
uint8_t sco = IEEE80211_HTOP0_SCO_SCN;
/* Ignore Tx reports which don't match our last LQ command. */
if (txmcs != ni->ni_txmcs || nss != ni->ni_vht_ss) {
if (++in->lq_rate_mismatch > 15) {
/* Try to sync firmware with the driver... */
iwm_setrates(in, 1);
in->lq_rate_mismatch = 0;
}
} else {
int mcs = txmcs;
unsigned int retries = 0, i;
if (in->in_phyctxt) {
vht_chan_width = in->in_phyctxt->vht_chan_width;
sco = in->in_phyctxt->sco;
}
in->lq_rate_mismatch = 0;
for (i = 0; i < failure_frame; i++) {
if (mcs > 0) {
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
ic, ni, mcs, nss, 1, 1);
if (vht_chan_width >=
IEEE80211_VHTOP0_CHAN_WIDTH_80) {
/*
* First 4 Tx attempts used same MCS,
* twice at 80MHz and twice at 40MHz.
*/
if (i >= 4)
mcs--;
} else if (sco == IEEE80211_HTOP0_SCO_SCA ||
sco == IEEE80211_HTOP0_SCO_SCB) {
/*
* First 4 Tx attempts used same MCS,
* four times at 40MHz.
*/
if (i >= 4)
mcs--;
} else
mcs--;
} else
retries++;
}
if (txfail && failure_frame == 0) {
ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni,
txmcs, nss, 1, 1);
} else {
ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni,
mcs, nss, retries + 1, retries);
}
iwm_ra_choose(sc, ni);
}
}
void
iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_node *in, int txmcs, int txrate)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
struct ifnet *ifp = IC2IFP(ic);
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
uint32_t initial_rate = le32toh(tx_resp->initial_rate);
int txfail;
KASSERT(tx_resp->frame_count == 1);
txfail = (status != IWM_TX_STATUS_SUCCESS &&
status != IWM_TX_STATUS_DIRECT_DONE);
/*
* Update rate control statistics.
* Only report frames which were actually queued with the currently
* selected Tx rate. Because Tx queues are relatively long we may
* encounter previously selected rates here during Tx bursts.
* Providing feedback based on such frames can lead to suboptimal
* Tx rate control decisions.
*/
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) {
if (txrate != ni->ni_txrate) {
if (++in->lq_rate_mismatch > 15) {
/* Try to sync firmware with the driver... */
iwm_setrates(in, 1);
in->lq_rate_mismatch = 0;
}
} else {
in->lq_rate_mismatch = 0;
in->in_amn.amn_txcnt++;
if (txfail)
in->in_amn.amn_retrycnt++;
if (tx_resp->failure_frame > 0)
in->in_amn.amn_retrycnt++;
}
} else if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN &&
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
int txmcs = initial_rate & IWM_RATE_VHT_MCS_RATE_CODE_MSK;
int nss = ((initial_rate & IWM_RATE_VHT_MCS_NSS_MSK) >>
IWM_RATE_VHT_MCS_NSS_POS) + 1;
iwm_vht_single_rate_control(sc, ni, txmcs, nss,
tx_resp->failure_frame, txfail);
} else if (ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN &&
(initial_rate & IWM_RATE_MCS_HT_MSK)) {
int txmcs = initial_rate &
(IWM_RATE_HT_MCS_RATE_CODE_MSK | IWM_RATE_HT_MCS_NSS_MSK);
iwm_ht_single_rate_control(sc, ni, txmcs,
tx_resp->failure_frame, txfail);
}
if (txfail)
ifp->if_oerrors++;
}
void
iwm_txd_done(struct iwm_softc *sc, struct iwm_tx_data *txd)
{
struct ieee80211com *ic = &sc->sc_ic;
bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txd->map);
m_freem(txd->m);
txd->m = NULL;
KASSERT(txd->in);
ieee80211_release_node(ic, &txd->in->in_ni);
txd->in = NULL;
txd->ampdu_nframes = 0;
txd->ampdu_txmcs = 0;
txd->ampdu_txnss = 0;
}
void
iwm_txq_advance(struct iwm_softc *sc, struct iwm_tx_ring *ring, int idx)
{
struct iwm_tx_data *txd;
while (ring->tail != idx) {
txd = &ring->data[ring->tail];
if (txd->m != NULL) {
iwm_reset_sched(sc, ring->qid, ring->tail, IWM_STATION_ID);
iwm_txd_done(sc, txd);
ring->queued--;
}
ring->tail = (ring->tail + 1) % IWM_TX_RING_COUNT;
}
wakeup(ring);
}
void
iwm_ampdu_tx_done(struct iwm_softc *sc, struct iwm_cmd_header *cmd_hdr,
struct iwm_node *in, struct iwm_tx_ring *txq, uint32_t initial_rate,
uint8_t nframes, uint8_t failure_frame, uint16_t ssn, int status,
struct iwm_agg_tx_status *agg_status)
{
struct ieee80211com *ic = &sc->sc_ic;
int tid = cmd_hdr->qid - IWM_FIRST_AGG_TX_QUEUE;
struct iwm_tx_data *txdata = &txq->data[cmd_hdr->idx];
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211_tx_ba *ba;
int txfail = (status != IWM_TX_STATUS_SUCCESS &&
status != IWM_TX_STATUS_DIRECT_DONE);
uint16_t seq;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (nframes > 1) {
int i;
/*
* Collect information about this A-MPDU.
*/
for (i = 0; i < nframes; i++) {
uint8_t qid = agg_status[i].qid;
uint8_t idx = agg_status[i].idx;
uint16_t txstatus = (le16toh(agg_status[i].status) &
IWM_AGG_TX_STATE_STATUS_MSK);
if (txstatus != IWM_AGG_TX_STATE_TRANSMITTED)
continue;
if (qid != cmd_hdr->qid)
continue;
txdata = &txq->data[idx];
if (txdata->m == NULL)
continue;
/* The Tx rate was the same for all subframes. */
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
txdata->ampdu_txmcs = initial_rate &
IWM_RATE_VHT_MCS_RATE_CODE_MSK;
txdata->ampdu_txnss = ((initial_rate &
IWM_RATE_VHT_MCS_NSS_MSK) >>
IWM_RATE_VHT_MCS_NSS_POS) + 1;
txdata->ampdu_nframes = nframes;
} else if (initial_rate & IWM_RATE_MCS_HT_MSK) {
txdata->ampdu_txmcs = initial_rate &
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
IWM_RATE_HT_MCS_NSS_MSK);
txdata->ampdu_nframes = nframes;
}
}
return;
}
ba = &ni->ni_tx_ba[tid];
if (ba->ba_state != IEEE80211_BA_AGREED)
return;
if (SEQ_LT(ssn, ba->ba_winstart))
return;
/* This was a final single-frame Tx attempt for frame SSN-1. */
seq = (ssn - 1) & 0xfff;
/*
* Skip rate control if our Tx rate is fixed.
* Don't report frames to MiRA which were sent at a different
* Tx rate than ni->ni_txmcs.
*/
if (ic->ic_fixed_mcs == -1) {
if (txdata->ampdu_nframes > 1) {
/*
* This frame was once part of an A-MPDU.
* Report one failed A-MPDU Tx attempt.
* The firmware might have made several such
* attempts but we don't keep track of this.
*/
if (ni->ni_flags & IEEE80211_NODE_VHT) {
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
ic, ni, txdata->ampdu_txmcs,
txdata->ampdu_txnss, 1, 1);
} else {
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
txdata->ampdu_txmcs, 1, 1);
}
}
/* Report the final single-frame Tx attempt. */
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
int txmcs = initial_rate &
IWM_RATE_VHT_MCS_RATE_CODE_MSK;
int nss = ((initial_rate &
IWM_RATE_VHT_MCS_NSS_MSK) >>
IWM_RATE_VHT_MCS_NSS_POS) + 1;
iwm_vht_single_rate_control(sc, ni, txmcs, nss,
failure_frame, txfail);
} else if (initial_rate & IWM_RATE_MCS_HT_MSK) {
int txmcs = initial_rate &
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
IWM_RATE_HT_MCS_NSS_MSK);
iwm_ht_single_rate_control(sc, ni, txmcs,
failure_frame, txfail);
}
}
if (txfail)
ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
/*
* SSN corresponds to the first (perhaps not yet transmitted) frame
* in firmware's BA window. Firmware is not going to retransmit any
* frames before its BA window so mark them all as done.
*/
ieee80211_output_ba_move_window(ic, ni, tid, ssn);
iwm_txq_advance(sc, txq, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
iwm_clear_oactive(sc, txq);
}
void
iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
int idx = cmd_hdr->idx;
int qid = cmd_hdr->qid;
struct iwm_tx_ring *ring = &sc->txq[qid];
struct iwm_tx_data *txd;
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
uint32_t ssn;
uint32_t len = iwm_rx_packet_len(pkt);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
/* Sanity checks. */
if (sizeof(*tx_resp) > len)
return;
if (qid < IWM_FIRST_AGG_TX_QUEUE && tx_resp->frame_count > 1)
return;
if (qid > IWM_LAST_AGG_TX_QUEUE)
return;
if (sizeof(*tx_resp) + sizeof(ssn) +
tx_resp->frame_count * sizeof(tx_resp->status) > len)
return;
sc->sc_tx_timer[qid] = 0;
txd = &ring->data[idx];
if (txd->m == NULL)
return;
memcpy(&ssn, &tx_resp->status + tx_resp->frame_count, sizeof(ssn));
ssn = le32toh(ssn) & 0xfff;
if (qid >= IWM_FIRST_AGG_TX_QUEUE) {
int status;
status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
iwm_ampdu_tx_done(sc, cmd_hdr, txd->in, ring,
le32toh(tx_resp->initial_rate), tx_resp->frame_count,
tx_resp->failure_frame, ssn, status, &tx_resp->status);
} else {
/*
* Even though this is not an agg queue, we must only free
* frames before the firmware's starting sequence number.
*/
iwm_rx_tx_cmd_single(sc, pkt, txd->in, txd->txmcs, txd->txrate);
iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
iwm_clear_oactive(sc, ring);
}
}
void
iwm_clear_oactive(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
if (ring->queued < IWM_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
ifq_clr_oactive(&ifp->if_snd);
/*
* Well, we're in interrupt context, but then again
* I guess net80211 does all sorts of stunts in
* interrupt context, so maybe this is no biggie.
*/
(*ifp->if_start)(ifp);
}
}
}
void
iwm_ampdu_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
struct iwm_tx_ring *txq, int tid, uint16_t seq, uint16_t ssn)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
int idx, end_idx;
/*
* Update Tx rate statistics for A-MPDUs before firmware's BA window.
*/
idx = IWM_AGG_SSN_TO_TXQ_IDX(seq);
end_idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn);
while (idx != end_idx) {
struct iwm_tx_data *txdata = &txq->data[idx];
if (txdata->m != NULL && txdata->ampdu_nframes > 1) {
/*
* We can assume that this subframe has been ACKed
* because ACK failures come as single frames and
* before failing an A-MPDU subframe the firmware
* sends it as a single frame at least once.
*/
if (ni->ni_flags & IEEE80211_NODE_VHT) {
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
ic, ni, txdata->ampdu_txmcs,
txdata->ampdu_txnss, 1, 0);
} else {
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
txdata->ampdu_txmcs, 1, 0);
}
/* Report this frame only once. */
txdata->ampdu_nframes = 0;
}
idx = (idx + 1) % IWM_TX_RING_COUNT;
}
iwm_ra_choose(sc, ni);
}
void
iwm_rx_compressed_ba(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
{
struct iwm_ba_notif *ban = (void *)pkt->data;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwm_node *in = (void *)ni;
struct ieee80211_tx_ba *ba;
struct iwm_tx_ring *ring;
uint16_t seq, ssn;
int qid;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (iwm_rx_packet_payload_len(pkt) < sizeof(*ban))
return;
if (ban->sta_id != IWM_STATION_ID ||
!IEEE80211_ADDR_EQ(in->in_macaddr, ban->sta_addr))
return;
qid = le16toh(ban->scd_flow);
if (qid < IWM_FIRST_AGG_TX_QUEUE || qid > IWM_LAST_AGG_TX_QUEUE)
return;
/* Protect against a firmware bug where the queue/TID are off. */
if (qid != IWM_FIRST_AGG_TX_QUEUE + ban->tid)
return;
sc->sc_tx_timer[qid] = 0;
ba = &ni->ni_tx_ba[ban->tid];
if (ba->ba_state != IEEE80211_BA_AGREED)
return;
ring = &sc->txq[qid];
/*
* The first bit in ban->bitmap corresponds to the sequence number
* stored in the sequence control field ban->seq_ctl.
* Multiple BA notifications in a row may be using this number, with
* additional bits being set in cba->bitmap. It is unclear how the
* firmware decides to shift this window forward.
* We rely on ba->ba_winstart instead.
*/
seq = le16toh(ban->seq_ctl) >> IEEE80211_SEQ_SEQ_SHIFT;
/*
* The firmware's new BA window starting sequence number
* corresponds to the first hole in ban->scd_ssn, implying
* that all frames between 'seq' and 'ssn' (non-inclusive)
* have been acked.
*/
ssn = le16toh(ban->scd_ssn);
if (SEQ_LT(ssn, ba->ba_winstart))
return;
/* Skip rate control if our Tx rate is fixed. */
if (ic->ic_fixed_mcs == -1)
iwm_ampdu_rate_control(sc, ni, ring, ban->tid,
ba->ba_winstart, ssn);
/*
* SSN corresponds to the first (perhaps not yet transmitted) frame
* in firmware's BA window. Firmware is not going to retransmit any
* frames before its BA window so mark them all as done.
*/
ieee80211_output_ba_move_window(ic, ni, ban->tid, ssn);
iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
iwm_clear_oactive(sc, ring);
}
void
iwm_rx_bmiss(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_missed_beacons_notif *mbn = (void *)pkt->data;
uint32_t missed;
if ((ic->ic_opmode != IEEE80211_M_STA) ||
(ic->ic_state != IEEE80211_S_RUN))
return;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
sizeof(*mbn), BUS_DMASYNC_POSTREAD);
missed = le32toh(mbn->consec_missed_beacons_since_last_rx);
if (missed > ic->ic_bmissthres && ic->ic_mgt_timer == 0) {
if (ic->ic_if.if_flags & IFF_DEBUG)
printf("%s: receiving no beacons from %s; checking if "
"this AP is still responding to probe requests\n",
DEVNAME(sc), ether_sprintf(ic->ic_bss->ni_macaddr));
/*
* Rather than go directly to scan state, try to send a
* directed probe request first. If that fails then the
* state machine will drop us into scanning after timing
* out waiting for a probe response.
*/
IEEE80211_SEND_MGMT(ic, ic->ic_bss,
IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
}
}
int
iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action)
{
struct iwm_binding_cmd cmd;
struct iwm_phy_ctxt *phyctxt = in->in_phyctxt;
uint32_t mac_id = IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color);
int i, err, active = (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE);
uint32_t status;
size_t len;
if (action == IWM_FW_CTXT_ACTION_ADD && active)
panic("binding already added");
if (action == IWM_FW_CTXT_ACTION_REMOVE && !active)
panic("binding already removed");
if (phyctxt == NULL) /* XXX race with iwm_stop() */
return EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.id_and_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
cmd.action = htole32(action);
cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
cmd.macs[0] = htole32(mac_id);
for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++)
cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID);
if (IEEE80211_IS_CHAN_2GHZ(phyctxt->channel) ||
!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CDB_SUPPORT))
cmd.lmac_id = htole32(IWM_LMAC_24G_INDEX);
else
cmd.lmac_id = htole32(IWM_LMAC_5G_INDEX);
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT))
len = sizeof(cmd);
else
len = sizeof(struct iwm_binding_cmd_v1);
status = 0;
err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD, len, &cmd,
&status);
if (err == 0 && status != 0)
err = EIO;
return err;
}
void
iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time)
{
memset(cmd, 0, sizeof(struct iwm_phy_context_cmd));
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
ctxt->color));
cmd->action = htole32(action);
cmd->apply_time = htole32(apply_time);
}
void
iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd,
struct ieee80211_channel *chan, uint8_t chains_static,
uint8_t chains_dynamic, uint8_t sco, uint8_t vht_chan_width)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t active_cnt, idle_cnt;
cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
cmd->ci.channel = ieee80211_chan2ieee(ic, chan);
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80) {
cmd->ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan);
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE80;
} else if (chan->ic_flags & IEEE80211_CHAN_40MHZ) {
if (sco == IEEE80211_HTOP0_SCO_SCA) {
/* secondary chan above -> control chan below */
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
} else if (sco == IEEE80211_HTOP0_SCO_SCB) {
/* secondary chan below -> control chan above */
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
} else {
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
}
} else {
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
}
/* Set rx the chains */
idle_cnt = chains_static;
active_cnt = chains_dynamic;
cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
IWM_PHY_RX_CHAIN_VALID_POS);
cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
cmd->rxchain_info |= htole32(active_cnt <<
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
}
uint8_t
iwm_get_vht_ctrl_pos(struct ieee80211com *ic, struct ieee80211_channel *chan)
{
int center_idx = ic->ic_bss->ni_vht_chan_center_freq_idx0;
int primary_idx = ic->ic_bss->ni_primary_chan;
/*
* The FW is expected to check the control channel position only
* when in HT/VHT and the channel width is not 20MHz. Return
* this value as the default one:
*/
uint8_t pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
switch (primary_idx - center_idx) {
case -6:
pos = IWM_PHY_VHT_CTRL_POS_2_BELOW;
break;
case -2:
pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
break;
case 2:
pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
break;
case 6:
pos = IWM_PHY_VHT_CTRL_POS_2_ABOVE;
break;
default:
break;
}
return pos;
}
int
iwm_phy_ctxt_cmd_uhb(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_phy_context_cmd_uhb cmd;
uint8_t active_cnt, idle_cnt;
struct ieee80211_channel *chan = ctxt->channel;
memset(&cmd, 0, sizeof(cmd));
cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
ctxt->color));
cmd.action = htole32(action);
cmd.apply_time = htole32(apply_time);
cmd.ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
cmd.ci.channel = htole32(ieee80211_chan2ieee(ic, chan));
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80) {
cmd.ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan);
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE80;
} else if (chan->ic_flags & IEEE80211_CHAN_40MHZ) {
if (sco == IEEE80211_HTOP0_SCO_SCA) {
/* secondary chan above -> control chan below */
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
} else if (sco == IEEE80211_HTOP0_SCO_SCB) {
/* secondary chan below -> control chan above */
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
} else {
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
}
} else {
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
}
idle_cnt = chains_static;
active_cnt = chains_dynamic;
cmd.rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
IWM_PHY_RX_CHAIN_VALID_POS);
cmd.rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
cmd.rxchain_info |= htole32(active_cnt <<
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
cmd.txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
}
int
iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width)
{
struct iwm_phy_context_cmd cmd;
/*
* Intel increased the size of the fw_channel_info struct and neglected
* to bump the phy_context_cmd struct, which contains an fw_channel_info
* member in the middle.
* To keep things simple we use a separate function to handle the larger
* variant of the phy context command.
*/
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS))
return iwm_phy_ctxt_cmd_uhb(sc, ctxt, chains_static,
chains_dynamic, action, apply_time, sco, vht_chan_width);
iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time);
iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel,
chains_static, chains_dynamic, sco, vht_chan_width);
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0,
sizeof(struct iwm_phy_context_cmd), &cmd);
}
int
iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
{
struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid];
struct iwm_tfd *desc;
struct iwm_tx_data *txdata;
struct iwm_device_cmd *cmd;
struct mbuf *m;
bus_addr_t paddr;
uint32_t addr_lo;
int err = 0, i, paylen, off, s;
int idx, code, async, group_id;
size_t hdrlen, datasz;
uint8_t *data;
int generation = sc->sc_generation;
code = hcmd->id;
async = hcmd->flags & IWM_CMD_ASYNC;
idx = ring->cur;
for (i = 0, paylen = 0; i < nitems(hcmd->len); i++) {
paylen += hcmd->len[i];
}
/* If this command waits for a response, allocate response buffer. */
hcmd->resp_pkt = NULL;
if (hcmd->flags & IWM_CMD_WANT_RESP) {
uint8_t *resp_buf;
KASSERT(!async);
KASSERT(hcmd->resp_pkt_len >= sizeof(struct iwm_rx_packet));
KASSERT(hcmd->resp_pkt_len <= IWM_CMD_RESP_MAX);
if (sc->sc_cmd_resp_pkt[idx] != NULL)
return ENOSPC;
resp_buf = malloc(hcmd->resp_pkt_len, M_DEVBUF,
M_NOWAIT | M_ZERO);
if (resp_buf == NULL)
return ENOMEM;
sc->sc_cmd_resp_pkt[idx] = resp_buf;
sc->sc_cmd_resp_len[idx] = hcmd->resp_pkt_len;
} else {
sc->sc_cmd_resp_pkt[idx] = NULL;
}
s = splnet();
desc = &ring->desc[idx];
txdata = &ring->data[idx];
group_id = iwm_cmd_groupid(code);
if (group_id != 0) {
hdrlen = sizeof(cmd->hdr_wide);
datasz = sizeof(cmd->data_wide);
} else {
hdrlen = sizeof(cmd->hdr);
datasz = sizeof(cmd->data);
}
if (paylen > datasz) {
/* Command is too large to fit in pre-allocated space. */
size_t totlen = hdrlen + paylen;
if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE) {
printf("%s: firmware command too long (%zd bytes)\n",
DEVNAME(sc), totlen);
err = EINVAL;
goto out;
}
m = MCLGETL(NULL, M_DONTWAIT, totlen);
if (m == NULL) {
printf("%s: could not get fw cmd mbuf (%zd bytes)\n",
DEVNAME(sc), totlen);
err = ENOMEM;
goto out;
}
cmd = mtod(m, struct iwm_device_cmd *);
err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd,
totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
printf("%s: could not load fw cmd mbuf (%zd bytes)\n",
DEVNAME(sc), totlen);
m_freem(m);
goto out;
}
txdata->m = m; /* mbuf will be freed in iwm_cmd_done() */
paddr = txdata->map->dm_segs[0].ds_addr;
} else {
cmd = &ring->cmd[idx];
paddr = txdata->cmd_paddr;
}
if (group_id != 0) {
cmd->hdr_wide.opcode = iwm_cmd_opcode(code);
cmd->hdr_wide.group_id = group_id;
cmd->hdr_wide.qid = ring->qid;
cmd->hdr_wide.idx = idx;
cmd->hdr_wide.length = htole16(paylen);
cmd->hdr_wide.version = iwm_cmd_version(code);
data = cmd->data_wide;
} else {
cmd->hdr.code = code;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = idx;
data = cmd->data;
}
for (i = 0, off = 0; i < nitems(hcmd->data); i++) {
if (hcmd->len[i] == 0)
continue;
memcpy(data + off, hcmd->data[i], hcmd->len[i]);
off += hcmd->len[i];
}
KASSERT(off == paylen);
/* lo field is not aligned */
addr_lo = htole32((uint32_t)paddr);
memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t));
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr)
| ((hdrlen + paylen) << 4));
desc->num_tbs = 1;
if (paylen > datasz) {
bus_dmamap_sync(sc->sc_dmat, txdata->map, 0,
hdrlen + paylen, BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
hdrlen + paylen, BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
sizeof (*desc), BUS_DMASYNC_PREWRITE);
/*
* Wake up the NIC to make sure that the firmware will see the host
* command - we will let the NIC sleep once all the host commands
* returned. This needs to be done only on 7000 family NICs.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (ring->queued == 0 && !iwm_nic_lock(sc)) {
err = EBUSY;
goto out;
}
}
iwm_update_sched(sc, ring->qid, ring->cur, 0, 0);
/* Kick command ring. */
ring->queued++;
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
if (!async) {
err = tsleep_nsec(desc, PCATCH, "iwmcmd", SEC_TO_NSEC(1));
if (err == 0) {
/* if hardware is no longer up, return error */
if (generation != sc->sc_generation) {
err = ENXIO;
goto out;
}
/* Response buffer will be freed in iwm_free_resp(). */
hcmd->resp_pkt = (void *)sc->sc_cmd_resp_pkt[idx];
sc->sc_cmd_resp_pkt[idx] = NULL;
} else if (generation == sc->sc_generation) {
free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF,
sc->sc_cmd_resp_len[idx]);
sc->sc_cmd_resp_pkt[idx] = NULL;
}
}
out:
splx(s);
return err;
}
int
iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags,
uint16_t len, const void *data)
{
struct iwm_host_cmd cmd = {
.id = id,
.len = { len, },
.data = { data, },
.flags = flags,
};
return iwm_send_cmd(sc, &cmd);
}
int
iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd,
uint32_t *status)
{
struct iwm_rx_packet *pkt;
struct iwm_cmd_response *resp;
int err, resp_len;
KASSERT((cmd->flags & IWM_CMD_WANT_RESP) == 0);
cmd->flags |= IWM_CMD_WANT_RESP;
cmd->resp_pkt_len = sizeof(*pkt) + sizeof(*resp);
err = iwm_send_cmd(sc, cmd);
if (err)
return err;
pkt = cmd->resp_pkt;
if (pkt == NULL || (pkt->hdr.flags & IWM_CMD_FAILED_MSK))
return EIO;
resp_len = iwm_rx_packet_payload_len(pkt);
if (resp_len != sizeof(*resp)) {
iwm_free_resp(sc, cmd);
return EIO;
}
resp = (void *)pkt->data;
*status = le32toh(resp->status);
iwm_free_resp(sc, cmd);
return err;
}
int
iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len,
const void *data, uint32_t *status)
{
struct iwm_host_cmd cmd = {
.id = id,
.len = { len, },
.data = { data, },
};
return iwm_send_cmd_status(sc, &cmd, status);
}
void
iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
{
KASSERT((hcmd->flags & (IWM_CMD_WANT_RESP)) == IWM_CMD_WANT_RESP);
free(hcmd->resp_pkt, M_DEVBUF, hcmd->resp_pkt_len);
hcmd->resp_pkt = NULL;
}
void
iwm_cmd_done(struct iwm_softc *sc, int qid, int idx, int code)
{
struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid];
struct iwm_tx_data *data;
if (qid != sc->cmdqid) {
return; /* Not a command ack. */
}
data = &ring->data[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[idx]);
if (ring->queued == 0) {
DPRINTF(("%s: unexpected firmware response to command 0x%x\n",
DEVNAME(sc), code));
} else if (--ring->queued == 0) {
/*
* 7000 family NICs are locked while commands are in progress.
* All commands are now done so we may unlock the NIC again.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_nic_unlock(sc);
}
}
void
iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
uint16_t len)
{
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
uint16_t val;
scd_bc_tbl = sc->sched_dma.vaddr;
len += IWM_TX_CRC_SIZE + IWM_TX_DELIMITER_SIZE;
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
len = roundup(len, 4) / 4;
val = htole16(sta_id << 12 | len);
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE);
/* Update TX scheduler. */
scd_bc_tbl[qid].tfd_offset[idx] = val;
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP)
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = val;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE);
}
void
iwm_reset_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id)
{
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
uint16_t val;
scd_bc_tbl = sc->sched_dma.vaddr;
val = htole16(1 | (sta_id << 12));
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE);
/* Update TX scheduler. */
scd_bc_tbl[qid].tfd_offset[idx] = val;
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP)
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = val;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE);
}
/*
* Fill in various bit for management frames, and leave them
* unfilled for data frames (firmware takes care of that).
* Return the selected legacy TX rate, or zero if HT/VHT is used.
*/
uint8_t
iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
const struct iwm_rate *rinfo;
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
int min_ridx = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
int ridx, rate_flags;
uint8_t rate = 0;
tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
tx->data_retry_limit = IWM_LOW_RETRY_LIMIT;
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
/* for non-data, use the lowest supported rate */
ridx = min_ridx;
tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT;
} else if (ic->ic_fixed_mcs != -1) {
if (ni->ni_flags & IEEE80211_NODE_VHT)
ridx = IWM_FIRST_OFDM_RATE;
else
ridx = sc->sc_fixed_ridx;
} else if (ic->ic_fixed_rate != -1) {
ridx = sc->sc_fixed_ridx;
} else {
int i;
/* Use firmware rateset retry table. */
tx->initial_rate_index = 0;
tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
if (ni->ni_flags & IEEE80211_NODE_HT) /* VHT implies HT */
return 0;
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
IWM_RIDX_OFDM : IWM_RIDX_CCK;
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
if (iwm_rates[i].rate == (ni->ni_txrate &
IEEE80211_RATE_VAL)) {
ridx = i;
break;
}
}
return iwm_rates[ridx].rate & 0xff;
}
rinfo = &iwm_rates[ridx];
if ((ni->ni_flags & IEEE80211_NODE_VHT) == 0 &&
iwm_is_mimo_ht_plcp(rinfo->ht_plcp))
rate_flags = IWM_RATE_MCS_ANT_AB_MSK;
else
rate_flags = iwm_valid_siso_ant_rate_mask(sc);
if (IWM_RIDX_IS_CCK(ridx))
rate_flags |= IWM_RATE_MCS_CCK_MSK;
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
type == IEEE80211_FC0_TYPE_DATA &&
rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
uint8_t sco = IEEE80211_HTOP0_SCO_SCN;
uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
IEEE80211_CHAN_80MHZ_ALLOWED(ni->ni_chan) &&
ieee80211_node_supports_vht_chan80(ni))
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
else if (IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan) &&
ieee80211_node_supports_ht_chan40(ni))
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
if (ni->ni_flags & IEEE80211_NODE_VHT)
rate_flags |= IWM_RATE_MCS_VHT_MSK;
else
rate_flags |= IWM_RATE_MCS_HT_MSK;
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80 &&
in->in_phyctxt != NULL &&
in->in_phyctxt->vht_chan_width == vht_chan_width) {
rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_80;
if (ieee80211_node_supports_vht_sgi80(ni))
rate_flags |= IWM_RATE_MCS_SGI_MSK;
} else if ((sco == IEEE80211_HTOP0_SCO_SCA ||
sco == IEEE80211_HTOP0_SCO_SCB) &&
in->in_phyctxt != NULL && in->in_phyctxt->sco == sco) {
rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_40;
if (ieee80211_node_supports_ht_sgi40(ni))
rate_flags |= IWM_RATE_MCS_SGI_MSK;
} else if (ieee80211_node_supports_ht_sgi20(ni))
rate_flags |= IWM_RATE_MCS_SGI_MSK;
if (ni->ni_flags & IEEE80211_NODE_VHT) {
/*
* ifmedia only provides an MCS index, no NSS.
* Use a fixed SISO rate.
*/
tx->rate_n_flags = htole32(rate_flags |
(ic->ic_fixed_mcs &
IWM_RATE_VHT_MCS_RATE_CODE_MSK));
} else
tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp);
} else
tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
return rate;
}
#define TB0_SIZE 16
int
iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ni;
struct iwm_tx_ring *ring;
struct iwm_tx_data *data;
struct iwm_tfd *desc;
struct iwm_device_cmd *cmd;
struct iwm_tx_cmd *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
uint8_t rate;
uint8_t *ivp;
uint32_t flags;
u_int hdrlen;
bus_dma_segment_t *seg;
uint8_t tid, type, subtype;
int i, totlen, err, pad;
int qid, hasqos;
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (type == IEEE80211_FC0_TYPE_CTL)
hdrlen = sizeof(struct ieee80211_frame_min);
else
hdrlen = ieee80211_get_hdrlen(wh);
hasqos = ieee80211_has_qos(wh);
if (type == IEEE80211_FC0_TYPE_DATA)
tid = IWM_TID_NON_QOS;
else
tid = IWM_MAX_TID_COUNT;
/*
* Map EDCA categories to Tx data queues.
*
* We use static data queue assignments even in DQA mode. We do not
* need to share Tx queues between stations because we only implement
* client mode; the firmware's station table contains only one entry
* which represents our access point.
*/
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
else
qid = IWM_AUX_QUEUE;
} else if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid = IWM_DQA_MIN_MGMT_QUEUE + ac;
else
qid = ac;
/* If possible, put this frame on an aggregation queue. */
if (hasqos) {
struct ieee80211_tx_ba *ba;
uint16_t qos = ieee80211_get_qos(wh);
int qostid = qos & IEEE80211_QOS_TID;
int agg_qid = IWM_FIRST_AGG_TX_QUEUE + qostid;
ba = &ni->ni_tx_ba[qostid];
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA &&
subtype != IEEE80211_FC0_SUBTYPE_NODATA &&
(sc->tx_ba_queue_mask & (1 << agg_qid)) &&
ba->ba_state == IEEE80211_BA_AGREED) {
qid = agg_qid;
tid = qostid;
ac = ieee80211_up_to_ac(ic, qostid);
}
}
ring = &sc->txq[qid];
desc = &ring->desc[ring->cur];
memset(desc, 0, sizeof(*desc));
data = &ring->data[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->hdr.code = IWM_TX_CMD;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
tx = (void *)cmd->data;
memset(tx, 0, sizeof(*tx));
rate = iwm_tx_fill_cmd(sc, in, wh, tx);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
uint16_t chan_flags;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
chan_flags = ni->ni_chan->ic_flags;
if (ic->ic_curmode != IEEE80211_MODE_11N &&
ic->ic_curmode != IEEE80211_MODE_11AC) {
chan_flags &= ~IEEE80211_CHAN_HT;
chan_flags &= ~IEEE80211_CHAN_40MHZ;
}
if (ic->ic_curmode != IEEE80211_MODE_11AC)
chan_flags &= ~IEEE80211_CHAN_VHT;
tap->wt_chan_flags = htole16(chan_flags);
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
tap->wt_rate = (0x80 | ni->ni_txmcs);
} else
tap->wt_rate = rate;
if ((ic->ic_flags & IEEE80211_F_WEPON) &&
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
m, BPF_DIRECTION_OUT);
}
#endif
totlen = m->m_pkthdr.len;
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
(k->k_cipher != IEEE80211_CIPHER_CCMP)) {
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return ENOBUFS;
/* 802.11 header may have moved. */
wh = mtod(m, struct ieee80211_frame *);
totlen = m->m_pkthdr.len;
k = NULL; /* skip hardware crypto below */
} else {
/* HW appends CCMP MIC */
totlen += IEEE80211_CCMP_HDRLEN;
}
}
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= IWM_TX_CMD_FLG_ACK;
}
if (type == IEEE80211_FC0_TYPE_DATA &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
(ic->ic_flags & IEEE80211_F_USEPROT)))
flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
tx->sta_id = IWM_MONITOR_STA_ID;
else
tx->sta_id = IWM_STATION_ID;
if (type == IEEE80211_FC0_TYPE_MGT) {
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->pm_frame_timeout = htole16(3);
else
tx->pm_frame_timeout = htole16(2);
} else {
if (type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
struct ieee80211_frame_min *mwh;
uint8_t *barfrm;
uint16_t ctl;
mwh = mtod(m, struct ieee80211_frame_min *);
barfrm = (uint8_t *)&mwh[1];
ctl = LE_READ_2(barfrm);
tid = (ctl & IEEE80211_BA_TID_INFO_MASK) >>
IEEE80211_BA_TID_INFO_SHIFT;
flags |= IWM_TX_CMD_FLG_ACK | IWM_TX_CMD_FLG_BAR;
tx->data_retry_limit = IWM_BAR_DFAULT_RETRY_LIMIT;
}
tx->pm_frame_timeout = htole16(0);
}
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWM_TX_CMD_FLG_MH_PAD;
tx->offload_assist |= htole16(IWM_TX_CMD_OFFLD_PAD);
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->len = htole16(totlen);
tx->tid_tspec = tid;
tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
/* Set physical address of "scratch area". */
tx->dram_lsb_ptr = htole32(data->scratch_paddr);
tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
/* Trim 802.11 header and prepend CCMP IV. */
m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
ivp = mtod(m, u_int8_t *);
k->k_tsc++; /* increment the 48-bit PN */
ivp[0] = k->k_tsc; /* PN0 */
ivp[1] = k->k_tsc >> 8; /* PN1 */
ivp[2] = 0; /* Rsvd */
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
ivp[4] = k->k_tsc >> 16; /* PN2 */
ivp[5] = k->k_tsc >> 24; /* PN3 */
ivp[6] = k->k_tsc >> 32; /* PN4 */
ivp[7] = k->k_tsc >> 40; /* PN5 */
tx->sec_ctl = IWM_TX_CMD_SEC_CCM;
memcpy(tx->key, k->k_key, MIN(sizeof(tx->key), k->k_len));
/* TX scheduler includes CCMP MIC length. */
totlen += IEEE80211_CCMP_MICLEN;
} else {
/* Trim 802.11 header. */
m_adj(m, hdrlen);
tx->sec_ctl = 0;
}
flags |= IWM_TX_CMD_FLG_BT_DIS;
if (!hasqos)
flags |= IWM_TX_CMD_FLG_SEQ_CTL;
tx->tx_flags |= htole32(flags);
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err && err != EFBIG) {
printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), err);
m_freem(m);
return err;
}
if (err) {
/* Too many DMA segments, linearize mbuf. */
if (m_defrag(m, M_DONTWAIT)) {
m_freem(m);
return ENOBUFS;
}
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc),
err);
m_freem(m);
return err;
}
}
data->m = m;
data->in = in;
data->txmcs = ni->ni_txmcs;
data->txrate = ni->ni_txrate;
data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */
data->ampdu_txnss = ni->ni_vht_ss; /* updated upon Tx interrupt */
/* Fill TX descriptor. */
desc->num_tbs = 2 + data->map->dm_nsegs;
desc->tbs[0].lo = htole32(data->cmd_paddr);
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |
(TB0_SIZE << 4));
desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |
((sizeof(struct iwm_cmd_header) + sizeof(*tx)
+ hdrlen + pad - TB0_SIZE) << 4));
/* Other DMA segments are for data payload. */
seg = data->map->dm_segs;
for (i = 0; i < data->map->dm_nsegs; i++, seg++) {
desc->tbs[i+2].lo = htole32(seg->ds_addr);
desc->tbs[i+2].hi_n_len = \
htole16(iwm_get_dma_hi_addr(seg->ds_addr)
| ((seg->ds_len) << 4));
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
sizeof (*cmd), BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
sizeof (*desc), BUS_DMASYNC_PREWRITE);
iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, totlen);
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWM_TX_RING_HIMARK) {
sc->qfullmsk |= 1 << ring->qid;
}
if (ic->ic_if.if_flags & IFF_UP)
sc->sc_tx_timer[ring->qid] = 15;
return 0;
}
int
iwm_flush_tx_path(struct iwm_softc *sc, int tfd_queue_msk)
{
struct iwm_tx_path_flush_cmd flush_cmd = {
.sta_id = htole32(IWM_STATION_ID),
.tid_mask = htole16(0xffff),
};
int err;
err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, 0,
sizeof(flush_cmd), &flush_cmd);
if (err)
printf("%s: Flushing tx queue failed: %d\n", DEVNAME(sc), err);
return err;
}
#define IWM_FLUSH_WAIT_MS 2000
int
iwm_wait_tx_queues_empty(struct iwm_softc *sc)
{
int i, err;
for (i = 0; i < IWM_MAX_QUEUES; i++) {
struct iwm_tx_ring *ring = &sc->txq[i];
if (i == sc->cmdqid)
continue;
while (ring->queued > 0) {
err = tsleep_nsec(ring, 0, "iwmflush",
MSEC_TO_NSEC(IWM_FLUSH_WAIT_MS));
if (err)
return err;
}
}
return 0;
}
void
iwm_led_enable(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON);
}
void
iwm_led_disable(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF);
}
int
iwm_led_is_enabled(struct iwm_softc *sc)
{
return (IWM_READ(sc, IWM_CSR_LED_REG) == IWM_CSR_LED_REG_TURN_ON);
}
#define IWM_LED_BLINK_TIMEOUT_MSEC 200
void
iwm_led_blink_timeout(void *arg)
{
struct iwm_softc *sc = arg;
if (iwm_led_is_enabled(sc))
iwm_led_disable(sc);
else
iwm_led_enable(sc);
timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC);
}
void
iwm_led_blink_start(struct iwm_softc *sc)
{
timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC);
iwm_led_enable(sc);
}
void
iwm_led_blink_stop(struct iwm_softc *sc)
{
timeout_del(&sc->sc_led_blink_to);
iwm_led_disable(sc);
}
#define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25
int
iwm_beacon_filter_send_cmd(struct iwm_softc *sc,
struct iwm_beacon_filter_cmd *cmd)
{
return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD,
0, sizeof(struct iwm_beacon_filter_cmd), cmd);
}
void
iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_beacon_filter_cmd *cmd)
{
cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled);
}
int
iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable)
{
struct iwm_beacon_filter_cmd cmd = {
IWM_BF_CMD_CONFIG_DEFAULTS,
.bf_enable_beacon_filter = htole32(1),
.ba_enable_beacon_abort = htole32(enable),
};
if (!sc->sc_bf.bf_enabled)
return 0;
sc->sc_bf.ba_enabled = enable;
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
return iwm_beacon_filter_send_cmd(sc, &cmd);
}
void
iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_power_cmd *cmd)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
int dtim_period, dtim_msec, keep_alive;
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
if (ni->ni_dtimperiod)
dtim_period = ni->ni_dtimperiod;
else
dtim_period = 1;
/*
* Regardless of power management state the driver must set
* keep alive period. FW will use it for sending keep alive NDPs
* immediately after association. Check that keep alive period
* is at least 3 * DTIM.
*/
dtim_msec = dtim_period * ni->ni_intval;
keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC);
keep_alive = roundup(keep_alive, 1000) / 1000;
cmd->keep_alive_seconds = htole16(keep_alive);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK);
}
int
iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in)
{
int err;
int ba_enable;
struct iwm_mac_power_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
iwm_power_build_cmd(sc, in, &cmd);
err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, 0,
sizeof(cmd), &cmd);
if (err != 0)
return err;
ba_enable = !!(cmd.flags &
htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK));
return iwm_update_beacon_abort(sc, in, ba_enable);
}
int
iwm_power_update_device(struct iwm_softc *sc)
{
struct iwm_device_power_cmd cmd = { };
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
cmd.flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK);
return iwm_send_cmd_pdu(sc,
IWM_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd);
}
int
iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in)
{
struct iwm_beacon_filter_cmd cmd = {
IWM_BF_CMD_CONFIG_DEFAULTS,
.bf_enable_beacon_filter = htole32(1),
};
int err;
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
err = iwm_beacon_filter_send_cmd(sc, &cmd);
if (err == 0)
sc->sc_bf.bf_enabled = 1;
return err;
}
int
iwm_disable_beacon_filter(struct iwm_softc *sc)
{
struct iwm_beacon_filter_cmd cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
err = iwm_beacon_filter_send_cmd(sc, &cmd);
if (err == 0)
sc->sc_bf.bf_enabled = 0;
return err;
}
int
iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update)
{
struct iwm_add_sta_cmd add_sta_cmd;
int err;
uint32_t status, aggsize;
const uint32_t max_aggsize = (IWM_STA_FLG_MAX_AGG_SIZE_64K >>
IWM_STA_FLG_MAX_AGG_SIZE_SHIFT);
size_t cmdsize;
struct ieee80211com *ic = &sc->sc_ic;
if (!update && (sc->sc_flags & IWM_FLAG_STA_ACTIVE))
panic("STA already added");
memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
if (ic->ic_opmode == IEEE80211_M_MONITOR)
add_sta_cmd.sta_id = IWM_MONITOR_STA_ID;
else
add_sta_cmd.sta_id = IWM_STATION_ID;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)) {
if (ic->ic_opmode == IEEE80211_M_MONITOR)
add_sta_cmd.station_type = IWM_STA_GENERAL_PURPOSE;
else
add_sta_cmd.station_type = IWM_STA_LINK;
}
add_sta_cmd.mac_id_n_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
int qid;
IEEE80211_ADDR_COPY(&add_sta_cmd.addr, etheranyaddr);
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
else
qid = IWM_AUX_QUEUE;
in->tfd_queue_msk |= (1 << qid);
} else {
int ac;
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
int qid = ac;
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid += IWM_DQA_MIN_MGMT_QUEUE;
in->tfd_queue_msk |= (1 << qid);
}
}
if (!update) {
if (ic->ic_opmode == IEEE80211_M_MONITOR)
IEEE80211_ADDR_COPY(&add_sta_cmd.addr,
etherbroadcastaddr);
else
IEEE80211_ADDR_COPY(&add_sta_cmd.addr,
in->in_macaddr);
}
add_sta_cmd.add_modify = update ? 1 : 0;
add_sta_cmd.station_flags_msk
|= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
if (update) {
add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_QUEUES |
IWM_STA_MODIFY_TID_DISABLE_TX);
}
add_sta_cmd.tid_disable_tx = htole16(in->tid_disable_ampdu);
add_sta_cmd.tfd_queue_msk = htole32(in->tfd_queue_msk);
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
add_sta_cmd.station_flags_msk
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK |
IWM_STA_FLG_AGG_MPDU_DENS_MSK);
if (iwm_mimo_enabled(sc)) {
if (in->in_ni.ni_flags & IEEE80211_NODE_VHT) {
uint16_t rx_mcs = (in->in_ni.ni_vht_rxmcs &
IEEE80211_VHT_MCS_FOR_SS_MASK(2)) >>
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2);
if (rx_mcs != IEEE80211_VHT_MCS_SS_NOT_SUPP) {
add_sta_cmd.station_flags |=
htole32(IWM_STA_FLG_MIMO_EN_MIMO2);
}
} else {
if (in->in_ni.ni_rxmcs[1] != 0) {
add_sta_cmd.station_flags |=
htole32(IWM_STA_FLG_MIMO_EN_MIMO2);
}
if (in->in_ni.ni_rxmcs[2] != 0) {
add_sta_cmd.station_flags |=
htole32(IWM_STA_FLG_MIMO_EN_MIMO3);
}
}
}
if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan) &&
ieee80211_node_supports_ht_chan40(&in->in_ni)) {
add_sta_cmd.station_flags |= htole32(
IWM_STA_FLG_FAT_EN_40MHZ);
}
if (in->in_ni.ni_flags & IEEE80211_NODE_VHT) {
if (IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
ieee80211_node_supports_vht_chan80(&in->in_ni)) {
add_sta_cmd.station_flags |= htole32(
IWM_STA_FLG_FAT_EN_80MHZ);
}
aggsize = (in->in_ni.ni_vhtcaps &
IEEE80211_VHTCAP_MAX_AMPDU_LEN_MASK) >>
IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT;
} else {
aggsize = (in->in_ni.ni_ampdu_param &
IEEE80211_AMPDU_PARAM_LE);
}
if (aggsize > max_aggsize)
aggsize = max_aggsize;
add_sta_cmd.station_flags |= htole32((aggsize <<
IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) &
IWM_STA_FLG_MAX_AGG_SIZE_MSK);
switch (in->in_ni.ni_ampdu_param & IEEE80211_AMPDU_PARAM_SS) {
case IEEE80211_AMPDU_PARAM_SS_2:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US);
break;
case IEEE80211_AMPDU_PARAM_SS_4:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US);
break;
case IEEE80211_AMPDU_PARAM_SS_8:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US);
break;
case IEEE80211_AMPDU_PARAM_SS_16:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US);
break;
default:
break;
}
}
status = IWM_ADD_STA_SUCCESS;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmdsize = sizeof(add_sta_cmd);
else
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize,
&add_sta_cmd, &status);
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
err = EIO;
return err;
}
int
iwm_add_aux_sta(struct iwm_softc *sc)
{
struct iwm_add_sta_cmd cmd;
int err, qid;
uint32_t status;
size_t cmdsize;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)) {
qid = IWM_DQA_AUX_QUEUE;
err = iwm_enable_txq(sc, IWM_AUX_STA_ID, qid,
IWM_TX_FIFO_MCAST, 0, IWM_MAX_TID_COUNT, 0);
} else {
qid = IWM_AUX_QUEUE;
err = iwm_enable_ac_txq(sc, qid, IWM_TX_FIFO_MCAST);
}
if (err)
return err;
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = IWM_AUX_STA_ID;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmd.station_type = IWM_STA_AUX_ACTIVITY;
cmd.mac_id_n_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0));
cmd.tfd_queue_msk = htole32(1 << qid);
cmd.tid_disable_tx = htole16(0xffff);
status = IWM_ADD_STA_SUCCESS;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmdsize = sizeof(cmd);
else
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd,
&status);
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
err = EIO;
return err;
}
int
iwm_drain_sta(struct iwm_softc *sc, struct iwm_node* in, int drain)
{
struct iwm_add_sta_cmd cmd;
int err;
uint32_t status;
size_t cmdsize;
memset(&cmd, 0, sizeof(cmd));
cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
cmd.sta_id = IWM_STATION_ID;
cmd.add_modify = IWM_STA_MODE_MODIFY;
cmd.station_flags = drain ? htole32(IWM_STA_FLG_DRAIN_FLOW) : 0;
cmd.station_flags_msk = htole32(IWM_STA_FLG_DRAIN_FLOW);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
cmdsize = sizeof(cmd);
else
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
status = IWM_ADD_STA_SUCCESS;
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA,
cmdsize, &cmd, &status);
if (err) {
printf("%s: could not update sta (error %d)\n",
DEVNAME(sc), err);
return err;
}
switch (status & IWM_ADD_STA_STATUS_MASK) {
case IWM_ADD_STA_SUCCESS:
break;
default:
err = EIO;
printf("%s: Couldn't %s draining for station\n",
DEVNAME(sc), drain ? "enable" : "disable");
break;
}
return err;
}
int
iwm_flush_sta(struct iwm_softc *sc, struct iwm_node *in)
{
int err;
sc->sc_flags |= IWM_FLAG_TXFLUSH;
err = iwm_drain_sta(sc, in, 1);
if (err)
goto done;
err = iwm_flush_tx_path(sc, in->tfd_queue_msk);
if (err) {
printf("%s: could not flush Tx path (error %d)\n",
DEVNAME(sc), err);
goto done;
}
/*
* Flushing Tx rings may fail if the AP has disappeared.
* We can rely on iwm_newstate_task() to reset everything and begin
* scanning again if we are left with outstanding frames on queues.
*/
err = iwm_wait_tx_queues_empty(sc);
if (err)
goto done;
err = iwm_drain_sta(sc, in, 0);
done:
sc->sc_flags &= ~IWM_FLAG_TXFLUSH;
return err;
}
int
iwm_rm_sta_cmd(struct iwm_softc *sc, struct iwm_node *in)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_rm_sta_cmd rm_sta_cmd;
int err;
if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE) == 0)
panic("sta already removed");
memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
if (ic->ic_opmode == IEEE80211_M_MONITOR)
rm_sta_cmd.sta_id = IWM_MONITOR_STA_ID;
else
rm_sta_cmd.sta_id = IWM_STATION_ID;
err = iwm_send_cmd_pdu(sc, IWM_REMOVE_STA, 0, sizeof(rm_sta_cmd),
&rm_sta_cmd);
return err;
}
uint16_t
iwm_scan_rx_chain(struct iwm_softc *sc)
{
uint16_t rx_chain;
uint8_t rx_ant;
rx_ant = iwm_fw_valid_rx_ant(sc);
rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS;
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS;
rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS;
return htole16(rx_chain);
}
uint32_t
iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck)
{
uint32_t tx_ant;
int i, ind;
for (i = 0, ind = sc->sc_scan_last_antenna;
i < IWM_RATE_MCS_ANT_NUM; i++) {
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
sc->sc_scan_last_antenna = ind;
break;
}
}
tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS;
if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck)
return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK |
tx_ant);
else
return htole32(IWM_RATE_6M_PLCP | tx_ant);
}
uint8_t
iwm_lmac_scan_fill_channels(struct iwm_softc *sc,
struct iwm_scan_channel_cfg_lmac *chan, int n_ssids, int bgscan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c;
uint8_t nchan;
for (nchan = 0, c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels;
c++) {
if (c->ic_flags == 0)
continue;
chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0));
chan->iter_count = htole16(1);
chan->iter_interval = 0;
chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL);
if (n_ssids != 0 && !bgscan)
chan->flags |= htole32(1 << 1); /* select SSID 0 */
chan++;
nchan++;
}
return nchan;
}
uint8_t
iwm_umac_scan_fill_channels(struct iwm_softc *sc,
struct iwm_scan_channel_cfg_umac *chan, int n_ssids, int bgscan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c;
uint8_t nchan;
for (nchan = 0, c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels;
c++) {
if (c->ic_flags == 0)
continue;
chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0);
chan->iter_count = 1;
chan->iter_interval = htole16(0);
if (n_ssids != 0 && !bgscan)
chan->flags = htole32(1 << 0); /* select SSID 0 */
chan++;
nchan++;
}
return nchan;
}
int
iwm_fill_probe_req_v1(struct iwm_softc *sc, struct iwm_scan_probe_req_v1 *preq1)
{
struct iwm_scan_probe_req preq2;
int err, i;
err = iwm_fill_probe_req(sc, &preq2);
if (err)
return err;
preq1->mac_header = preq2.mac_header;
for (i = 0; i < nitems(preq1->band_data); i++)
preq1->band_data[i] = preq2.band_data[i];
preq1->common_data = preq2.common_data;
memcpy(preq1->buf, preq2.buf, sizeof(preq1->buf));
return 0;
}
int
iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf;
struct ieee80211_rateset *rs;
size_t remain = sizeof(preq->buf);
uint8_t *frm, *pos;
memset(preq, 0, sizeof(*preq));
if (remain < sizeof(*wh) + 2)
return ENOBUFS;
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = 0;
/* hardware inserts SSID */
/* Tell firmware where the MAC header and SSID IE are. */
preq->mac_header.offset = 0;
preq->mac_header.len = htole16(frm - (uint8_t *)wh);
remain -= frm - (uint8_t *)wh;
/* Fill in 2GHz IEs and tell firmware where they are. */
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
if (remain < 4 + rs->rs_nrates)
return ENOBUFS;
} else if (remain < 2 + rs->rs_nrates)
return ENOBUFS;
preq->band_data[0].offset = htole16(frm - (uint8_t *)wh);
pos = frm;
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
remain -= frm - pos;
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) {
if (remain < 3)
return ENOBUFS;
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = 0;
remain -= 3;
}
preq->band_data[0].len = htole16(frm - pos);
if (sc->sc_nvm.sku_cap_band_52GHz_enable) {
/* Fill in 5GHz IEs. */
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
if (remain < 4 + rs->rs_nrates)
return ENOBUFS;
} else if (remain < 2 + rs->rs_nrates)
return ENOBUFS;
preq->band_data[1].offset = htole16(frm - (uint8_t *)wh);
pos = frm;
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
preq->band_data[1].len = htole16(frm - pos);
remain -= frm - pos;
if (ic->ic_flags & IEEE80211_F_VHTON) {
if (remain < 14)
return ENOBUFS;
frm = ieee80211_add_vhtcaps(frm, ic);
remain -= frm - pos;
preq->band_data[1].len = htole16(frm - pos);
}
}
/* Send 11n IEs on both 2GHz and 5GHz bands. */
preq->common_data.offset = htole16(frm - (uint8_t *)wh);
pos = frm;
if (ic->ic_flags & IEEE80211_F_HTON) {
if (remain < 28)
return ENOBUFS;
frm = ieee80211_add_htcaps(frm, ic);
/* XXX add WME info? */
remain -= frm - pos;
}
preq->common_data.len = htole16(frm - pos);
return 0;
}
int
iwm_lmac_scan(struct iwm_softc *sc, int bgscan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_host_cmd hcmd = {
.id = IWM_SCAN_OFFLOAD_REQUEST_CMD,
.len = { 0, },
.data = { NULL, },
.flags = 0,
};
struct iwm_scan_req_lmac *req;
struct iwm_scan_probe_req_v1 *preq;
size_t req_len;
int err, async = bgscan;
req_len = sizeof(struct iwm_scan_req_lmac) +
(sizeof(struct iwm_scan_channel_cfg_lmac) *
sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req_v1);
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
return ENOMEM;
req = malloc(req_len, M_DEVBUF,
(async ? M_NOWAIT : M_WAIT) | M_CANFAIL | M_ZERO);
if (req == NULL)
return ENOMEM;
hcmd.len[0] = (uint16_t)req_len;
hcmd.data[0] = (void *)req;
hcmd.flags |= async ? IWM_CMD_ASYNC : 0;
/* These timings correspond to iwlwifi's UNASSOC scan. */
req->active_dwell = 10;
req->passive_dwell = 110;
req->fragmented_dwell = 44;
req->extended_dwell = 90;
if (bgscan) {
req->max_out_time = htole32(120);
req->suspend_time = htole32(120);
} else {
req->max_out_time = htole32(0);
req->suspend_time = htole32(0);
}
req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH);
req->rx_chain_select = iwm_scan_rx_chain(sc);
req->iter_num = htole32(1);
req->delay = 0;
req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL |
IWM_LMAC_SCAN_FLAG_ITER_COMPLETE |
IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL);
if (ic->ic_des_esslen == 0)
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE);
else
req->scan_flags |=
htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION);
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT) &&
isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT))
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED);
req->flags = htole32(IWM_PHY_BAND_24);
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
req->flags |= htole32(IWM_PHY_BAND_5);
req->filter_flags =
htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON);
/* Tx flags 2 GHz. */
req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
IWM_TX_CMD_FLG_BT_DIS);
req->tx_cmd[0].rate_n_flags =
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/);
req->tx_cmd[0].sta_id = IWM_AUX_STA_ID;
/* Tx flags 5 GHz. */
req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
IWM_TX_CMD_FLG_BT_DIS);
req->tx_cmd[1].rate_n_flags =
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/);
req->tx_cmd[1].sta_id = IWM_AUX_STA_ID;
/* Check if we're doing an active directed scan. */
if (ic->ic_des_esslen != 0) {
req->direct_scan[0].id = IEEE80211_ELEMID_SSID;
req->direct_scan[0].len = ic->ic_des_esslen;
memcpy(req->direct_scan[0].ssid, ic->ic_des_essid,
ic->ic_des_esslen);
}
req->n_channels = iwm_lmac_scan_fill_channels(sc,
(struct iwm_scan_channel_cfg_lmac *)req->data,
ic->ic_des_esslen != 0, bgscan);
preq = (struct iwm_scan_probe_req_v1 *)(req->data +
(sizeof(struct iwm_scan_channel_cfg_lmac) *
sc->sc_capa_n_scan_channels));
err = iwm_fill_probe_req_v1(sc, preq);
if (err) {
free(req, M_DEVBUF, req_len);
return err;
}
/* Specify the scan plan: We'll do one iteration. */
req->schedule[0].iterations = 1;
req->schedule[0].full_scan_mul = 1;
/* Disable EBS. */
req->channel_opt[0].non_ebs_ratio = 1;
req->channel_opt[1].non_ebs_ratio = 1;
err = iwm_send_cmd(sc, &hcmd);
free(req, M_DEVBUF, req_len);
return err;
}
int
iwm_config_umac_scan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_scan_config *scan_config;
int err, nchan;
size_t cmd_size;
struct ieee80211_channel *c;
struct iwm_host_cmd hcmd = {
.id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_LONG_GROUP, 0),
.flags = 0,
};
static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M |
IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M |
IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M |
IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M |
IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M |
IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M |
IWM_SCAN_CONFIG_RATE_54M);
cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels;
scan_config = malloc(cmd_size, M_DEVBUF, M_WAIT | M_CANFAIL | M_ZERO);
if (scan_config == NULL)
return ENOMEM;
scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc));
scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc));
scan_config->legacy_rates = htole32(rates |
IWM_SCAN_CONFIG_SUPPORTED_RATE(rates));
/* These timings correspond to iwlwifi's UNASSOC scan. */
scan_config->dwell_active = 10;
scan_config->dwell_passive = 110;
scan_config->dwell_fragmented = 44;
scan_config->dwell_extended = 90;
scan_config->out_of_channel_time = htole32(0);
scan_config->suspend_time = htole32(0);
IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr);
scan_config->bcast_sta_id = IWM_AUX_STA_ID;
scan_config->channel_flags = 0;
for (c = &ic->ic_channels[1], nchan = 0;
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels; c++) {
if (c->ic_flags == 0)
continue;
scan_config->channel_array[nchan++] =
ieee80211_mhz2ieee(c->ic_freq, 0);
}
scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE |
IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS |
IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS |
IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID |
IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES |
IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES |
IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR |
IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|
IWM_SCAN_CONFIG_N_CHANNELS(nchan) |
IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED);
hcmd.data[0] = scan_config;
hcmd.len[0] = cmd_size;
err = iwm_send_cmd(sc, &hcmd);
free(scan_config, M_DEVBUF, cmd_size);
return err;
}
int
iwm_umac_scan_size(struct iwm_softc *sc)
{
int base_size = IWM_SCAN_REQ_UMAC_SIZE_V1;
int tail_size;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
base_size = IWM_SCAN_REQ_UMAC_SIZE_V8;
else if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
base_size = IWM_SCAN_REQ_UMAC_SIZE_V7;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER))
tail_size = sizeof(struct iwm_scan_req_umac_tail_v2);
else
tail_size = sizeof(struct iwm_scan_req_umac_tail_v1);
return base_size + sizeof(struct iwm_scan_channel_cfg_umac) *
sc->sc_capa_n_scan_channels + tail_size;
}
struct iwm_scan_umac_chan_param *
iwm_get_scan_req_umac_chan_param(struct iwm_softc *sc,
struct iwm_scan_req_umac *req)
{
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
return &req->v8.channel;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
return &req->v7.channel;
return &req->v1.channel;
}
void *
iwm_get_scan_req_umac_data(struct iwm_softc *sc, struct iwm_scan_req_umac *req)
{
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
return (void *)&req->v8.data;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
return (void *)&req->v7.data;
return (void *)&req->v1.data;
}
/* adaptive dwell max budget time [TU] for full scan */
#define IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN 300
/* adaptive dwell max budget time [TU] for directed scan */
#define IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN 100
/* adaptive dwell default high band APs number */
#define IWM_SCAN_ADWELL_DEFAULT_HB_N_APS 8
/* adaptive dwell default low band APs number */
#define IWM_SCAN_ADWELL_DEFAULT_LB_N_APS 2
/* adaptive dwell default APs number in social channels (1, 6, 11) */
#define IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL 10
int
iwm_umac_scan(struct iwm_softc *sc, int bgscan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_host_cmd hcmd = {
.id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_LONG_GROUP, 0),
.len = { 0, },
.data = { NULL, },
.flags = 0,
};
struct iwm_scan_req_umac *req;
void *cmd_data, *tail_data;
struct iwm_scan_req_umac_tail_v2 *tail;
struct iwm_scan_req_umac_tail_v1 *tailv1;
struct iwm_scan_umac_chan_param *chanparam;
size_t req_len;
int err, async = bgscan;
req_len = iwm_umac_scan_size(sc);
if ((req_len < IWM_SCAN_REQ_UMAC_SIZE_V1 +
sizeof(struct iwm_scan_req_umac_tail_v1)) ||
req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
return ERANGE;
req = malloc(req_len, M_DEVBUF,
(async ? M_NOWAIT : M_WAIT) | M_CANFAIL | M_ZERO);
if (req == NULL)
return ENOMEM;
hcmd.len[0] = (uint16_t)req_len;
hcmd.data[0] = (void *)req;
hcmd.flags |= async ? IWM_CMD_ASYNC : 0;
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
req->v7.adwell_default_n_aps_social =
IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL;
req->v7.adwell_default_n_aps =
IWM_SCAN_ADWELL_DEFAULT_LB_N_APS;
if (ic->ic_des_esslen != 0)
req->v7.adwell_max_budget =
htole16(IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN);
else
req->v7.adwell_max_budget =
htole16(IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN);
req->v7.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX] = 0;
req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX] = 0;
if (isset(sc->sc_ucode_api,
IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
req->v8.active_dwell[IWM_SCAN_LB_LMAC_IDX] = 10;
req->v8.passive_dwell[IWM_SCAN_LB_LMAC_IDX] = 110;
} else {
req->v7.active_dwell = 10;
req->v7.passive_dwell = 110;
req->v7.fragmented_dwell = 44;
}
} else {
/* These timings correspond to iwlwifi's UNASSOC scan. */
req->v1.active_dwell = 10;
req->v1.passive_dwell = 110;
req->v1.fragmented_dwell = 44;
req->v1.extended_dwell = 90;
req->v1.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
}
if (bgscan) {
const uint32_t timeout = htole32(120);
if (isset(sc->sc_ucode_api,
IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
req->v8.max_out_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
req->v8.suspend_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
} else if (isset(sc->sc_ucode_api,
IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
} else {
req->v1.max_out_time = timeout;
req->v1.suspend_time = timeout;
}
}
req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
cmd_data = iwm_get_scan_req_umac_data(sc, req);
chanparam = iwm_get_scan_req_umac_chan_param(sc, req);
chanparam->count = iwm_umac_scan_fill_channels(sc,
(struct iwm_scan_channel_cfg_umac *)cmd_data,
ic->ic_des_esslen != 0, bgscan);
chanparam->flags = 0;
tail_data = cmd_data + sizeof(struct iwm_scan_channel_cfg_umac) *
sc->sc_capa_n_scan_channels;
tail = tail_data;
/* tail v1 layout differs in preq and direct_scan member fields. */
tailv1 = tail_data;
req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL |
IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
req->v8.general_flags2 =
IWM_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER;
}
if (ic->ic_des_esslen != 0) {
if (isset(sc->sc_ucode_api,
IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) {
tail->direct_scan[0].id = IEEE80211_ELEMID_SSID;
tail->direct_scan[0].len = ic->ic_des_esslen;
memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid,
ic->ic_des_esslen);
} else {
tailv1->direct_scan[0].id = IEEE80211_ELEMID_SSID;
tailv1->direct_scan[0].len = ic->ic_des_esslen;
memcpy(tailv1->direct_scan[0].ssid, ic->ic_des_essid,
ic->ic_des_esslen);
}
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT);
} else
req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE);
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT) &&
isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT))
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL);
} else {
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL);
}
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER))
err = iwm_fill_probe_req(sc, &tail->preq);
else
err = iwm_fill_probe_req_v1(sc, &tailv1->preq);
if (err) {
free(req, M_DEVBUF, req_len);
return err;
}
/* Specify the scan plan: We'll do one iteration. */
tail->schedule[0].interval = 0;
tail->schedule[0].iter_count = 1;
err = iwm_send_cmd(sc, &hcmd);
free(req, M_DEVBUF, req_len);
return err;
}
void
iwm_mcc_update(struct iwm_softc *sc, struct iwm_mcc_chub_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
char alpha2[3];
snprintf(alpha2, sizeof(alpha2), "%c%c",
(le16toh(notif->mcc) & 0xff00) >> 8, le16toh(notif->mcc) & 0xff);
if (ifp->if_flags & IFF_DEBUG) {
printf("%s: firmware has detected regulatory domain '%s' "
"(0x%x)\n", DEVNAME(sc), alpha2, le16toh(notif->mcc));
}
/* TODO: Schedule a task to send MCC_UPDATE_CMD? */
}
uint8_t
iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
{
int i;
uint8_t rval;
for (i = 0; i < rs->rs_nrates; i++) {
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (rval == iwm_rates[ridx].rate)
return rs->rs_rates[i];
}
return 0;
}
int
iwm_rval2ridx(int rval)
{
int ridx;
for (ridx = 0; ridx < nitems(iwm_rates); ridx++) {
if (iwm_rates[ridx].plcp == IWM_RATE_INVM_PLCP)
continue;
if (rval == iwm_rates[ridx].rate)
break;
}
return ridx;
}
void
iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates,
int *ofdm_rates)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
int lowest_present_ofdm = -1;
int lowest_present_cck = -1;
uint8_t cck = 0;
uint8_t ofdm = 0;
int i;
if (ni->ni_chan == IEEE80211_CHAN_ANYC ||
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) {
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
continue;
cck |= (1 << i);
if (lowest_present_cck == -1 || lowest_present_cck > i)
lowest_present_cck = i;
}
}
for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) {
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
continue;
ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE));
if (lowest_present_ofdm == -1 || lowest_present_ofdm > i)
lowest_present_ofdm = i;
}
/*
* Now we've got the basic rates as bitmaps in the ofdm and cck
* variables. This isn't sufficient though, as there might not
* be all the right rates in the bitmap. E.g. if the only basic
* rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps
* and 6 Mbps because the 802.11-2007 standard says in 9.6:
*
* [...] a STA responding to a received frame shall transmit
* its Control Response frame [...] at the highest rate in the
* BSSBasicRateSet parameter that is less than or equal to the
* rate of the immediately previous frame in the frame exchange
* sequence ([...]) and that is of the same modulation class
* ([...]) as the received frame. If no rate contained in the
* BSSBasicRateSet parameter meets these conditions, then the
* control frame sent in response to a received frame shall be
* transmitted at the highest mandatory rate of the PHY that is
* less than or equal to the rate of the received frame, and
* that is of the same modulation class as the received frame.
*
* As a consequence, we need to add all mandatory rates that are
* lower than all of the basic rates to these bitmaps.
*/
if (IWM_RATE_24M_INDEX < lowest_present_ofdm)
ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE;
if (IWM_RATE_12M_INDEX < lowest_present_ofdm)
ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE;
/* 6M already there or needed so always add */
ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE;
/*
* CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP.
* Note, however:
* - if no CCK rates are basic, it must be ERP since there must
* be some basic rates at all, so they're OFDM => ERP PHY
* (or we're in 5 GHz, and the cck bitmap will never be used)
* - if 11M is a basic rate, it must be ERP as well, so add 5.5M
* - if 5.5M is basic, 1M and 2M are mandatory
* - if 2M is basic, 1M is mandatory
* - if 1M is basic, that's the only valid ACK rate.
* As a consequence, it's not as complicated as it sounds, just add
* any lower rates to the ACK rate bitmap.
*/
if (IWM_RATE_11M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE;
if (IWM_RATE_5M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE;
if (IWM_RATE_2M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE;
/* 1M already there or needed so always add */
cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE;
*cck_rates = cck;
*ofdm_rates = ofdm;
}
void
iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_ctx_cmd *cmd, uint32_t action)
{
#define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int cck_ack_rates, ofdm_ack_rates;
int i;
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
cmd->action = htole32(action);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_LISTENER);
else if (ic->ic_opmode == IEEE80211_M_STA)
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA);
else
panic("unsupported operating mode %d", ic->ic_opmode);
cmd->tsf_id = htole32(IWM_TSF_ID_A);
IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
IEEE80211_ADDR_COPY(cmd->bssid_addr, etherbroadcastaddr);
return;
}
IEEE80211_ADDR_COPY(cmd->bssid_addr, in->in_macaddr);
iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates);
cmd->cck_rates = htole32(cck_ack_rates);
cmd->ofdm_rates = htole32(ofdm_ack_rates);
cmd->cck_short_preamble
= htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE)
? IWM_MAC_FLG_SHORT_PREAMBLE : 0);
cmd->short_slot
= htole32((ic->ic_flags & IEEE80211_F_SHSLOT)
? IWM_MAC_FLG_SHORT_SLOT : 0);
for (i = 0; i < EDCA_NUM_AC; i++) {
struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[i];
int txf = iwm_ac_to_tx_fifo[i];
cmd->ac[txf].cw_min = htole16(IWM_EXP2(ac->ac_ecwmin));
cmd->ac[txf].cw_max = htole16(IWM_EXP2(ac->ac_ecwmax));
cmd->ac[txf].aifsn = ac->ac_aifsn;
cmd->ac[txf].fifos_mask = (1 << txf);
cmd->ac[txf].edca_txop = htole16(ac->ac_txoplimit * 32);
}
if (ni->ni_flags & IEEE80211_NODE_QOS)
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA);
if (ni->ni_flags & IEEE80211_NODE_HT) {
enum ieee80211_htprot htprot =
(ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
switch (htprot) {
case IEEE80211_HTPROT_NONE:
break;
case IEEE80211_HTPROT_NONMEMBER:
case IEEE80211_HTPROT_NONHT_MIXED:
cmd->protection_flags |=
htole32(IWM_MAC_PROT_FLG_HT_PROT |
IWM_MAC_PROT_FLG_FAT_PROT);
break;
case IEEE80211_HTPROT_20MHZ:
if (in->in_phyctxt &&
(in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA ||
in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB)) {
cmd->protection_flags |=
htole32(IWM_MAC_PROT_FLG_HT_PROT |
IWM_MAC_PROT_FLG_FAT_PROT);
}
break;
default:
break;
}
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN);
}
if (ic->ic_flags & IEEE80211_F_USEPROT)
cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT);
cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP);
#undef IWM_EXP2
}
void
iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_data_sta *sta, int assoc)
{
struct ieee80211_node *ni = &in->in_ni;
uint32_t dtim_off;
uint64_t tsf;
dtim_off = ni->ni_dtimcount * ni->ni_intval * IEEE80211_DUR_TU;
memcpy(&tsf, ni->ni_tstamp, sizeof(tsf));
tsf = letoh64(tsf);
sta->is_assoc = htole32(assoc);
sta->dtim_time = htole32(ni->ni_rstamp + dtim_off);
sta->dtim_tsf = htole64(tsf + dtim_off);
sta->bi = htole32(ni->ni_intval);
sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval));
sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtimperiod);
sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval));
sta->listen_interval = htole32(10);
sta->assoc_id = htole32(ni->ni_associd);
sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp);
}
int
iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action,
int assoc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
struct iwm_mac_ctx_cmd cmd;
int active = (sc->sc_flags & IWM_FLAG_MAC_ACTIVE);
if (action == IWM_FW_CTXT_ACTION_ADD && active)
panic("MAC already added");
if (action == IWM_FW_CTXT_ACTION_REMOVE && !active)
panic("MAC already removed");
memset(&cmd, 0, sizeof(cmd));
iwm_mac_ctxt_cmd_common(sc, in, &cmd, action);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_PROMISC |
IWM_MAC_FILTER_IN_CONTROL_AND_MGMT |
IWM_MAC_FILTER_ACCEPT_GRP |
IWM_MAC_FILTER_IN_BEACON |
IWM_MAC_FILTER_IN_PROBE_REQUEST |
IWM_MAC_FILTER_IN_CRC32);
} else if (!assoc || !ni->ni_associd || !ni->ni_dtimperiod)
/*
* Allow beacons to pass through as long as we are not
* associated or we do not have dtim period information.
*/
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON);
else
iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc);
return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
}
int
iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in, int running)
{
struct iwm_time_quota_cmd_v1 cmd;
int i, idx, num_active_macs, quota, quota_rem;
int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
int n_ifs[IWM_MAX_BINDINGS] = {0, };
uint16_t id;
memset(&cmd, 0, sizeof(cmd));
/* currently, PHY ID == binding ID */
if (in && in->in_phyctxt) {
id = in->in_phyctxt->id;
KASSERT(id < IWM_MAX_BINDINGS);
colors[id] = in->in_phyctxt->color;
if (running)
n_ifs[id] = 1;
}
/*
* The FW's scheduling session consists of
* IWM_MAX_QUOTA fragments. Divide these fragments
* equally between all the bindings that require quota
*/
num_active_macs = 0;
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
num_active_macs += n_ifs[i];
}
quota = 0;
quota_rem = 0;
if (num_active_macs) {
quota = IWM_MAX_QUOTA / num_active_macs;
quota_rem = IWM_MAX_QUOTA % num_active_macs;
}
for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
if (colors[i] < 0)
continue;
cmd.quotas[idx].id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
if (n_ifs[i] <= 0) {
cmd.quotas[idx].quota = htole32(0);
cmd.quotas[idx].max_duration = htole32(0);
} else {
cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
cmd.quotas[idx].max_duration = htole32(0);
}
idx++;
}
/* Give the remainder of the session to the first binding */
cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY)) {
struct iwm_time_quota_cmd cmd_v2;
memset(&cmd_v2, 0, sizeof(cmd_v2));
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
cmd_v2.quotas[i].id_and_color =
cmd.quotas[i].id_and_color;
cmd_v2.quotas[i].quota = cmd.quotas[i].quota;
cmd_v2.quotas[i].max_duration =
cmd.quotas[i].max_duration;
}
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0,
sizeof(cmd_v2), &cmd_v2);
}
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd);
}
void
iwm_add_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task)
{
int s = splnet();
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
splx(s);
return;
}
refcnt_take(&sc->task_refs);
if (!task_add(taskq, task))
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
void
iwm_del_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task)
{
if (task_del(taskq, task))
refcnt_rele(&sc->task_refs);
}
int
iwm_scan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
int err;
if (sc->sc_flags & IWM_FLAG_BGSCAN) {
err = iwm_scan_abort(sc);
if (err) {
printf("%s: could not abort background scan\n",
DEVNAME(sc));
return err;
}
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
err = iwm_umac_scan(sc, 0);
else
err = iwm_lmac_scan(sc, 0);
if (err) {
printf("%s: could not initiate scan\n", DEVNAME(sc));
return err;
}
/*
* The current mode might have been fixed during association.
* Ensure all channels get scanned.
*/
if (IFM_SUBTYPE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
sc->sc_flags |= IWM_FLAG_SCANNING;
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s -> %s\n", ifp->if_xname,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[IEEE80211_S_SCAN]);
if ((sc->sc_flags & IWM_FLAG_BGSCAN) == 0) {
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
ieee80211_node_cleanup(ic, ic->ic_bss);
}
ic->ic_state = IEEE80211_S_SCAN;
iwm_led_blink_start(sc);
wakeup(&ic->ic_state); /* wake iwm_init() */
return 0;
}
int
iwm_bgscan(struct ieee80211com *ic)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
int err;
if (sc->sc_flags & IWM_FLAG_SCANNING)
return 0;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
err = iwm_umac_scan(sc, 1);
else
err = iwm_lmac_scan(sc, 1);
if (err) {
printf("%s: could not initiate scan\n", DEVNAME(sc));
return err;
}
sc->sc_flags |= IWM_FLAG_BGSCAN;
return 0;
}
void
iwm_bgscan_done(struct ieee80211com *ic,
struct ieee80211_node_switch_bss_arg *arg, size_t arg_size)
{
struct iwm_softc *sc = ic->ic_softc;
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
sc->bgscan_unref_arg = arg;
sc->bgscan_unref_arg_size = arg_size;
iwm_add_task(sc, systq, &sc->bgscan_done_task);
}
void
iwm_bgscan_done_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct ieee80211_node *ni = &in->in_ni;
int tid, err = 0, s = splnet();
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
(ic->ic_flags & IEEE80211_F_BGSCAN) == 0 ||
ic->ic_state != IEEE80211_S_RUN) {
err = ENXIO;
goto done;
}
for (tid = 0; tid < IWM_MAX_TID_COUNT; tid++) {
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
continue;
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
if (err)
goto done;
err = iwm_disable_txq(sc, IWM_STATION_ID, qid, tid);
if (err)
goto done;
in->tfd_queue_msk &= ~(1 << qid);
#if 0 /* disabled for now; we are going to DEAUTH soon anyway */
IEEE80211_SEND_ACTION(ic, ni, IEEE80211_CATEG_BA,
IEEE80211_ACTION_DELBA,
IEEE80211_REASON_AUTH_LEAVE << 16 |
IEEE80211_FC1_DIR_TODS << 8 | tid);
#endif
ieee80211_node_tx_ba_clear(ni, tid);
}
err = iwm_flush_sta(sc, in);
if (err)
goto done;
/*
* Tx queues have been flushed and Tx agg has been stopped.
* Allow roaming to proceed.
*/
ni->ni_unref_arg = sc->bgscan_unref_arg;
ni->ni_unref_arg_size = sc->bgscan_unref_arg_size;
sc->bgscan_unref_arg = NULL;
sc->bgscan_unref_arg_size = 0;
ieee80211_node_tx_stopped(ic, &in->in_ni);
done:
if (err) {
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
sc->bgscan_unref_arg = NULL;
sc->bgscan_unref_arg_size = 0;
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
task_add(systq, &sc->init_task);
}
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
int
iwm_umac_scan_abort(struct iwm_softc *sc)
{
struct iwm_umac_scan_abort cmd = { 0 };
return iwm_send_cmd_pdu(sc,
IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC),
0, sizeof(cmd), &cmd);
}
int
iwm_lmac_scan_abort(struct iwm_softc *sc)
{
struct iwm_host_cmd cmd = {
.id = IWM_SCAN_OFFLOAD_ABORT_CMD,
};
int err, status;
err = iwm_send_cmd_status(sc, &cmd, &status);
if (err)
return err;
if (status != IWM_CAN_ABORT_STATUS) {
/*
* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before the
* microcode has notified us that a scan is completed.
*/
return EBUSY;
}
return 0;
}
int
iwm_scan_abort(struct iwm_softc *sc)
{
int err;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
err = iwm_umac_scan_abort(sc);
else
err = iwm_lmac_scan_abort(sc);
if (err == 0)
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
return err;
}
int
iwm_phy_ctxt_update(struct iwm_softc *sc, struct iwm_phy_ctxt *phyctxt,
struct ieee80211_channel *chan, uint8_t chains_static,
uint8_t chains_dynamic, uint32_t apply_time, uint8_t sco,
uint8_t vht_chan_width)
{
uint16_t band_flags = (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ);
int err;
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT) &&
(phyctxt->channel->ic_flags & band_flags) !=
(chan->ic_flags & band_flags)) {
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
chains_dynamic, IWM_FW_CTXT_ACTION_REMOVE, apply_time, sco,
vht_chan_width);
if (err) {
printf("%s: could not remove PHY context "
"(error %d)\n", DEVNAME(sc), err);
return err;
}
phyctxt->channel = chan;
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
chains_dynamic, IWM_FW_CTXT_ACTION_ADD, apply_time, sco,
vht_chan_width);
if (err) {
printf("%s: could not add PHY context "
"(error %d)\n", DEVNAME(sc), err);
return err;
}
} else {
phyctxt->channel = chan;
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
chains_dynamic, IWM_FW_CTXT_ACTION_MODIFY, apply_time, sco,
vht_chan_width);
if (err) {
printf("%s: could not update PHY context (error %d)\n",
DEVNAME(sc), err);
return err;
}
}
phyctxt->sco = sco;
phyctxt->vht_chan_width = vht_chan_width;
return 0;
}
int
iwm_auth(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
uint32_t duration;
int generation = sc->sc_generation, err;
splassert(IPL_NET);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
ic->ic_ibss_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err)
return err;
} else {
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
in->in_ni.ni_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err)
return err;
}
in->in_phyctxt = &sc->sc_phyctxt[0];
IEEE80211_ADDR_COPY(in->in_macaddr, in->in_ni.ni_macaddr);
iwm_setrates(in, 0);
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD, 0);
if (err) {
printf("%s: could not add MAC context (error %d)\n",
DEVNAME(sc), err);
return err;
}
sc->sc_flags |= IWM_FLAG_MAC_ACTIVE;
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD);
if (err) {
printf("%s: could not add binding (error %d)\n",
DEVNAME(sc), err);
goto rm_mac_ctxt;
}
sc->sc_flags |= IWM_FLAG_BINDING_ACTIVE;
in->tid_disable_ampdu = 0xffff;
err = iwm_add_sta_cmd(sc, in, 0);
if (err) {
printf("%s: could not add sta (error %d)\n",
DEVNAME(sc), err);
goto rm_binding;
}
sc->sc_flags |= IWM_FLAG_STA_ACTIVE;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
return 0;
/*
* Prevent the FW from wandering off channel during association
* by "protecting" the session with a time event.
*/
if (in->in_ni.ni_intval)
duration = in->in_ni.ni_intval * 2;
else
duration = IEEE80211_DUR_TU;
iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2);
return 0;
rm_binding:
if (generation == sc->sc_generation) {
iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE);
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
}
rm_mac_ctxt:
if (generation == sc->sc_generation) {
iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE, 0);
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
}
return err;
}
int
iwm_deauth(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
int err;
splassert(IPL_NET);
iwm_unprotect_session(sc, in);
if (sc->sc_flags & IWM_FLAG_STA_ACTIVE) {
err = iwm_flush_sta(sc, in);
if (err)
return err;
err = iwm_rm_sta_cmd(sc, in);
if (err) {
printf("%s: could not remove STA (error %d)\n",
DEVNAME(sc), err);
return err;
}
in->tid_disable_ampdu = 0xffff;
sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE;
sc->sc_rx_ba_sessions = 0;
sc->ba_rx.start_tidmask = 0;
sc->ba_rx.stop_tidmask = 0;
sc->tx_ba_queue_mask = 0;
sc->ba_tx.start_tidmask = 0;
sc->ba_tx.stop_tidmask = 0;
}
if (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE) {
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE);
if (err) {
printf("%s: could not remove binding (error %d)\n",
DEVNAME(sc), err);
return err;
}
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
}
if (sc->sc_flags & IWM_FLAG_MAC_ACTIVE) {
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE, 0);
if (err) {
printf("%s: could not remove MAC context (error %d)\n",
DEVNAME(sc), err);
return err;
}
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
}
/* Move unused PHY context to a default channel. */
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
&ic->ic_channels[1], 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err)
return err;
return 0;
}
int
iwm_run(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct ieee80211_node *ni = &in->in_ni;
int err;
splassert(IPL_NET);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Add a MAC context and a sniffing STA. */
err = iwm_auth(sc);
if (err)
return err;
}
/* Configure Rx chains for MIMO and configure 40 MHz channel. */
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1;
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
in->in_phyctxt->channel, chains, chains,
0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err) {
printf("%s: failed to update PHY\n", DEVNAME(sc));
return err;
}
} else if (ni->ni_flags & IEEE80211_NODE_HT) {
uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1;
uint8_t sco, vht_chan_width;
if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan) &&
ieee80211_node_supports_ht_chan40(ni))
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
else
sco = IEEE80211_HTOP0_SCO_SCN;
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
ieee80211_node_supports_vht_chan80(ni))
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
else
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
in->in_phyctxt->channel, chains, chains,
0, sco, vht_chan_width);
if (err) {
printf("%s: failed to update PHY\n", DEVNAME(sc));
return err;
}
}
/* Update STA again to apply HT and VHT settings. */
err = iwm_add_sta_cmd(sc, in, 1);
if (err) {
printf("%s: could not update STA (error %d)\n",
DEVNAME(sc), err);
return err;
}
/* We have now been assigned an associd by the AP. */
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
if (err) {
printf("%s: failed to update MAC\n", DEVNAME(sc));
return err;
}
err = iwm_sf_config(sc, IWM_SF_FULL_ON);
if (err) {
printf("%s: could not set sf full on (error %d)\n",
DEVNAME(sc), err);
return err;
}
err = iwm_allow_mcast(sc);
if (err) {
printf("%s: could not allow mcast (error %d)\n",
DEVNAME(sc), err);
return err;
}
err = iwm_power_update_device(sc);
if (err) {
printf("%s: could not send power command (error %d)\n",
DEVNAME(sc), err);
return err;
}
#ifdef notyet
/*
* Disabled for now. Default beacon filter settings
* prevent net80211 from getting ERP and HT protection
* updates from beacons.
*/
err = iwm_enable_beacon_filter(sc, in);
if (err) {
printf("%s: could not enable beacon filter\n",
DEVNAME(sc));
return err;
}
#endif
err = iwm_power_mac_update_mode(sc, in);
if (err) {
printf("%s: could not update MAC power (error %d)\n",
DEVNAME(sc), err);
return err;
}
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) {
err = iwm_update_quotas(sc, in, 1);
if (err) {
printf("%s: could not update quotas (error %d)\n",
DEVNAME(sc), err);
return err;
}
}
ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn);
ieee80211_ra_node_init(&in->in_rn);
ieee80211_ra_vht_node_init(&in->in_rn_vht);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
iwm_led_blink_start(sc);
return 0;
}
/* Start at lowest available bit-rate, AMRR will raise. */
in->in_ni.ni_txrate = 0;
in->in_ni.ni_txmcs = 0;
in->in_ni.ni_vht_ss = 1;
iwm_setrates(in, 0);
timeout_add_msec(&sc->sc_calib_to, 500);
iwm_led_enable(sc);
return 0;
}
int
iwm_run_stop(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct ieee80211_node *ni = &in->in_ni;
int err, i, tid;
splassert(IPL_NET);
/*
* Stop Tx/Rx BA sessions now. We cannot rely on the BA task
* for this when moving out of RUN state since it runs in a
* separate thread.
* Note that in->in_ni (struct ieee80211_node) already represents
* our new access point in case we are roaming between APs.
* This means we cannot rely on struct ieee802111_node to tell
* us which BA sessions exist.
*/
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID)
continue;
err = iwm_sta_rx_agg(sc, ni, rxba->tid, 0, 0, 0, 0);
if (err)
return err;
iwm_clear_reorder_buffer(sc, rxba);
if (sc->sc_rx_ba_sessions > 0)
sc->sc_rx_ba_sessions--;
}
for (tid = 0; tid < IWM_MAX_TID_COUNT; tid++) {
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
continue;
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
if (err)
return err;
err = iwm_disable_txq(sc, IWM_STATION_ID, qid, tid);
if (err)
return err;
in->tfd_queue_msk &= ~(1 << qid);
}
ieee80211_ba_del(ni);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
iwm_led_blink_stop(sc);
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
if (err)
return err;
iwm_disable_beacon_filter(sc);
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) {
err = iwm_update_quotas(sc, in, 0);
if (err) {
printf("%s: could not update quotas (error %d)\n",
DEVNAME(sc), err);
return err;
}
}
/* Mark station as disassociated. */
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 0);
if (err) {
printf("%s: failed to update MAC\n", DEVNAME(sc));
return err;
}
/* Reset Tx chains in case MIMO or 40 MHz channels were enabled. */
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
in->in_phyctxt->channel, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err) {
printf("%s: failed to update PHY\n", DEVNAME(sc));
return err;
}
}
return 0;
}
struct ieee80211_node *
iwm_node_alloc(struct ieee80211com *ic)
{
return malloc(sizeof (struct iwm_node), M_DEVBUF, M_NOWAIT | M_ZERO);
}
int
iwm_set_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwm_softc *sc = ic->ic_softc;
struct iwm_add_sta_key_cmd_v1 cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |
IWM_STA_KEY_FLG_WEP_KEY_MAP |
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
IWM_STA_KEY_FLG_KEYID_MSK));
if (k->k_flags & IEEE80211_KEY_GROUP)
cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST);
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
cmd.common.key_offset = 0;
cmd.common.sta_id = IWM_STATION_ID;
return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC,
sizeof(cmd), &cmd);
}
int
iwm_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwm_softc *sc = ic->ic_softc;
struct iwm_add_sta_key_cmd cmd;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* Fallback to software crypto for other ciphers. */
return (ieee80211_set_key(ic, ni, k));
}
if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS))
return iwm_set_key_v1(ic, ni, k);
memset(&cmd, 0, sizeof(cmd));
cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |
IWM_STA_KEY_FLG_WEP_KEY_MAP |
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
IWM_STA_KEY_FLG_KEYID_MSK));
if (k->k_flags & IEEE80211_KEY_GROUP)
cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST);
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
cmd.common.key_offset = 0;
cmd.common.sta_id = IWM_STATION_ID;
cmd.transmit_seq_cnt = htole64(k->k_tsc);
return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC,
sizeof(cmd), &cmd);
}
void
iwm_delete_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwm_softc *sc = ic->ic_softc;
struct iwm_add_sta_key_cmd_v1 cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |
IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
IWM_STA_KEY_FLG_KEYID_MSK));
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
cmd.common.key_offset = 0;
cmd.common.sta_id = IWM_STATION_ID;
iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC, sizeof(cmd), &cmd);
}
void
iwm_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwm_softc *sc = ic->ic_softc;
struct iwm_add_sta_key_cmd cmd;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
(k->k_cipher != IEEE80211_CIPHER_CCMP)) {
/* Fallback to software crypto for other ciphers. */
ieee80211_delete_key(ic, ni, k);
return;
}
if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE) == 0)
return;
if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS))
return iwm_delete_key_v1(ic, ni, k);
memset(&cmd, 0, sizeof(cmd));
cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |
IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
IWM_STA_KEY_FLG_KEYID_MSK));
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
cmd.common.key_offset = 0;
cmd.common.sta_id = IWM_STATION_ID;
iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC, sizeof(cmd), &cmd);
}
void
iwm_calib_timeout(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct ieee80211_node *ni = &in->in_ni;
int s;
s = splnet();
if ((ic->ic_fixed_rate == -1 || ic->ic_fixed_mcs == -1) &&
(ni->ni_flags & IEEE80211_NODE_HT) == 0 &&
ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) {
int old_txrate = ni->ni_txrate;
ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn);
/*
* If AMRR has chosen a new TX rate we must update
* the firwmare's LQ rate table.
* ni_txrate may change again before the task runs so
* cache the chosen rate in the iwm_node structure.
*/
if (ni->ni_txrate != old_txrate)
iwm_setrates(in, 1);
}
splx(s);
timeout_add_msec(&sc->sc_calib_to, 500);
}
void
iwm_set_rate_table_vht(struct iwm_node *in, struct iwm_lq_cmd *lqcmd)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211com *ic = ni->ni_ic;
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
int ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
int i, tab, txmcs;
/*
* Fill the LQ rate selection table with VHT rates in descending
* order, i.e. with the node's current TX rate first. Keep reducing
* channel width during later Tx attempts, and eventually fall back
* to legacy OFDM. Do not mix SISO and MIMO rates.
*/
lqcmd->mimo_delim = 0;
txmcs = ni->ni_txmcs;
for (i = 0; i < nitems(lqcmd->rs_table); i++) {
if (txmcs >= 0) {
tab = IWM_RATE_MCS_VHT_MSK;
tab |= txmcs & IWM_RATE_VHT_MCS_RATE_CODE_MSK;
tab |= ((ni->ni_vht_ss - 1) <<
IWM_RATE_VHT_MCS_NSS_POS) &
IWM_RATE_VHT_MCS_NSS_MSK;
if (ni->ni_vht_ss > 1)
tab |= IWM_RATE_MCS_ANT_AB_MSK;
else
tab |= iwm_valid_siso_ant_rate_mask(sc);
/*
* First two Tx attempts may use 80MHz/40MHz/SGI.
* Next two Tx attempts may use 40MHz/SGI.
* Beyond that use 20 MHz and decrease the rate.
* As a special case, MCS 9 is invalid on 20 Mhz.
*/
if (txmcs == 9) {
if (i < 2 && in->in_phyctxt->vht_chan_width >=
IEEE80211_VHTOP0_CHAN_WIDTH_80)
tab |= IWM_RATE_MCS_CHAN_WIDTH_80;
else if (in->in_phyctxt->sco ==
IEEE80211_HTOP0_SCO_SCA ||
in->in_phyctxt->sco ==
IEEE80211_HTOP0_SCO_SCB)
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
else {
/* no 40 MHz, fall back on MCS 8 */
tab &= ~IWM_RATE_VHT_MCS_RATE_CODE_MSK;
tab |= 8;
}
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
if (i < 4) {
if (ieee80211_ra_vht_use_sgi(ni))
tab |= IWM_RATE_MCS_SGI_MSK;
} else
txmcs--;
} else if (i < 2 && in->in_phyctxt->vht_chan_width >=
IEEE80211_VHTOP0_CHAN_WIDTH_80) {
tab |= IWM_RATE_MCS_CHAN_WIDTH_80;
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
if (ieee80211_ra_vht_use_sgi(ni))
tab |= IWM_RATE_MCS_SGI_MSK;
} else if (i < 4 &&
in->in_phyctxt->vht_chan_width >=
IEEE80211_VHTOP0_CHAN_WIDTH_HT &&
(in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA ||
in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB)) {
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
if (ieee80211_ra_vht_use_sgi(ni))
tab |= IWM_RATE_MCS_SGI_MSK;
} else if (txmcs >= 0)
txmcs--;
} else {
/* Fill the rest with the lowest possible rate. */
tab = iwm_rates[ridx_min].plcp;
tab |= iwm_valid_siso_ant_rate_mask(sc);
if (ni->ni_vht_ss > 1 && lqcmd->mimo_delim == 0)
lqcmd->mimo_delim = i;
}
lqcmd->rs_table[i] = htole32(tab);
}
}
void
iwm_set_rate_table(struct iwm_node *in, struct iwm_lq_cmd *lqcmd)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211com *ic = ni->ni_ic;
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
struct ieee80211_rateset *rs = &ni->ni_rates;
int i, ridx, ridx_min, ridx_max, j, mimo, tab = 0;
/*
* Fill the LQ rate selection table with legacy and/or HT rates
* in descending order, i.e. with the node's current TX rate first.
* In cases where throughput of an HT rate corresponds to a legacy
* rate it makes no sense to add both. We rely on the fact that
* iwm_rates is laid out such that equivalent HT/legacy rates share
* the same IWM_RATE_*_INDEX value. Also, rates not applicable to
* legacy/HT are assumed to be marked with an 'invalid' PLCP value.
*/
j = 0;
ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
mimo = iwm_is_mimo_ht_mcs(ni->ni_txmcs);
ridx_max = (mimo ? IWM_RIDX_MAX : IWM_LAST_HT_SISO_RATE);
for (ridx = ridx_max; ridx >= ridx_min; ridx--) {
uint8_t plcp = iwm_rates[ridx].plcp;
uint8_t ht_plcp = iwm_rates[ridx].ht_plcp;
if (j >= nitems(lqcmd->rs_table))
break;
tab = 0;
if (ni->ni_flags & IEEE80211_NODE_HT) {
if (ht_plcp == IWM_RATE_HT_SISO_MCS_INV_PLCP)
continue;
/* Do not mix SISO and MIMO HT rates. */
if ((mimo && !iwm_is_mimo_ht_plcp(ht_plcp)) ||
(!mimo && iwm_is_mimo_ht_plcp(ht_plcp)))
continue;
for (i = ni->ni_txmcs; i >= 0; i--) {
if (isclr(ni->ni_rxmcs, i))
continue;
if (ridx != iwm_ht_mcs2ridx[i])
continue;
tab = ht_plcp;
tab |= IWM_RATE_MCS_HT_MSK;
/* First two Tx attempts may use 40MHz/SGI. */
if (j > 1)
break;
if (in->in_phyctxt->sco ==
IEEE80211_HTOP0_SCO_SCA ||
in->in_phyctxt->sco ==
IEEE80211_HTOP0_SCO_SCB) {
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
}
if (ieee80211_ra_use_ht_sgi(ni))
tab |= IWM_RATE_MCS_SGI_MSK;
break;
}
} else if (plcp != IWM_RATE_INVM_PLCP) {
for (i = ni->ni_txrate; i >= 0; i--) {
if (iwm_rates[ridx].rate == (rs->rs_rates[i] &
IEEE80211_RATE_VAL)) {
tab = plcp;
break;
}
}
}
if (tab == 0)
continue;
if (iwm_is_mimo_ht_plcp(ht_plcp))
tab |= IWM_RATE_MCS_ANT_AB_MSK;
else
tab |= iwm_valid_siso_ant_rate_mask(sc);
if (IWM_RIDX_IS_CCK(ridx))
tab |= IWM_RATE_MCS_CCK_MSK;
lqcmd->rs_table[j++] = htole32(tab);
}
lqcmd->mimo_delim = (mimo ? j : 0);
/* Fill the rest with the lowest possible rate */
while (j < nitems(lqcmd->rs_table)) {
tab = iwm_rates[ridx_min].plcp;
if (IWM_RIDX_IS_CCK(ridx_min))
tab |= IWM_RATE_MCS_CCK_MSK;
tab |= iwm_valid_siso_ant_rate_mask(sc);
lqcmd->rs_table[j++] = htole32(tab);
}
}
void
iwm_setrates(struct iwm_node *in, int async)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211com *ic = ni->ni_ic;
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
struct iwm_lq_cmd lqcmd;
struct iwm_host_cmd cmd = {
.id = IWM_LQ_CMD,
.len = { sizeof(lqcmd), },
};
cmd.flags = async ? IWM_CMD_ASYNC : 0;
memset(&lqcmd, 0, sizeof(lqcmd));
lqcmd.sta_id = IWM_STATION_ID;
if (ic->ic_flags & IEEE80211_F_USEPROT)
lqcmd.flags |= IWM_LQ_FLAG_USE_RTS_MSK;
if (ni->ni_flags & IEEE80211_NODE_VHT)
iwm_set_rate_table_vht(in, &lqcmd);
else
iwm_set_rate_table(in, &lqcmd);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000 &&
(iwm_fw_valid_tx_ant(sc) & IWM_ANT_B))
lqcmd.single_stream_ant_msk = IWM_ANT_B;
else
lqcmd.single_stream_ant_msk = IWM_ANT_A;
lqcmd.dual_stream_ant_msk = IWM_ANT_AB;
lqcmd.agg_time_limit = htole16(4000); /* 4ms */
lqcmd.agg_disable_start_th = 3;
lqcmd.agg_frame_cnt_limit = 0x3f;
cmd.data[0] = &lqcmd;
iwm_send_cmd(sc, &cmd);
}
int
iwm_media_change(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int err;
err = ieee80211_media_change(ifp);
if (err != ENETRESET)
return err;
if (ic->ic_fixed_mcs != -1)
sc->sc_fixed_ridx = iwm_ht_mcs2ridx[ic->ic_fixed_mcs];
else if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
if (iwm_rates[ridx].rate == rate)
break;
sc->sc_fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwm_stop(ifp);
err = iwm_init(ifp);
}
return err;
}
void
iwm_newstate_task(void *psc)
{
struct iwm_softc *sc = (struct iwm_softc *)psc;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state nstate = sc->ns_nstate;
enum ieee80211_state ostate = ic->ic_state;
int arg = sc->ns_arg;
int err = 0, s = splnet();
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
/* iwm_stop() is waiting for us. */
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
if (ostate == IEEE80211_S_SCAN) {
if (nstate == ostate) {
if (sc->sc_flags & IWM_FLAG_SCANNING) {
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
/* Firmware is no longer scanning. Do another scan. */
goto next_scan;
} else
iwm_led_blink_stop(sc);
}
if (nstate <= ostate) {
switch (ostate) {
case IEEE80211_S_RUN:
err = iwm_run_stop(sc);
if (err)
goto out;
/* FALLTHROUGH */
case IEEE80211_S_ASSOC:
case IEEE80211_S_AUTH:
if (nstate <= IEEE80211_S_AUTH) {
err = iwm_deauth(sc);
if (err)
goto out;
}
/* FALLTHROUGH */
case IEEE80211_S_SCAN:
case IEEE80211_S_INIT:
break;
}
/* Die now if iwm_stop() was called while we were sleeping. */
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
}
}
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
next_scan:
err = iwm_scan(sc);
if (err)
break;
refcnt_rele_wake(&sc->task_refs);
splx(s);
return;
case IEEE80211_S_AUTH:
err = iwm_auth(sc);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
err = iwm_run(sc);
break;
}
out:
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
if (err)
task_add(systq, &sc->init_task);
else
sc->sc_newstate(ic, nstate, arg);
}
refcnt_rele_wake(&sc->task_refs);
splx(s);
}
int
iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = IC2IFP(ic);
struct iwm_softc *sc = ifp->if_softc;
/*
* Prevent attempts to transition towards the same state, unless
* we are scanning in which case a SCAN -> SCAN transition
* triggers another scan iteration. And AUTH -> AUTH is needed
* to support band-steering.
*/
if (sc->ns_nstate == nstate && nstate != IEEE80211_S_SCAN &&
nstate != IEEE80211_S_AUTH)
return 0;
if (ic->ic_state == IEEE80211_S_RUN) {
timeout_del(&sc->sc_calib_to);
iwm_del_task(sc, systq, &sc->ba_task);
iwm_del_task(sc, systq, &sc->mac_ctxt_task);
iwm_del_task(sc, systq, &sc->phy_ctxt_task);
iwm_del_task(sc, systq, &sc->bgscan_done_task);
}
sc->ns_nstate = nstate;
sc->ns_arg = arg;
iwm_add_task(sc, sc->sc_nswq, &sc->newstate_task);
return 0;
}
void
iwm_endscan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if ((sc->sc_flags & (IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN)) == 0)
return;
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
ieee80211_end_scan(&ic->ic_if);
}
/*
* Aging and idle timeouts for the different possible scenarios
* in default configuration
*/
static const uint32_t
iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_BA_AGING_TIMER_DEF),
htole32(IWM_SF_BA_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
},
};
/*
* Aging and idle timeouts for the different possible scenarios
* in single BSS MAC configuration.
*/
static const uint32_t
iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER),
htole32(IWM_SF_MCAST_IDLE_TIMER)
},
{
htole32(IWM_SF_BA_AGING_TIMER),
htole32(IWM_SF_BA_IDLE_TIMER)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER),
htole32(IWM_SF_TX_RE_IDLE_TIMER)
},
};
void
iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
struct ieee80211_node *ni)
{
int i, j, watermark;
sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
/*
* If we are in association flow - check antenna configuration
* capabilities of the AP station, and choose the watermark accordingly.
*/
if (ni) {
if (ni->ni_flags & IEEE80211_NODE_HT) {
if (ni->ni_rxmcs[1] != 0)
watermark = IWM_SF_W_MARK_MIMO2;
else
watermark = IWM_SF_W_MARK_SISO;
} else {
watermark = IWM_SF_W_MARK_LEGACY;
}
/* default watermark value for unassociated mode. */
} else {
watermark = IWM_SF_W_MARK_MIMO2;
}
sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
sf_cmd->long_delay_timeouts[i][j] =
htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
}
}
if (ni) {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
sizeof(iwm_sf_full_timeout));
} else {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
sizeof(iwm_sf_full_timeout_def));
}
}
int
iwm_sf_config(struct iwm_softc *sc, int new_state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_sf_cfg_cmd sf_cmd = {
.state = htole32(new_state),
};
int err = 0;
#if 0 /* only used for models with sdio interface, in iwlwifi */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
#endif
switch (new_state) {
case IWM_SF_UNINIT:
case IWM_SF_INIT_OFF:
iwm_fill_sf_command(sc, &sf_cmd, NULL);
break;
case IWM_SF_FULL_ON:
iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss);
break;
default:
return EINVAL;
}
err = iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
sizeof(sf_cmd), &sf_cmd);
return err;
}
int
iwm_send_bt_init_conf(struct iwm_softc *sc)
{
struct iwm_bt_coex_cmd bt_cmd;
bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
&bt_cmd);
}
int
iwm_send_soc_conf(struct iwm_softc *sc)
{
struct iwm_soc_configuration_cmd cmd;
int err;
uint32_t cmd_id, flags = 0;
memset(&cmd, 0, sizeof(cmd));
/*
* In VER_1 of this command, the discrete value is considered
* an integer; In VER_2, it's a bitmask. Since we have only 2
* values in VER_1, this is backwards-compatible with VER_2,
* as long as we don't set any other flag bits.
*/
if (!sc->sc_integrated) { /* VER_1 */
flags = IWM_SOC_CONFIG_CMD_FLAGS_DISCRETE;
} else { /* VER_2 */
uint8_t scan_cmd_ver;
if (sc->sc_ltr_delay != IWM_SOC_FLAGS_LTR_APPLY_DELAY_NONE)
flags |= (sc->sc_ltr_delay &
IWM_SOC_FLAGS_LTR_APPLY_DELAY_MASK);
scan_cmd_ver = iwm_lookup_cmd_ver(sc, IWM_LONG_GROUP,
IWM_SCAN_REQ_UMAC);
if (scan_cmd_ver != IWM_FW_CMD_VER_UNKNOWN &&
scan_cmd_ver >= 2 && sc->sc_low_latency_xtal)
flags |= IWM_SOC_CONFIG_CMD_FLAGS_LOW_LATENCY;
}
cmd.flags = htole32(flags);
cmd.latency = htole32(sc->sc_xtal_latency);
cmd_id = iwm_cmd_id(IWM_SOC_CONFIGURATION_CMD, IWM_SYSTEM_GROUP, 0);
err = iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(cmd), &cmd);
if (err)
printf("%s: failed to set soc latency: %d\n", DEVNAME(sc), err);
return err;
}
int
iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
{
struct iwm_mcc_update_cmd mcc_cmd;
struct iwm_host_cmd hcmd = {
.id = IWM_MCC_UPDATE_CMD,
.flags = IWM_CMD_WANT_RESP,
.resp_pkt_len = IWM_CMD_RESP_MAX,
.data = { &mcc_cmd },
};
struct iwm_rx_packet *pkt;
size_t resp_len;
int err;
int resp_v3 = isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V3);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000 &&
!sc->sc_nvm.lar_enabled) {
return 0;
}
memset(&mcc_cmd, 0, sizeof(mcc_cmd));
mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
else
mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
if (resp_v3) { /* same size as resp_v2 */
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
} else {
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
}
err = iwm_send_cmd(sc, &hcmd);
if (err)
return err;
pkt = hcmd.resp_pkt;
if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK)) {
err = EIO;
goto out;
}
if (resp_v3) {
struct iwm_mcc_update_resp_v3 *resp;
resp_len = iwm_rx_packet_payload_len(pkt);
if (resp_len < sizeof(*resp)) {
err = EIO;
goto out;
}
resp = (void *)pkt->data;
if (resp_len != sizeof(*resp) +
resp->n_channels * sizeof(resp->channels[0])) {
err = EIO;
goto out;
}
} else {
struct iwm_mcc_update_resp_v1 *resp_v1;
resp_len = iwm_rx_packet_payload_len(pkt);
if (resp_len < sizeof(*resp_v1)) {
err = EIO;
goto out;
}
resp_v1 = (void *)pkt->data;
if (resp_len != sizeof(*resp_v1) +
resp_v1->n_channels * sizeof(resp_v1->channels[0])) {
err = EIO;
goto out;
}
}
out:
iwm_free_resp(sc, &hcmd);
return err;
}
int
iwm_send_temp_report_ths_cmd(struct iwm_softc *sc)
{
struct iwm_temp_report_ths_cmd cmd;
int err;
/*
* In order to give responsibility for critical-temperature-kill
* and TX backoff to FW we need to send an empty temperature
* reporting command at init time.
*/
memset(&cmd, 0, sizeof(cmd));
err = iwm_send_cmd_pdu(sc,
IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_TEMP_REPORTING_THRESHOLDS_CMD),
0, sizeof(cmd), &cmd);
if (err)
printf("%s: TEMP_REPORT_THS_CMD command failed (error %d)\n",
DEVNAME(sc), err);
return err;
}
void
iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
{
struct iwm_host_cmd cmd = {
.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
.len = { sizeof(uint32_t), },
.data = { &backoff, },
};
iwm_send_cmd(sc, &cmd);
}
void
iwm_free_fw_paging(struct iwm_softc *sc)
{
int i;
if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL)
return;
for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS; i++) {
iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block);
}
memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db));
}
int
iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image)
{
int sec_idx, idx;
uint32_t offset = 0;
/*
* find where is the paging image start point:
* if CPU2 exist and it's in paging format, then the image looks like:
* CPU1 sections (2 or more)
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2
* CPU2 sections (not paged)
* PAGING_SEPARATOR_SECTION delimiter - separate between CPU2
* non paged to CPU2 paging sec
* CPU2 paging CSS
* CPU2 paging image (including instruction and data)
*/
for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX; sec_idx++) {
if (image->fw_sect[sec_idx].fws_devoff ==
IWM_PAGING_SEPARATOR_SECTION) {
sec_idx++;
break;
}
}
/*
* If paging is enabled there should be at least 2 more sections left
* (one for CSS and one for Paging data)
*/
if (sec_idx >= nitems(image->fw_sect) - 1) {
printf("%s: Paging: Missing CSS and/or paging sections\n",
DEVNAME(sc));
iwm_free_fw_paging(sc);
return EINVAL;
}
/* copy the CSS block to the dram */
DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n",
DEVNAME(sc), sec_idx));
memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr,
image->fw_sect[sec_idx].fws_data,
sc->fw_paging_db[0].fw_paging_size);
DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n",
DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size));
sec_idx++;
/*
* copy the paging blocks to the dram
* loop index start from 1 since that CSS block already copied to dram
* and CSS index is 0.
* loop stop at num_of_paging_blk since that last block is not full.
*/
for (idx = 1; idx < sc->num_of_paging_blk; idx++) {
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
(const char *)image->fw_sect[sec_idx].fws_data + offset,
sc->fw_paging_db[idx].fw_paging_size);
DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n",
DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx));
offset += sc->fw_paging_db[idx].fw_paging_size;
}
/* copy the last paging block */
if (sc->num_of_pages_in_last_blk > 0) {
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
(const char *)image->fw_sect[sec_idx].fws_data + offset,
IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk);
DPRINTF(("%s: Paging: copied %d pages in the last block %d\n",
DEVNAME(sc), sc->num_of_pages_in_last_blk, idx));
}
return 0;
}
int
iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image)
{
int blk_idx = 0;
int error, num_of_pages;
if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL) {
int i;
/* Device got reset, and we setup firmware paging again */
bus_dmamap_sync(sc->sc_dmat,
sc->fw_paging_db[0].fw_paging_block.map,
0, IWM_FW_PAGING_SIZE,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
for (i = 1; i < sc->num_of_paging_blk + 1; i++) {
bus_dmamap_sync(sc->sc_dmat,
sc->fw_paging_db[i].fw_paging_block.map,
0, IWM_PAGING_BLOCK_SIZE,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
}
return 0;
}
/* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */
#if (1 << IWM_BLOCK_2_EXP_SIZE) != IWM_PAGING_BLOCK_SIZE
#error IWM_BLOCK_2_EXP_SIZE must be power of 2 of IWM_PAGING_BLOCK_SIZE
#endif
num_of_pages = image->paging_mem_size / IWM_FW_PAGING_SIZE;
sc->num_of_paging_blk =
((num_of_pages - 1) / IWM_NUM_OF_PAGE_PER_GROUP) + 1;
sc->num_of_pages_in_last_blk =
num_of_pages -
IWM_NUM_OF_PAGE_PER_GROUP * (sc->num_of_paging_blk - 1);
DPRINTF(("%s: Paging: allocating mem for %d paging blocks, each block"
" holds 8 pages, last block holds %d pages\n", DEVNAME(sc),
sc->num_of_paging_blk,
sc->num_of_pages_in_last_blk));
/* allocate block of 4Kbytes for paging CSS */
error = iwm_dma_contig_alloc(sc->sc_dmat,
&sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE,
4096);
if (error) {
/* free all the previous pages since we failed */
iwm_free_fw_paging(sc);
return ENOMEM;
}
sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE;
DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n",
DEVNAME(sc)));
/*
* allocate blocks in dram.
* since that CSS allocated in fw_paging_db[0] loop start from index 1
*/
for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
/* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */
/* XXX Use iwm_dma_contig_alloc for allocating */
error = iwm_dma_contig_alloc(sc->sc_dmat,
&sc->fw_paging_db[blk_idx].fw_paging_block,
IWM_PAGING_BLOCK_SIZE, 4096);
if (error) {
/* free all the previous pages since we failed */
iwm_free_fw_paging(sc);
return ENOMEM;
}
sc->fw_paging_db[blk_idx].fw_paging_size =
IWM_PAGING_BLOCK_SIZE;
DPRINTF((
"%s: Paging: allocated 32K bytes for firmware paging.\n",
DEVNAME(sc)));
}
return 0;
}
int
iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fw)
{
int ret;
ret = iwm_alloc_fw_paging_mem(sc, fw);
if (ret)
return ret;
return iwm_fill_paging_mem(sc, fw);
}
/* send paging cmd to FW in case CPU2 has paging image */
int
iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fw)
{
int blk_idx;
uint32_t dev_phy_addr;
struct iwm_fw_paging_cmd fw_paging_cmd = {
.flags =
htole32(IWM_PAGING_CMD_IS_SECURED |
IWM_PAGING_CMD_IS_ENABLED |
(sc->num_of_pages_in_last_blk <<
IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS)),
.block_size = htole32(IWM_BLOCK_2_EXP_SIZE),
.block_num = htole32(sc->num_of_paging_blk),
};
/* loop for all paging blocks + CSS block */
for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
dev_phy_addr = htole32(
sc->fw_paging_db[blk_idx].fw_paging_block.paddr >>
IWM_PAGE_2_EXP_SIZE);
fw_paging_cmd.device_phy_addr[blk_idx] = dev_phy_addr;
bus_dmamap_sync(sc->sc_dmat,
sc->fw_paging_db[blk_idx].fw_paging_block.map, 0,
blk_idx == 0 ? IWM_FW_PAGING_SIZE : IWM_PAGING_BLOCK_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
return iwm_send_cmd_pdu(sc, iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD,
IWM_LONG_GROUP, 0),
0, sizeof(fw_paging_cmd), &fw_paging_cmd);
}
int
iwm_init_hw(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int err, i, ac, qid, s;
err = iwm_run_init_mvm_ucode(sc, 0);
if (err)
return err;
/* Should stop and start HW since INIT image just loaded. */
iwm_stop_device(sc);
err = iwm_start_hw(sc);
if (err) {
printf("%s: could not initialize hardware\n", DEVNAME(sc));
return err;
}
/* Restart, this time with the regular firmware */
s = splnet();
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
if (err) {
printf("%s: could not load firmware\n", DEVNAME(sc));
splx(s);
return err;
}
if (!iwm_nic_lock(sc)) {
splx(s);
return EBUSY;
}
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
if (err) {
printf("%s: could not init tx ant config (error %d)\n",
DEVNAME(sc), err);
goto err;
}
err = iwm_send_phy_db_data(sc);
if (err) {
printf("%s: could not init phy db (error %d)\n",
DEVNAME(sc), err);
goto err;
}
err = iwm_send_phy_cfg_cmd(sc);
if (err) {
printf("%s: could not send phy config (error %d)\n",
DEVNAME(sc), err);
goto err;
}
err = iwm_send_bt_init_conf(sc);
if (err) {
printf("%s: could not init bt coex (error %d)\n",
DEVNAME(sc), err);
goto err;
}
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_SOC_LATENCY_SUPPORT)) {
err = iwm_send_soc_conf(sc);
if (err)
goto err;
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)) {
err = iwm_send_dqa_cmd(sc);
if (err)
goto err;
}
/* Add auxiliary station for scanning */
err = iwm_add_aux_sta(sc);
if (err) {
printf("%s: could not add aux station (error %d)\n",
DEVNAME(sc), err);
goto err;
}
for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
/*
* The channel used here isn't relevant as it's
* going to be overwritten in the other flows.
* For now use the first channel we have.
*/
sc->sc_phyctxt[i].id = i;
sc->sc_phyctxt[i].channel = &ic->ic_channels[1];
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1,
IWM_FW_CTXT_ACTION_ADD, 0, IEEE80211_HTOP0_SCO_SCN,
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
if (err) {
printf("%s: could not add phy context %d (error %d)\n",
DEVNAME(sc), i, err);
goto err;
}
}
/* Initialize tx backoffs to the minimum. */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_tt_tx_backoff(sc, 0);
err = iwm_config_ltr(sc);
if (err) {
printf("%s: PCIe LTR configuration failed (error %d)\n",
DEVNAME(sc), err);
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW)) {
err = iwm_send_temp_report_ths_cmd(sc);
if (err)
goto err;
}
err = iwm_power_update_device(sc);
if (err) {
printf("%s: could not send power command (error %d)\n",
DEVNAME(sc), err);
goto err;
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
err = iwm_send_update_mcc_cmd(sc, "ZZ");
if (err) {
printf("%s: could not init LAR (error %d)\n",
DEVNAME(sc), err);
goto err;
}
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
err = iwm_config_umac_scan(sc);
if (err) {
printf("%s: could not configure scan (error %d)\n",
DEVNAME(sc), err);
goto err;
}
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
else
qid = IWM_AUX_QUEUE;
err = iwm_enable_txq(sc, IWM_MONITOR_STA_ID, qid,
iwm_ac_to_tx_fifo[EDCA_AC_BE], 0, IWM_MAX_TID_COUNT, 0);
if (err) {
printf("%s: could not enable monitor inject Tx queue "
"(error %d)\n", DEVNAME(sc), err);
goto err;
}
} else {
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
qid = ac + IWM_DQA_MIN_MGMT_QUEUE;
else
qid = ac;
err = iwm_enable_txq(sc, IWM_STATION_ID, qid,
iwm_ac_to_tx_fifo[ac], 0, IWM_TID_NON_QOS, 0);
if (err) {
printf("%s: could not enable Tx queue %d "
"(error %d)\n", DEVNAME(sc), ac, err);
goto err;
}
}
}
err = iwm_disable_beacon_filter(sc);
if (err) {
printf("%s: could not disable beacon filter (error %d)\n",
DEVNAME(sc), err);
goto err;
}
err:
iwm_nic_unlock(sc);
splx(s);
return err;
}
/* Allow multicast from our BSSID. */
int
iwm_allow_mcast(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
struct iwm_mcast_filter_cmd *cmd;
size_t size;
int err;
size = roundup(sizeof(*cmd), 4);
cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
if (cmd == NULL)
return ENOMEM;
cmd->filter_own = 1;
cmd->port_id = 0;
cmd->count = 0;
cmd->pass_all = 1;
IEEE80211_ADDR_COPY(cmd->bssid, in->in_macaddr);
err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
0, size, cmd);
free(cmd, M_DEVBUF, size);
return err;
}
int
iwm_init(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int err, generation;
rw_assert_wrlock(&sc->ioctl_rwl);
generation = ++sc->sc_generation;
err = iwm_preinit(sc);
if (err)
return err;
err = iwm_start_hw(sc);
if (err) {
printf("%s: could not initialize hardware\n", DEVNAME(sc));
return err;
}
err = iwm_init_hw(sc);
if (err) {
if (generation == sc->sc_generation)
iwm_stop_device(sc);
return err;
}
if (sc->sc_nvm.sku_cap_11n_enable)
iwm_setup_ht_rates(sc);
if (sc->sc_nvm.sku_cap_11ac_enable)
iwm_setup_vht_rates(sc);
KASSERT(sc->task_refs.r_refs == 0);
refcnt_init(&sc->task_refs);
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
}
ieee80211_begin_scan(ifp);
/*
* ieee80211_begin_scan() ends up scheduling iwm_newstate_task().
* Wait until the transition to SCAN state has completed.
*/
do {
err = tsleep_nsec(&ic->ic_state, PCATCH, "iwminit",
SEC_TO_NSEC(1));
if (generation != sc->sc_generation)
return ENXIO;
if (err) {
iwm_stop(ifp);
return err;
}
} while (ic->ic_state != IEEE80211_S_SCAN);
return 0;
}
void
iwm_start(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m;
int ac = EDCA_AC_BE; /* XXX */
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
/* why isn't this done per-queue? */
if (sc->qfullmsk != 0) {
ifq_set_oactive(&ifp->if_snd);
break;
}
/* Don't queue additional frames while flushing Tx queues. */
if (sc->sc_flags & IWM_FLAG_TXFLUSH)
break;
/* need to send management frames even if we're not RUNning */
m = mq_dequeue(&ic->ic_mgtq);
if (m) {
ni = m->m_pkthdr.ph_cookie;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN ||
(ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
break;
m = ifq_dequeue(&ifp->if_snd);
if (!m)
break;
if (m->m_len < sizeof (*eh) &&
(m = m_pullup(m, sizeof (*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
ifp->if_oerrors++;
continue;
}
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (iwm_tx(sc, m, ni, ac) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
if (ifp->if_flags & IFF_UP)
ifp->if_timer = 1;
}
return;
}
void
iwm_stop(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (void *)ic->ic_bss;
int i, s = splnet();
rw_assert_wrlock(&sc->ioctl_rwl);
sc->sc_flags |= IWM_FLAG_SHUTDOWN; /* Disallow new tasks. */
/* Cancel scheduled tasks and let any stale tasks finish up. */
task_del(systq, &sc->init_task);
iwm_del_task(sc, sc->sc_nswq, &sc->newstate_task);
iwm_del_task(sc, systq, &sc->ba_task);
iwm_del_task(sc, systq, &sc->mac_ctxt_task);
iwm_del_task(sc, systq, &sc->phy_ctxt_task);
iwm_del_task(sc, systq, &sc->bgscan_done_task);
KASSERT(sc->task_refs.r_refs >= 1);
refcnt_finalize(&sc->task_refs, "iwmstop");
iwm_stop_device(sc);
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
sc->bgscan_unref_arg = NULL;
sc->bgscan_unref_arg_size = 0;
/* Reset soft state. */
sc->sc_generation++;
for (i = 0; i < nitems(sc->sc_cmd_resp_pkt); i++) {
free(sc->sc_cmd_resp_pkt[i], M_DEVBUF, sc->sc_cmd_resp_len[i]);
sc->sc_cmd_resp_pkt[i] = NULL;
sc->sc_cmd_resp_len[i] = 0;
}
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
in->in_phyctxt = NULL;
in->tid_disable_ampdu = 0xffff;
in->tfd_queue_msk = 0;
IEEE80211_ADDR_COPY(in->in_macaddr, etheranyaddr);
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE;
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
sc->sc_flags &= ~IWM_FLAG_HW_ERR;
sc->sc_flags &= ~IWM_FLAG_SHUTDOWN;
sc->sc_flags &= ~IWM_FLAG_TXFLUSH;
sc->sc_rx_ba_sessions = 0;
sc->ba_rx.start_tidmask = 0;
sc->ba_rx.stop_tidmask = 0;
sc->tx_ba_queue_mask = 0;
sc->ba_tx.start_tidmask = 0;
sc->ba_tx.stop_tidmask = 0;
sc->sc_newstate(ic, IEEE80211_S_INIT, -1);
sc->ns_nstate = IEEE80211_S_INIT;
timeout_del(&sc->sc_calib_to); /* XXX refcount? */
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
iwm_clear_reorder_buffer(sc, rxba);
}
iwm_led_blink_stop(sc);
memset(sc->sc_tx_timer, 0, sizeof(sc->sc_tx_timer));
ifp->if_timer = 0;
splx(s);
}
void
iwm_watchdog(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
int i;
ifp->if_timer = 0;
/*
* We maintain a separate timer for each Tx queue because
* Tx aggregation queues can get "stuck" while other queues
* keep working. The Linux driver uses a similar workaround.
*/
for (i = 0; i < nitems(sc->sc_tx_timer); i++) {
if (sc->sc_tx_timer[i] > 0) {
if (--sc->sc_tx_timer[i] == 0) {
printf("%s: device timeout\n", DEVNAME(sc));
if (ifp->if_flags & IFF_DEBUG) {
iwm_nic_error(sc);
iwm_dump_driver_status(sc);
}
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
task_add(systq, &sc->init_task);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
}
ieee80211_watchdog(ifp);
}
int
iwm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwm_softc *sc = ifp->if_softc;
int s, err = 0, generation = sc->sc_generation;
/*
* Prevent processes from entering this function while another
* process is tsleep'ing in it.
*/
err = rw_enter(&sc->ioctl_rwl, RW_WRITE | RW_INTR);
if (err == 0 && generation != sc->sc_generation) {
rw_exit(&sc->ioctl_rwl);
return ENXIO;
}
if (err)
return err;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING)) {
/* Force reload of firmware image from disk. */
sc->sc_fw.fw_status = IWM_FW_STATUS_NONE;
err = iwm_init(ifp);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
iwm_stop(ifp);
}
break;
default:
err = ieee80211_ioctl(ifp, cmd, data);
}
if (err == ENETRESET) {
err = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwm_stop(ifp);
err = iwm_init(ifp);
}
}
splx(s);
rw_exit(&sc->ioctl_rwl);
return err;
}
/*
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with uint32_t-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t trm_hw_status0; /* TRM HW status */
uint32_t trm_hw_status1; /* TRM HW status */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t bcon_time; /* beacon timer */
uint32_t tsf_low; /* network timestamp function timer */
uint32_t tsf_hi; /* network timestamp function timer */
uint32_t gp1; /* GP1 timer register */
uint32_t gp2; /* GP2 timer register */
uint32_t fw_rev_type; /* firmware revision type */
uint32_t major; /* uCode version major */
uint32_t minor; /* uCode version minor */
uint32_t hw_ver; /* HW Silicon version */
uint32_t brd_ver; /* HW board version */
uint32_t log_pc; /* log program counter */
uint32_t frame_ptr; /* frame pointer */
uint32_t stack_ptr; /* stack pointer */
uint32_t hcmd; /* last host command header */
uint32_t isr0; /* isr status register LMPM_NIC_ISR0:
* rxtx_flag */
uint32_t isr1; /* isr status register LMPM_NIC_ISR1:
* host_flag */
uint32_t isr2; /* isr status register LMPM_NIC_ISR2:
* enc_flag */
uint32_t isr3; /* isr status register LMPM_NIC_ISR3:
* time_flag */
uint32_t isr4; /* isr status register LMPM_NIC_ISR4:
* wico interrupt */
uint32_t last_cmd_id; /* last HCMD id handled by the firmware */
uint32_t wait_event; /* wait event() caller address */
uint32_t l2p_control; /* L2pControlField */
uint32_t l2p_duration; /* L2pDurationField */
uint32_t l2p_mhvalid; /* L2pMhValidBits */
uint32_t l2p_addr_match; /* L2pAddrMatchStat */
uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on
* (LMPM_PMG_SEL) */
uint32_t u_timestamp; /* indicate when the date and time of the
* compilation */
uint32_t flow_handler; /* FH read/write pointers, RX credit */
} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
/*
* UMAC error struct - relevant starting from family 8000 chip.
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with u32-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_umac_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t blink1; /* branch link */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t umac_major;
uint32_t umac_minor;
uint32_t frame_pointer; /* core register 27*/
uint32_t stack_pointer; /* core register 28 */
uint32_t cmd_header; /* latest host cmd sent to UMAC */
uint32_t nic_isr_pref; /* ISR status register */
} __packed;
#define ERROR_START_OFFSET (1 * sizeof(uint32_t))
#define ERROR_ELEM_SIZE (7 * sizeof(uint32_t))
void
iwm_nic_umac_error(struct iwm_softc *sc)
{
struct iwm_umac_error_event_table table;
uint32_t base;
base = sc->sc_uc.uc_umac_error_event_table;
if (base < 0x800000) {
printf("%s: Invalid error log pointer 0x%08x\n",
DEVNAME(sc), base);
return;
}
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
printf("%s: reading errlog failed\n", DEVNAME(sc));
return;
}
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
printf("%s: Start UMAC Error Log Dump:\n", DEVNAME(sc));
printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc),
sc->sc_flags, table.valid);
}
printf("%s: 0x%08X | %s\n", DEVNAME(sc), table.error_id,
iwm_desc_lookup(table.error_id));
printf("%s: 0x%08X | umac branchlink1\n", DEVNAME(sc), table.blink1);
printf("%s: 0x%08X | umac branchlink2\n", DEVNAME(sc), table.blink2);
printf("%s: 0x%08X | umac interruptlink1\n", DEVNAME(sc), table.ilink1);
printf("%s: 0x%08X | umac interruptlink2\n", DEVNAME(sc), table.ilink2);
printf("%s: 0x%08X | umac data1\n", DEVNAME(sc), table.data1);
printf("%s: 0x%08X | umac data2\n", DEVNAME(sc), table.data2);
printf("%s: 0x%08X | umac data3\n", DEVNAME(sc), table.data3);
printf("%s: 0x%08X | umac major\n", DEVNAME(sc), table.umac_major);
printf("%s: 0x%08X | umac minor\n", DEVNAME(sc), table.umac_minor);
printf("%s: 0x%08X | frame pointer\n", DEVNAME(sc),
table.frame_pointer);
printf("%s: 0x%08X | stack pointer\n", DEVNAME(sc),
table.stack_pointer);
printf("%s: 0x%08X | last host cmd\n", DEVNAME(sc), table.cmd_header);
printf("%s: 0x%08X | isr status reg\n", DEVNAME(sc),
table.nic_isr_pref);
}
#define IWM_FW_SYSASSERT_CPU_MASK 0xf0000000
static struct {
const char *name;
uint8_t num;
} advanced_lookup[] = {
{ "NMI_INTERRUPT_WDG", 0x34 },
{ "SYSASSERT", 0x35 },
{ "UCODE_VERSION_MISMATCH", 0x37 },
{ "BAD_COMMAND", 0x38 },
{ "BAD_COMMAND", 0x39 },
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
{ "FATAL_ERROR", 0x3D },
{ "NMI_TRM_HW_ERR", 0x46 },
{ "NMI_INTERRUPT_TRM", 0x4C },
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
{ "NMI_INTERRUPT_HOST", 0x66 },
{ "NMI_INTERRUPT_LMAC_FATAL", 0x70 },
{ "NMI_INTERRUPT_UMAC_FATAL", 0x71 },
{ "NMI_INTERRUPT_OTHER_LMAC_FATAL", 0x73 },
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
{ "ADVANCED_SYSASSERT", 0 },
};
const char *
iwm_desc_lookup(uint32_t num)
{
int i;
for (i = 0; i < nitems(advanced_lookup) - 1; i++)
if (advanced_lookup[i].num ==
(num & ~IWM_FW_SYSASSERT_CPU_MASK))
return advanced_lookup[i].name;
/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
return advanced_lookup[i].name;
}
/*
* Support for dumping the error log seemed like a good idea ...
* but it's mostly hex junk and the only sensible thing is the
* hw/ucode revision (which we know anyway). Since it's here,
* I'll just leave it in, just in case e.g. the Intel guys want to
* help us decipher some "ADVANCED_SYSASSERT" later.
*/
void
iwm_nic_error(struct iwm_softc *sc)
{
struct iwm_error_event_table table;
uint32_t base;
printf("%s: dumping device error log\n", DEVNAME(sc));
base = sc->sc_uc.uc_error_event_table;
if (base < 0x800000) {
printf("%s: Invalid error log pointer 0x%08x\n",
DEVNAME(sc), base);
return;
}
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
printf("%s: reading errlog failed\n", DEVNAME(sc));
return;
}
if (!table.valid) {
printf("%s: errlog not found, skipping\n", DEVNAME(sc));
return;
}
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
printf("%s: Start Error Log Dump:\n", DEVNAME(sc));
printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc),
sc->sc_flags, table.valid);
}
printf("%s: 0x%08X | %-28s\n", DEVNAME(sc), table.error_id,
iwm_desc_lookup(table.error_id));
printf("%s: %08X | trm_hw_status0\n", DEVNAME(sc),
table.trm_hw_status0);
printf("%s: %08X | trm_hw_status1\n", DEVNAME(sc),
table.trm_hw_status1);
printf("%s: %08X | branchlink2\n", DEVNAME(sc), table.blink2);
printf("%s: %08X | interruptlink1\n", DEVNAME(sc), table.ilink1);
printf("%s: %08X | interruptlink2\n", DEVNAME(sc), table.ilink2);
printf("%s: %08X | data1\n", DEVNAME(sc), table.data1);
printf("%s: %08X | data2\n", DEVNAME(sc), table.data2);
printf("%s: %08X | data3\n", DEVNAME(sc), table.data3);
printf("%s: %08X | beacon time\n", DEVNAME(sc), table.bcon_time);
printf("%s: %08X | tsf low\n", DEVNAME(sc), table.tsf_low);
printf("%s: %08X | tsf hi\n", DEVNAME(sc), table.tsf_hi);
printf("%s: %08X | time gp1\n", DEVNAME(sc), table.gp1);
printf("%s: %08X | time gp2\n", DEVNAME(sc), table.gp2);
printf("%s: %08X | uCode revision type\n", DEVNAME(sc),
table.fw_rev_type);
printf("%s: %08X | uCode version major\n", DEVNAME(sc),
table.major);
printf("%s: %08X | uCode version minor\n", DEVNAME(sc),
table.minor);
printf("%s: %08X | hw version\n", DEVNAME(sc), table.hw_ver);
printf("%s: %08X | board version\n", DEVNAME(sc), table.brd_ver);
printf("%s: %08X | hcmd\n", DEVNAME(sc), table.hcmd);
printf("%s: %08X | isr0\n", DEVNAME(sc), table.isr0);
printf("%s: %08X | isr1\n", DEVNAME(sc), table.isr1);
printf("%s: %08X | isr2\n", DEVNAME(sc), table.isr2);
printf("%s: %08X | isr3\n", DEVNAME(sc), table.isr3);
printf("%s: %08X | isr4\n", DEVNAME(sc), table.isr4);
printf("%s: %08X | last cmd Id\n", DEVNAME(sc), table.last_cmd_id);
printf("%s: %08X | wait_event\n", DEVNAME(sc), table.wait_event);
printf("%s: %08X | l2p_control\n", DEVNAME(sc), table.l2p_control);
printf("%s: %08X | l2p_duration\n", DEVNAME(sc), table.l2p_duration);
printf("%s: %08X | l2p_mhvalid\n", DEVNAME(sc), table.l2p_mhvalid);
printf("%s: %08X | l2p_addr_match\n", DEVNAME(sc), table.l2p_addr_match);
printf("%s: %08X | lmpm_pmg_sel\n", DEVNAME(sc), table.lmpm_pmg_sel);
printf("%s: %08X | timestamp\n", DEVNAME(sc), table.u_timestamp);
printf("%s: %08X | flow_handler\n", DEVNAME(sc), table.flow_handler);
if (sc->sc_uc.uc_umac_error_event_table)
iwm_nic_umac_error(sc);
}
void
iwm_dump_driver_status(struct iwm_softc *sc)
{
int i;
printf("driver status:\n");
for (i = 0; i < IWM_MAX_QUEUES; i++) {
struct iwm_tx_ring *ring = &sc->txq[i];
printf(" tx ring %2d: qid=%-2d cur=%-3d "
"queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued);
}
printf(" rx ring: cur=%d\n", sc->rxq.cur);
printf(" 802.11 state %s\n",
ieee80211_state_name[sc->sc_ic.ic_state]);
}
#define SYNC_RESP_STRUCT(_var_, _pkt_) \
do { \
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \
_var_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \
do { \
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
sizeof(len), BUS_DMASYNC_POSTREAD); \
_ptr_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % count);
int
iwm_rx_pkt_valid(struct iwm_rx_packet *pkt)
{
int qid, idx, code;
qid = pkt->hdr.qid & ~0x80;
idx = pkt->hdr.idx;
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
return (!(qid == 0 && idx == 0 && code == 0) &&
pkt->len_n_flags != htole32(IWM_FH_RSCSR_FRAME_INVALID));
}
void
iwm_rx_pkt(struct iwm_softc *sc, struct iwm_rx_data *data, struct mbuf_list *ml)
{
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
struct iwm_rx_packet *pkt, *nextpkt;
uint32_t offset = 0, nextoff = 0, nmpdu = 0, len;
struct mbuf *m0, *m;
const size_t minsz = sizeof(pkt->len_n_flags) + sizeof(pkt->hdr);
int qid, idx, code, handled = 1;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
m0 = data->m;
while (m0 && offset + minsz < IWM_RBUF_SIZE) {
pkt = (struct iwm_rx_packet *)(m0->m_data + offset);
qid = pkt->hdr.qid;
idx = pkt->hdr.idx;
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
if (!iwm_rx_pkt_valid(pkt))
break;
len = sizeof(pkt->len_n_flags) + iwm_rx_packet_len(pkt);
if (len < minsz || len > (IWM_RBUF_SIZE - offset))
break;
if (code == IWM_REPLY_RX_MPDU_CMD && ++nmpdu == 1) {
/* Take mbuf m0 off the RX ring. */
if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur)) {
ifp->if_ierrors++;
break;
}
KASSERT(data->m != m0);
}
switch (code) {
case IWM_REPLY_RX_PHY_CMD:
iwm_rx_rx_phy_cmd(sc, pkt, data);
break;
case IWM_REPLY_RX_MPDU_CMD: {
size_t maxlen = IWM_RBUF_SIZE - offset - minsz;
nextoff = offset +
roundup(len, IWM_FH_RSCSR_FRAME_ALIGN);
nextpkt = (struct iwm_rx_packet *)
(m0->m_data + nextoff);
if (nextoff + minsz >= IWM_RBUF_SIZE ||
!iwm_rx_pkt_valid(nextpkt)) {
/* No need to copy last frame in buffer. */
if (offset > 0)
m_adj(m0, offset);
if (sc->sc_mqrx_supported)
iwm_rx_mpdu_mq(sc, m0, pkt->data,
maxlen, ml);
else
iwm_rx_mpdu(sc, m0, pkt->data,
maxlen, ml);
m0 = NULL; /* stack owns m0 now; abort loop */
} else {
/*
* Create an mbuf which points to the current
* packet. Always copy from offset zero to
* preserve m_pkthdr.
*/
m = m_copym(m0, 0, M_COPYALL, M_DONTWAIT);
if (m == NULL) {
ifp->if_ierrors++;
m_freem(m0);
m0 = NULL;
break;
}
m_adj(m, offset);
if (sc->sc_mqrx_supported)
iwm_rx_mpdu_mq(sc, m, pkt->data,
maxlen, ml);
else
iwm_rx_mpdu(sc, m, pkt->data,
maxlen, ml);
}
break;
}
case IWM_TX_CMD:
iwm_rx_tx_cmd(sc, pkt, data);
break;
case IWM_BA_NOTIF:
iwm_rx_compressed_ba(sc, pkt);
break;
case IWM_MISSED_BEACONS_NOTIFICATION:
iwm_rx_bmiss(sc, pkt, data);
break;
case IWM_MFUART_LOAD_NOTIFICATION:
break;
case IWM_ALIVE: {
struct iwm_alive_resp_v1 *resp1;
struct iwm_alive_resp_v2 *resp2;
struct iwm_alive_resp_v3 *resp3;
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
SYNC_RESP_STRUCT(resp1, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp1->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp1->log_event_table_ptr);
sc->sched_base = le32toh(resp1->scd_base_ptr);
if (resp1->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
SYNC_RESP_STRUCT(resp2, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp2->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp2->log_event_table_ptr);
sc->sched_base = le32toh(resp2->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp2->error_info_addr);
if (resp2->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
SYNC_RESP_STRUCT(resp3, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp3->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp3->log_event_table_ptr);
sc->sched_base = le32toh(resp3->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp3->error_info_addr);
if (resp3->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
sc->sc_uc.uc_intr = 1;
wakeup(&sc->sc_uc);
break;
}
case IWM_CALIB_RES_NOTIF_PHY_DB: {
struct iwm_calib_res_notif_phy_db *phy_db_notif;
SYNC_RESP_STRUCT(phy_db_notif, pkt);
iwm_phy_db_set_section(sc, phy_db_notif);
sc->sc_init_complete |= IWM_CALIB_COMPLETE;
wakeup(&sc->sc_init_complete);
break;
}
case IWM_STATISTICS_NOTIFICATION: {
struct iwm_notif_statistics *stats;
SYNC_RESP_STRUCT(stats, pkt);
memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
sc->sc_noise = iwm_get_noise(&stats->rx.general);
break;
}
case IWM_MCC_CHUB_UPDATE_CMD: {
struct iwm_mcc_chub_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
iwm_mcc_update(sc, notif);
break;
}
case IWM_DTS_MEASUREMENT_NOTIFICATION:
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
IWM_DTS_MEASUREMENT_NOTIF_WIDE):
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
IWM_TEMP_REPORTING_THRESHOLDS_CMD):
break;
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
IWM_CT_KILL_NOTIFICATION): {
struct iwm_ct_kill_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
printf("%s: device at critical temperature (%u degC), "
"stopping device\n",
DEVNAME(sc), le16toh(notif->temperature));
sc->sc_flags |= IWM_FLAG_HW_ERR;
task_add(systq, &sc->init_task);
break;
}
case IWM_ADD_STA_KEY:
case IWM_PHY_CONFIGURATION_CMD:
case IWM_TX_ANT_CONFIGURATION_CMD:
case IWM_ADD_STA:
case IWM_MAC_CONTEXT_CMD:
case IWM_REPLY_SF_CFG_CMD:
case IWM_POWER_TABLE_CMD:
case IWM_LTR_CONFIG:
case IWM_PHY_CONTEXT_CMD:
case IWM_BINDING_CONTEXT_CMD:
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_CFG_CMD):
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_REQ_UMAC):
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
case IWM_SCAN_OFFLOAD_REQUEST_CMD:
case IWM_SCAN_OFFLOAD_ABORT_CMD:
case IWM_REPLY_BEACON_FILTERING_CMD:
case IWM_MAC_PM_POWER_TABLE:
case IWM_TIME_QUOTA_CMD:
case IWM_REMOVE_STA:
case IWM_TXPATH_FLUSH:
case IWM_LQ_CMD:
case IWM_WIDE_ID(IWM_LONG_GROUP,
IWM_FW_PAGING_BLOCK_CMD):
case IWM_BT_CONFIG:
case IWM_REPLY_THERMAL_MNG_BACKOFF:
case IWM_NVM_ACCESS_CMD:
case IWM_MCC_UPDATE_CMD:
case IWM_TIME_EVENT_CMD: {
size_t pkt_len;
if (sc->sc_cmd_resp_pkt[idx] == NULL)
break;
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
sizeof(*pkt), BUS_DMASYNC_POSTREAD);
pkt_len = sizeof(pkt->len_n_flags) +
iwm_rx_packet_len(pkt);
if ((pkt->hdr.flags & IWM_CMD_FAILED_MSK) ||
pkt_len < sizeof(*pkt) ||
pkt_len > sc->sc_cmd_resp_len[idx]) {
free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF,
sc->sc_cmd_resp_len[idx]);
sc->sc_cmd_resp_pkt[idx] = NULL;
break;
}
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
pkt_len - sizeof(*pkt), BUS_DMASYNC_POSTREAD);
memcpy(sc->sc_cmd_resp_pkt[idx], pkt, pkt_len);
break;
}
/* ignore */
case IWM_PHY_DB_CMD:
break;
case IWM_INIT_COMPLETE_NOTIF:
sc->sc_init_complete |= IWM_INIT_COMPLETE;
wakeup(&sc->sc_init_complete);
break;
case IWM_SCAN_OFFLOAD_COMPLETE: {
struct iwm_periodic_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
break;
}
case IWM_SCAN_ITERATION_COMPLETE: {
struct iwm_lmac_scan_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
iwm_endscan(sc);
break;
}
case IWM_SCAN_COMPLETE_UMAC: {
struct iwm_umac_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
iwm_endscan(sc);
break;
}
case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
struct iwm_umac_scan_iter_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
iwm_endscan(sc);
break;
}
case IWM_REPLY_ERROR: {
struct iwm_error_resp *resp;
SYNC_RESP_STRUCT(resp, pkt);
printf("%s: firmware error 0x%x, cmd 0x%x\n",
DEVNAME(sc), le32toh(resp->error_type),
resp->cmd_id);
break;
}
case IWM_TIME_EVENT_NOTIFICATION: {
struct iwm_time_event_notif *notif;
uint32_t action;
SYNC_RESP_STRUCT(notif, pkt);
if (sc->sc_time_event_uid != le32toh(notif->unique_id))
break;
action = le32toh(notif->action);
if (action & IWM_TE_V2_NOTIF_HOST_EVENT_END)
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
break;
}
case IWM_WIDE_ID(IWM_SYSTEM_GROUP,
IWM_FSEQ_VER_MISMATCH_NOTIFICATION):
break;
/*
* Firmware versions 21 and 22 generate some DEBUG_LOG_MSG
* messages. Just ignore them for now.
*/
case IWM_DEBUG_LOG_MSG:
break;
case IWM_MCAST_FILTER_CMD:
break;
case IWM_SCD_QUEUE_CFG: {
struct iwm_scd_txq_cfg_rsp *rsp;
SYNC_RESP_STRUCT(rsp, pkt);
break;
}
case IWM_WIDE_ID(IWM_DATA_PATH_GROUP, IWM_DQA_ENABLE_CMD):
break;
case IWM_WIDE_ID(IWM_SYSTEM_GROUP, IWM_SOC_CONFIGURATION_CMD):
break;
default:
handled = 0;
printf("%s: unhandled firmware response 0x%x/0x%x "
"rx ring %d[%d]\n",
DEVNAME(sc), code, pkt->len_n_flags,
(qid & ~0x80), idx);
break;
}
/*
* uCode sets bit 0x80 when it originates the notification,
* i.e. when the notification is not a direct response to a
* command sent by the driver.
* For example, uCode issues IWM_REPLY_RX when it sends a
* received frame to the driver.
*/
if (handled && !(qid & (1 << 7))) {
iwm_cmd_done(sc, qid, idx, code);
}
offset += roundup(len, IWM_FH_RSCSR_FRAME_ALIGN);
}
if (m0 && m0 != data->m)
m_freem(m0);
}
void
iwm_notif_intr(struct iwm_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
uint32_t wreg;
uint16_t hw;
int count;
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
if (sc->sc_mqrx_supported) {
count = IWM_RX_MQ_RING_COUNT;
wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG;
} else {
count = IWM_RX_RING_COUNT;
wreg = IWM_FH_RSCSR_CHNL0_WPTR;
}
hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
hw &= (count - 1);
while (sc->rxq.cur != hw) {
struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
iwm_rx_pkt(sc, data, &ml);
ADVANCE_RXQ(sc);
}
if_input(&sc->sc_ic.ic_if, &ml);
/*
* Tell the firmware what we have processed.
* Seems like the hardware gets upset unless we align the write by 8??
*/
hw = (hw == 0) ? count - 1 : hw - 1;
IWM_WRITE(sc, wreg, hw & ~7);
}
int
iwm_intr(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
int handled = 0;
int rv = 0;
uint32_t r1, r2;
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
if (sc->sc_flags & IWM_FLAG_USE_ICT) {
uint32_t *ict = sc->ict_dma.vaddr;
int tmp;
tmp = htole32(ict[sc->ict_cur]);
if (!tmp)
goto out_ena;
/*
* ok, there was something. keep plowing until we have all.
*/
r1 = r2 = 0;
while (tmp) {
r1 |= tmp;
ict[sc->ict_cur] = 0;
sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
tmp = htole32(ict[sc->ict_cur]);
}
/* this is where the fun begins. don't ask */
if (r1 == 0xffffffff)
r1 = 0;
/*
* Workaround for hardware bug where bits are falsely cleared
* when using interrupt coalescing. Bit 15 should be set if
* bits 18 and 19 are set.
*/
if (r1 & 0xc0000)
r1 |= 0x8000;
r1 = (0xff & r1) | ((0xff00 & r1) << 16);
} else {
r1 = IWM_READ(sc, IWM_CSR_INT);
r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
}
if (r1 == 0 && r2 == 0) {
goto out_ena;
}
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
goto out;
IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
/* ignored */
handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
handled |= IWM_CSR_INT_BIT_RF_KILL;
iwm_check_rfkill(sc);
task_add(systq, &sc->init_task);
rv = 1;
goto out_ena;
}
if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
if (ifp->if_flags & IFF_DEBUG) {
iwm_nic_error(sc);
iwm_dump_driver_status(sc);
}
printf("%s: fatal firmware error\n", DEVNAME(sc));
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
task_add(systq, &sc->init_task);
rv = 1;
goto out;
}
if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
handled |= IWM_CSR_INT_BIT_HW_ERR;
printf("%s: hardware error, stopping device \n", DEVNAME(sc));
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
sc->sc_flags |= IWM_FLAG_HW_ERR;
task_add(systq, &sc->init_task);
}
rv = 1;
goto out;
}
/* firmware chunk loaded */
if (r1 & IWM_CSR_INT_BIT_FH_TX) {
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
handled |= IWM_CSR_INT_BIT_FH_TX;
sc->sc_fw_chunk_done = 1;
wakeup(&sc->sc_fw);
}
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX |
IWM_CSR_INT_BIT_RX_PERIODIC)) {
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) {
handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
}
if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
}
/* Disable periodic interrupt; we use it as just a one-shot. */
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
/*
* Enable periodic interrupt in 8 msec only if we received
* real RX interrupt (instead of just periodic int), to catch
* any dangling Rx interrupt. If it was just the periodic
* interrupt, there was no dangling Rx activity, and no need
* to extend the periodic interrupt; one-shot is enough.
*/
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX))
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
IWM_CSR_INT_PERIODIC_ENA);
iwm_notif_intr(sc);
}
rv = 1;
out_ena:
iwm_restore_interrupts(sc);
out:
return rv;
}
int
iwm_intr_msix(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
uint32_t inta_fh, inta_hw;
int vector = 0;
inta_fh = IWM_READ(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD);
inta_hw = IWM_READ(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD);
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
inta_fh &= sc->sc_fh_mask;
inta_hw &= sc->sc_hw_mask;
if (inta_fh & IWM_MSIX_FH_INT_CAUSES_Q0 ||
inta_fh & IWM_MSIX_FH_INT_CAUSES_Q1) {
iwm_notif_intr(sc);
}
/* firmware chunk loaded */
if (inta_fh & IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
sc->sc_fw_chunk_done = 1;
wakeup(&sc->sc_fw);
}
if ((inta_fh & IWM_MSIX_FH_INT_CAUSES_FH_ERR) ||
(inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
(inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
if (ifp->if_flags & IFF_DEBUG) {
iwm_nic_error(sc);
iwm_dump_driver_status(sc);
}
printf("%s: fatal firmware error\n", DEVNAME(sc));
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
task_add(systq, &sc->init_task);
return 1;
}
if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL) {
iwm_check_rfkill(sc);
task_add(systq, &sc->init_task);
}
if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR) {
printf("%s: hardware error, stopping device \n", DEVNAME(sc));
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
sc->sc_flags |= IWM_FLAG_HW_ERR;
task_add(systq, &sc->init_task);
}
return 1;
}
/*
* Before sending the interrupt the HW disables it to prevent
* a nested interrupt. This is done by writing 1 to the corresponding
* bit in the mask register. After handling the interrupt, it should be
* re-enabled by clearing this bit. This register is defined as
* write 1 clear (W1C) register, meaning that it's being clear
* by writing 1 to the bit.
*/
IWM_WRITE(sc, IWM_CSR_MSIX_AUTOMASK_ST_AD, 1 << vector);
return 1;
}
typedef void *iwm_match_t;
static const struct pci_matchid iwm_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3160_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3160_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3165_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3165_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3168_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8260_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8260_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8265_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9260_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_3 },
};
int
iwm_match(struct device *parent, iwm_match_t match __unused, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, iwm_devices,
nitems(iwm_devices));
}
int
iwm_preinit(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
int err;
err = iwm_prepare_card_hw(sc);
if (err) {
printf("%s: could not initialize hardware\n", DEVNAME(sc));
return err;
}
if (sc->attached) {
/* Update MAC in case the upper layers changed it. */
IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,
((struct arpcom *)ifp)->ac_enaddr);
return 0;
}
err = iwm_start_hw(sc);
if (err) {
printf("%s: could not initialize hardware\n", DEVNAME(sc));
return err;
}
err = iwm_run_init_mvm_ucode(sc, 1);
iwm_stop_device(sc);
if (err)
return err;
/* Print version info and MAC address on first successful fw load. */
sc->attached = 1;
printf("%s: hw rev 0x%x, fw ver %s, address %s\n",
DEVNAME(sc), sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
if (sc->sc_nvm.sku_cap_11n_enable)
iwm_setup_ht_rates(sc);
/* not all hardware can do 5GHz band */
if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
/* Configure channel information obtained from firmware. */
ieee80211_channel_init(ifp);
/* Configure MAC address. */
err = if_setlladdr(ifp, ic->ic_myaddr);
if (err)
printf("%s: could not set MAC address (error %d)\n",
DEVNAME(sc), err);
ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status);
return 0;
}
void
iwm_attach_hook(struct device *self)
{
struct iwm_softc *sc = (void *)self;
KASSERT(!cold);
iwm_preinit(sc);
}
void
iwm_attach(struct device *parent, struct device *self, void *aux)
{
struct iwm_softc *sc = (void *)self;
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
pcireg_t reg, memtype;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
const char *intrstr;
int err;
int txq_i, i, j;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
rw_init(&sc->ioctl_rwl, "iwmioctl");
err = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
if (err == 0) {
printf("%s: PCIe capability structure not found!\n",
DEVNAME(sc));
return;
}
/*
* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0);
if (err) {
printf("%s: can't map mem space\n", DEVNAME(sc));
return;
}
if (pci_intr_map_msix(pa, 0, &ih) == 0) {
sc->sc_msix = 1;
} else if (pci_intr_map_msi(pa, &ih)) {
if (pci_intr_map(pa, &ih)) {
printf("%s: can't map interrupt\n", DEVNAME(sc));
return;
}
/* Hardware bug workaround. */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG);
if (reg & PCI_COMMAND_INTERRUPT_DISABLE)
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG, reg);
}
intrstr = pci_intr_string(sc->sc_pct, ih);
if (sc->sc_msix)
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
iwm_intr_msix, sc, DEVNAME(sc));
else
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
iwm_intr, sc, DEVNAME(sc));
if (sc->sc_ih == NULL) {
printf("\n");
printf("%s: can't establish interrupt", DEVNAME(sc));
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(", %s\n", intrstr);
sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_INTEL_WL_3160_1:
case PCI_PRODUCT_INTEL_WL_3160_2:
sc->sc_fwname = "iwm-3160-17";
sc->host_interrupt_operation_mode = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
sc->sc_nvm_max_section_size = 16384;
sc->nvm_type = IWM_NVM;
break;
case PCI_PRODUCT_INTEL_WL_3165_1:
case PCI_PRODUCT_INTEL_WL_3165_2:
sc->sc_fwname = "iwm-7265D-29";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
sc->sc_nvm_max_section_size = 16384;
sc->nvm_type = IWM_NVM;
break;
case PCI_PRODUCT_INTEL_WL_3168_1:
sc->sc_fwname = "iwm-3168-29";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
sc->sc_nvm_max_section_size = 16384;
sc->nvm_type = IWM_NVM_SDP;
break;
case PCI_PRODUCT_INTEL_WL_7260_1:
case PCI_PRODUCT_INTEL_WL_7260_2:
sc->sc_fwname = "iwm-7260-17";
sc->host_interrupt_operation_mode = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
sc->sc_nvm_max_section_size = 16384;
sc->nvm_type = IWM_NVM;
break;
case PCI_PRODUCT_INTEL_WL_7265_1:
case PCI_PRODUCT_INTEL_WL_7265_2:
sc->sc_fwname = "iwm-7265-17";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
sc->sc_nvm_max_section_size = 16384;
sc->nvm_type = IWM_NVM;
break;
case PCI_PRODUCT_INTEL_WL_8260_1:
case PCI_PRODUCT_INTEL_WL_8260_2:
sc->sc_fwname = "iwm-8000C-36";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
sc->sc_nvm_max_section_size = 32768;
sc->nvm_type = IWM_NVM_EXT;
break;
case PCI_PRODUCT_INTEL_WL_8265_1:
sc->sc_fwname = "iwm-8265-36";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
sc->sc_nvm_max_section_size = 32768;
sc->nvm_type = IWM_NVM_EXT;
break;
case PCI_PRODUCT_INTEL_WL_9260_1:
sc->sc_fwname = "iwm-9260-46";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_9000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
sc->sc_nvm_max_section_size = 32768;
sc->sc_mqrx_supported = 1;
break;
case PCI_PRODUCT_INTEL_WL_9560_1:
case PCI_PRODUCT_INTEL_WL_9560_2:
case PCI_PRODUCT_INTEL_WL_9560_3:
sc->sc_fwname = "iwm-9000-46";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_9000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
sc->sc_nvm_max_section_size = 32768;
sc->sc_mqrx_supported = 1;
sc->sc_integrated = 1;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_WL_9560_3) {
sc->sc_xtal_latency = 670;
sc->sc_extra_phy_config = IWM_FW_PHY_CFG_SHARED_CLK;
} else
sc->sc_xtal_latency = 650;
break;
default:
printf("%s: unknown adapter type\n", DEVNAME(sc));
return;
}
/*
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
* changed, and now the revision step also includes bit 0-1 (no more
* "dash" value). To keep hw_rev backwards compatible - we'll store it
* in the old format.
*/
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
uint32_t hw_step;
sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
if (iwm_prepare_card_hw(sc) != 0) {
printf("%s: could not initialize hardware\n",
DEVNAME(sc));
return;
}
/*
* In order to recognize C step the driver should read the
* chip version id located at the AUX bus MISC address.
*/
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
DELAY(2);
err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
25000);
if (!err) {
printf("%s: Failed to wake up the nic\n", DEVNAME(sc));
return;
}
if (iwm_nic_lock(sc)) {
hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
hw_step |= IWM_ENABLE_WFPM;
iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
if (hw_step == 0x3)
sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
(IWM_SILICON_C_STEP << 2);
iwm_nic_unlock(sc);
} else {
printf("%s: Failed to lock the nic\n", DEVNAME(sc));
return;
}
}
/*
* Allocate DMA memory for firmware transfers.
* Must be aligned on a 16-byte boundary.
*/
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
sc->sc_fwdmasegsz, 16);
if (err) {
printf("%s: could not allocate memory for firmware\n",
DEVNAME(sc));
return;
}
/* Allocate "Keep Warm" page, used internally by the card. */
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
if (err) {
printf("%s: could not allocate keep warm page\n", DEVNAME(sc));
goto fail1;
}
/* Allocate interrupt cause table (ICT).*/
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
if (err) {
printf("%s: could not allocate ICT table\n", DEVNAME(sc));
goto fail2;
}
/* TX scheduler rings must be aligned on a 1KB boundary. */
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
if (err) {
printf("%s: could not allocate TX scheduler rings\n",
DEVNAME(sc));
goto fail3;
}
for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i);
if (err) {
printf("%s: could not allocate TX ring %d\n",
DEVNAME(sc), txq_i);
goto fail4;
}
}
err = iwm_alloc_rx_ring(sc, &sc->rxq);
if (err) {
printf("%s: could not allocate RX ring\n", DEVNAME(sc));
goto fail4;
}
sc->sc_nswq = taskq_create("iwmns", 1, IPL_NET, 0);
if (sc->sc_nswq == NULL)
goto fail4;
/* Clear pending interrupts. */
IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU | /* A-MPDU */
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_RSN | /* WPA/RSN */
IEEE80211_C_SCANALL | /* device scans all channels at once */
IEEE80211_C_SCANALLBAND | /* device scans all bands at once */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
ic->ic_htcaps = IEEE80211_HTCAP_SGI20 | IEEE80211_HTCAP_SGI40;
ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40;
ic->ic_htcaps |=
(IEEE80211_HTCAP_SMPS_DIS << IEEE80211_HTCAP_SMPS_SHIFT);
ic->ic_htxcaps = 0;
ic->ic_txbfcaps = 0;
ic->ic_aselcaps = 0;
ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
ic->ic_vhtcaps = IEEE80211_VHTCAP_MAX_MPDU_LENGTH_3895 |
(IEEE80211_VHTCAP_MAX_AMPDU_LEN_64K <<
IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT) |
(IEEE80211_VHTCAP_CHAN_WIDTH_80 <<
IEEE80211_VHTCAP_CHAN_WIDTH_SHIFT) | IEEE80211_VHTCAP_SGI80 |
IEEE80211_VHTCAP_RX_ANT_PATTERN | IEEE80211_VHTCAP_TX_ANT_PATTERN;
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
sc->sc_phyctxt[i].id = i;
sc->sc_phyctxt[i].sco = IEEE80211_HTOP0_SCO_SCN;
sc->sc_phyctxt[i].vht_chan_width =
IEEE80211_VHTOP0_CHAN_WIDTH_HT;
}
sc->sc_amrr.amrr_min_success_threshold = 1;
sc->sc_amrr.amrr_max_success_threshold = 15;
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[1];
ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = iwm_ioctl;
ifp->if_start = iwm_start;
ifp->if_watchdog = iwm_watchdog;
memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status);
#if NBPFILTER > 0
iwm_radiotap_attach(sc);
#endif
timeout_set(&sc->sc_calib_to, iwm_calib_timeout, sc);
timeout_set(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc);
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID;
rxba->sc = sc;
timeout_set(&rxba->session_timer, iwm_rx_ba_session_expired,
rxba);
timeout_set(&rxba->reorder_buf.reorder_timer,
iwm_reorder_timer_expired, &rxba->reorder_buf);
for (j = 0; j < nitems(rxba->entries); j++)
ml_init(&rxba->entries[j].frames);
}
task_set(&sc->init_task, iwm_init_task, sc);
task_set(&sc->newstate_task, iwm_newstate_task, sc);
task_set(&sc->ba_task, iwm_ba_task, sc);
task_set(&sc->mac_ctxt_task, iwm_mac_ctxt_task, sc);
task_set(&sc->phy_ctxt_task, iwm_phy_ctxt_task, sc);
task_set(&sc->bgscan_done_task, iwm_bgscan_done_task, sc);
ic->ic_node_alloc = iwm_node_alloc;
ic->ic_bgscan_start = iwm_bgscan;
ic->ic_bgscan_done = iwm_bgscan_done;
ic->ic_set_key = iwm_set_key;
ic->ic_delete_key = iwm_delete_key;
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwm_newstate;
ic->ic_updateprot = iwm_updateprot;
ic->ic_updateslot = iwm_updateslot;
ic->ic_updateedca = iwm_updateedca;
ic->ic_updatechan = iwm_updatechan;
ic->ic_updatedtim = iwm_updatedtim;
ic->ic_ampdu_rx_start = iwm_ampdu_rx_start;
ic->ic_ampdu_rx_stop = iwm_ampdu_rx_stop;
ic->ic_ampdu_tx_start = iwm_ampdu_tx_start;
ic->ic_ampdu_tx_stop = iwm_ampdu_tx_stop;
/*
* We cannot read the MAC address without loading the
* firmware from disk. Postpone until mountroot is done.
*/
config_mountroot(self, iwm_attach_hook);
return;
fail4: while (--txq_i >= 0)
iwm_free_tx_ring(sc, &sc->txq[txq_i]);
iwm_free_rx_ring(sc, &sc->rxq);
iwm_dma_contig_free(&sc->sched_dma);
fail3: if (sc->ict_dma.vaddr != NULL)
iwm_dma_contig_free(&sc->ict_dma);
fail2: iwm_dma_contig_free(&sc->kw_dma);
fail1: iwm_dma_contig_free(&sc->fw_dma);
return;
}
#if NBPFILTER > 0
void
iwm_radiotap_attach(struct iwm_softc *sc)
{
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT);
}
#endif
void
iwm_init_task(void *arg1)
{
struct iwm_softc *sc = arg1;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s = splnet();
int generation = sc->sc_generation;
int fatal = (sc->sc_flags & (IWM_FLAG_HW_ERR | IWM_FLAG_RFKILL));
rw_enter_write(&sc->ioctl_rwl);
if (generation != sc->sc_generation) {
rw_exit(&sc->ioctl_rwl);
splx(s);
return;
}
if (ifp->if_flags & IFF_RUNNING)
iwm_stop(ifp);
else
sc->sc_flags &= ~IWM_FLAG_HW_ERR;
if (!fatal && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
iwm_init(ifp);
rw_exit(&sc->ioctl_rwl);
splx(s);
}
void
iwm_resume(struct iwm_softc *sc)
{
pcireg_t reg;
/*
* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
if (!sc->sc_msix) {
/* Hardware bug workaround. */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG);
if (reg & PCI_COMMAND_INTERRUPT_DISABLE)
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG, reg);
}
iwm_disable_interrupts(sc);
}
int
iwm_wakeup(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int err;
err = iwm_start_hw(sc);
if (err)
return err;
err = iwm_init_hw(sc);
if (err)
return err;
refcnt_init(&sc->task_refs);
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_begin_scan(ifp);
return 0;
}
int
iwm_activate(struct device *self, int act)
{
struct iwm_softc *sc = (struct iwm_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int err = 0;
switch (act) {
case DVACT_QUIESCE:
if (ifp->if_flags & IFF_RUNNING) {
rw_enter_write(&sc->ioctl_rwl);
iwm_stop(ifp);
rw_exit(&sc->ioctl_rwl);
}
break;
case DVACT_RESUME:
iwm_resume(sc);
break;
case DVACT_WAKEUP:
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) {
err = iwm_wakeup(sc);
if (err)
printf("%s: could not initialize hardware\n",
DEVNAME(sc));
}
break;
}
return 0;
}
struct cfdriver iwm_cd = {
NULL, "iwm", DV_IFNET
};
const struct cfattach iwm_ca = {
sizeof(struct iwm_softc), iwm_match, iwm_attach,
NULL, iwm_activate
};