src/sys/dev/pci/if_qwx_pci.c

4121 lines
108 KiB
C

/* $OpenBSD: if_qwx_pci.c,v 1.15 2024/04/13 23:44:11 jsg Exp $ */
/*
* Copyright 2023 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright (c) 2021-2022, Qualcomm Innovation Center, Inc.
* Copyright (c) 2018-2021 The Linux Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted (subject to the limitations in the disclaimer
* below) provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of [Owner Organization] nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
* THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
/* XXX linux porting goo */
#ifdef __LP64__
#define BITS_PER_LONG 64
#else
#define BITS_PER_LONG 32
#endif
#define GENMASK(h, l) (((~0UL) >> (BITS_PER_LONG - (h) - 1)) & ((~0UL) << (l)))
#define __bf_shf(x) (__builtin_ffsll(x) - 1)
#define FIELD_GET(_m, _v) ((typeof(_m))(((_v) & (_m)) >> __bf_shf(_m)))
#define BIT(x) (1UL << (x))
#define test_bit(i, a) ((a) & (1 << (i)))
#define clear_bit(i, a) ((a)) &= ~(1 << (i))
#define set_bit(i, a) ((a)) |= (1 << (i))
/* #define QWX_DEBUG */
#include <dev/ic/qwxreg.h>
#include <dev/ic/qwxvar.h>
/* Headers needed for RDDM dump */
#include <sys/namei.h>
#include <sys/pledge.h>
#include <sys/vnode.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/proc.h>
#define ATH11K_PCI_IRQ_CE0_OFFSET 3
#define ATH11K_PCI_IRQ_DP_OFFSET 14
#define ATH11K_PCI_CE_WAKE_IRQ 2
#define ATH11K_PCI_WINDOW_ENABLE_BIT 0x40000000
#define ATH11K_PCI_WINDOW_REG_ADDRESS 0x310c
#define ATH11K_PCI_WINDOW_VALUE_MASK GENMASK(24, 19)
#define ATH11K_PCI_WINDOW_START 0x80000
#define ATH11K_PCI_WINDOW_RANGE_MASK GENMASK(18, 0)
/* BAR0 + 4k is always accessible, and no need to force wakeup. */
#define ATH11K_PCI_ACCESS_ALWAYS_OFF 0xFE0 /* 4K - 32 = 0xFE0 */
#define TCSR_SOC_HW_VERSION 0x0224
#define TCSR_SOC_HW_VERSION_MAJOR_MASK GENMASK(11, 8)
#define TCSR_SOC_HW_VERSION_MINOR_MASK GENMASK(7, 0)
/*
* pci.h
*/
#define PCIE_SOC_GLOBAL_RESET 0x3008
#define PCIE_SOC_GLOBAL_RESET_V 1
#define WLAON_WARM_SW_ENTRY 0x1f80504
#define WLAON_SOC_RESET_CAUSE_REG 0x01f8060c
#define PCIE_Q6_COOKIE_ADDR 0x01f80500
#define PCIE_Q6_COOKIE_DATA 0xc0000000
/* register to wake the UMAC from power collapse */
#define PCIE_SCRATCH_0_SOC_PCIE_REG 0x4040
/* register used for handshake mechanism to validate UMAC is awake */
#define PCIE_SOC_WAKE_PCIE_LOCAL_REG 0x3004
#define PCIE_PCIE_PARF_LTSSM 0x1e081b0
#define PARM_LTSSM_VALUE 0x111
#define GCC_GCC_PCIE_HOT_RST 0x1e402bc
#define GCC_GCC_PCIE_HOT_RST_VAL 0x10
#define PCIE_PCIE_INT_ALL_CLEAR 0x1e08228
#define PCIE_SMLH_REQ_RST_LINK_DOWN 0x2
#define PCIE_INT_CLEAR_ALL 0xffffffff
#define PCIE_QSERDES_COM_SYSCLK_EN_SEL_REG(sc) \
(sc->hw_params.regs->pcie_qserdes_sysclk_en_sel)
#define PCIE_QSERDES_COM_SYSCLK_EN_SEL_VAL 0x10
#define PCIE_QSERDES_COM_SYSCLK_EN_SEL_MSK 0xffffffff
#define PCIE_PCS_OSC_DTCT_CONFIG1_REG(sc) \
(sc->hw_params.regs->pcie_pcs_osc_dtct_config_base)
#define PCIE_PCS_OSC_DTCT_CONFIG1_VAL 0x02
#define PCIE_PCS_OSC_DTCT_CONFIG2_REG(sc) \
(sc->hw_params.regs->pcie_pcs_osc_dtct_config_base + 0x4)
#define PCIE_PCS_OSC_DTCT_CONFIG2_VAL 0x52
#define PCIE_PCS_OSC_DTCT_CONFIG4_REG(sc) \
(sc->hw_params.regs->pcie_pcs_osc_dtct_config_base + 0xc)
#define PCIE_PCS_OSC_DTCT_CONFIG4_VAL 0xff
#define PCIE_PCS_OSC_DTCT_CONFIG_MSK 0x000000ff
#define WLAON_QFPROM_PWR_CTRL_REG 0x01f8031c
#define QFPROM_PWR_CTRL_VDD4BLOW_MASK 0x4
/*
* mhi.h
*/
#define PCIE_TXVECDB 0x360
#define PCIE_TXVECSTATUS 0x368
#define PCIE_RXVECDB 0x394
#define PCIE_RXVECSTATUS 0x39C
#define MHI_CHAN_CTX_CHSTATE_MASK GENMASK(7, 0)
#define MHI_CHAN_CTX_CHSTATE_DISABLED 0
#define MHI_CHAN_CTX_CHSTATE_ENABLED 1
#define MHI_CHAN_CTX_CHSTATE_RUNNING 2
#define MHI_CHAN_CTX_CHSTATE_SUSPENDED 3
#define MHI_CHAN_CTX_CHSTATE_STOP 4
#define MHI_CHAN_CTX_CHSTATE_ERROR 5
#define MHI_CHAN_CTX_BRSTMODE_MASK GENMASK(9, 8)
#define MHI_CHAN_CTX_BRSTMODE_SHFT 8
#define MHI_CHAN_CTX_BRSTMODE_DISABLE 2
#define MHI_CHAN_CTX_BRSTMODE_ENABLE 3
#define MHI_CHAN_CTX_POLLCFG_MASK GENMASK(15, 10)
#define MHI_CHAN_CTX_RESERVED_MASK GENMASK(31, 16)
#define QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS 128
#define QWX_MHI_CONFIG_QCA6390_TIMEOUT_MS 2000
#define QWX_MHI_CONFIG_QCA9074_MAX_CHANNELS 30
#define MHI_CHAN_TYPE_INVALID 0
#define MHI_CHAN_TYPE_OUTBOUND 1 /* to device */
#define MHI_CHAN_TYPE_INBOUND 2 /* from device */
#define MHI_CHAN_TYPE_INBOUND_COALESCED 3
#define MHI_EV_CTX_RESERVED_MASK GENMASK(7, 0)
#define MHI_EV_CTX_INTMODC_MASK GENMASK(15, 8)
#define MHI_EV_CTX_INTMODT_MASK GENMASK(31, 16)
#define MHI_EV_CTX_INTMODT_SHFT 16
#define MHI_ER_TYPE_INVALID 0
#define MHI_ER_TYPE_VALID 1
#define MHI_ER_DATA 0
#define MHI_ER_CTRL 1
#define MHI_CH_STATE_DISABLED 0
#define MHI_CH_STATE_ENABLED 1
#define MHI_CH_STATE_RUNNING 2
#define MHI_CH_STATE_SUSPENDED 3
#define MHI_CH_STATE_STOP 4
#define MHI_CH_STATE_ERROR 5
#define QWX_NUM_EVENT_CTX 2
/* Event context. Shared with device. */
struct qwx_mhi_event_ctxt {
uint32_t intmod;
uint32_t ertype;
uint32_t msivec;
uint64_t rbase;
uint64_t rlen;
uint64_t rp;
uint64_t wp;
} __packed;
/* Channel context. Shared with device. */
struct qwx_mhi_chan_ctxt {
uint32_t chcfg;
uint32_t chtype;
uint32_t erindex;
uint64_t rbase;
uint64_t rlen;
uint64_t rp;
uint64_t wp;
} __packed;
/* Command context. Shared with device. */
struct qwx_mhi_cmd_ctxt {
uint32_t reserved0;
uint32_t reserved1;
uint32_t reserved2;
uint64_t rbase;
uint64_t rlen;
uint64_t rp;
uint64_t wp;
} __packed;
struct qwx_mhi_ring_element {
uint64_t ptr;
uint32_t dword[2];
};
struct qwx_xfer_data {
bus_dmamap_t map;
struct mbuf *m;
};
#define QWX_PCI_XFER_MAX_DATA_SIZE 0xffff
#define QWX_PCI_XFER_RING_MAX_ELEMENTS 64
struct qwx_pci_xfer_ring {
struct qwx_dmamem *dmamem;
bus_size_t size;
uint32_t mhi_chan_id;
uint32_t mhi_chan_state;
uint32_t mhi_chan_direction;
uint32_t mhi_chan_event_ring_index;
uint32_t db_addr;
uint32_t cmd_status;
int num_elements;
int queued;
struct qwx_xfer_data data[QWX_PCI_XFER_RING_MAX_ELEMENTS];
uint64_t rp;
uint64_t wp;
struct qwx_mhi_chan_ctxt *chan_ctxt;
};
#define QWX_PCI_EVENT_RING_MAX_ELEMENTS 256
struct qwx_pci_event_ring {
struct qwx_dmamem *dmamem;
bus_size_t size;
uint32_t mhi_er_type;
uint32_t mhi_er_irq;
uint32_t mhi_er_irq_moderation_ms;
uint32_t db_addr;
int num_elements;
uint64_t rp;
uint64_t wp;
struct qwx_mhi_event_ctxt *event_ctxt;
};
struct qwx_cmd_data {
bus_dmamap_t map;
struct mbuf *m;
};
#define QWX_PCI_CMD_RING_MAX_ELEMENTS 128
struct qwx_pci_cmd_ring {
struct qwx_dmamem *dmamem;
bus_size_t size;
uint64_t rp;
uint64_t wp;
int num_elements;
int queued;
};
struct qwx_pci_ops;
struct qwx_msi_config;
#define QWX_NUM_MSI_VEC 32
struct qwx_pci_softc {
struct qwx_softc sc_sc;
pci_chipset_tag_t sc_pc;
pcitag_t sc_tag;
int sc_cap_off;
int sc_msi_off;
pcireg_t sc_msi_cap;
void *sc_ih[QWX_NUM_MSI_VEC];
char sc_ivname[QWX_NUM_MSI_VEC][16];
struct qwx_ext_irq_grp ext_irq_grp[ATH11K_EXT_IRQ_GRP_NUM_MAX];
int mhi_irq[2];
bus_space_tag_t sc_st;
bus_space_handle_t sc_sh;
bus_addr_t sc_map;
bus_size_t sc_mapsize;
pcireg_t sc_lcsr;
uint32_t sc_flags;
#define ATH11K_PCI_ASPM_RESTORE 1
uint32_t register_window;
const struct qwx_pci_ops *sc_pci_ops;
uint32_t bhi_off;
uint32_t bhi_ee;
uint32_t bhie_off;
uint32_t mhi_state;
uint32_t max_chan;
uint64_t wake_db;
/*
* DMA memory for AMSS.bin firmware image.
* This memory must remain available to the device until
* the device is powered down.
*/
struct qwx_dmamem *amss_data;
struct qwx_dmamem *amss_vec;
struct qwx_dmamem *rddm_vec;
struct qwx_dmamem *rddm_data;
int rddm_triggered;
struct task rddm_task;
#define QWX_RDDM_DUMP_SIZE 0x420000
struct qwx_dmamem *chan_ctxt;
struct qwx_dmamem *event_ctxt;
struct qwx_dmamem *cmd_ctxt;
struct qwx_pci_xfer_ring xfer_rings[4];
#define QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND 0
#define QWX_PCI_XFER_RING_LOOPBACK_INBOUND 1
#define QWX_PCI_XFER_RING_IPCR_OUTBOUND 2
#define QWX_PCI_XFER_RING_IPCR_INBOUND 3
struct qwx_pci_event_ring event_rings[QWX_NUM_EVENT_CTX];
struct qwx_pci_cmd_ring cmd_ring;
};
int qwx_pci_match(struct device *, void *, void *);
void qwx_pci_attach(struct device *, struct device *, void *);
int qwx_pci_detach(struct device *, int);
void qwx_pci_attach_hook(struct device *);
void qwx_pci_free_xfer_rings(struct qwx_pci_softc *);
int qwx_pci_alloc_xfer_ring(struct qwx_softc *, struct qwx_pci_xfer_ring *,
uint32_t, uint32_t, uint32_t, size_t);
int qwx_pci_alloc_xfer_rings_qca6390(struct qwx_pci_softc *);
int qwx_pci_alloc_xfer_rings_qcn9074(struct qwx_pci_softc *);
void qwx_pci_free_event_rings(struct qwx_pci_softc *);
int qwx_pci_alloc_event_ring(struct qwx_softc *,
struct qwx_pci_event_ring *, uint32_t, uint32_t, uint32_t, size_t);
int qwx_pci_alloc_event_rings(struct qwx_pci_softc *);
void qwx_pci_free_cmd_ring(struct qwx_pci_softc *);
int qwx_pci_init_cmd_ring(struct qwx_softc *, struct qwx_pci_cmd_ring *);
uint32_t qwx_pci_read(struct qwx_softc *, uint32_t);
void qwx_pci_write(struct qwx_softc *, uint32_t, uint32_t);
void qwx_pci_read_hw_version(struct qwx_softc *, uint32_t *, uint32_t *);
uint32_t qwx_pcic_read32(struct qwx_softc *, uint32_t);
void qwx_pcic_write32(struct qwx_softc *, uint32_t, uint32_t);
void qwx_pcic_ext_irq_enable(struct qwx_softc *);
void qwx_pcic_ext_irq_disable(struct qwx_softc *);
int qwx_pcic_config_irq(struct qwx_softc *, struct pci_attach_args *);
int qwx_pci_start(struct qwx_softc *);
void qwx_pci_stop(struct qwx_softc *);
void qwx_pci_aspm_disable(struct qwx_softc *);
void qwx_pci_aspm_restore(struct qwx_softc *);
int qwx_pci_power_up(struct qwx_softc *);
void qwx_pci_power_down(struct qwx_softc *);
int qwx_pci_bus_wake_up(struct qwx_softc *);
void qwx_pci_bus_release(struct qwx_softc *);
void qwx_pci_window_write32(struct qwx_softc *, uint32_t, uint32_t);
uint32_t qwx_pci_window_read32(struct qwx_softc *, uint32_t);
int qwx_mhi_register(struct qwx_softc *);
void qwx_mhi_unregister(struct qwx_softc *);
void qwx_mhi_ring_doorbell(struct qwx_softc *sc, uint64_t, uint64_t);
void qwx_mhi_device_wake(struct qwx_softc *);
void qwx_mhi_device_zzz(struct qwx_softc *);
int qwx_mhi_wake_db_clear_valid(struct qwx_softc *);
void qwx_mhi_init_xfer_rings(struct qwx_pci_softc *);
void qwx_mhi_init_event_rings(struct qwx_pci_softc *);
void qwx_mhi_init_cmd_ring(struct qwx_pci_softc *);
void qwx_mhi_init_dev_ctxt(struct qwx_pci_softc *);
int qwx_mhi_send_cmd(struct qwx_pci_softc *psc, uint32_t, uint32_t);
void * qwx_pci_xfer_ring_get_elem(struct qwx_pci_xfer_ring *, uint64_t);
struct qwx_xfer_data *qwx_pci_xfer_ring_get_data(struct qwx_pci_xfer_ring *,
uint64_t);
int qwx_mhi_submit_xfer(struct qwx_softc *sc, struct mbuf *m);
int qwx_mhi_start_channel(struct qwx_pci_softc *,
struct qwx_pci_xfer_ring *);
int qwx_mhi_start_channels(struct qwx_pci_softc *);
int qwx_mhi_start(struct qwx_pci_softc *);
void qwx_mhi_stop(struct qwx_softc *);
int qwx_mhi_reset_device(struct qwx_softc *, int);
void qwx_mhi_clear_vector(struct qwx_softc *);
int qwx_mhi_fw_load_handler(struct qwx_pci_softc *);
int qwx_mhi_await_device_reset(struct qwx_softc *);
int qwx_mhi_await_device_ready(struct qwx_softc *);
void qwx_mhi_ready_state_transition(struct qwx_pci_softc *);
void qwx_mhi_mission_mode_state_transition(struct qwx_pci_softc *);
void qwx_mhi_low_power_mode_state_transition(struct qwx_pci_softc *);
void qwx_mhi_set_state(struct qwx_softc *, uint32_t);
void qwx_mhi_init_mmio(struct qwx_pci_softc *);
int qwx_mhi_fw_load_bhi(struct qwx_pci_softc *, uint8_t *, size_t);
int qwx_mhi_fw_load_bhie(struct qwx_pci_softc *, uint8_t *, size_t);
void qwx_rddm_prepare(struct qwx_pci_softc *);
void qwx_rddm_task(void *);
void * qwx_pci_event_ring_get_elem(struct qwx_pci_event_ring *, uint64_t);
void qwx_pci_intr_ctrl_event_mhi(struct qwx_pci_softc *, uint32_t);
void qwx_pci_intr_ctrl_event_ee(struct qwx_pci_softc *, uint32_t);
void qwx_pci_intr_ctrl_event_cmd_complete(struct qwx_pci_softc *,
uint64_t, uint32_t);
int qwx_pci_intr_ctrl_event(struct qwx_pci_softc *,
struct qwx_pci_event_ring *);
void qwx_pci_intr_data_event_tx(struct qwx_pci_softc *,
struct qwx_mhi_ring_element *);
int qwx_pci_intr_data_event(struct qwx_pci_softc *,
struct qwx_pci_event_ring *);
int qwx_pci_intr_mhi_ctrl(void *);
int qwx_pci_intr_mhi_data(void *);
int qwx_pci_intr(void *);
struct qwx_pci_ops {
int (*wakeup)(struct qwx_softc *);
void (*release)(struct qwx_softc *);
int (*get_msi_irq)(struct qwx_softc *, unsigned int);
void (*window_write32)(struct qwx_softc *, uint32_t, uint32_t);
uint32_t (*window_read32)(struct qwx_softc *, uint32_t);
int (*alloc_xfer_rings)(struct qwx_pci_softc *);
};
static const struct qwx_pci_ops qwx_pci_ops_qca6390 = {
.wakeup = qwx_pci_bus_wake_up,
.release = qwx_pci_bus_release,
#if notyet
.get_msi_irq = qwx_pci_get_msi_irq,
#endif
.window_write32 = qwx_pci_window_write32,
.window_read32 = qwx_pci_window_read32,
.alloc_xfer_rings = qwx_pci_alloc_xfer_rings_qca6390,
};
static const struct qwx_pci_ops qwx_pci_ops_qcn9074 = {
.wakeup = NULL,
.release = NULL,
#if notyet
.get_msi_irq = qwx_pci_get_msi_irq,
#endif
.window_write32 = qwx_pci_window_write32,
.window_read32 = qwx_pci_window_read32,
.alloc_xfer_rings = qwx_pci_alloc_xfer_rings_qcn9074,
};
const struct cfattach qwx_pci_ca = {
sizeof(struct qwx_pci_softc),
qwx_pci_match,
qwx_pci_attach,
qwx_pci_detach,
qwx_activate
};
/* XXX pcidev */
#define PCI_PRODUCT_QUALCOMM_QCA6390 0x1101
#define PCI_PRODUCT_QUALCOMM_QCN9074 0x1104
static const struct pci_matchid qwx_pci_devices[] = {
#if notyet
{ PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCA6390 },
{ PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCN9074 },
#endif
{ PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCNFA765 }
};
int
qwx_pci_match(struct device *parent, void *match, void *aux)
{
return pci_matchbyid(aux, qwx_pci_devices, nitems(qwx_pci_devices));
}
void
qwx_pci_init_qmi_ce_config(struct qwx_softc *sc)
{
struct qwx_qmi_ce_cfg *cfg = &sc->qmi_ce_cfg;
qwx_ce_get_shadow_config(sc, &cfg->shadow_reg_v2,
&cfg->shadow_reg_v2_len);
}
const struct qwx_msi_config qwx_msi_config_one_msi = {
.total_vectors = 1,
.total_users = 4,
.users = (struct qwx_msi_user[]) {
{ .name = "MHI", .num_vectors = 1, .base_vector = 0 },
{ .name = "CE", .num_vectors = 1, .base_vector = 0 },
{ .name = "WAKE", .num_vectors = 1, .base_vector = 0 },
{ .name = "DP", .num_vectors = 1, .base_vector = 0 },
},
};
const struct qwx_msi_config qwx_msi_config[] = {
{
.total_vectors = 32,
.total_users = 4,
.users = (struct qwx_msi_user[]) {
{ .name = "MHI", .num_vectors = 3, .base_vector = 0 },
{ .name = "CE", .num_vectors = 10, .base_vector = 3 },
{ .name = "WAKE", .num_vectors = 1, .base_vector = 13 },
{ .name = "DP", .num_vectors = 18, .base_vector = 14 },
},
.hw_rev = ATH11K_HW_QCA6390_HW20,
},
{
.total_vectors = 16,
.total_users = 3,
.users = (struct qwx_msi_user[]) {
{ .name = "MHI", .num_vectors = 3, .base_vector = 0 },
{ .name = "CE", .num_vectors = 5, .base_vector = 3 },
{ .name = "DP", .num_vectors = 8, .base_vector = 8 },
},
.hw_rev = ATH11K_HW_QCN9074_HW10,
},
{
.total_vectors = 32,
.total_users = 4,
.users = (struct qwx_msi_user[]) {
{ .name = "MHI", .num_vectors = 3, .base_vector = 0 },
{ .name = "CE", .num_vectors = 10, .base_vector = 3 },
{ .name = "WAKE", .num_vectors = 1, .base_vector = 13 },
{ .name = "DP", .num_vectors = 18, .base_vector = 14 },
},
.hw_rev = ATH11K_HW_WCN6855_HW20,
},
{
.total_vectors = 32,
.total_users = 4,
.users = (struct qwx_msi_user[]) {
{ .name = "MHI", .num_vectors = 3, .base_vector = 0 },
{ .name = "CE", .num_vectors = 10, .base_vector = 3 },
{ .name = "WAKE", .num_vectors = 1, .base_vector = 13 },
{ .name = "DP", .num_vectors = 18, .base_vector = 14 },
},
.hw_rev = ATH11K_HW_WCN6855_HW21,
},
{
.total_vectors = 28,
.total_users = 2,
.users = (struct qwx_msi_user[]) {
{ .name = "CE", .num_vectors = 10, .base_vector = 0 },
{ .name = "DP", .num_vectors = 18, .base_vector = 10 },
},
.hw_rev = ATH11K_HW_WCN6750_HW10,
},
};
int
qwx_pcic_init_msi_config(struct qwx_softc *sc)
{
const struct qwx_msi_config *msi_config;
int i;
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) {
sc->msi_cfg = &qwx_msi_config_one_msi;
return 0;
}
for (i = 0; i < nitems(qwx_msi_config); i++) {
msi_config = &qwx_msi_config[i];
if (msi_config->hw_rev == sc->sc_hw_rev)
break;
}
if (i == nitems(qwx_msi_config)) {
printf("%s: failed to fetch msi config, "
"unsupported hw version: 0x%x\n",
sc->sc_dev.dv_xname, sc->sc_hw_rev);
return EINVAL;
}
sc->msi_cfg = msi_config;
return 0;
}
int
qwx_pci_alloc_msi(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
uint64_t addr;
pcireg_t data;
if (psc->sc_msi_cap & PCI_MSI_MC_C64) {
uint64_t addr_hi;
pcireg_t addr_lo;
addr_lo = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MA);
addr_hi = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MAU32);
addr = addr_hi << 32 | addr_lo;
data = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MD64);
} else {
addr = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MA);
data = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MD32);
}
sc->msi_addr_lo = addr & 0xffffffff;
sc->msi_addr_hi = ((uint64_t)addr) >> 32;
sc->msi_data_start = data;
DPRINTF("%s: MSI addr: 0x%llx MSI data: 0x%x\n", sc->sc_dev.dv_xname,
addr, data);
return 0;
}
int
qwx_pcic_map_service_to_pipe(struct qwx_softc *sc, uint16_t service_id,
uint8_t *ul_pipe, uint8_t *dl_pipe)
{
const struct service_to_pipe *entry;
int ul_set = 0, dl_set = 0;
int i;
for (i = 0; i < sc->hw_params.svc_to_ce_map_len; i++) {
entry = &sc->hw_params.svc_to_ce_map[i];
if (le32toh(entry->service_id) != service_id)
continue;
switch (le32toh(entry->pipedir)) {
case PIPEDIR_NONE:
break;
case PIPEDIR_IN:
*dl_pipe = le32toh(entry->pipenum);
dl_set = 1;
break;
case PIPEDIR_OUT:
*ul_pipe = le32toh(entry->pipenum);
ul_set = 1;
break;
case PIPEDIR_INOUT:
*dl_pipe = le32toh(entry->pipenum);
*ul_pipe = le32toh(entry->pipenum);
dl_set = 1;
ul_set = 1;
break;
}
}
if (!ul_set || !dl_set) {
DPRINTF("%s: found no uplink and no downlink\n", __func__);
return ENOENT;
}
return 0;
}
int
qwx_pcic_get_user_msi_vector(struct qwx_softc *sc, char *user_name,
int *num_vectors, uint32_t *user_base_data, uint32_t *base_vector)
{
const struct qwx_msi_config *msi_config = sc->msi_cfg;
int idx;
for (idx = 0; idx < msi_config->total_users; idx++) {
if (strcmp(user_name, msi_config->users[idx].name) == 0) {
*num_vectors = msi_config->users[idx].num_vectors;
*base_vector = msi_config->users[idx].base_vector;
*user_base_data = *base_vector + sc->msi_data_start;
DPRINTF("%s: MSI assignment %s num_vectors %d "
"user_base_data %u base_vector %u\n", __func__,
user_name, *num_vectors, *user_base_data,
*base_vector);
return 0;
}
}
DPRINTF("%s: Failed to find MSI assignment for %s\n",
sc->sc_dev.dv_xname, user_name);
return EINVAL;
}
void
qwx_pci_attach(struct device *parent, struct device *self, void *aux)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)self;
struct qwx_softc *sc = &psc->sc_sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
uint32_t soc_hw_version_major, soc_hw_version_minor;
const struct qwx_pci_ops *pci_ops;
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
pcireg_t memtype, reg;
const char *intrstr;
int error;
pcireg_t sreg;
sc->sc_dmat = pa->pa_dmat;
psc->sc_pc = pa->pa_pc;
psc->sc_tag = pa->pa_tag;
#ifdef __HAVE_FDT
sc->sc_node = PCITAG_NODE(pa->pa_tag);
#endif
rw_init(&sc->ioctl_rwl, "qwxioctl");
sreg = pci_conf_read(psc->sc_pc, psc->sc_tag, PCI_SUBSYS_ID_REG);
sc->id.bdf_search = ATH11K_BDF_SEARCH_DEFAULT;
sc->id.vendor = PCI_VENDOR(pa->pa_id);
sc->id.device = PCI_PRODUCT(pa->pa_id);
sc->id.subsystem_vendor = PCI_VENDOR(sreg);
sc->id.subsystem_device = PCI_PRODUCT(sreg);
strlcpy(sc->sc_bus_str, "pci", sizeof(sc->sc_bus_str));
sc->ops.read32 = qwx_pcic_read32;
sc->ops.write32 = qwx_pcic_write32;
sc->ops.start = qwx_pci_start;
sc->ops.stop = qwx_pci_stop;
sc->ops.power_up = qwx_pci_power_up;
sc->ops.power_down = qwx_pci_power_down;
sc->ops.submit_xfer = qwx_mhi_submit_xfer;
sc->ops.irq_enable = qwx_pcic_ext_irq_enable;
sc->ops.irq_disable = qwx_pcic_ext_irq_disable;
sc->ops.map_service_to_pipe = qwx_pcic_map_service_to_pipe;
sc->ops.get_user_msi_vector = qwx_pcic_get_user_msi_vector;
if (pci_get_capability(psc->sc_pc, psc->sc_tag, PCI_CAP_PCIEXPRESS,
&psc->sc_cap_off, NULL) == 0) {
printf(": can't find PCIe capability structure\n");
return;
}
if (pci_get_capability(psc->sc_pc, psc->sc_tag, PCI_CAP_MSI,
&psc->sc_msi_off, &psc->sc_msi_cap) == 0) {
printf(": can't find MSI capability structure\n");
return;
}
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
reg |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
if (pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
&psc->sc_st, &psc->sc_sh, &psc->sc_map, &psc->sc_mapsize, 0)) {
printf(": can't map mem space\n");
return;
}
sc->mem = psc->sc_map;
sc->num_msivec = 32;
if (pci_intr_enable_msivec(pa, sc->num_msivec) != 0) {
sc->num_msivec = 1;
if (pci_intr_map_msi(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
clear_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags);
} else {
if (pci_intr_map_msivec(pa, 0, &ih) != 0 &&
pci_intr_map_msi(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
set_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags);
psc->mhi_irq[MHI_ER_CTRL] = 1;
psc->mhi_irq[MHI_ER_DATA] = 2;
}
intrstr = pci_intr_string(psc->sc_pc, ih);
snprintf(psc->sc_ivname[0], sizeof(psc->sc_ivname[0]), "%s:bhi",
sc->sc_dev.dv_xname);
psc->sc_ih[0] = pci_intr_establish(psc->sc_pc, ih, IPL_NET,
qwx_pci_intr, psc, psc->sc_ivname[0]);
if (psc->sc_ih[0] == NULL) {
printf(": can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s\n", intrstr);
if (test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) {
int msivec;
msivec = psc->mhi_irq[MHI_ER_CTRL];
if (pci_intr_map_msivec(pa, msivec, &ih) != 0 &&
pci_intr_map_msi(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
snprintf(psc->sc_ivname[msivec],
sizeof(psc->sc_ivname[msivec]),
"%s:mhic", sc->sc_dev.dv_xname);
psc->sc_ih[msivec] = pci_intr_establish(psc->sc_pc, ih,
IPL_NET, qwx_pci_intr_mhi_ctrl, psc,
psc->sc_ivname[msivec]);
if (psc->sc_ih[msivec] == NULL) {
printf("%s: can't establish interrupt\n",
sc->sc_dev.dv_xname);
return;
}
msivec = psc->mhi_irq[MHI_ER_DATA];
if (pci_intr_map_msivec(pa, msivec, &ih) != 0 &&
pci_intr_map_msi(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
snprintf(psc->sc_ivname[msivec],
sizeof(psc->sc_ivname[msivec]),
"%s:mhid", sc->sc_dev.dv_xname);
psc->sc_ih[msivec] = pci_intr_establish(psc->sc_pc, ih,
IPL_NET, qwx_pci_intr_mhi_data, psc,
psc->sc_ivname[msivec]);
if (psc->sc_ih[msivec] == NULL) {
printf("%s: can't establish interrupt\n",
sc->sc_dev.dv_xname);
return;
}
}
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_QUALCOMM_QCA6390:
qwx_pci_read_hw_version(sc, &soc_hw_version_major,
&soc_hw_version_minor);
switch (soc_hw_version_major) {
case 2:
sc->sc_hw_rev = ATH11K_HW_QCA6390_HW20;
break;
default:
printf(": unsupported QCA6390 SOC version: %d %d\n",
soc_hw_version_major, soc_hw_version_minor);
return;
}
pci_ops = &qwx_pci_ops_qca6390;
psc->max_chan = QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS;
break;
case PCI_PRODUCT_QUALCOMM_QCN9074:
pci_ops = &qwx_pci_ops_qcn9074;
sc->sc_hw_rev = ATH11K_HW_QCN9074_HW10;
psc->max_chan = QWX_MHI_CONFIG_QCA9074_MAX_CHANNELS;
break;
case PCI_PRODUCT_QUALCOMM_QCNFA765:
sc->id.bdf_search = ATH11K_BDF_SEARCH_BUS_AND_BOARD;
qwx_pci_read_hw_version(sc, &soc_hw_version_major,
&soc_hw_version_minor);
switch (soc_hw_version_major) {
case 2:
switch (soc_hw_version_minor) {
case 0x00:
case 0x01:
sc->sc_hw_rev = ATH11K_HW_WCN6855_HW20;
break;
case 0x10:
case 0x11:
sc->sc_hw_rev = ATH11K_HW_WCN6855_HW21;
break;
default:
goto unsupported_wcn6855_soc;
}
break;
default:
unsupported_wcn6855_soc:
printf(": unsupported WCN6855 SOC version: %d %d\n",
soc_hw_version_major, soc_hw_version_minor);
return;
}
pci_ops = &qwx_pci_ops_qca6390;
psc->max_chan = QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS;
break;
default:
printf(": unsupported chip\n");
return;
}
/* register PCI ops */
psc->sc_pci_ops = pci_ops;
error = qwx_pcic_init_msi_config(sc);
if (error)
goto err_pci_free_region;
error = qwx_pci_alloc_msi(sc);
if (error) {
printf("%s: failed to enable msi: %d\n", sc->sc_dev.dv_xname,
error);
goto err_pci_free_region;
}
error = qwx_init_hw_params(sc);
if (error)
goto err_pci_disable_msi;
psc->chan_ctxt = qwx_dmamem_alloc(sc->sc_dmat,
sizeof(struct qwx_mhi_chan_ctxt) * psc->max_chan, 0);
if (psc->chan_ctxt == NULL) {
printf("%s: could not allocate channel context array\n",
sc->sc_dev.dv_xname);
goto err_pci_disable_msi;
}
if (psc->sc_pci_ops->alloc_xfer_rings(psc)) {
printf("%s: could not allocate transfer rings\n",
sc->sc_dev.dv_xname);
goto err_pci_free_chan_ctxt;
}
psc->event_ctxt = qwx_dmamem_alloc(sc->sc_dmat,
sizeof(struct qwx_mhi_event_ctxt) * QWX_NUM_EVENT_CTX, 0);
if (psc->event_ctxt == NULL) {
printf("%s: could not allocate event context array\n",
sc->sc_dev.dv_xname);
goto err_pci_free_xfer_rings;
}
if (qwx_pci_alloc_event_rings(psc)) {
printf("%s: could not allocate event rings\n",
sc->sc_dev.dv_xname);
goto err_pci_free_event_ctxt;
}
psc->cmd_ctxt = qwx_dmamem_alloc(sc->sc_dmat,
sizeof(struct qwx_mhi_cmd_ctxt), 0);
if (psc->cmd_ctxt == NULL) {
printf("%s: could not allocate command context array\n",
sc->sc_dev.dv_xname);
goto err_pci_free_event_rings;
}
if (qwx_pci_init_cmd_ring(sc, &psc->cmd_ring)) {
printf("%s: could not allocate command ring\n",
sc->sc_dev.dv_xname);
goto err_pci_free_cmd_ctxt;
}
error = qwx_mhi_register(sc);
if (error) {
printf(": failed to register mhi: %d\n", error);
goto err_pci_free_cmd_ring;
}
error = qwx_hal_srng_init(sc);
if (error)
goto err_mhi_unregister;
error = qwx_ce_alloc_pipes(sc);
if (error) {
printf(": failed to allocate ce pipes: %d\n", error);
goto err_hal_srng_deinit;
}
sc->sc_nswq = taskq_create("qwxns", 1, IPL_NET, 0);
if (sc->sc_nswq == NULL)
goto err_ce_free;
qwx_pci_init_qmi_ce_config(sc);
error = qwx_pcic_config_irq(sc, pa);
if (error) {
printf("%s: failed to config irq: %d\n",
sc->sc_dev.dv_xname, error);
goto err_ce_free;
}
#if notyet
ret = ath11k_pci_set_irq_affinity_hint(ab_pci, cpumask_of(0));
if (ret) {
ath11k_err(ab, "failed to set irq affinity %d\n", ret);
goto err_free_irq;
}
/* kernel may allocate a dummy vector before request_irq and
* then allocate a real vector when request_irq is called.
* So get msi_data here again to avoid spurious interrupt
* as msi_data will configured to srngs.
*/
ret = ath11k_pci_config_msi_data(ab_pci);
if (ret) {
ath11k_err(ab, "failed to config msi_data: %d\n", ret);
goto err_irq_affinity_cleanup;
}
#endif
task_set(&psc->rddm_task, qwx_rddm_task, psc);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
#if 0
IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU | /* A-MPDU */
#endif
IEEE80211_C_ADDBA_OFFLOAD | /* device sends ADDBA/DELBA frames */
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_RSN | /* WPA/RSN */
IEEE80211_C_SCANALL | /* device scans all channels at once */
IEEE80211_C_SCANALLBAND | /* device scans all bands at once */
#if 0
IEEE80211_C_MONITOR | /* monitor mode supported */
#endif
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[1];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qwx_ioctl;
ifp->if_start = qwx_start;
ifp->if_watchdog = qwx_watchdog;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ieee80211_media_init(ifp, qwx_media_change, ieee80211_media_status);
ic->ic_node_alloc = qwx_node_alloc;
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = qwx_newstate;
#if 0
ic->ic_updatechan = qwx_updatechan;
ic->ic_updateprot = qwx_updateprot;
ic->ic_updateslot = qwx_updateslot;
ic->ic_updateedca = qwx_updateedca;
ic->ic_updatedtim = qwx_updatedtim;
#endif
/*
* We cannot read the MAC address without loading the
* firmware from disk. Postpone until mountroot is done.
*/
config_mountroot(self, qwx_pci_attach_hook);
return;
err_ce_free:
qwx_ce_free_pipes(sc);
err_hal_srng_deinit:
err_mhi_unregister:
err_pci_free_cmd_ring:
qwx_pci_free_cmd_ring(psc);
err_pci_free_cmd_ctxt:
qwx_dmamem_free(sc->sc_dmat, psc->cmd_ctxt);
psc->cmd_ctxt = NULL;
err_pci_free_event_rings:
qwx_pci_free_event_rings(psc);
err_pci_free_event_ctxt:
qwx_dmamem_free(sc->sc_dmat, psc->event_ctxt);
psc->event_ctxt = NULL;
err_pci_free_xfer_rings:
qwx_pci_free_xfer_rings(psc);
err_pci_free_chan_ctxt:
qwx_dmamem_free(sc->sc_dmat, psc->chan_ctxt);
psc->chan_ctxt = NULL;
err_pci_disable_msi:
err_pci_free_region:
pci_intr_disestablish(psc->sc_pc, psc->sc_ih[0]);
return;
}
int
qwx_pci_detach(struct device *self, int flags)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)self;
struct qwx_softc *sc = &psc->sc_sc;
if (psc->sc_ih[0]) {
pci_intr_disestablish(psc->sc_pc, psc->sc_ih[0]);
psc->sc_ih[0] = NULL;
}
qwx_detach(sc);
qwx_pci_free_event_rings(psc);
qwx_pci_free_xfer_rings(psc);
qwx_pci_free_cmd_ring(psc);
if (psc->event_ctxt) {
qwx_dmamem_free(sc->sc_dmat, psc->event_ctxt);
psc->event_ctxt = NULL;
}
if (psc->chan_ctxt) {
qwx_dmamem_free(sc->sc_dmat, psc->chan_ctxt);
psc->chan_ctxt = NULL;
}
if (psc->cmd_ctxt) {
qwx_dmamem_free(sc->sc_dmat, psc->cmd_ctxt);
psc->cmd_ctxt = NULL;
}
if (psc->amss_data) {
qwx_dmamem_free(sc->sc_dmat, psc->amss_data);
psc->amss_data = NULL;
}
if (psc->amss_vec) {
qwx_dmamem_free(sc->sc_dmat, psc->amss_vec);
psc->amss_vec = NULL;
}
return 0;
}
void
qwx_pci_attach_hook(struct device *self)
{
struct qwx_softc *sc = (void *)self;
int s = splnet();
qwx_attach(sc);
splx(s);
}
void
qwx_pci_free_xfer_rings(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int i;
for (i = 0; i < nitems(psc->xfer_rings); i++) {
struct qwx_pci_xfer_ring *ring = &psc->xfer_rings[i];
if (ring->dmamem) {
qwx_dmamem_free(sc->sc_dmat, ring->dmamem);
ring->dmamem = NULL;
}
memset(ring, 0, sizeof(*ring));
}
}
int
qwx_pci_alloc_xfer_ring(struct qwx_softc *sc, struct qwx_pci_xfer_ring *ring,
uint32_t id, uint32_t direction, uint32_t event_ring_index,
size_t num_elements)
{
bus_size_t size;
int i, err;
memset(ring, 0, sizeof(*ring));
size = sizeof(struct qwx_mhi_ring_element) * num_elements;
/* Hardware requires that rings are aligned to ring size. */
ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, size, size);
if (ring->dmamem == NULL)
return ENOMEM;
ring->size = size;
ring->mhi_chan_id = id;
ring->mhi_chan_state = MHI_CH_STATE_DISABLED;
ring->mhi_chan_direction = direction;
ring->mhi_chan_event_ring_index = event_ring_index;
ring->num_elements = num_elements;
memset(ring->data, 0, sizeof(ring->data));
for (i = 0; i < ring->num_elements; i++) {
struct qwx_xfer_data *xfer = &ring->data[i];
err = bus_dmamap_create(sc->sc_dmat, QWX_PCI_XFER_MAX_DATA_SIZE,
1, QWX_PCI_XFER_MAX_DATA_SIZE, 0, BUS_DMA_NOWAIT,
&xfer->map);
if (err) {
printf("%s: could not create xfer DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
if (direction == MHI_CHAN_TYPE_INBOUND) {
struct mbuf *m;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL) {
err = ENOBUFS;
goto fail;
}
MCLGETL(m, M_DONTWAIT, QWX_PCI_XFER_MAX_DATA_SIZE);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
err = ENOBUFS;
goto fail;
}
m->m_len = m->m_pkthdr.len = QWX_PCI_XFER_MAX_DATA_SIZE;
err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map,
m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (err) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, err);
m_freem(m);
goto fail;
}
bus_dmamap_sync(sc->sc_dmat, xfer->map, 0,
QWX_PCI_XFER_MAX_DATA_SIZE, BUS_DMASYNC_PREREAD);
xfer->m = m;
}
}
return 0;
fail:
for (i = 0; i < ring->num_elements; i++) {
struct qwx_xfer_data *xfer = &ring->data[i];
if (xfer->map) {
bus_dmamap_sync(sc->sc_dmat, xfer->map, 0,
xfer->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, xfer->map);
bus_dmamap_destroy(sc->sc_dmat, xfer->map);
xfer->map = NULL;
}
if (xfer->m) {
m_freem(xfer->m);
xfer->m = NULL;
}
}
return 1;
}
int
qwx_pci_alloc_xfer_rings_qca6390(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int ret;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND],
0, MHI_CHAN_TYPE_OUTBOUND, 0, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_INBOUND],
1, MHI_CHAN_TYPE_INBOUND, 0, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND],
20, MHI_CHAN_TYPE_OUTBOUND, 1, 64);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND],
21, MHI_CHAN_TYPE_INBOUND, 1, 64);
if (ret)
goto fail;
return 0;
fail:
qwx_pci_free_xfer_rings(psc);
return ret;
}
int
qwx_pci_alloc_xfer_rings_qcn9074(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int ret;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND],
0, MHI_CHAN_TYPE_OUTBOUND, 1, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_INBOUND],
1, MHI_CHAN_TYPE_INBOUND, 1, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND],
20, MHI_CHAN_TYPE_OUTBOUND, 1, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_xfer_ring(sc,
&psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND],
21, MHI_CHAN_TYPE_INBOUND, 1, 32);
if (ret)
goto fail;
return 0;
fail:
qwx_pci_free_xfer_rings(psc);
return ret;
}
void
qwx_pci_free_event_rings(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int i;
for (i = 0; i < nitems(psc->event_rings); i++) {
struct qwx_pci_event_ring *ring = &psc->event_rings[i];
if (ring->dmamem) {
qwx_dmamem_free(sc->sc_dmat, ring->dmamem);
ring->dmamem = NULL;
}
memset(ring, 0, sizeof(*ring));
}
}
int
qwx_pci_alloc_event_ring(struct qwx_softc *sc, struct qwx_pci_event_ring *ring,
uint32_t type, uint32_t irq, uint32_t intmod, size_t num_elements)
{
bus_size_t size;
memset(ring, 0, sizeof(*ring));
size = sizeof(struct qwx_mhi_ring_element) * num_elements;
/* Hardware requires that rings are aligned to ring size. */
ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, size, size);
if (ring->dmamem == NULL)
return ENOMEM;
ring->size = size;
ring->mhi_er_type = type;
ring->mhi_er_irq = irq;
ring->mhi_er_irq_moderation_ms = intmod;
ring->num_elements = num_elements;
return 0;
}
int
qwx_pci_alloc_event_rings(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int ret;
ret = qwx_pci_alloc_event_ring(sc, &psc->event_rings[0],
MHI_ER_CTRL, psc->mhi_irq[MHI_ER_CTRL], 0, 32);
if (ret)
goto fail;
ret = qwx_pci_alloc_event_ring(sc, &psc->event_rings[1],
MHI_ER_DATA, psc->mhi_irq[MHI_ER_DATA], 1, 256);
if (ret)
goto fail;
return 0;
fail:
qwx_pci_free_event_rings(psc);
return ret;
}
void
qwx_pci_free_cmd_ring(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_pci_cmd_ring *ring = &psc->cmd_ring;
if (ring->dmamem)
qwx_dmamem_free(sc->sc_dmat, ring->dmamem);
memset(ring, 0, sizeof(*ring));
}
int
qwx_pci_init_cmd_ring(struct qwx_softc *sc, struct qwx_pci_cmd_ring *ring)
{
memset(ring, 0, sizeof(*ring));
ring->num_elements = QWX_PCI_CMD_RING_MAX_ELEMENTS;
ring->size = sizeof(struct qwx_mhi_ring_element) * ring->num_elements;
/* Hardware requires that rings are aligned to ring size. */
ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, ring->size, ring->size);
if (ring->dmamem == NULL)
return ENOMEM;
return 0;
}
uint32_t
qwx_pci_read(struct qwx_softc *sc, uint32_t addr)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
return (bus_space_read_4(psc->sc_st, psc->sc_sh, addr));
}
void
qwx_pci_write(struct qwx_softc *sc, uint32_t addr, uint32_t val)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
bus_space_write_4(psc->sc_st, psc->sc_sh, addr, val);
}
void
qwx_pci_read_hw_version(struct qwx_softc *sc, uint32_t *major,
uint32_t *minor)
{
uint32_t soc_hw_version;
soc_hw_version = qwx_pcic_read32(sc, TCSR_SOC_HW_VERSION);
*major = FIELD_GET(TCSR_SOC_HW_VERSION_MAJOR_MASK, soc_hw_version);
*minor = FIELD_GET(TCSR_SOC_HW_VERSION_MINOR_MASK, soc_hw_version);
DPRINTF("%s: pci tcsr_soc_hw_version major %d minor %d\n",
sc->sc_dev.dv_xname, *major, *minor);
}
uint32_t
qwx_pcic_read32(struct qwx_softc *sc, uint32_t offset)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
int ret = 0;
uint32_t val;
bool wakeup_required;
/* for offset beyond BAR + 4K - 32, may
* need to wakeup the device to access.
*/
wakeup_required = test_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags)
&& offset >= ATH11K_PCI_ACCESS_ALWAYS_OFF;
if (wakeup_required && psc->sc_pci_ops->wakeup)
ret = psc->sc_pci_ops->wakeup(sc);
if (offset < ATH11K_PCI_WINDOW_START)
val = qwx_pci_read(sc, offset);
else
val = psc->sc_pci_ops->window_read32(sc, offset);
if (wakeup_required && !ret && psc->sc_pci_ops->release)
psc->sc_pci_ops->release(sc);
return val;
}
void
qwx_pcic_write32(struct qwx_softc *sc, uint32_t offset, uint32_t value)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
int ret = 0;
bool wakeup_required;
/* for offset beyond BAR + 4K - 32, may
* need to wakeup the device to access.
*/
wakeup_required = test_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags)
&& offset >= ATH11K_PCI_ACCESS_ALWAYS_OFF;
if (wakeup_required && psc->sc_pci_ops->wakeup)
ret = psc->sc_pci_ops->wakeup(sc);
if (offset < ATH11K_PCI_WINDOW_START)
qwx_pci_write(sc, offset, value);
else
psc->sc_pci_ops->window_write32(sc, offset, value);
if (wakeup_required && !ret && psc->sc_pci_ops->release)
psc->sc_pci_ops->release(sc);
}
void
qwx_pcic_ext_irq_disable(struct qwx_softc *sc)
{
clear_bit(ATH11K_FLAG_EXT_IRQ_ENABLED, sc->sc_flags);
/* In case of one MSI vector, we handle irq enable/disable in a
* uniform way since we only have one irq
*/
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return;
DPRINTF("%s not implemented\n", __func__);
}
void
qwx_pcic_ext_irq_enable(struct qwx_softc *sc)
{
set_bit(ATH11K_FLAG_EXT_IRQ_ENABLED, sc->sc_flags);
/* In case of one MSI vector, we handle irq enable/disable in a
* uniform way since we only have one irq
*/
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return;
DPRINTF("%s not implemented\n", __func__);
}
void
qwx_pcic_ce_irq_enable(struct qwx_softc *sc, uint16_t ce_id)
{
/* In case of one MSI vector, we handle irq enable/disable in a
* uniform way since we only have one irq
*/
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return;
/* OpenBSD PCI stack does not yet implement MSI interrupt masking. */
sc->msi_ce_irqmask |= (1U << ce_id);
}
void
qwx_pcic_ce_irq_disable(struct qwx_softc *sc, uint16_t ce_id)
{
/* In case of one MSI vector, we handle irq enable/disable in a
* uniform way since we only have one irq
*/
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return;
/* OpenBSD PCI stack does not yet implement MSI interrupt masking. */
sc->msi_ce_irqmask &= ~(1U << ce_id);
}
void
qwx_pcic_ext_grp_disable(struct qwx_ext_irq_grp *irq_grp)
{
struct qwx_softc *sc = irq_grp->sc;
/* In case of one MSI vector, we handle irq enable/disable
* in a uniform way since we only have one irq
*/
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return;
}
int
qwx_pcic_ext_irq_config(struct qwx_softc *sc, struct pci_attach_args *pa)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
int i, ret, num_vectors = 0;
uint32_t msi_data_start = 0;
uint32_t base_vector = 0;
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return 0;
ret = qwx_pcic_get_user_msi_vector(sc, "DP", &num_vectors,
&msi_data_start, &base_vector);
if (ret < 0)
return ret;
for (i = 0; i < nitems(sc->ext_irq_grp); i++) {
struct qwx_ext_irq_grp *irq_grp = &sc->ext_irq_grp[i];
uint32_t num_irq = 0;
irq_grp->sc = sc;
irq_grp->grp_id = i;
#if 0
init_dummy_netdev(&irq_grp->napi_ndev);
netif_napi_add(&irq_grp->napi_ndev, &irq_grp->napi,
ath11k_pcic_ext_grp_napi_poll);
#endif
if (sc->hw_params.ring_mask->tx[i] ||
sc->hw_params.ring_mask->rx[i] ||
sc->hw_params.ring_mask->rx_err[i] ||
sc->hw_params.ring_mask->rx_wbm_rel[i] ||
sc->hw_params.ring_mask->reo_status[i] ||
sc->hw_params.ring_mask->rxdma2host[i] ||
sc->hw_params.ring_mask->host2rxdma[i] ||
sc->hw_params.ring_mask->rx_mon_status[i]) {
num_irq = 1;
}
irq_grp->num_irq = num_irq;
irq_grp->irqs[0] = ATH11K_PCI_IRQ_DP_OFFSET + i;
if (num_irq) {
int irq_idx = irq_grp->irqs[0];
pci_intr_handle_t ih;
if (pci_intr_map_msivec(pa, irq_idx, &ih) != 0 &&
pci_intr_map(pa, &ih) != 0) {
printf("%s: can't map interrupt\n",
sc->sc_dev.dv_xname);
return EIO;
}
snprintf(psc->sc_ivname[irq_idx], sizeof(psc->sc_ivname[0]),
"%s:ex%d", sc->sc_dev.dv_xname, i);
psc->sc_ih[irq_idx] = pci_intr_establish(psc->sc_pc, ih,
IPL_NET, qwx_ext_intr, irq_grp, psc->sc_ivname[irq_idx]);
if (psc->sc_ih[irq_idx] == NULL) {
printf("%s: failed to request irq %d\n",
sc->sc_dev.dv_xname, irq_idx);
return EIO;
}
}
qwx_pcic_ext_grp_disable(irq_grp);
}
return 0;
}
int
qwx_pcic_config_irq(struct qwx_softc *sc, struct pci_attach_args *pa)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
struct qwx_ce_pipe *ce_pipe;
uint32_t msi_data_start;
uint32_t msi_data_count, msi_data_idx;
uint32_t msi_irq_start;
int i, ret, irq_idx;
pci_intr_handle_t ih;
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
return 0;
ret = qwx_pcic_get_user_msi_vector(sc, "CE", &msi_data_count,
&msi_data_start, &msi_irq_start);
if (ret)
return ret;
/* Configure CE irqs */
for (i = 0, msi_data_idx = 0; i < sc->hw_params.ce_count; i++) {
if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR)
continue;
ce_pipe = &sc->ce.ce_pipe[i];
irq_idx = ATH11K_PCI_IRQ_CE0_OFFSET + i;
if (pci_intr_map_msivec(pa, irq_idx, &ih) != 0 &&
pci_intr_map(pa, &ih) != 0) {
printf("%s: can't map interrupt\n",
sc->sc_dev.dv_xname);
return EIO;
}
snprintf(psc->sc_ivname[irq_idx], sizeof(psc->sc_ivname[0]),
"%s:ce%d", sc->sc_dev.dv_xname, ce_pipe->pipe_num);
psc->sc_ih[irq_idx] = pci_intr_establish(psc->sc_pc, ih,
IPL_NET, qwx_ce_intr, ce_pipe, psc->sc_ivname[irq_idx]);
if (psc->sc_ih[irq_idx] == NULL) {
printf("%s: failed to request irq %d\n",
sc->sc_dev.dv_xname, irq_idx);
return EIO;
}
msi_data_idx++;
qwx_pcic_ce_irq_disable(sc, i);
}
ret = qwx_pcic_ext_irq_config(sc, pa);
if (ret)
return ret;
return 0;
}
void
qwx_pcic_ce_irqs_enable(struct qwx_softc *sc)
{
int i;
set_bit(ATH11K_FLAG_CE_IRQ_ENABLED, sc->sc_flags);
for (i = 0; i < sc->hw_params.ce_count; i++) {
if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR)
continue;
qwx_pcic_ce_irq_enable(sc, i);
}
}
void
qwx_pcic_ce_irqs_disable(struct qwx_softc *sc)
{
int i;
clear_bit(ATH11K_FLAG_CE_IRQ_ENABLED, sc->sc_flags);
for (i = 0; i < sc->hw_params.ce_count; i++) {
if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR)
continue;
qwx_pcic_ce_irq_disable(sc, i);
}
}
int
qwx_pci_start(struct qwx_softc *sc)
{
/* TODO: for now don't restore ASPM in case of single MSI
* vector as MHI register reading in M2 causes system hang.
*/
if (test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags))
qwx_pci_aspm_restore(sc);
else
DPRINTF("%s: leaving PCI ASPM disabled to avoid MHI M2 problems"
"\n", sc->sc_dev.dv_xname);
set_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags);
qwx_ce_rx_post_buf(sc);
qwx_pcic_ce_irqs_enable(sc);
return 0;
}
void
qwx_pcic_ce_irq_disable_sync(struct qwx_softc *sc)
{
qwx_pcic_ce_irqs_disable(sc);
#if 0
ath11k_pcic_sync_ce_irqs(ab);
ath11k_pcic_kill_tasklets(ab);
#endif
}
void
qwx_pci_stop(struct qwx_softc *sc)
{
qwx_pcic_ce_irq_disable_sync(sc);
qwx_ce_cleanup_pipes(sc);
}
int
qwx_pci_bus_wake_up(struct qwx_softc *sc)
{
if (qwx_mhi_wake_db_clear_valid(sc))
qwx_mhi_device_wake(sc);
return 0;
}
void
qwx_pci_bus_release(struct qwx_softc *sc)
{
if (qwx_mhi_wake_db_clear_valid(sc))
qwx_mhi_device_zzz(sc);
}
uint32_t
qwx_pci_get_window_start(struct qwx_softc *sc, uint32_t offset)
{
if (!sc->hw_params.static_window_map)
return ATH11K_PCI_WINDOW_START;
if ((offset ^ HAL_SEQ_WCSS_UMAC_OFFSET) < ATH11K_PCI_WINDOW_RANGE_MASK)
/* if offset lies within DP register range, use 3rd window */
return 3 * ATH11K_PCI_WINDOW_START;
else if ((offset ^ HAL_SEQ_WCSS_UMAC_CE0_SRC_REG(sc)) <
ATH11K_PCI_WINDOW_RANGE_MASK)
/* if offset lies within CE register range, use 2nd window */
return 2 * ATH11K_PCI_WINDOW_START;
else
return ATH11K_PCI_WINDOW_START;
}
void
qwx_pci_select_window(struct qwx_softc *sc, uint32_t offset)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
uint32_t window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, offset);
#if notyet
lockdep_assert_held(&ab_pci->window_lock);
#endif
if (window != psc->register_window) {
qwx_pci_write(sc, ATH11K_PCI_WINDOW_REG_ADDRESS,
ATH11K_PCI_WINDOW_ENABLE_BIT | window);
(void) qwx_pci_read(sc, ATH11K_PCI_WINDOW_REG_ADDRESS);
psc->register_window = window;
}
}
void
qwx_pci_window_write32(struct qwx_softc *sc, uint32_t offset, uint32_t value)
{
uint32_t window_start;
window_start = qwx_pci_get_window_start(sc, offset);
if (window_start == ATH11K_PCI_WINDOW_START) {
#if notyet
spin_lock_bh(&ab_pci->window_lock);
#endif
qwx_pci_select_window(sc, offset);
qwx_pci_write(sc, window_start +
(offset & ATH11K_PCI_WINDOW_RANGE_MASK), value);
#if notyet
spin_unlock_bh(&ab_pci->window_lock);
#endif
} else {
qwx_pci_write(sc, window_start +
(offset & ATH11K_PCI_WINDOW_RANGE_MASK), value);
}
}
uint32_t
qwx_pci_window_read32(struct qwx_softc *sc, uint32_t offset)
{
uint32_t window_start, val;
window_start = qwx_pci_get_window_start(sc, offset);
if (window_start == ATH11K_PCI_WINDOW_START) {
#if notyet
spin_lock_bh(&ab_pci->window_lock);
#endif
qwx_pci_select_window(sc, offset);
val = qwx_pci_read(sc, window_start +
(offset & ATH11K_PCI_WINDOW_RANGE_MASK));
#if notyet
spin_unlock_bh(&ab_pci->window_lock);
#endif
} else {
val = qwx_pci_read(sc, window_start +
(offset & ATH11K_PCI_WINDOW_RANGE_MASK));
}
return val;
}
void
qwx_pci_select_static_window(struct qwx_softc *sc)
{
uint32_t umac_window;
uint32_t ce_window;
uint32_t window;
umac_window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, HAL_SEQ_WCSS_UMAC_OFFSET);
ce_window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, HAL_CE_WFSS_CE_REG_BASE);
window = (umac_window << 12) | (ce_window << 6);
qwx_pci_write(sc, ATH11K_PCI_WINDOW_REG_ADDRESS,
ATH11K_PCI_WINDOW_ENABLE_BIT | window);
}
void
qwx_pci_soc_global_reset(struct qwx_softc *sc)
{
uint32_t val, msecs;
val = qwx_pcic_read32(sc, PCIE_SOC_GLOBAL_RESET);
val |= PCIE_SOC_GLOBAL_RESET_V;
qwx_pcic_write32(sc, PCIE_SOC_GLOBAL_RESET, val);
/* TODO: exact time to sleep is uncertain */
msecs = 10;
DELAY(msecs * 1000);
/* Need to toggle V bit back otherwise stuck in reset status */
val &= ~PCIE_SOC_GLOBAL_RESET_V;
qwx_pcic_write32(sc, PCIE_SOC_GLOBAL_RESET, val);
DELAY(msecs * 1000);
val = qwx_pcic_read32(sc, PCIE_SOC_GLOBAL_RESET);
if (val == 0xffffffff)
printf("%s: link down error during global reset\n",
sc->sc_dev.dv_xname);
}
void
qwx_pci_clear_dbg_registers(struct qwx_softc *sc)
{
uint32_t val;
/* read cookie */
val = qwx_pcic_read32(sc, PCIE_Q6_COOKIE_ADDR);
DPRINTF("%s: cookie:0x%x\n", sc->sc_dev.dv_xname, val);
val = qwx_pcic_read32(sc, WLAON_WARM_SW_ENTRY);
DPRINTF("%s: WLAON_WARM_SW_ENTRY 0x%x\n", sc->sc_dev.dv_xname, val);
/* TODO: exact time to sleep is uncertain */
DELAY(10 * 1000);
/* write 0 to WLAON_WARM_SW_ENTRY to prevent Q6 from
* continuing warm path and entering dead loop.
*/
qwx_pcic_write32(sc, WLAON_WARM_SW_ENTRY, 0);
DELAY(10 * 1000);
val = qwx_pcic_read32(sc, WLAON_WARM_SW_ENTRY);
DPRINTF("%s: WLAON_WARM_SW_ENTRY 0x%x\n", sc->sc_dev.dv_xname, val);
/* A read clear register. clear the register to prevent
* Q6 from entering wrong code path.
*/
val = qwx_pcic_read32(sc, WLAON_SOC_RESET_CAUSE_REG);
DPRINTF("%s: soc reset cause:%d\n", sc->sc_dev.dv_xname, val);
}
int
qwx_pci_set_link_reg(struct qwx_softc *sc, uint32_t offset, uint32_t value,
uint32_t mask)
{
uint32_t v;
int i;
v = qwx_pcic_read32(sc, offset);
if ((v & mask) == value)
return 0;
for (i = 0; i < 10; i++) {
qwx_pcic_write32(sc, offset, (v & ~mask) | value);
v = qwx_pcic_read32(sc, offset);
if ((v & mask) == value)
return 0;
delay((2 * 1000));
}
DPRINTF("failed to set pcie link register 0x%08x: 0x%08x != 0x%08x\n",
offset, v & mask, value);
return ETIMEDOUT;
}
int
qwx_pci_fix_l1ss(struct qwx_softc *sc)
{
int ret;
ret = qwx_pci_set_link_reg(sc,
PCIE_QSERDES_COM_SYSCLK_EN_SEL_REG(sc),
PCIE_QSERDES_COM_SYSCLK_EN_SEL_VAL,
PCIE_QSERDES_COM_SYSCLK_EN_SEL_MSK);
if (ret) {
DPRINTF("failed to set sysclk: %d\n", ret);
return ret;
}
ret = qwx_pci_set_link_reg(sc,
PCIE_PCS_OSC_DTCT_CONFIG1_REG(sc),
PCIE_PCS_OSC_DTCT_CONFIG1_VAL,
PCIE_PCS_OSC_DTCT_CONFIG_MSK);
if (ret) {
DPRINTF("failed to set dtct config1 error: %d\n", ret);
return ret;
}
ret = qwx_pci_set_link_reg(sc,
PCIE_PCS_OSC_DTCT_CONFIG2_REG(sc),
PCIE_PCS_OSC_DTCT_CONFIG2_VAL,
PCIE_PCS_OSC_DTCT_CONFIG_MSK);
if (ret) {
DPRINTF("failed to set dtct config2: %d\n", ret);
return ret;
}
ret = qwx_pci_set_link_reg(sc,
PCIE_PCS_OSC_DTCT_CONFIG4_REG(sc),
PCIE_PCS_OSC_DTCT_CONFIG4_VAL,
PCIE_PCS_OSC_DTCT_CONFIG_MSK);
if (ret) {
DPRINTF("failed to set dtct config4: %d\n", ret);
return ret;
}
return 0;
}
void
qwx_pci_enable_ltssm(struct qwx_softc *sc)
{
uint32_t val;
int i;
val = qwx_pcic_read32(sc, PCIE_PCIE_PARF_LTSSM);
/* PCIE link seems very unstable after the Hot Reset*/
for (i = 0; val != PARM_LTSSM_VALUE && i < 5; i++) {
if (val == 0xffffffff)
DELAY(5 * 1000);
qwx_pcic_write32(sc, PCIE_PCIE_PARF_LTSSM, PARM_LTSSM_VALUE);
val = qwx_pcic_read32(sc, PCIE_PCIE_PARF_LTSSM);
}
DPRINTF("%s: pci ltssm 0x%x\n", sc->sc_dev.dv_xname, val);
val = qwx_pcic_read32(sc, GCC_GCC_PCIE_HOT_RST);
val |= GCC_GCC_PCIE_HOT_RST_VAL;
qwx_pcic_write32(sc, GCC_GCC_PCIE_HOT_RST, val);
val = qwx_pcic_read32(sc, GCC_GCC_PCIE_HOT_RST);
DPRINTF("%s: pci pcie_hot_rst 0x%x\n", sc->sc_dev.dv_xname, val);
DELAY(5 * 1000);
}
void
qwx_pci_clear_all_intrs(struct qwx_softc *sc)
{
/* This is a WAR for PCIE Hotreset.
* When target receive Hotreset, but will set the interrupt.
* So when download SBL again, SBL will open Interrupt and
* receive it, and crash immediately.
*/
qwx_pcic_write32(sc, PCIE_PCIE_INT_ALL_CLEAR, PCIE_INT_CLEAR_ALL);
}
void
qwx_pci_set_wlaon_pwr_ctrl(struct qwx_softc *sc)
{
uint32_t val;
val = qwx_pcic_read32(sc, WLAON_QFPROM_PWR_CTRL_REG);
val &= ~QFPROM_PWR_CTRL_VDD4BLOW_MASK;
qwx_pcic_write32(sc, WLAON_QFPROM_PWR_CTRL_REG, val);
}
void
qwx_pci_force_wake(struct qwx_softc *sc)
{
qwx_pcic_write32(sc, PCIE_SOC_WAKE_PCIE_LOCAL_REG, 1);
DELAY(5 * 1000);
}
void
qwx_pci_sw_reset(struct qwx_softc *sc, bool power_on)
{
DELAY(100 * 1000); /* msecs */
if (power_on) {
qwx_pci_enable_ltssm(sc);
qwx_pci_clear_all_intrs(sc);
qwx_pci_set_wlaon_pwr_ctrl(sc);
if (sc->hw_params.fix_l1ss)
qwx_pci_fix_l1ss(sc);
}
qwx_mhi_clear_vector(sc);
qwx_pci_clear_dbg_registers(sc);
qwx_pci_soc_global_reset(sc);
qwx_mhi_reset_device(sc, 0);
}
void
qwx_pci_msi_config(struct qwx_softc *sc, bool enable)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
uint32_t val;
val = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_msi_off + PCI_MSI_MC);
if (enable)
val |= PCI_MSI_MC_MSIE;
else
val &= ~PCI_MSI_MC_MSIE;
pci_conf_write(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MC,
val);
}
void
qwx_pci_msi_enable(struct qwx_softc *sc)
{
qwx_pci_msi_config(sc, true);
}
void
qwx_pci_msi_disable(struct qwx_softc *sc)
{
qwx_pci_msi_config(sc, false);
}
void
qwx_pci_aspm_disable(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
psc->sc_lcsr = pci_conf_read(psc->sc_pc, psc->sc_tag,
psc->sc_cap_off + PCI_PCIE_LCSR);
DPRINTF("%s: pci link_ctl 0x%04x L0s %d L1 %d\n", sc->sc_dev.dv_xname,
(uint16_t)psc->sc_lcsr, (psc->sc_lcsr & PCI_PCIE_LCSR_ASPM_L0S),
(psc->sc_lcsr & PCI_PCIE_LCSR_ASPM_L1));
/* disable L0s and L1 */
pci_conf_write(psc->sc_pc, psc->sc_tag, psc->sc_cap_off + PCI_PCIE_LCSR,
psc->sc_lcsr & ~(PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1));
psc->sc_flags |= ATH11K_PCI_ASPM_RESTORE;
}
void
qwx_pci_aspm_restore(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
if (psc->sc_flags & ATH11K_PCI_ASPM_RESTORE) {
pci_conf_write(psc->sc_pc, psc->sc_tag,
psc->sc_cap_off + PCI_PCIE_LCSR, psc->sc_lcsr);
psc->sc_flags &= ~ATH11K_PCI_ASPM_RESTORE;
}
}
int
qwx_pci_power_up(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
int error;
psc->register_window = 0;
clear_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags);
qwx_pci_sw_reset(sc, true);
/* Disable ASPM during firmware download due to problems switching
* to AMSS state.
*/
qwx_pci_aspm_disable(sc);
qwx_pci_msi_enable(sc);
error = qwx_mhi_start(psc);
if (error)
return error;
if (sc->hw_params.static_window_map)
qwx_pci_select_static_window(sc);
return 0;
}
void
qwx_pci_power_down(struct qwx_softc *sc)
{
/* restore aspm in case firmware bootup fails */
qwx_pci_aspm_restore(sc);
qwx_pci_force_wake(sc);
qwx_pci_msi_disable(sc);
qwx_mhi_stop(sc);
clear_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags);
qwx_pci_sw_reset(sc, false);
}
/*
* MHI
*/
int
qwx_mhi_register(struct qwx_softc *sc)
{
DNPRINTF(QWX_D_MHI, "%s: STUB %s()\n", sc->sc_dev.dv_xname, __func__);
return 0;
}
void
qwx_mhi_unregister(struct qwx_softc *sc)
{
DNPRINTF(QWX_D_MHI, "%s: STUB %s()\n", sc->sc_dev.dv_xname, __func__);
}
// XXX MHI is GPLd - we provide a compatible bare-bones implementation
#define MHI_CFG 0x10
#define MHI_CFG_NHWER_MASK GENMASK(31, 24)
#define MHI_CFG_NHWER_SHFT 24
#define MHI_CFG_NER_MASK GENMASK(23, 16)
#define MHI_CFG_NER_SHFT 16
#define MHI_CFG_NHWCH_MASK GENMASK(15, 8)
#define MHI_CFG_NHWCH_SHFT 8
#define MHI_CFG_NCH_MASK GENMASK(7, 0)
#define MHI_CHDBOFF 0x18
#define MHI_DEV_WAKE_DB 127
#define MHI_ERDBOFF 0x20
#define MHI_BHI_OFFSET 0x28
#define MHI_BHI_IMGADDR_LOW 0x08
#define MHI_BHI_IMGADDR_HIGH 0x0c
#define MHI_BHI_IMGSIZE 0x10
#define MHI_BHI_IMGTXDB 0x18
#define MHI_BHI_INTVEC 0x20
#define MHI_BHI_EXECENV 0x28
#define MHI_BHI_STATUS 0x2c
#define MHI_BHI_SERIALNU 0x40
#define MHI_BHIE_OFFSET 0x2c
#define MHI_BHIE_TXVECADDR_LOW_OFFS 0x2c
#define MHI_BHIE_TXVECADDR_HIGH_OFFS 0x30
#define MHI_BHIE_TXVECSIZE_OFFS 0x34
#define MHI_BHIE_TXVECDB_OFFS 0x3c
#define MHI_BHIE_TXVECSTATUS_OFFS 0x44
#define MHI_BHIE_RXVECADDR_LOW_OFFS 0x60
#define MHI_BHIE_RXVECSTATUS_OFFS 0x78
#define MHI_CTRL 0x38
#define MHI_CTRL_READY_MASK 0x1
#define MHI_CTRL_RESET_MASK 0x2
#define MHI_CTRL_MHISTATE_MASK GENMASK(15, 8)
#define MHI_CTRL_MHISTATE_SHFT 8
#define MHI_STATUS 0x48
#define MHI_STATUS_MHISTATE_MASK GENMASK(15, 8)
#define MHI_STATUS_MHISTATE_SHFT 8
#define MHI_STATE_RESET 0x0
#define MHI_STATE_READY 0x1
#define MHI_STATE_M0 0x2
#define MHI_STATE_M1 0x3
#define MHI_STATE_M2 0x4
#define MHI_STATE_M3 0x5
#define MHI_STATE_M3_FAST 0x6
#define MHI_STATE_BHI 0x7
#define MHI_STATE_SYS_ERR 0xff
#define MHI_STATUS_READY_MASK 0x1
#define MHI_STATUS_SYSERR_MASK 0x4
#define MHI_CCABAP_LOWER 0x58
#define MHI_CCABAP_HIGHER 0x5c
#define MHI_ECABAP_LOWER 0x60
#define MHI_ECABAP_HIGHER 0x64
#define MHI_CRCBAP_LOWER 0x68
#define MHI_CRCBAP_HIGHER 0x6c
#define MHI_CRDB_LOWER 0x70
#define MHI_CRDB_HIGHER 0x74
#define MHI_CTRLBASE_LOWER 0x80
#define MHI_CTRLBASE_HIGHER 0x84
#define MHI_CTRLLIMIT_LOWER 0x88
#define MHI_CTRLLIMIT_HIGHER 0x8c
#define MHI_DATABASE_LOWER 0x98
#define MHI_DATABASE_HIGHER 0x9c
#define MHI_DATALIMIT_LOWER 0xa0
#define MHI_DATALIMIT_HIGHER 0xa4
#define MHI_EE_PBL 0x0 /* Primary Bootloader */
#define MHI_EE_SBL 0x1 /* Secondary Bootloader */
#define MHI_EE_AMSS 0x2 /* Modem, aka the primary runtime EE */
#define MHI_EE_RDDM 0x3 /* Ram dump download mode */
#define MHI_EE_WFW 0x4 /* WLAN firmware mode */
#define MHI_EE_PTHRU 0x5 /* Passthrough */
#define MHI_EE_EDL 0x6 /* Embedded downloader */
#define MHI_EE_FP 0x7 /* Flash Programmer Environment */
#define MHI_IN_PBL(e) (e == MHI_EE_PBL || e == MHI_EE_PTHRU || e == MHI_EE_EDL)
#define MHI_POWER_UP_CAPABLE(e) (MHI_IN_PBL(e) || e == MHI_EE_AMSS)
#define MHI_IN_MISSION_MODE(e) \
(e == MHI_EE_AMSS || e == MHI_EE_WFW || e == MHI_EE_FP)
/* BHI register bits */
#define MHI_BHI_TXDB_SEQNUM_BMSK GENMASK(29, 0)
#define MHI_BHI_TXDB_SEQNUM_SHFT 0
#define MHI_BHI_STATUS_MASK GENMASK(31, 30)
#define MHI_BHI_STATUS_SHFT 30
#define MHI_BHI_STATUS_ERROR 0x03
#define MHI_BHI_STATUS_SUCCESS 0x02
#define MHI_BHI_STATUS_RESET 0x00
/* MHI BHIE registers */
#define MHI_BHIE_MSMSOCID_OFFS 0x00
#define MHI_BHIE_RXVECADDR_LOW_OFFS 0x60
#define MHI_BHIE_RXVECADDR_HIGH_OFFS 0x64
#define MHI_BHIE_RXVECSIZE_OFFS 0x68
#define MHI_BHIE_RXVECDB_OFFS 0x70
#define MHI_BHIE_RXVECSTATUS_OFFS 0x78
/* BHIE register bits */
#define MHI_BHIE_TXVECDB_SEQNUM_BMSK GENMASK(29, 0)
#define MHI_BHIE_TXVECDB_SEQNUM_SHFT 0
#define MHI_BHIE_TXVECSTATUS_SEQNUM_BMSK GENMASK(29, 0)
#define MHI_BHIE_TXVECSTATUS_SEQNUM_SHFT 0
#define MHI_BHIE_TXVECSTATUS_STATUS_BMSK GENMASK(31, 30)
#define MHI_BHIE_TXVECSTATUS_STATUS_SHFT 30
#define MHI_BHIE_TXVECSTATUS_STATUS_RESET 0x00
#define MHI_BHIE_TXVECSTATUS_STATUS_XFER_COMPL 0x02
#define MHI_BHIE_TXVECSTATUS_STATUS_ERROR 0x03
#define MHI_BHIE_RXVECDB_SEQNUM_BMSK GENMASK(29, 0)
#define MHI_BHIE_RXVECDB_SEQNUM_SHFT 0
#define MHI_BHIE_RXVECSTATUS_SEQNUM_BMSK GENMASK(29, 0)
#define MHI_BHIE_RXVECSTATUS_SEQNUM_SHFT 0
#define MHI_BHIE_RXVECSTATUS_STATUS_BMSK GENMASK(31, 30)
#define MHI_BHIE_RXVECSTATUS_STATUS_SHFT 30
#define MHI_BHIE_RXVECSTATUS_STATUS_RESET 0x00
#define MHI_BHIE_RXVECSTATUS_STATUS_XFER_COMPL 0x02
#define MHI_BHIE_RXVECSTATUS_STATUS_ERROR 0x03
#define MHI_EV_CC_INVALID 0x0
#define MHI_EV_CC_SUCCESS 0x1
#define MHI_EV_CC_EOT 0x2
#define MHI_EV_CC_OVERFLOW 0x3
#define MHI_EV_CC_EOB 0x4
#define MHI_EV_CC_OOB 0x5
#define MHI_EV_CC_DB_MODE 0x6
#define MHI_EV_CC_UNDEFINED_ERR 0x10
#define MHI_EV_CC_BAD_TRE 0x11
#define MHI_CMD_NOP 01
#define MHI_CMD_RESET_CHAN 16
#define MHI_CMD_STOP_CHAN 17
#define MHI_CMD_START_CHAN 18
#define MHI_TRE_CMD_CHID_MASK GENMASK(31, 24)
#define MHI_TRE_CMD_CHID_SHFT 24
#define MHI_TRE_CMD_CMDID_MASK GENMASK(23, 16)
#define MHI_TRE_CMD_CMDID_SHFT 16
#define MHI_TRE0_EV_LEN_MASK GENMASK(15, 0)
#define MHI_TRE0_EV_LEN_SHFT 0
#define MHI_TRE0_EV_CODE_MASK GENMASK(31, 24)
#define MHI_TRE0_EV_CODE_SHFT 24
#define MHI_TRE1_EV_TYPE_MASK GENMASK(23, 16)
#define MHI_TRE1_EV_TYPE_SHFT 16
#define MHI_TRE1_EV_CHID_MASK GENMASK(31, 24)
#define MHI_TRE1_EV_CHID_SHFT 24
#define MHI_TRE0_DATA_LEN_MASK GENMASK(15, 0)
#define MHI_TRE0_DATA_LEN_SHFT 0
#define MHI_TRE1_DATA_CHAIN (1 << 0)
#define MHI_TRE1_DATA_IEOB (1 << 8)
#define MHI_TRE1_DATA_IEOT (1 << 9)
#define MHI_TRE1_DATA_BEI (1 << 10)
#define MHI_TRE1_DATA_TYPE_MASK GENMASK(23, 16)
#define MHI_TRE1_DATA_TYPE_SHIFT 16
#define MHI_TRE1_DATA_TYPE_TRANSFER 0x2
#define MHI_PKT_TYPE_INVALID 0x00
#define MHI_PKT_TYPE_NOOP_CMD 0x01
#define MHI_PKT_TYPE_TRANSFER 0x02
#define MHI_PKT_TYPE_COALESCING 0x08
#define MHI_PKT_TYPE_RESET_CHAN_CMD 0x10
#define MHI_PKT_TYPE_STOP_CHAN_CMD 0x11
#define MHI_PKT_TYPE_START_CHAN_CMD 0x12
#define MHI_PKT_TYPE_STATE_CHANGE_EVENT 0x20
#define MHI_PKT_TYPE_CMD_COMPLETION_EVENT 0x21
#define MHI_PKT_TYPE_TX_EVENT 0x22
#define MHI_PKT_TYPE_RSC_TX_EVENT 0x28
#define MHI_PKT_TYPE_EE_EVENT 0x40
#define MHI_PKT_TYPE_TSYNC_EVENT 0x48
#define MHI_PKT_TYPE_BW_REQ_EVENT 0x50
#define MHI_DMA_VEC_CHUNK_SIZE 524288 /* 512 KB */
struct qwx_dma_vec_entry {
uint64_t paddr;
uint64_t size;
};
void
qwx_mhi_ring_doorbell(struct qwx_softc *sc, uint64_t db_addr, uint64_t val)
{
qwx_pci_write(sc, db_addr + 4, val >> 32);
qwx_pci_write(sc, db_addr, val & 0xffffffff);
}
void
qwx_mhi_device_wake(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
/*
* Device wake is async only for now because we do not
* keep track of PM state in software.
*/
qwx_mhi_ring_doorbell(sc, psc->wake_db, 1);
}
void
qwx_mhi_device_zzz(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
qwx_mhi_ring_doorbell(sc, psc->wake_db, 0);
}
int
qwx_mhi_wake_db_clear_valid(struct qwx_softc *sc)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
return (psc->mhi_state == MHI_STATE_M0); /* TODO other states? */
}
void
qwx_mhi_init_xfer_rings(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int i;
uint32_t chcfg;
struct qwx_pci_xfer_ring *ring;
struct qwx_mhi_chan_ctxt *cbase, *c;
cbase = (struct qwx_mhi_chan_ctxt *)QWX_DMA_KVA(psc->chan_ctxt);
for (i = 0; i < psc->max_chan; i++) {
c = &cbase[i];
chcfg = le32toh(c->chcfg);
chcfg &= ~(MHI_CHAN_CTX_CHSTATE_MASK |
MHI_CHAN_CTX_BRSTMODE_MASK |
MHI_CHAN_CTX_POLLCFG_MASK);
chcfg |= (MHI_CHAN_CTX_CHSTATE_DISABLED |
(MHI_CHAN_CTX_BRSTMODE_DISABLE <<
MHI_CHAN_CTX_BRSTMODE_SHFT));
c->chcfg = htole32(chcfg);
c->chtype = htole32(MHI_CHAN_TYPE_INVALID);
c->erindex = 0;
}
for (i = 0; i < nitems(psc->xfer_rings); i++) {
ring = &psc->xfer_rings[i];
KASSERT(ring->mhi_chan_id < psc->max_chan);
c = &cbase[ring->mhi_chan_id];
c->chtype = htole32(ring->mhi_chan_direction);
c->erindex = htole32(ring->mhi_chan_event_ring_index);
ring->chan_ctxt = c;
}
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0,
QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE);
}
void
qwx_mhi_init_event_rings(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int i;
uint32_t intmod;
uint64_t paddr, len;
struct qwx_pci_event_ring *ring;
struct qwx_mhi_event_ctxt *c;
c = (struct qwx_mhi_event_ctxt *)QWX_DMA_KVA(psc->event_ctxt);
for (i = 0; i < nitems(psc->event_rings); i++, c++) {
ring = &psc->event_rings[i];
ring->event_ctxt = c;
intmod = le32toh(c->intmod);
intmod &= ~(MHI_EV_CTX_INTMODC_MASK | MHI_EV_CTX_INTMODT_MASK);
intmod |= (ring->mhi_er_irq_moderation_ms <<
MHI_EV_CTX_INTMODT_SHFT) & MHI_EV_CTX_INTMODT_MASK;
c->intmod = htole32(intmod);
c->ertype = htole32(MHI_ER_TYPE_VALID);
c->msivec = htole32(ring->mhi_er_irq);
paddr = QWX_DMA_DVA(ring->dmamem);
ring->rp = paddr;
ring->wp = paddr + ring->size -
sizeof(struct qwx_mhi_ring_element);
c->rbase = htole64(paddr);
c->rp = htole64(ring->rp);
c->wp = htole64(ring->wp);
len = sizeof(struct qwx_mhi_ring_element) * ring->num_elements;
c->rlen = htole64(len);
}
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0,
QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE);
}
void
qwx_mhi_init_cmd_ring(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_pci_cmd_ring *ring = &psc->cmd_ring;
struct qwx_mhi_cmd_ctxt *c;
uint64_t paddr, len;
paddr = QWX_DMA_DVA(ring->dmamem);
len = ring->size;
ring->rp = ring->wp = paddr;
c = (struct qwx_mhi_cmd_ctxt *)QWX_DMA_KVA(psc->cmd_ctxt);
c->rbase = htole64(paddr);
c->rp = htole64(paddr);
c->wp = htole64(paddr);
c->rlen = htole64(len);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0,
QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_PREWRITE);
}
void
qwx_mhi_init_dev_ctxt(struct qwx_pci_softc *psc)
{
qwx_mhi_init_xfer_rings(psc);
qwx_mhi_init_event_rings(psc);
qwx_mhi_init_cmd_ring(psc);
}
void *
qwx_pci_cmd_ring_get_elem(struct qwx_pci_cmd_ring *ring, uint64_t ptr)
{
uint64_t base = QWX_DMA_DVA(ring->dmamem), offset;
if (ptr < base || ptr >= base + ring->size)
return NULL;
offset = ptr - base;
if (offset >= ring->size)
return NULL;
return QWX_DMA_KVA(ring->dmamem) + offset;
}
int
qwx_mhi_cmd_ring_submit(struct qwx_pci_softc *psc,
struct qwx_pci_cmd_ring *ring)
{
struct qwx_softc *sc = &psc->sc_sc;
uint64_t base = QWX_DMA_DVA(ring->dmamem);
struct qwx_mhi_cmd_ctxt *c;
if (ring->queued >= ring->num_elements)
return 1;
if (ring->wp + sizeof(struct qwx_mhi_ring_element) >= base + ring->size)
ring->wp = base;
else
ring->wp += sizeof(struct qwx_mhi_ring_element);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0,
QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_POSTREAD);
c = (struct qwx_mhi_cmd_ctxt *)QWX_DMA_KVA(psc->cmd_ctxt);
c->wp = htole64(ring->wp);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0,
QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_PREWRITE);
ring->queued++;
qwx_mhi_ring_doorbell(sc, MHI_CRDB_LOWER, ring->wp);
return 0;
}
int
qwx_mhi_send_cmd(struct qwx_pci_softc *psc, uint32_t cmd, uint32_t chan)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_pci_cmd_ring *ring = &psc->cmd_ring;
struct qwx_mhi_ring_element *e;
if (ring->queued >= ring->num_elements) {
printf("%s: command ring overflow\n", sc->sc_dev.dv_xname);
return 1;
}
e = qwx_pci_cmd_ring_get_elem(ring, ring->wp);
if (e == NULL)
return 1;
e->ptr = 0ULL;
e->dword[0] = 0;
e->dword[1] = htole32(
((chan << MHI_TRE_CMD_CHID_SHFT) & MHI_TRE_CMD_CHID_MASK) |
((cmd << MHI_TRE_CMD_CMDID_SHFT) & MHI_TRE_CMD_CMDID_MASK));
return qwx_mhi_cmd_ring_submit(psc, ring);
}
void *
qwx_pci_xfer_ring_get_elem(struct qwx_pci_xfer_ring *ring, uint64_t wp)
{
uint64_t base = QWX_DMA_DVA(ring->dmamem), offset;
void *addr = QWX_DMA_KVA(ring->dmamem);
if (wp < base)
return NULL;
offset = wp - base;
if (offset >= ring->size)
return NULL;
return addr + offset;
}
struct qwx_xfer_data *
qwx_pci_xfer_ring_get_data(struct qwx_pci_xfer_ring *ring, uint64_t wp)
{
uint64_t base = QWX_DMA_DVA(ring->dmamem), offset;
if (wp < base)
return NULL;
offset = wp - base;
if (offset >= ring->size)
return NULL;
return &ring->data[offset / sizeof(ring->data[0])];
}
int
qwx_mhi_submit_xfer(struct qwx_softc *sc, struct mbuf *m)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
struct qwx_pci_xfer_ring *ring;
struct qwx_mhi_ring_element *e;
struct qwx_xfer_data *xfer;
uint64_t paddr, base;
int err;
ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND];
if (ring->queued >= ring->num_elements)
return 1;
if (m->m_pkthdr.len > QWX_PCI_XFER_MAX_DATA_SIZE) {
/* TODO: chunk xfers */
printf("%s: xfer too large: %d bytes\n", __func__, m->m_pkthdr.len);
return 1;
}
e = qwx_pci_xfer_ring_get_elem(ring, ring->wp);
if (e == NULL)
return 1;
xfer = qwx_pci_xfer_ring_get_data(ring, ring->wp);
if (xfer == NULL || xfer->m != NULL)
return 1;
err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err && err != EFBIG) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, err);
return err;
}
if (err) {
/* Too many DMA segments, linearize mbuf. */
if (m_defrag(m, M_DONTWAIT))
return ENOBUFS;
err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, err);
return err;
}
}
bus_dmamap_sync(sc->sc_dmat, xfer->map, 0, m->m_pkthdr.len,
BUS_DMASYNC_PREWRITE);
xfer->m = m;
paddr = xfer->map->dm_segs[0].ds_addr;
e->ptr = htole64(paddr);
e->dword[0] = htole32((m->m_pkthdr.len << MHI_TRE0_DATA_LEN_SHFT) &
MHI_TRE0_DATA_LEN_MASK);
e->dword[1] = htole32(MHI_TRE1_DATA_IEOT |
MHI_TRE1_DATA_TYPE_TRANSFER << MHI_TRE1_DATA_TYPE_SHIFT);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem),
0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_PREWRITE);
base = QWX_DMA_DVA(ring->dmamem);
if (ring->wp + sizeof(struct qwx_mhi_ring_element) >= base + ring->size)
ring->wp = base;
else
ring->wp += sizeof(struct qwx_mhi_ring_element);
ring->queued++;
ring->chan_ctxt->wp = htole64(ring->wp);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0,
QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE);
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
return 0;
}
int
qwx_mhi_start_channel(struct qwx_pci_softc *psc,
struct qwx_pci_xfer_ring *ring)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_mhi_chan_ctxt *c;
int ret = 0;
uint32_t chcfg;
uint64_t paddr, len;
DNPRINTF(QWX_D_MHI, "%s: start MHI channel %d in state %d\n", __func__,
ring->mhi_chan_id, ring->mhi_chan_state);
c = ring->chan_ctxt;
chcfg = le32toh(c->chcfg);
chcfg &= ~MHI_CHAN_CTX_CHSTATE_MASK;
chcfg |= MHI_CHAN_CTX_CHSTATE_ENABLED;
c->chcfg = htole32(chcfg);
paddr = QWX_DMA_DVA(ring->dmamem);
ring->rp = ring->wp = paddr;
c->rbase = htole64(paddr);
c->rp = htole64(ring->rp);
c->wp = htole64(ring->wp);
len = sizeof(struct qwx_mhi_ring_element) * ring->num_elements;
c->rlen = htole64(len);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0,
QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE);
ring->cmd_status = MHI_EV_CC_INVALID;
if (qwx_mhi_send_cmd(psc, MHI_CMD_START_CHAN, ring->mhi_chan_id))
return 1;
while (ring->cmd_status != MHI_EV_CC_SUCCESS) {
ret = tsleep_nsec(&ring->cmd_status, 0, "qwxcmd",
SEC_TO_NSEC(5));
if (ret)
break;
}
if (ret) {
printf("%s: could not start MHI channel %d in state %d: status 0x%x\n",
sc->sc_dev.dv_xname, ring->mhi_chan_id,
ring->mhi_chan_state, ring->cmd_status);
return 1;
}
if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) {
uint64_t wp = QWX_DMA_DVA(ring->dmamem);
int i;
for (i = 0; i < ring->num_elements; i++) {
struct qwx_mhi_ring_element *e;
struct qwx_xfer_data *xfer;
uint64_t paddr;
e = qwx_pci_xfer_ring_get_elem(ring, wp);
xfer = qwx_pci_xfer_ring_get_data(ring, wp);
paddr = xfer->map->dm_segs[0].ds_addr;
e->ptr = htole64(paddr);
e->dword[0] = htole32((QWX_PCI_XFER_MAX_DATA_SIZE <<
MHI_TRE0_DATA_LEN_SHFT) &
MHI_TRE0_DATA_LEN_MASK);
e->dword[1] = htole32(MHI_TRE1_DATA_IEOT |
MHI_TRE1_DATA_BEI |
MHI_TRE1_DATA_TYPE_TRANSFER <<
MHI_TRE1_DATA_TYPE_SHIFT);
ring->wp = wp;
wp += sizeof(*e);
}
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem), 0,
QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_PREWRITE);
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
}
return 0;
}
int
qwx_mhi_start_channels(struct qwx_pci_softc *psc)
{
struct qwx_pci_xfer_ring *ring;
int ret = 0;
qwx_mhi_device_wake(&psc->sc_sc);
ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND];
if (qwx_mhi_start_channel(psc, ring)) {
ret = 1;
goto done;
}
ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND];
if (qwx_mhi_start_channel(psc, ring))
ret = 1;
done:
qwx_mhi_device_zzz(&psc->sc_sc);
return ret;
}
int
qwx_mhi_start(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
uint32_t off;
uint32_t ee, state;
int ret;
qwx_mhi_init_dev_ctxt(psc);
psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET);
DNPRINTF(QWX_D_MHI, "%s: BHI offset 0x%x\n", __func__, psc->bhi_off);
psc->bhie_off = qwx_pci_read(sc, MHI_BHIE_OFFSET);
DNPRINTF(QWX_D_MHI, "%s: BHIE offset 0x%x\n", __func__, psc->bhie_off);
/* Clean BHIE RX registers */
for (off = MHI_BHIE_RXVECADDR_LOW_OFFS;
off < (MHI_BHIE_RXVECSTATUS_OFFS - 4);
off += 4)
qwx_pci_write(sc, psc->bhie_off + off, 0x0);
qwx_rddm_prepare(psc);
/* Program BHI INTVEC */
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_INTVEC, 0x00);
/*
* Get BHI execution environment and confirm that it is valid
* for power on.
*/
ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV);
if (!MHI_POWER_UP_CAPABLE(ee)) {
printf("%s: invalid EE for power on: 0x%x\n",
sc->sc_dev.dv_xname, ee);
return 1;
}
/*
* Get MHI state of the device and reset it if it is in system
* error.
*/
state = qwx_pci_read(sc, MHI_STATUS);
DNPRINTF(QWX_D_MHI, "%s: MHI power on with EE: 0x%x, status: 0x%x\n",
sc->sc_dev.dv_xname, ee, state);
state = (state & MHI_STATUS_MHISTATE_MASK) >> MHI_STATUS_MHISTATE_SHFT;
if (state == MHI_STATE_SYS_ERR) {
if (qwx_mhi_reset_device(sc, 0))
return 1;
state = qwx_pci_read(sc, MHI_STATUS);
DNPRINTF(QWX_D_MHI, "%s: MHI state after reset: 0x%x\n",
sc->sc_dev.dv_xname, state);
state = (state & MHI_STATUS_MHISTATE_MASK) >>
MHI_STATUS_MHISTATE_SHFT;
if (state == MHI_STATE_SYS_ERR) {
printf("%s: MHI stuck in system error state\n",
sc->sc_dev.dv_xname);
return 1;
}
}
psc->bhi_ee = ee;
psc->mhi_state = state;
#if notyet
/* Enable IRQs */
// XXX todo?
#endif
/* Transition to primary runtime. */
if (MHI_IN_PBL(ee)) {
ret = qwx_mhi_fw_load_handler(psc);
if (ret)
return ret;
/* XXX without this delay starting the channels may fail */
delay(1000);
qwx_mhi_start_channels(psc);
} else {
/* XXX Handle partially initialized device...?!? */
ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV);
if (!MHI_IN_MISSION_MODE(ee)) {
printf("%s: failed to power up MHI, ee=0x%x\n",
sc->sc_dev.dv_xname, ee);
return EIO;
}
}
return 0;
}
void
qwx_mhi_stop(struct qwx_softc *sc)
{
qwx_mhi_reset_device(sc, 1);
}
int
qwx_mhi_reset_device(struct qwx_softc *sc, int force)
{
struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc;
uint32_t reg;
int ret = 0;
reg = qwx_pcic_read32(sc, MHI_STATUS);
DNPRINTF(QWX_D_MHI, "%s: MHISTATUS 0x%x\n", sc->sc_dev.dv_xname, reg);
/*
* Observed on QCA6390 that after SOC_GLOBAL_RESET, MHISTATUS
* has SYSERR bit set and thus need to set MHICTRL_RESET
* to clear SYSERR.
*/
if (force || (reg & MHI_STATUS_SYSERR_MASK)) {
/* Trigger MHI Reset in device. */
qwx_pcic_write32(sc, MHI_CTRL, MHI_CTRL_RESET_MASK);
/* Wait for the reset bit to be cleared by the device. */
ret = qwx_mhi_await_device_reset(sc);
if (ret)
return ret;
if (psc->bhi_off == 0)
psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET);
/* Device clear BHI INTVEC so re-program it. */
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_INTVEC, 0x00);
}
return 0;
}
static inline void
qwx_mhi_reset_txvecdb(struct qwx_softc *sc)
{
qwx_pcic_write32(sc, PCIE_TXVECDB, 0);
}
static inline void
qwx_mhi_reset_txvecstatus(struct qwx_softc *sc)
{
qwx_pcic_write32(sc, PCIE_TXVECSTATUS, 0);
}
static inline void
qwx_mhi_reset_rxvecdb(struct qwx_softc *sc)
{
qwx_pcic_write32(sc, PCIE_RXVECDB, 0);
}
static inline void
qwx_mhi_reset_rxvecstatus(struct qwx_softc *sc)
{
qwx_pcic_write32(sc, PCIE_RXVECSTATUS, 0);
}
void
qwx_mhi_clear_vector(struct qwx_softc *sc)
{
qwx_mhi_reset_txvecdb(sc);
qwx_mhi_reset_txvecstatus(sc);
qwx_mhi_reset_rxvecdb(sc);
qwx_mhi_reset_rxvecstatus(sc);
}
int
qwx_mhi_fw_load_handler(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int ret;
char amss_path[PATH_MAX];
u_char *data;
size_t len;
if (sc->fw_img[QWX_FW_AMSS].data) {
data = sc->fw_img[QWX_FW_AMSS].data;
len = sc->fw_img[QWX_FW_AMSS].size;
} else {
ret = snprintf(amss_path, sizeof(amss_path), "%s-%s-%s",
ATH11K_FW_DIR, sc->hw_params.fw.dir, ATH11K_AMSS_FILE);
if (ret < 0 || ret >= sizeof(amss_path))
return ENOSPC;
ret = loadfirmware(amss_path, &data, &len);
if (ret) {
printf("%s: could not read %s (error %d)\n",
sc->sc_dev.dv_xname, amss_path, ret);
return ret;
}
if (len < MHI_DMA_VEC_CHUNK_SIZE) {
printf("%s: %s is too short, have only %zu bytes\n",
sc->sc_dev.dv_xname, amss_path, len);
free(data, M_DEVBUF, len);
return EINVAL;
}
sc->fw_img[QWX_FW_AMSS].data = data;
sc->fw_img[QWX_FW_AMSS].size = len;
}
/* Second-stage boot loader sits in the first 512 KB of image. */
ret = qwx_mhi_fw_load_bhi(psc, data, MHI_DMA_VEC_CHUNK_SIZE);
if (ret != 0) {
printf("%s: could not load firmware %s\n",
sc->sc_dev.dv_xname, amss_path);
return ret;
}
/* Now load the full image. */
ret = qwx_mhi_fw_load_bhie(psc, data, len);
if (ret != 0) {
printf("%s: could not load firmware %s\n",
sc->sc_dev.dv_xname, amss_path);
return ret;
}
while (psc->bhi_ee < MHI_EE_AMSS) {
ret = tsleep_nsec(&psc->bhi_ee, 0, "qwxamss",
SEC_TO_NSEC(5));
if (ret)
break;
}
if (ret != 0) {
printf("%s: device failed to enter AMSS EE\n",
sc->sc_dev.dv_xname);
}
return ret;
}
int
qwx_mhi_await_device_reset(struct qwx_softc *sc)
{
const uint32_t msecs = 24, retries = 2;
uint32_t reg;
int timeout;
/* Poll for CTRL RESET to clear. */
timeout = retries;
while (timeout > 0) {
reg = qwx_pci_read(sc, MHI_CTRL);
DNPRINTF(QWX_D_MHI, "%s: MHI_CTRL is 0x%x\n", __func__, reg);
if ((reg & MHI_CTRL_RESET_MASK) == 0)
break;
DELAY((msecs / retries) * 1000);
timeout--;
}
if (timeout == 0) {
DNPRINTF(QWX_D_MHI, "%s: MHI reset failed\n", __func__);
return ETIMEDOUT;
}
return 0;
}
int
qwx_mhi_await_device_ready(struct qwx_softc *sc)
{
uint32_t reg;
int timeout;
const uint32_t msecs = 2000, retries = 4;
/* Poll for READY to be set. */
timeout = retries;
while (timeout > 0) {
reg = qwx_pci_read(sc, MHI_STATUS);
DNPRINTF(QWX_D_MHI, "%s: MHI_STATUS is 0x%x\n", __func__, reg);
if (reg & MHI_STATUS_READY_MASK) {
reg &= ~MHI_STATUS_READY_MASK;
qwx_pci_write(sc, MHI_STATUS, reg);
break;
}
DELAY((msecs / retries) * 1000);
timeout--;
}
if (timeout == 0) {
printf("%s: MHI not ready\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
return 0;
}
void
qwx_mhi_ready_state_transition(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int ret, i;
ret = qwx_mhi_await_device_reset(sc);
if (ret)
return;
ret = qwx_mhi_await_device_ready(sc);
if (ret)
return;
/* Set up memory-mapped IO for channels, events, etc. */
qwx_mhi_init_mmio(psc);
/* Notify event rings. */
for (i = 0; i < nitems(psc->event_rings); i++) {
struct qwx_pci_event_ring *ring = &psc->event_rings[i];
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
}
/*
* Set the device into M0 state. The device will transition
* into M0 and the execution environment will switch to SBL.
*/
qwx_mhi_set_state(sc, MHI_STATE_M0);
}
void
qwx_mhi_mission_mode_state_transition(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
int i;
qwx_mhi_device_wake(sc);
/* Notify event rings. */
for (i = 0; i < nitems(psc->event_rings); i++) {
struct qwx_pci_event_ring *ring = &psc->event_rings[i];
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
}
/* TODO: Notify transfer/command rings? */
qwx_mhi_device_zzz(sc);
}
void
qwx_mhi_low_power_mode_state_transition(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
qwx_mhi_set_state(sc, MHI_STATE_M2);
}
void
qwx_mhi_set_state(struct qwx_softc *sc, uint32_t state)
{
uint32_t reg;
reg = qwx_pci_read(sc, MHI_CTRL);
if (state != MHI_STATE_RESET) {
reg &= ~MHI_CTRL_MHISTATE_MASK;
reg |= (state << MHI_CTRL_MHISTATE_SHFT) & MHI_CTRL_MHISTATE_MASK;
} else
reg |= MHI_CTRL_RESET_MASK;
qwx_pci_write(sc, MHI_CTRL, reg);
}
void
qwx_mhi_init_mmio(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
uint64_t paddr;
uint32_t reg;
int i;
reg = qwx_pci_read(sc, MHI_CHDBOFF);
/* Set device wake doorbell address. */
psc->wake_db = reg + 8 * MHI_DEV_WAKE_DB;
/* Set doorbell address for each transfer ring. */
for (i = 0; i < nitems(psc->xfer_rings); i++) {
struct qwx_pci_xfer_ring *ring = &psc->xfer_rings[i];
ring->db_addr = reg + (8 * ring->mhi_chan_id);
}
reg = qwx_pci_read(sc, MHI_ERDBOFF);
/* Set doorbell address for each event ring. */
for (i = 0; i < nitems(psc->event_rings); i++) {
struct qwx_pci_event_ring *ring = &psc->event_rings[i];
ring->db_addr = reg + (8 * i);
}
paddr = QWX_DMA_DVA(psc->chan_ctxt);
qwx_pci_write(sc, MHI_CCABAP_HIGHER, paddr >> 32);
qwx_pci_write(sc, MHI_CCABAP_LOWER, paddr & 0xffffffff);
paddr = QWX_DMA_DVA(psc->event_ctxt);
qwx_pci_write(sc, MHI_ECABAP_HIGHER, paddr >> 32);
qwx_pci_write(sc, MHI_ECABAP_LOWER, paddr & 0xffffffff);
paddr = QWX_DMA_DVA(psc->cmd_ctxt);
qwx_pci_write(sc, MHI_CRCBAP_HIGHER, paddr >> 32);
qwx_pci_write(sc, MHI_CRCBAP_LOWER, paddr & 0xffffffff);
/* Not (yet?) using fixed memory space from a device-tree. */
qwx_pci_write(sc, MHI_CTRLBASE_HIGHER, 0);
qwx_pci_write(sc, MHI_CTRLBASE_LOWER, 0);
qwx_pci_write(sc, MHI_DATABASE_HIGHER, 0);
qwx_pci_write(sc, MHI_DATABASE_LOWER, 0);
qwx_pci_write(sc, MHI_CTRLLIMIT_HIGHER, 0x0);
qwx_pci_write(sc, MHI_CTRLLIMIT_LOWER, 0xffffffff);
qwx_pci_write(sc, MHI_DATALIMIT_HIGHER, 0x0);
qwx_pci_write(sc, MHI_DATALIMIT_LOWER, 0xffffffff);
reg = qwx_pci_read(sc, MHI_CFG);
reg &= ~(MHI_CFG_NER_MASK | MHI_CFG_NHWER_MASK);
reg |= QWX_NUM_EVENT_CTX << MHI_CFG_NER_SHFT;
qwx_pci_write(sc, MHI_CFG, reg);
}
int
qwx_mhi_fw_load_bhi(struct qwx_pci_softc *psc, uint8_t *data, size_t len)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_dmamem *data_adm;
uint32_t seq, reg, status = MHI_BHI_STATUS_RESET;
uint64_t paddr;
int ret;
data_adm = qwx_dmamem_alloc(sc->sc_dmat, len, 0);
if (data_adm == NULL) {
printf("%s: could not allocate BHI DMA data buffer\n",
sc->sc_dev.dv_xname);
return 1;
}
/* Copy firmware image to DMA memory. */
memcpy(QWX_DMA_KVA(data_adm), data, len);
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_STATUS, 0);
/* Set data physical address and length. */
paddr = QWX_DMA_DVA(data_adm);
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGADDR_HIGH, paddr >> 32);
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGADDR_LOW,
paddr & 0xffffffff);
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGSIZE, len);
/* Set a random transaction sequence number. */
do {
seq = arc4random_uniform(MHI_BHI_TXDB_SEQNUM_BMSK);
} while (seq == 0);
qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGTXDB, seq);
/* Wait for completion. */
ret = 0;
while (status != MHI_BHI_STATUS_SUCCESS && psc->bhi_ee < MHI_EE_SBL) {
ret = tsleep_nsec(&psc->bhi_ee, 0, "qwxbhi", SEC_TO_NSEC(5));
if (ret)
break;
reg = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_STATUS);
status = (reg & MHI_BHI_STATUS_MASK) >> MHI_BHI_STATUS_SHFT;
}
if (ret) {
printf("%s: BHI load timeout\n", sc->sc_dev.dv_xname);
reg = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_STATUS);
status = (reg & MHI_BHI_STATUS_MASK) >> MHI_BHI_STATUS_SHFT;
DNPRINTF(QWX_D_MHI, "%s: BHI status is 0x%x EE is 0x%x\n",
__func__, status, psc->bhi_ee);
}
qwx_dmamem_free(sc->sc_dmat, data_adm);
return ret;
}
int
qwx_mhi_fw_load_bhie(struct qwx_pci_softc *psc, uint8_t *data, size_t len)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_dma_vec_entry *vec;
uint32_t seq, reg, state = MHI_BHIE_TXVECSTATUS_STATUS_RESET;
uint64_t paddr;
const size_t chunk_size = MHI_DMA_VEC_CHUNK_SIZE;
size_t nseg, remain, vec_size;
int i, ret;
nseg = howmany(len, chunk_size);
if (nseg == 0) {
printf("%s: BHIE data too short, have only %zu bytes\n",
sc->sc_dev.dv_xname, len);
return 1;
}
if (psc->amss_data == NULL || QWX_DMA_LEN(psc->amss_data) < len) {
if (psc->amss_data)
qwx_dmamem_free(sc->sc_dmat, psc->amss_data);
psc->amss_data = qwx_dmamem_alloc(sc->sc_dmat, len, 0);
if (psc->amss_data == NULL) {
printf("%s: could not allocate BHIE DMA data buffer\n",
sc->sc_dev.dv_xname);
return 1;
}
}
vec_size = nseg * sizeof(*vec);
if (psc->amss_vec == NULL || QWX_DMA_LEN(psc->amss_vec) < vec_size) {
if (psc->amss_vec)
qwx_dmamem_free(sc->sc_dmat, psc->amss_vec);
psc->amss_vec = qwx_dmamem_alloc(sc->sc_dmat, vec_size, 0);
if (psc->amss_vec == NULL) {
printf("%s: could not allocate BHIE DMA vec buffer\n",
sc->sc_dev.dv_xname);
qwx_dmamem_free(sc->sc_dmat, psc->amss_data);
psc->amss_data = NULL;
return 1;
}
}
/* Copy firmware image to DMA memory. */
memcpy(QWX_DMA_KVA(psc->amss_data), data, len);
/* Create vector which controls chunk-wise DMA copy in hardware. */
paddr = QWX_DMA_DVA(psc->amss_data);
vec = QWX_DMA_KVA(psc->amss_vec);
remain = len;
for (i = 0; i < nseg; i++) {
vec[i].paddr = paddr;
if (remain >= chunk_size) {
vec[i].size = chunk_size;
remain -= chunk_size;
paddr += chunk_size;
} else
vec[i].size = remain;
}
/* Set vector physical address and length. */
paddr = QWX_DMA_DVA(psc->amss_vec);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECADDR_HIGH_OFFS,
paddr >> 32);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECADDR_LOW_OFFS,
paddr & 0xffffffff);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECSIZE_OFFS, vec_size);
/* Set a random transaction sequence number. */
do {
seq = arc4random_uniform(MHI_BHIE_TXVECSTATUS_SEQNUM_BMSK);
} while (seq == 0);
reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_TXVECDB_OFFS);
reg &= ~MHI_BHIE_TXVECDB_SEQNUM_BMSK;
reg |= seq << MHI_BHIE_TXVECDB_SEQNUM_SHFT;
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECDB_OFFS, reg);
/* Wait for completion. */
ret = 0;
while (state != MHI_BHIE_TXVECSTATUS_STATUS_XFER_COMPL) {
ret = tsleep_nsec(&psc->bhie_off, 0, "qwxbhie",
SEC_TO_NSEC(5));
if (ret)
break;
reg = qwx_pci_read(sc,
psc->bhie_off + MHI_BHIE_TXVECSTATUS_OFFS);
state = (reg & MHI_BHIE_TXVECSTATUS_STATUS_BMSK) >>
MHI_BHIE_TXVECSTATUS_STATUS_SHFT;
DNPRINTF(QWX_D_MHI, "%s: txvec state is 0x%x\n", __func__,
state);
}
if (ret) {
printf("%s: BHIE load timeout\n", sc->sc_dev.dv_xname);
return ret;
}
return 0;
}
void
qwx_rddm_prepare(struct qwx_pci_softc *psc)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_dma_vec_entry *vec;
struct qwx_dmamem *data_adm, *vec_adm;
uint32_t seq, reg;
uint64_t paddr;
const size_t len = QWX_RDDM_DUMP_SIZE;
const size_t chunk_size = MHI_DMA_VEC_CHUNK_SIZE;
size_t nseg, remain, vec_size;
int i;
nseg = howmany(len, chunk_size);
if (nseg == 0) {
printf("%s: RDDM data too short, have only %zu bytes\n",
sc->sc_dev.dv_xname, len);
return;
}
data_adm = qwx_dmamem_alloc(sc->sc_dmat, len, 0);
if (data_adm == NULL) {
printf("%s: could not allocate BHIE DMA data buffer\n",
sc->sc_dev.dv_xname);
return;
}
vec_size = nseg * sizeof(*vec);
vec_adm = qwx_dmamem_alloc(sc->sc_dmat, vec_size, 0);
if (vec_adm == NULL) {
printf("%s: could not allocate BHIE DMA vector buffer\n",
sc->sc_dev.dv_xname);
qwx_dmamem_free(sc->sc_dmat, data_adm);
return;
}
/* Create vector which controls chunk-wise DMA copy from hardware. */
paddr = QWX_DMA_DVA(data_adm);
vec = QWX_DMA_KVA(vec_adm);
remain = len;
for (i = 0; i < nseg; i++) {
vec[i].paddr = paddr;
if (remain >= chunk_size) {
vec[i].size = chunk_size;
remain -= chunk_size;
paddr += chunk_size;
} else
vec[i].size = remain;
}
/* Set vector physical address and length. */
paddr = QWX_DMA_DVA(vec_adm);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECADDR_HIGH_OFFS,
paddr >> 32);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECADDR_LOW_OFFS,
paddr & 0xffffffff);
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECSIZE_OFFS, vec_size);
/* Set a random transaction sequence number. */
do {
seq = arc4random_uniform(MHI_BHIE_RXVECSTATUS_SEQNUM_BMSK);
} while (seq == 0);
reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_RXVECDB_OFFS);
reg &= ~MHI_BHIE_RXVECDB_SEQNUM_BMSK;
reg |= seq << MHI_BHIE_RXVECDB_SEQNUM_SHFT;
qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECDB_OFFS, reg);
psc->rddm_data = data_adm;
psc->rddm_vec = vec_adm;
}
void
qwx_rddm_task(void *arg)
{
struct qwx_pci_softc *psc = arg;
struct qwx_softc *sc = &psc->sc_sc;
uint32_t reg, state = MHI_BHIE_RXVECSTATUS_STATUS_RESET;
const size_t len = QWX_RDDM_DUMP_SIZE;
int i, timeout;
const uint32_t msecs = 100, retries = 20;
uint8_t *rddm;
struct nameidata nd;
struct vnode *vp = NULL;
struct iovec iov[3];
struct uio uio;
char path[PATH_MAX];
int error = 0;
if (psc->rddm_data == NULL) {
DPRINTF("%s: RDDM not prepared\n", __func__);
return;
}
/* Poll for completion */
timeout = retries;
while (timeout > 0 && state != MHI_BHIE_RXVECSTATUS_STATUS_XFER_COMPL) {
reg = qwx_pci_read(sc,
psc->bhie_off + MHI_BHIE_RXVECSTATUS_OFFS);
state = (reg & MHI_BHIE_RXVECSTATUS_STATUS_BMSK) >>
MHI_BHIE_RXVECSTATUS_STATUS_SHFT;
DPRINTF("%s: txvec state is 0x%x\n", __func__, state);
DELAY((msecs / retries) * 1000);
timeout--;
}
if (timeout == 0) {
DPRINTF("%s: RDDM dump failed\n", sc->sc_dev.dv_xname);
return;
}
rddm = QWX_DMA_KVA(psc->rddm_data);
DPRINTF("%s: RDDM snippet:\n", __func__);
for (i = 0; i < MIN(64, len); i++) {
DPRINTF("%s %.2x", i % 16 == 0 ? "\n" : "", rddm[i]);
}
DPRINTF("\n");
DPRINTF("%s: sleeping for 30 seconds to allow userland to boot\n", __func__);
tsleep_nsec(&psc->rddm_data, 0, "qwxrddm", SEC_TO_NSEC(30));
snprintf(path, sizeof(path), "/root/%s-rddm.bin", sc->sc_dev.dv_xname);
DPRINTF("%s: saving RDDM to %s\n", __func__, path);
NDINIT(&nd, 0, 0, UIO_SYSSPACE, path, curproc);
nd.ni_pledge = PLEDGE_CPATH | PLEDGE_WPATH;
nd.ni_unveil = UNVEIL_CREATE | UNVEIL_WRITE;
error = vn_open(&nd, FWRITE | O_CREAT | O_NOFOLLOW | O_TRUNC,
S_IRUSR | S_IWUSR);
if (error) {
DPRINTF("%s: vn_open: error %d\n", __func__, error);
goto done;
}
vp = nd.ni_vp;
VOP_UNLOCK(vp);
iov[0].iov_base = (void *)rddm;
iov[0].iov_len = len;
iov[1].iov_len = 0;
uio.uio_iov = &iov[0];
uio.uio_offset = 0;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_rw = UIO_WRITE;
uio.uio_resid = len;
uio.uio_iovcnt = 1;
uio.uio_procp = curproc;
error = vget(vp, LK_EXCLUSIVE | LK_RETRY);
if (error) {
DPRINTF("%s: vget: error %d\n", __func__, error);
goto done;
}
error = VOP_WRITE(vp, &uio, IO_UNIT|IO_APPEND, curproc->p_ucred);
vput(vp);
if (error)
DPRINTF("%s: VOP_WRITE: error %d\n", __func__, error);
#if 0
error = vn_close(vp, FWRITE, curproc->p_ucred, curproc);
if (error)
DPRINTF("%s: vn_close: error %d\n", __func__, error);
#endif
done:
qwx_dmamem_free(sc->sc_dmat, psc->rddm_data);
qwx_dmamem_free(sc->sc_dmat, psc->rddm_vec);
psc->rddm_data = NULL;
psc->rddm_vec = NULL;
DPRINTF("%s: done, error %d\n", __func__, error);
}
void *
qwx_pci_event_ring_get_elem(struct qwx_pci_event_ring *ring, uint64_t rp)
{
uint64_t base = QWX_DMA_DVA(ring->dmamem), offset;
void *addr = QWX_DMA_KVA(ring->dmamem);
if (rp < base)
return NULL;
offset = rp - base;
if (offset >= ring->size)
return NULL;
return addr + offset;
}
void
qwx_mhi_state_change(struct qwx_pci_softc *psc, int ee, int mhi_state)
{
struct qwx_softc *sc = &psc->sc_sc;
uint32_t old_ee = psc->bhi_ee;
uint32_t old_mhi_state = psc->mhi_state;
if (ee != -1 && psc->bhi_ee != ee) {
switch (ee) {
case MHI_EE_PBL:
DNPRINTF(QWX_D_MHI, "%s: new EE PBL\n",
sc->sc_dev.dv_xname);
psc->bhi_ee = ee;
break;
case MHI_EE_SBL:
psc->bhi_ee = ee;
DNPRINTF(QWX_D_MHI, "%s: new EE SBL\n",
sc->sc_dev.dv_xname);
break;
case MHI_EE_AMSS:
DNPRINTF(QWX_D_MHI, "%s: new EE AMSS\n",
sc->sc_dev.dv_xname);
psc->bhi_ee = ee;
/* Wake thread loading the full AMSS image. */
wakeup(&psc->bhie_off);
break;
case MHI_EE_WFW:
DNPRINTF(QWX_D_MHI, "%s: new EE WFW\n",
sc->sc_dev.dv_xname);
psc->bhi_ee = ee;
break;
default:
printf("%s: unhandled EE change to %x\n",
sc->sc_dev.dv_xname, ee);
break;
}
}
if (mhi_state != -1 && psc->mhi_state != mhi_state) {
switch (mhi_state) {
case -1:
break;
case MHI_STATE_RESET:
DNPRINTF(QWX_D_MHI, "%s: new MHI state RESET\n",
sc->sc_dev.dv_xname);
psc->mhi_state = mhi_state;
break;
case MHI_STATE_READY:
DNPRINTF(QWX_D_MHI, "%s: new MHI state READY\n",
sc->sc_dev.dv_xname);
psc->mhi_state = mhi_state;
qwx_mhi_ready_state_transition(psc);
break;
case MHI_STATE_M0:
DNPRINTF(QWX_D_MHI, "%s: new MHI state M0\n",
sc->sc_dev.dv_xname);
psc->mhi_state = mhi_state;
qwx_mhi_mission_mode_state_transition(psc);
break;
case MHI_STATE_M1:
DNPRINTF(QWX_D_MHI, "%s: new MHI state M1\n",
sc->sc_dev.dv_xname);
psc->mhi_state = mhi_state;
qwx_mhi_low_power_mode_state_transition(psc);
break;
case MHI_STATE_SYS_ERR:
DNPRINTF(QWX_D_MHI,
"%s: new MHI state SYS ERR\n",
sc->sc_dev.dv_xname);
psc->mhi_state = mhi_state;
break;
default:
printf("%s: unhandled MHI state change to %x\n",
sc->sc_dev.dv_xname, mhi_state);
break;
}
}
if (old_ee != psc->bhi_ee)
wakeup(&psc->bhi_ee);
if (old_mhi_state != psc->mhi_state)
wakeup(&psc->mhi_state);
}
void
qwx_pci_intr_ctrl_event_mhi(struct qwx_pci_softc *psc, uint32_t mhi_state)
{
DNPRINTF(QWX_D_MHI, "%s: MHI state change 0x%x -> 0x%x\n", __func__,
psc->mhi_state, mhi_state);
if (psc->mhi_state != mhi_state)
qwx_mhi_state_change(psc, -1, mhi_state);
}
void
qwx_pci_intr_ctrl_event_ee(struct qwx_pci_softc *psc, uint32_t ee)
{
DNPRINTF(QWX_D_MHI, "%s: EE change 0x%x to 0x%x\n", __func__,
psc->bhi_ee, ee);
if (psc->bhi_ee != ee)
qwx_mhi_state_change(psc, ee, -1);
}
void
qwx_pci_intr_ctrl_event_cmd_complete(struct qwx_pci_softc *psc,
uint64_t ptr, uint32_t cmd_status)
{
struct qwx_pci_cmd_ring *cmd_ring = &psc->cmd_ring;
uint64_t base = QWX_DMA_DVA(cmd_ring->dmamem);
struct qwx_pci_xfer_ring *xfer_ring = NULL;
struct qwx_mhi_ring_element *e;
uint32_t tre1, chid;
size_t i;
e = qwx_pci_cmd_ring_get_elem(cmd_ring, ptr);
if (e == NULL)
return;
tre1 = le32toh(e->dword[1]);
chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT;
for (i = 0; i < nitems(psc->xfer_rings); i++) {
if (psc->xfer_rings[i].mhi_chan_id == chid) {
xfer_ring = &psc->xfer_rings[i];
break;
}
}
if (xfer_ring == NULL) {
printf("%s: no transfer ring found for command completion "
"on channel %u\n", __func__, chid);
return;
}
xfer_ring->cmd_status = cmd_status;
wakeup(&xfer_ring->cmd_status);
if (cmd_ring->rp + sizeof(*e) >= base + cmd_ring->size)
cmd_ring->rp = base;
else
cmd_ring->rp += sizeof(*e);
}
int
qwx_pci_intr_ctrl_event(struct qwx_pci_softc *psc, struct qwx_pci_event_ring *ring)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_mhi_event_ctxt *c;
uint64_t rp, wp, base;
struct qwx_mhi_ring_element *e;
uint32_t tre0, tre1, type, code, chid, len;
c = ring->event_ctxt;
if (c == NULL) {
/*
* Interrupts can trigger before mhi_init_event_rings()
* if the device is still active after a warm reboot.
*/
return 0;
}
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0,
QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_POSTREAD);
rp = le64toh(c->rp);
wp = le64toh(c->wp);
DNPRINTF(QWX_D_MHI, "%s: kernel rp=0x%llx\n", __func__, ring->rp);
DNPRINTF(QWX_D_MHI, "%s: device rp=0x%llx\n", __func__, rp);
DNPRINTF(QWX_D_MHI, "%s: kernel wp=0x%llx\n", __func__, ring->wp);
DNPRINTF(QWX_D_MHI, "%s: device wp=0x%llx\n", __func__, wp);
base = QWX_DMA_DVA(ring->dmamem);
if (ring->rp == rp || rp < base || rp >= base + ring->size)
return 0;
if (wp < base || wp >= base + ring->size)
return 0;
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem),
0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_POSTREAD);
while (ring->rp != rp) {
e = qwx_pci_event_ring_get_elem(ring, ring->rp);
if (e == NULL)
return 0;
tre0 = le32toh(e->dword[0]);
tre1 = le32toh(e->dword[1]);
len = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT;
code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT;
type = (tre1 & MHI_TRE1_EV_TYPE_MASK) >> MHI_TRE1_EV_TYPE_SHFT;
chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT;
DNPRINTF(QWX_D_MHI, "%s: len=%u code=0x%x type=0x%x chid=%d\n",
__func__, len, code, type, chid);
switch (type) {
case MHI_PKT_TYPE_STATE_CHANGE_EVENT:
qwx_pci_intr_ctrl_event_mhi(psc, code);
break;
case MHI_PKT_TYPE_EE_EVENT:
qwx_pci_intr_ctrl_event_ee(psc, code);
break;
case MHI_PKT_TYPE_CMD_COMPLETION_EVENT:
qwx_pci_intr_ctrl_event_cmd_complete(psc,
le64toh(e->ptr), code);
break;
default:
printf("%s: unhandled event type 0x%x\n",
__func__, type);
break;
}
if (ring->rp + sizeof(*e) >= base + ring->size)
ring->rp = base;
else
ring->rp += sizeof(*e);
if (ring->wp + sizeof(*e) >= base + ring->size)
ring->wp = base;
else
ring->wp += sizeof(*e);
}
c->wp = htole64(ring->wp);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0,
QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE);
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
return 1;
}
void
qwx_pci_intr_data_event_tx(struct qwx_pci_softc *psc, struct qwx_mhi_ring_element *e)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_pci_xfer_ring *ring;
struct qwx_xfer_data *xfer;
uint64_t rp, evrp, base, paddr;
uint32_t tre0, tre1, code, chid, evlen, len;
int i;
tre0 = le32toh(e->dword[0]);
tre1 = le32toh(e->dword[1]);
evlen = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT;
code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT;
chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT;
switch (code) {
case MHI_EV_CC_EOT:
for (i = 0; i < nitems(psc->xfer_rings); i++) {
ring = &psc->xfer_rings[i];
if (ring->mhi_chan_id == chid)
break;
}
if (i == nitems(psc->xfer_rings)) {
printf("%s: unhandled channel 0x%x\n",
__func__, chid);
break;
}
base = QWX_DMA_DVA(ring->dmamem);
/* PTR contains the entry that was last written */
evrp = letoh64(e->ptr);
rp = evrp;
if (rp < base || rp >= base + ring->size) {
printf("%s: invalid ptr 0x%llx\n",
__func__, rp);
break;
}
/* Point rp to next empty slot */
if (rp + sizeof(*e) >= base + ring->size)
rp = base;
else
rp += sizeof(*e);
/* Parse until next empty slot */
while (ring->rp != rp) {
DNPRINTF(QWX_D_MHI, "%s:%d: ring->rp 0x%llx "
"ring->wp 0x%llx rp 0x%llx\n", __func__,
__LINE__, ring->rp, ring->wp, rp);
e = qwx_pci_xfer_ring_get_elem(ring, ring->rp);
xfer = qwx_pci_xfer_ring_get_data(ring, ring->rp);
if (ring->rp == evrp)
len = evlen;
else
len = xfer->m->m_pkthdr.len;
bus_dmamap_sync(sc->sc_dmat, xfer->map, 0,
xfer->m->m_pkthdr.len, BUS_DMASYNC_POSTREAD);
#ifdef QWX_DEBUG
{
int i;
DNPRINTF(QWX_D_MHI, "%s: chan %u data (len %u): ",
__func__,
ring->mhi_chan_id, len);
for (i = 0; i < MIN(32, len); i++) {
DNPRINTF(QWX_D_MHI, "%02x ",
(unsigned char)mtod(xfer->m, caddr_t)[i]);
}
if (i < len)
DNPRINTF(QWX_D_MHI, "...");
DNPRINTF(QWX_D_MHI, "\n");
}
#endif
if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) {
/* Save m_data as upper layers use m_adj(9) */
void *o_data = xfer->m->m_data;
/* Pass mbuf to upper layers */
qwx_qrtr_recv_msg(sc, xfer->m);
/* Reset RX mbuf instead of free/alloc */
KASSERT(xfer->m->m_next == NULL);
xfer->m->m_data = o_data;
xfer->m->m_len = xfer->m->m_pkthdr.len =
QWX_PCI_XFER_MAX_DATA_SIZE;
paddr = xfer->map->dm_segs[0].ds_addr;
e->ptr = htole64(paddr);
e->dword[0] = htole32((
QWX_PCI_XFER_MAX_DATA_SIZE <<
MHI_TRE0_DATA_LEN_SHFT) &
MHI_TRE0_DATA_LEN_MASK);
e->dword[1] = htole32(MHI_TRE1_DATA_IEOT |
MHI_TRE1_DATA_BEI |
MHI_TRE1_DATA_TYPE_TRANSFER <<
MHI_TRE1_DATA_TYPE_SHIFT);
if (ring->wp + sizeof(*e) >= base + ring->size)
ring->wp = base;
else
ring->wp += sizeof(*e);
} else {
/* Unload and free TX mbuf */
bus_dmamap_unload(sc->sc_dmat, xfer->map);
m_freem(xfer->m);
xfer->m = NULL;
ring->queued--;
}
if (ring->rp + sizeof(*e) >= base + ring->size)
ring->rp = base;
else
ring->rp += sizeof(*e);
}
if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) {
ring->chan_ctxt->wp = htole64(ring->wp);
bus_dmamap_sync(sc->sc_dmat,
QWX_DMA_MAP(psc->chan_ctxt), 0,
QWX_DMA_LEN(psc->chan_ctxt),
BUS_DMASYNC_PREWRITE);
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
}
break;
default:
printf("%s: unhandled event code 0x%x\n",
__func__, code);
}
}
int
qwx_pci_intr_data_event(struct qwx_pci_softc *psc, struct qwx_pci_event_ring *ring)
{
struct qwx_softc *sc = &psc->sc_sc;
struct qwx_mhi_event_ctxt *c;
uint64_t rp, wp, base;
struct qwx_mhi_ring_element *e;
uint32_t tre0, tre1, type, code, chid, len;
c = ring->event_ctxt;
if (c == NULL) {
/*
* Interrupts can trigger before mhi_init_event_rings()
* if the device is still active after a warm reboot.
*/
return 0;
}
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0,
QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_POSTREAD);
rp = le64toh(c->rp);
wp = le64toh(c->wp);
DNPRINTF(QWX_D_MHI, "%s: kernel rp=0x%llx\n", __func__, ring->rp);
DNPRINTF(QWX_D_MHI, "%s: device rp=0x%llx\n", __func__, rp);
DNPRINTF(QWX_D_MHI, "%s: kernel wp=0x%llx\n", __func__, ring->wp);
DNPRINTF(QWX_D_MHI, "%s: device wp=0x%llx\n", __func__, wp);
base = QWX_DMA_DVA(ring->dmamem);
if (ring->rp == rp || rp < base || rp >= base + ring->size)
return 0;
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem),
0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_POSTREAD);
while (ring->rp != rp) {
e = qwx_pci_event_ring_get_elem(ring, ring->rp);
if (e == NULL)
return 0;
tre0 = le32toh(e->dword[0]);
tre1 = le32toh(e->dword[1]);
len = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT;
code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT;
type = (tre1 & MHI_TRE1_EV_TYPE_MASK) >> MHI_TRE1_EV_TYPE_SHFT;
chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT;
DNPRINTF(QWX_D_MHI, "%s: len=%u code=0x%x type=0x%x chid=%d\n",
__func__, len, code, type, chid);
switch (type) {
case MHI_PKT_TYPE_TX_EVENT:
qwx_pci_intr_data_event_tx(psc, e);
break;
default:
printf("%s: unhandled event type 0x%x\n",
__func__, type);
break;
}
if (ring->rp + sizeof(*e) >= base + ring->size)
ring->rp = base;
else
ring->rp += sizeof(*e);
if (ring->wp + sizeof(*e) >= base + ring->size)
ring->wp = base;
else
ring->wp += sizeof(*e);
}
c->wp = htole64(ring->wp);
bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0,
QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE);
qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp);
return 1;
}
int
qwx_pci_intr_mhi_ctrl(void *arg)
{
struct qwx_pci_softc *psc = arg;
if (qwx_pci_intr_ctrl_event(psc, &psc->event_rings[0]))
return 1;
return 0;
}
int
qwx_pci_intr_mhi_data(void *arg)
{
struct qwx_pci_softc *psc = arg;
if (qwx_pci_intr_data_event(psc, &psc->event_rings[1]))
return 1;
return 0;
}
int
qwx_pci_intr(void *arg)
{
struct qwx_pci_softc *psc = arg;
struct qwx_softc *sc = (void *)psc;
uint32_t ee, state;
int ret = 0;
/*
* Interrupts can trigger before mhi_start() during boot if the device
* is still active after a warm reboot.
*/
if (psc->bhi_off == 0)
psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET);
ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV);
state = qwx_pci_read(sc, MHI_STATUS);
state = (state & MHI_STATUS_MHISTATE_MASK) >>
MHI_STATUS_MHISTATE_SHFT;
DNPRINTF(QWX_D_MHI,
"%s: BHI interrupt with EE: 0x%x -> 0x%x state: 0x%x -> 0x%x\n",
sc->sc_dev.dv_xname, psc->bhi_ee, ee, psc->mhi_state, state);
if (ee == MHI_EE_RDDM) {
psc->bhi_ee = ee;
if (!psc->rddm_triggered) {
task_add(systq, &psc->rddm_task);
psc->rddm_triggered = 1;
}
return 1;
} else if (psc->bhi_ee == MHI_EE_PBL || psc->bhi_ee == MHI_EE_SBL) {
int new_ee = -1, new_mhi_state = -1;
if (psc->bhi_ee != ee)
new_ee = ee;
if (psc->mhi_state != state)
new_mhi_state = state;
if (new_ee != -1 || new_mhi_state != -1)
qwx_mhi_state_change(psc, new_ee, new_mhi_state);
ret = 1;
}
if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) {
int i;
if (qwx_pci_intr_ctrl_event(psc, &psc->event_rings[0]))
ret = 1;
if (qwx_pci_intr_data_event(psc, &psc->event_rings[1]))
ret = 1;
for (i = 0; i < sc->hw_params.ce_count; i++) {
struct qwx_ce_pipe *ce_pipe = &sc->ce.ce_pipe[i];
if (qwx_ce_intr(ce_pipe))
ret = 1;
}
for (i = 0; i < nitems(sc->ext_irq_grp); i++) {
if (qwx_dp_service_srng(sc, i))
ret = 1;
}
}
return ret;
}