src/sys/dev/pci/if_sis.c

2044 lines
49 KiB
C

/* $OpenBSD: if_sis.c,v 1.144 2024/04/13 23:44:11 jsg Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_sis.c,v 1.30 2001/02/06 10:11:47 phk Exp $
*/
/*
* SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
* available from http://www.sis.com.tw.
*
* This driver also supports the NatSemi DP83815. Datasheets are
* available from http://www.national.com.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The SiS 900 is a fairly simple chip. It uses bus master DMA with
* simple TX and RX descriptors of 3 longwords in size. The receiver
* has a single perfect filter entry for the station address and a
* 128-bit multicast hash table. The SiS 900 has a built-in MII-based
* transceiver while the 7016 requires an external transceiver chip.
* Both chips offer the standard bit-bang MII interface as well as
* an enhanced PHY interface which simplifies accessing MII registers.
*
* The only downside to this chipset is that RX descriptors must be
* longword aligned.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/timeout.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <sys/device.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#define SIS_USEIOSPACE
#include <dev/pci/if_sisreg.h>
int sis_probe(struct device *, void *, void *);
void sis_attach(struct device *, struct device *, void *);
int sis_activate(struct device *, int);
const struct cfattach sis_ca = {
sizeof(struct sis_softc), sis_probe, sis_attach, NULL,
sis_activate
};
struct cfdriver sis_cd = {
NULL, "sis", DV_IFNET
};
int sis_intr(void *);
void sis_fill_rx_ring(struct sis_softc *);
int sis_newbuf(struct sis_softc *, struct sis_desc *);
int sis_encap(struct sis_softc *, struct mbuf *, u_int32_t *);
void sis_rxeof(struct sis_softc *);
void sis_txeof(struct sis_softc *);
void sis_tick(void *);
void sis_start(struct ifnet *);
int sis_ioctl(struct ifnet *, u_long, caddr_t);
void sis_init(void *);
void sis_stop(struct sis_softc *);
void sis_watchdog(struct ifnet *);
int sis_ifmedia_upd(struct ifnet *);
void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
u_int16_t sis_reverse(u_int16_t);
void sis_delay(struct sis_softc *);
void sis_eeprom_idle(struct sis_softc *);
void sis_eeprom_putbyte(struct sis_softc *, int);
void sis_eeprom_getword(struct sis_softc *, int, u_int16_t *);
#if defined(__amd64__) || defined(__i386__)
void sis_read_cmos(struct sis_softc *, struct pci_attach_args *, caddr_t, int, int);
#endif
void sis_read_mac(struct sis_softc *, struct pci_attach_args *);
void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
void sis_read96x_mac(struct sis_softc *);
void sis_mii_sync(struct sis_softc *);
void sis_mii_send(struct sis_softc *, u_int32_t, int);
int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
int sis_miibus_readreg(struct device *, int, int);
void sis_miibus_writereg(struct device *, int, int, int);
void sis_miibus_statchg(struct device *);
u_int32_t sis_mchash(struct sis_softc *, const uint8_t *);
void sis_iff(struct sis_softc *);
void sis_iff_ns(struct sis_softc *);
void sis_iff_sis(struct sis_softc *);
void sis_reset(struct sis_softc *);
int sis_ring_init(struct sis_softc *);
#define SIS_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define SIS_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
const struct pci_matchid sis_devices[] = {
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900 },
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016 },
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815 }
};
/*
* Routine to reverse the bits in a word. Stolen almost
* verbatim from /usr/games/fortune.
*/
u_int16_t
sis_reverse(u_int16_t n)
{
n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
return (n);
}
void
sis_delay(struct sis_softc *sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, SIS_CSR);
}
void
sis_eeprom_idle(struct sis_softc *sc)
{
int i;
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
}
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CSEL);
sis_delay(sc);
CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
void
sis_eeprom_putbyte(struct sis_softc *sc, int addr)
{
int d, i;
d = addr | SIS_EECMD_READ;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i)
SIO_SET(SIS_EECTL_DIN);
else
SIO_CLR(SIS_EECTL_DIN);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
void
sis_eeprom_getword(struct sis_softc *sc, int addr, u_int16_t *dest)
{
int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
/* Enter EEPROM access mode. */
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
/*
* Send address of word we want to read.
*/
sis_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
word |= i;
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
/* Turn off EEPROM access mode. */
sis_eeprom_idle(sc);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
void
sis_read_eeprom(struct sis_softc *sc, caddr_t dest,
int off, int cnt, int swap)
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
sis_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = letoh16(word);
else
*ptr = word;
}
}
#if defined(__amd64__) || defined(__i386__)
void
sis_read_cmos(struct sis_softc *sc, struct pci_attach_args *pa,
caddr_t dest, int off, int cnt)
{
u_int32_t reg;
int i;
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x48);
pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg | 0x40);
for (i = 0; i < cnt; i++) {
bus_space_write_1(pa->pa_iot, 0x0, 0x70, i + off);
*(dest + i) = bus_space_read_1(pa->pa_iot, 0x0, 0x71);
}
pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg & ~0x40);
}
#endif
void
sis_read_mac(struct sis_softc *sc, struct pci_attach_args *pa)
{
uint32_t rxfilt, csrsave;
u_int16_t *enaddr = (u_int16_t *) &sc->arpcom.ac_enaddr;
rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL);
csrsave = CSR_READ_4(sc, SIS_CSR);
CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | csrsave);
CSR_WRITE_4(sc, SIS_CSR, 0);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
enaddr[0] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
enaddr[1] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
enaddr[2] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt);
CSR_WRITE_4(sc, SIS_CSR, csrsave);
}
void
sis_read96x_mac(struct sis_softc *sc)
{
int i;
SIO_SET(SIS96x_EECTL_REQ);
for (i = 0; i < 2000; i++) {
if ((CSR_READ_4(sc, SIS_EECTL) & SIS96x_EECTL_GNT)) {
sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
SIS_EE_NODEADDR, 3, 1);
break;
} else
DELAY(1);
}
SIO_SET(SIS96x_EECTL_DONE);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
void
sis_mii_sync(struct sis_softc *sc)
{
int i;
SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
for (i = 0; i < 32; i++) {
SIO_SET(SIS_MII_CLK);
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
}
}
/*
* Clock a series of bits through the MII.
*/
void
sis_mii_send(struct sis_softc *sc, u_int32_t bits, int cnt)
{
int i;
SIO_CLR(SIS_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i)
SIO_SET(SIS_MII_DATA);
else
SIO_CLR(SIS_MII_DATA);
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
int
sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
{
int i, ack, s;
s = splnet();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = SIS_MII_STARTDELIM;
frame->mii_opcode = SIS_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Turn on data xmit.
*/
SIO_SET(SIS_MII_DIR);
sis_mii_sync(sc);
/*
* Send command/address info.
*/
sis_mii_send(sc, frame->mii_stdelim, 2);
sis_mii_send(sc, frame->mii_opcode, 2);
sis_mii_send(sc, frame->mii_phyaddr, 5);
sis_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(SIS_MII_DIR);
/* Check for ack */
SIO_CLR(SIS_MII_CLK);
DELAY(1);
ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
SIO_SET(SIS_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(SIS_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(SIS_MII_CLK);
DELAY(1);
}
fail:
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return (1);
return (0);
}
/*
* Write to a PHY register through the MII.
*/
int
sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
{
int s;
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = SIS_MII_STARTDELIM;
frame->mii_opcode = SIS_MII_WRITEOP;
frame->mii_turnaround = SIS_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(SIS_MII_DIR);
sis_mii_sync(sc);
sis_mii_send(sc, frame->mii_stdelim, 2);
sis_mii_send(sc, frame->mii_opcode, 2);
sis_mii_send(sc, frame->mii_phyaddr, 5);
sis_mii_send(sc, frame->mii_regaddr, 5);
sis_mii_send(sc, frame->mii_turnaround, 2);
sis_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(SIS_MII_CLK);
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(SIS_MII_DIR);
splx(s);
return (0);
}
int
sis_miibus_readreg(struct device *self, int phy, int reg)
{
struct sis_softc *sc = (struct sis_softc *)self;
struct sis_mii_frame frame;
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return (0);
/*
* The NatSemi chip can take a while after
* a reset to come ready, during which the BMSR
* returns a value of 0. This is *never* supposed
* to happen: some of the BMSR bits are meant to
* be hardwired in the on position, and this can
* confuse the miibus code a bit during the probe
* and attach phase. So we make an effort to check
* for this condition and wait for it to clear.
*/
if (!CSR_READ_4(sc, NS_BMSR))
DELAY(1000);
return CSR_READ_4(sc, NS_BMCR + (reg * 4));
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i, val = 0;
if (phy != 0)
return (0);
CSR_WRITE_4(sc, SIS_PHYCTL,
(phy << 11) | (reg << 6) | SIS_PHYOP_READ);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT) {
printf("%s: PHY failed to come ready\n",
sc->sc_dev.dv_xname);
return (0);
}
val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
if (val == 0xFFFF)
return (0);
return (val);
} else {
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
sis_mii_readreg(sc, &frame);
return (frame.mii_data);
}
}
void
sis_miibus_writereg(struct device *self, int phy, int reg, int data)
{
struct sis_softc *sc = (struct sis_softc *)self;
struct sis_mii_frame frame;
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return;
CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
return;
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i;
if (phy != 0)
return;
CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
(reg << 6) | SIS_PHYOP_WRITE);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT)
printf("%s: PHY failed to come ready\n",
sc->sc_dev.dv_xname);
} else {
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
sis_mii_writereg(sc, &frame);
}
}
void
sis_miibus_statchg(struct device *self)
{
struct sis_softc *sc = (struct sis_softc *)self;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii = &sc->sc_mii;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
sc->sis_link = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
sc->sis_link++;
break;
case IFM_100_TX:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
sc->sis_link++;
break;
default:
break;
}
}
if (!sc->sis_link) {
/*
* Stopping MACs seem to reset SIS_TX_LISTPTR and
* SIS_RX_LISTPTR which in turn requires resetting
* TX/RX buffers. So just don't do anything for
* lost link.
*/
return;
}
/* Set full/half duplex mode. */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
SIS_SETBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
} else {
SIS_CLRBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
}
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
/*
* MPII03.D: Half Duplex Excessive Collisions.
* Also page 49 in 83816 manual
*/
SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
}
/*
* Some DP83815s experience problems when used with short
* (< 30m/100ft) Ethernet cables in 100baseTX mode. This
* sequence adjusts the DSP's signal attenuation to fix the
* problem.
*/
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
uint32_t reg;
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
DELAY(100);
reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
#ifdef DEBUG
printf("%s: Applying short cable fix (reg=%x)\n",
sc->sc_dev.dv_xname, reg);
#endif
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
}
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
/* Enable TX/RX MACs. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
}
u_int32_t
sis_mchash(struct sis_softc *sc, const uint8_t *addr)
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
/*
* return the filter bit position
*
* The NatSemi chip has a 512-bit filter, which is
* different than the SiS, so we special-case it.
*/
if (sc->sis_type == SIS_TYPE_83815)
return (crc >> 23);
else if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
return (crc >> 24);
else
return (crc >> 25);
}
void
sis_iff(struct sis_softc *sc)
{
if (sc->sis_type == SIS_TYPE_83815)
sis_iff_ns(sc);
else
sis_iff_sis(sc);
}
void
sis_iff_ns(struct sis_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct arpcom *ac = &sc->arpcom;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t h = 0, i, rxfilt;
int bit, index;
rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (rxfilt & SIS_RXFILTCTL_ENABLE) {
/*
* Filter should be disabled to program other bits.
*/
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS |
NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD | NS_RXFILTCTL_MCHASH |
NS_RXFILTCTL_PERFECT);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept ARP frames.
* Always accept broadcast frames.
* Always accept frames destined to our station address.
*/
rxfilt |= NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD |
NS_RXFILTCTL_PERFECT;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
rxfilt |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= SIS_RXFILTCTL_ALLPHYS;
} else {
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
rxfilt |= NS_RXFILTCTL_MCHASH;
/* first, zot all the existing hash bits */
for (i = 0; i < 32; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i * 2));
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = sis_mchash(sc, enm->enm_addrlo);
index = h >> 3;
bit = h & 0x1F;
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
if (bit > 0xF)
bit -= 0x10;
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt);
/* Turn the receive filter on. */
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
void
sis_iff_sis(struct sis_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct arpcom *ac = &sc->arpcom;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t h, i, maxmulti, rxfilt;
u_int16_t hashes[16];
/* hash table size */
if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
maxmulti = 16;
else
maxmulti = 8;
rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (rxfilt & SIS_RXFILTCTL_ENABLE) {
/*
* Filter should be disabled to program other bits.
*/
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS |
SIS_RXFILTCTL_BROAD);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxfilt |= SIS_RXFILTCTL_BROAD;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
ac->ac_multicnt > maxmulti) {
ifp->if_flags |= IFF_ALLMULTI;
rxfilt |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= SIS_RXFILTCTL_ALLPHYS;
for (i = 0; i < maxmulti; i++)
hashes[i] = ~0;
} else {
for (i = 0; i < maxmulti; i++)
hashes[i] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = sis_mchash(sc, enm->enm_addrlo);
hashes[h >> 4] |= 1 << (h & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
}
for (i = 0; i < maxmulti; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt);
/* Turn the receive filter on. */
CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
void
sis_reset(struct sis_softc *sc)
{
int i;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
break;
}
if (i == SIS_TIMEOUT)
printf("%s: reset never completed\n", sc->sc_dev.dv_xname);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NS_CLKRUN, 0);
}
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
int
sis_probe(struct device *parent, void *match, void *aux)
{
return (pci_matchbyid((struct pci_attach_args *)aux, sis_devices,
nitems(sis_devices)));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
sis_attach(struct device *parent, struct device *self, void *aux)
{
int i;
const char *intrstr = NULL;
struct sis_softc *sc = (struct sis_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
struct ifnet *ifp;
bus_size_t size;
sc->sis_stopped = 1;
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/*
* Map control/status registers.
*/
#ifdef SIS_USEIOSPACE
if (pci_mapreg_map(pa, SIS_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) {
printf(": can't map i/o space\n");
return;
}
#else
if (pci_mapreg_map(pa, SIS_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) {
printf(": can't map mem space\n");
return;
}
#endif
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
goto fail_1;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sis_intr, sc,
self->dv_xname);
if (sc->sc_ih == NULL) {
printf(": couldn't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail_1;
}
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_SIS_900:
sc->sis_type = SIS_TYPE_900;
break;
case PCI_PRODUCT_SIS_7016:
sc->sis_type = SIS_TYPE_7016;
break;
case PCI_PRODUCT_NS_DP83815:
sc->sis_type = SIS_TYPE_83815;
break;
default:
break;
}
sc->sis_rev = PCI_REVISION(pa->pa_class);
/* Reset the adapter. */
sis_reset(sc);
if (sc->sis_type == SIS_TYPE_900 &&
(sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)) {
SIO_SET(SIS_CFG_RND_CNT);
SIO_SET(SIS_CFG_PERR_DETECT);
}
/*
* Get station address from the EEPROM.
*/
switch (PCI_VENDOR(pa->pa_id)) {
case PCI_VENDOR_NS:
sc->sis_srr = CSR_READ_4(sc, NS_SRR);
if (sc->sis_srr == NS_SRR_15C)
printf(", DP83815C");
else if (sc->sis_srr == NS_SRR_15D)
printf(", DP83815D");
else if (sc->sis_srr == NS_SRR_16A)
printf(", DP83816A");
else
printf(", srr %x", sc->sis_srr);
/*
* Reading the MAC address out of the EEPROM on
* the NatSemi chip takes a bit more work than
* you'd expect. The address spans 4 16-bit words,
* with the first word containing only a single bit.
* You have to shift everything over one bit to
* get it aligned properly. Also, the bits are
* stored backwards (the LSB is really the MSB,
* and so on) so you have to reverse them in order
* to get the MAC address into the form we want.
* Why? Who the hell knows.
*/
{
u_int16_t tmp[4];
sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR,
4, 0);
/* Shift everything over one bit. */
tmp[3] = tmp[3] >> 1;
tmp[3] |= tmp[2] << 15;
tmp[2] = tmp[2] >> 1;
tmp[2] |= tmp[1] << 15;
tmp[1] = tmp[1] >> 1;
tmp[1] |= tmp[0] << 15;
/* Now reverse all the bits. */
tmp[3] = letoh16(sis_reverse(tmp[3]));
tmp[2] = letoh16(sis_reverse(tmp[2]));
tmp[1] = letoh16(sis_reverse(tmp[1]));
bcopy(&tmp[1], sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN);
}
break;
case PCI_VENDOR_SIS:
default:
#if defined(__amd64__) || defined(__i386__)
/*
* If this is a SiS 630E chipset with an embedded
* SiS 900 controller, we have to read the MAC address
* from the APC CMOS RAM. Our method for doing this
* is very ugly since we have to reach out and grab
* ahold of hardware for which we cannot properly
* allocate resources. This code is only compiled on
* the i386 architecture since the SiS 630E chipset
* is for x86 motherboards only. Note that there are
* a lot of magic numbers in this hack. These are
* taken from SiS's Linux driver. I'd like to replace
* them with proper symbolic definitions, but that
* requires some datasheets that I don't have access
* to at the moment.
*/
if (sc->sis_rev == SIS_REV_630S ||
sc->sis_rev == SIS_REV_630E)
sis_read_cmos(sc, pa, (caddr_t)&sc->arpcom.ac_enaddr,
0x9, 6);
else
#endif
if (sc->sis_rev == SIS_REV_96x)
sis_read96x_mac(sc);
else if (sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_630ET ||
sc->sis_rev == SIS_REV_630EA1)
sis_read_mac(sc, pa);
else
sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
SIS_EE_NODEADDR, 3, 1);
break;
}
printf(": %s, address %s\n", intrstr,
ether_sprintf(sc->arpcom.ac_enaddr));
sc->sc_dmat = pa->pa_dmat;
if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sis_list_data),
PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg,
BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) {
printf(": can't alloc list mem\n");
goto fail_2;
}
if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg,
sizeof(struct sis_list_data), &sc->sc_listkva,
BUS_DMA_NOWAIT) != 0) {
printf(": can't map list mem\n");
goto fail_2;
}
if (bus_dmamap_create(sc->sc_dmat, sizeof(struct sis_list_data), 1,
sizeof(struct sis_list_data), 0, BUS_DMA_NOWAIT,
&sc->sc_listmap) != 0) {
printf(": can't alloc list map\n");
goto fail_2;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva,
sizeof(struct sis_list_data), NULL, BUS_DMA_NOWAIT) != 0) {
printf(": can't load list map\n");
goto fail_2;
}
sc->sis_ldata = (struct sis_list_data *)sc->sc_listkva;
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->sis_ldata->sis_rx_list[i].map) != 0) {
printf(": can't create rx map\n");
goto fail_2;
}
}
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES,
SIS_MAXTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sis_ldata->sis_tx_list[i].map) != 0) {
printf(": can't create tx map\n");
goto fail_2;
}
}
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_MAXTXSEGS,
MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) {
printf(": can't create tx spare map\n");
goto fail_2;
}
timeout_set(&sc->sis_timeout, sis_tick, sc);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sis_ioctl;
ifp->if_start = sis_start;
ifp->if_watchdog = sis_watchdog;
ifq_init_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_hardmtu = 1518; /* determined experimentally on DP83815 */
ifp->if_capabilities = IFCAP_VLAN_MTU;
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = sis_miibus_readreg;
sc->sc_mii.mii_writereg = sis_miibus_writereg;
sc->sc_mii.mii_statchg = sis_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, sis_ifmedia_upd,sis_ifmedia_sts);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
return;
fail_2:
pci_intr_disestablish(pc, sc->sc_ih);
fail_1:
bus_space_unmap(sc->sis_btag, sc->sis_bhandle, size);
}
int
sis_activate(struct device *self, int act)
{
struct sis_softc *sc = (struct sis_softc *)self;
struct ifnet *ifp = &sc->arpcom.ac_if;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
sis_stop(sc);
rv = config_activate_children(self, act);
break;
case DVACT_RESUME:
if (ifp->if_flags & IFF_UP)
sis_init(sc);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
/*
* Initialize the TX and RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
int
sis_ring_init(struct sis_softc *sc)
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
int i, nexti;
cd = &sc->sis_cdata;
ld = sc->sis_ldata;
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
if (i == (SIS_TX_LIST_CNT - 1))
nexti = 0;
else
nexti = i + 1;
ld->sis_tx_list[i].sis_nextdesc = &ld->sis_tx_list[nexti];
ld->sis_tx_list[i].sis_next =
htole32(sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct sis_list_data, sis_tx_list[nexti]));
ld->sis_tx_list[i].sis_mbuf = NULL;
ld->sis_tx_list[i].sis_ptr = 0;
ld->sis_tx_list[i].sis_ctl = 0;
}
cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (i == SIS_RX_LIST_CNT - 1)
nexti = 0;
else
nexti = i + 1;
ld->sis_rx_list[i].sis_nextdesc = &ld->sis_rx_list[nexti];
ld->sis_rx_list[i].sis_next =
htole32(sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct sis_list_data, sis_rx_list[nexti]));
ld->sis_rx_list[i].sis_ctl = 0;
}
cd->sis_rx_prod = cd->sis_rx_cons = 0;
if_rxr_init(&cd->sis_rx_ring, 2, SIS_RX_LIST_CNT - 1);
sis_fill_rx_ring(sc);
return (0);
}
void
sis_fill_rx_ring(struct sis_softc *sc)
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
u_int slots;
cd = &sc->sis_cdata;
ld = sc->sis_ldata;
for (slots = if_rxr_get(&cd->sis_rx_ring, SIS_RX_LIST_CNT);
slots > 0; slots--) {
if (sis_newbuf(sc, &ld->sis_rx_list[cd->sis_rx_prod]))
break;
SIS_INC(cd->sis_rx_prod, SIS_RX_LIST_CNT);
}
if_rxr_put(&cd->sis_rx_ring, slots);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
int
sis_newbuf(struct sis_softc *sc, struct sis_desc *c)
{
struct mbuf *m_new = NULL;
if (c == NULL)
return (EINVAL);
m_new = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
if (!m_new)
return (ENOBUFS);
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
if (bus_dmamap_load_mbuf(sc->sc_dmat, c->map, m_new,
BUS_DMA_NOWAIT)) {
m_free(m_new);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmat, c->map, 0, c->map->dm_mapsize,
BUS_DMASYNC_PREREAD);
c->sis_mbuf = m_new;
c->sis_ptr = htole32(c->map->dm_segs[0].ds_addr);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc),
BUS_DMASYNC_PREWRITE);
c->sis_ctl = htole32(ETHER_MAX_DIX_LEN);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
void
sis_rxeof(struct sis_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *m;
struct ifnet *ifp;
struct sis_desc *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while (if_rxr_inuse(&sc->sis_cdata.sis_rx_ring) > 0) {
cur_rx = &sc->sis_ldata->sis_rx_list[sc->sis_cdata.sis_rx_cons];
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
((caddr_t)cur_rx - sc->sc_listkva),
sizeof(struct sis_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (!SIS_OWNDESC(cur_rx))
break;
rxstat = letoh32(cur_rx->sis_rxstat);
m = cur_rx->sis_mbuf;
cur_rx->sis_mbuf = NULL;
total_len = SIS_RXBYTES(cur_rx);
/* from here on the buffer is consumed */
SIS_INC(sc->sis_cdata.sis_rx_cons, SIS_RX_LIST_CNT);
if_rxr_put(&sc->sis_cdata.sis_rx_ring, 1);
/*
* DP83816A sometimes produces zero-length packets
* shortly after initialisation.
*/
if (total_len == 0) {
m_freem(m);
continue;
}
/* The ethernet CRC is always included */
total_len -= ETHER_CRC_LEN;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring. However, don't report long
* frames as errors since they could be VLANs.
*/
if (rxstat & SIS_RXSTAT_GIANT &&
total_len <= (ETHER_MAX_DIX_LEN - ETHER_CRC_LEN))
rxstat &= ~SIS_RXSTAT_GIANT;
if (SIS_RXSTAT_ERROR(rxstat)) {
ifp->if_ierrors++;
if (rxstat & SIS_RXSTAT_COLL)
ifp->if_collisions++;
m_freem(m);
continue;
}
/* No errors; receive the packet. */
bus_dmamap_sync(sc->sc_dmat, cur_rx->map, 0,
cur_rx->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
#ifdef __STRICT_ALIGNMENT
/*
* On some architectures, we do not have alignment problems,
* so try to allocate a new buffer for the receive ring, and
* pass up the one where the packet is already, saving the
* expensive copy done in m_devget().
* If we are on an architecture with alignment problems, or
* if the allocation fails, then use m_devget and leave the
* existing buffer in the receive ring.
*/
{
struct mbuf *m0;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
m_freem(m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
}
#else
m->m_pkthdr.len = m->m_len = total_len;
#endif
ml_enqueue(&ml, m);
}
if (ifiq_input(&ifp->if_rcv, &ml))
if_rxr_livelocked(&sc->sis_cdata.sis_rx_ring);
sis_fill_rx_ring(sc);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
void
sis_txeof(struct sis_softc *sc)
{
struct ifnet *ifp;
u_int32_t idx, ctl, txstat;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT)) {
struct sis_desc *cur_tx = &sc->sis_ldata->sis_tx_list[idx];
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
((caddr_t)cur_tx - sc->sc_listkva),
sizeof(struct sis_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (SIS_OWNDESC(cur_tx))
break;
ctl = letoh32(cur_tx->sis_ctl);
if (ctl & SIS_CMDSTS_MORE)
continue;
txstat = letoh32(cur_tx->sis_txstat);
if (!(ctl & SIS_CMDSTS_PKT_OK)) {
ifp->if_oerrors++;
if (txstat & SIS_TXSTAT_EXCESSCOLLS)
ifp->if_collisions++;
if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & SIS_TXSTAT_COLLCNT) >> 16;
if (cur_tx->map->dm_nsegs != 0) {
bus_dmamap_t map = cur_tx->map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (cur_tx->sis_mbuf != NULL) {
m_freem(cur_tx->sis_mbuf);
cur_tx->sis_mbuf = NULL;
}
}
if (idx != sc->sis_cdata.sis_tx_cons) {
/* we freed up some buffers */
sc->sis_cdata.sis_tx_cons = idx;
ifq_clr_oactive(&ifp->if_snd);
}
ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
}
void
sis_tick(void *xsc)
{
struct sis_softc *sc = (struct sis_softc *)xsc;
struct mii_data *mii;
int s;
s = splnet();
mii = &sc->sc_mii;
mii_tick(mii);
if (!sc->sis_link)
sis_miibus_statchg(&sc->sc_dev);
timeout_add_sec(&sc->sis_timeout, 1);
splx(s);
}
int
sis_intr(void *arg)
{
struct sis_softc *sc = arg;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int32_t status;
if (sc->sis_stopped) /* Most likely shared interrupt */
return (0);
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if ((status & SIS_INTRS) == 0)
return (0);
if (status &
(SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
SIS_ISR_TX_OK | SIS_ISR_TX_IDLE))
sis_txeof(sc);
if (status &
(SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
sis_rxeof(sc);
if (status & (SIS_ISR_RX_IDLE)) {
/* consume what's there so that sis_rx_cons points
* to the first HW owned descriptor. */
sis_rxeof(sc);
/* reprogram the RX listptr */
CSR_WRITE_4(sc, SIS_RX_LISTPTR,
sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct sis_list_data,
sis_rx_list[sc->sis_cdata.sis_rx_cons]));
}
if (status & SIS_ISR_SYSERR)
sis_init(sc);
/*
* XXX: Re-enable RX engine every time otherwise it occasionally
* stops under unknown circumstances.
*/
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (!ifq_empty(&ifp->if_snd))
sis_start(ifp);
return (1);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
int
sis_encap(struct sis_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
{
struct sis_desc *f = NULL;
bus_dmamap_t map;
int frag, cur, i, error;
map = sc->sc_tx_sparemap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head,
BUS_DMA_NOWAIT);
switch (error) {
case 0:
break;
case EFBIG:
if (m_defrag(m_head, M_DONTWAIT) == 0 &&
bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head,
BUS_DMA_NOWAIT) == 0)
break;
/* FALLTHROUGH */
default:
return (ENOBUFS);
}
if ((SIS_TX_LIST_CNT - (sc->sis_cdata.sis_tx_cnt + map->dm_nsegs)) < 2) {
bus_dmamap_unload(sc->sc_dmat, map);
return (ENOBUFS);
}
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
cur = frag = *txidx;
for (i = 0; i < map->dm_nsegs; i++) {
f = &sc->sis_ldata->sis_tx_list[frag];
f->sis_ctl = htole32(SIS_CMDSTS_MORE | map->dm_segs[i].ds_len);
f->sis_ptr = htole32(map->dm_segs[i].ds_addr);
if (i != 0)
f->sis_ctl |= htole32(SIS_CMDSTS_OWN);
cur = frag;
SIS_INC(frag, SIS_TX_LIST_CNT);
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->sis_ldata->sis_tx_list[cur].sis_mbuf = m_head;
sc->sis_ldata->sis_tx_list[cur].sis_ctl &= ~htole32(SIS_CMDSTS_MORE);
sc->sis_ldata->sis_tx_list[*txidx].sis_ctl |= htole32(SIS_CMDSTS_OWN);
sc->sis_cdata.sis_tx_cnt += map->dm_nsegs;
*txidx = frag;
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct sis_list_data, sis_tx_list[0]),
sizeof(struct sis_desc) * SIS_TX_LIST_CNT,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
void
sis_start(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx, queued = 0;
sc = ifp->if_softc;
if (!sc->sis_link)
return;
idx = sc->sis_cdata.sis_tx_prod;
if (ifq_is_oactive(&ifp->if_snd))
return;
while(sc->sis_ldata->sis_tx_list[idx].sis_mbuf == NULL) {
m_head = ifq_deq_begin(&ifp->if_snd);
if (m_head == NULL)
break;
if (sis_encap(sc, m_head, &idx)) {
ifq_deq_rollback(&ifp->if_snd, m_head);
ifq_set_oactive(&ifp->if_snd);
break;
}
/* now we are committed to transmit the packet */
ifq_deq_commit(&ifp->if_snd, m_head);
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
#endif
}
if (queued) {
/* Transmit */
sc->sis_cdata.sis_tx_prod = idx;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
void
sis_init(void *xsc)
{
struct sis_softc *sc = (struct sis_softc *)xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
s = splnet();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sis_stop(sc);
/*
* Reset the chip to a known state.
*/
sis_reset(sc);
#if NS_IHR_DELAY > 0
/* Configure interrupt holdoff register. */
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr == NS_SRR_16A)
CSR_WRITE_4(sc, NS_IHR, NS_IHR_VALUE);
#endif
mii = &sc->sc_mii;
/* Set MAC address */
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0]));
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1]));
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2]));
} else {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0]));
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1]));
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2]));
}
/* Init circular TX/RX lists. */
if (sis_ring_init(sc) != 0) {
printf("%s: initialization failed: no memory for rx buffers\n",
sc->sc_dev.dv_xname);
sis_stop(sc);
splx(s);
return;
}
/*
* Page 78 of the DP83815 data sheet (september 2002 version)
* recommends the following register settings "for optimum
* performance." for rev 15C. The driver from NS also sets
* the PHY_CR register for later versions.
*
* This resolves an issue with tons of errors in AcceptPerfectMatch
* (non-IFF_PROMISC) mode.
*/
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
/* set val for c2 */
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
/* load/kill c2 */
CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
/* raise SD off, from 4 to c */
CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
/*
* Program promiscuous mode and multicast filters.
*/
sis_iff(sc);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct sis_list_data, sis_rx_list[0]));
CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct sis_list_data, sis_tx_list[0]));
/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
* the PCI bus. When this bit is set, the Max DMA Burst Size
* for TX/RX DMA should be no larger than 16 double words.
*/
if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
else
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
/* Accept Long Packets for VLAN support */
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
/*
* Assume 100Mbps link, actual MAC configuration is done
* after getting a valid link.
*/
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
CSR_WRITE_4(sc, SIS_IER, 1);
/* Clear MAC disable. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
sc->sis_link = 0;
mii_mediachg(mii);
sc->sis_stopped = 0;
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
splx(s);
timeout_add_sec(&sc->sis_timeout, 1);
}
/*
* Set media options.
*/
int
sis_ifmedia_upd(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = &sc->sc_mii;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return (0);
}
/*
* Report current media status.
*/
void
sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = &sc->sc_mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
int
sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sis_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
sis_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
sis_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
sis_stop(sc);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = &sc->sc_mii;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCGIFRXR:
error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
NULL, MCLBYTES, &sc->sis_cdata.sis_rx_ring);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
sis_iff(sc);
error = 0;
}
splx(s);
return(error);
}
void
sis_watchdog(struct ifnet *ifp)
{
struct sis_softc *sc;
int s;
sc = ifp->if_softc;
if (sc->sis_stopped)
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
s = splnet();
sis_init(sc);
if (!ifq_empty(&ifp->if_snd))
sis_start(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
sis_stop(struct sis_softc *sc)
{
int i;
struct ifnet *ifp;
if (sc->sis_stopped)
return;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
timeout_del(&sc->sis_timeout);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
sc->sis_stopped = 1;
CSR_WRITE_4(sc, SIS_IER, 0);
CSR_WRITE_4(sc, SIS_IMR, 0);
CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
sc->sis_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (sc->sis_ldata->sis_rx_list[i].map->dm_nsegs != 0) {
bus_dmamap_t map = sc->sis_ldata->sis_rx_list[i].map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (sc->sis_ldata->sis_rx_list[i].sis_mbuf != NULL) {
m_freem(sc->sis_ldata->sis_rx_list[i].sis_mbuf);
sc->sis_ldata->sis_rx_list[i].sis_mbuf = NULL;
}
bzero(&sc->sis_ldata->sis_rx_list[i],
sizeof(struct sis_desc) - sizeof(bus_dmamap_t));
}
/*
* Free the TX list buffers.
*/
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
if (sc->sis_ldata->sis_tx_list[i].map->dm_nsegs != 0) {
bus_dmamap_t map = sc->sis_ldata->sis_tx_list[i].map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (sc->sis_ldata->sis_tx_list[i].sis_mbuf != NULL) {
m_freem(sc->sis_ldata->sis_tx_list[i].sis_mbuf);
sc->sis_ldata->sis_tx_list[i].sis_mbuf = NULL;
}
bzero(&sc->sis_ldata->sis_tx_list[i],
sizeof(struct sis_desc) - sizeof(bus_dmamap_t));
}
}