src/sys/dev/usb/if_umb.c

3260 lines
86 KiB
C

/* $OpenBSD: if_umb.c,v 1.57 2024/04/13 23:44:11 jsg Exp $ */
/*
* Copyright (c) 2016 genua mbH
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Mobile Broadband Interface Model specification:
* https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
* Compliance testing guide
* https://www.usb.org/sites/default/files/MBIM-Compliance-1.0.pdf
*/
#include "bpfilter.h"
#include "kstat.h"
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/kstat.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_ifattach.h>
#include <netinet6/nd6.h>
#endif
#include <machine/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbcdc.h>
#include <dev/usb/mbim.h>
#include <dev/usb/if_umb.h>
#ifdef UMB_DEBUG
#define DPRINTF(x...) \
do { if (umb_debug) log(LOG_DEBUG, x); } while (0)
#define DPRINTFN(n, x...) \
do { if (umb_debug >= (n)) log(LOG_DEBUG, x); } while (0)
#define DDUMPN(n, b, l) \
do { \
if (umb_debug >= (n)) \
umb_dump((b), (l)); \
} while (0)
int umb_debug = 0;
char *umb_uuid2str(uint8_t [MBIM_UUID_LEN]);
void umb_dump(void *, int);
#else
#define DPRINTF(x...) do { } while (0)
#define DPRINTFN(n, x...) do { } while (0)
#define DDUMPN(n, b, l) do { } while (0)
#endif
#define DEVNAM(sc) (((struct umb_softc *)(sc))->sc_dev.dv_xname)
/*
* State change timeout
*/
#define UMB_STATE_CHANGE_TIMEOUT 30
/*
* State change flags
*/
#define UMB_NS_DONT_DROP 0x0001 /* do not drop below current state */
#define UMB_NS_DONT_RAISE 0x0002 /* do not raise below current state */
/*
* Diagnostic macros
*/
const struct umb_valdescr umb_regstates[] = MBIM_REGSTATE_DESCRIPTIONS;
const struct umb_valdescr umb_dataclasses[] = MBIM_DATACLASS_DESCRIPTIONS;
const struct umb_valdescr umb_simstate[] = MBIM_SIMSTATE_DESCRIPTIONS;
const struct umb_valdescr umb_messages[] = MBIM_MESSAGES_DESCRIPTIONS;
const struct umb_valdescr umb_status[] = MBIM_STATUS_DESCRIPTIONS;
const struct umb_valdescr umb_cids[] = MBIM_CID_DESCRIPTIONS;
const struct umb_valdescr umb_pktstate[] = MBIM_PKTSRV_STATE_DESCRIPTIONS;
const struct umb_valdescr umb_actstate[] = MBIM_ACTIVATION_STATE_DESCRIPTIONS;
const struct umb_valdescr umb_error[] = MBIM_ERROR_DESCRIPTIONS;
const struct umb_valdescr umb_pintype[] = MBIM_PINTYPE_DESCRIPTIONS;
const struct umb_valdescr umb_istate[] = UMB_INTERNAL_STATE_DESCRIPTIONS;
#define umb_regstate(c) umb_val2descr(umb_regstates, (c))
#define umb_dataclass(c) umb_val2descr(umb_dataclasses, (c))
#define umb_simstate(s) umb_val2descr(umb_simstate, (s))
#define umb_request2str(m) umb_val2descr(umb_messages, (m))
#define umb_status2str(s) umb_val2descr(umb_status, (s))
#define umb_cid2str(c) umb_val2descr(umb_cids, (c))
#define umb_packet_state(s) umb_val2descr(umb_pktstate, (s))
#define umb_activation(s) umb_val2descr(umb_actstate, (s))
#define umb_error2str(e) umb_val2descr(umb_error, (e))
#define umb_pin_type(t) umb_val2descr(umb_pintype, (t))
#define umb_istate(s) umb_val2descr(umb_istate, (s))
int umb_match(struct device *, void *, void *);
void umb_attach(struct device *, struct device *, void *);
int umb_detach(struct device *, int);
void umb_ncm_setup(struct umb_softc *);
void umb_ncm_setup_format(struct umb_softc *);
int umb_alloc_xfers(struct umb_softc *);
void umb_free_xfers(struct umb_softc *);
int umb_alloc_bulkpipes(struct umb_softc *);
void umb_close_bulkpipes(struct umb_softc *);
int umb_ioctl(struct ifnet *, u_long, caddr_t);
int umb_output(struct ifnet *, struct mbuf *, struct sockaddr *,
struct rtentry *);
void umb_start(struct ifnet *);
void umb_rtrequest(struct ifnet *, int, struct rtentry *);
void umb_watchdog(struct ifnet *);
void umb_statechg_timeout(void *);
void umb_newstate(struct umb_softc *, enum umb_state, int);
void umb_state_task(void *);
void umb_up(struct umb_softc *);
void umb_down(struct umb_softc *, int);
void umb_get_response_task(void *);
void umb_decode_response(struct umb_softc *, void *, int);
void umb_handle_indicate_status_msg(struct umb_softc *, void *,
int);
void umb_handle_opendone_msg(struct umb_softc *, void *, int);
void umb_handle_closedone_msg(struct umb_softc *, void *, int);
int umb_decode_register_state(struct umb_softc *, void *, int);
int umb_decode_devices_caps(struct umb_softc *, void *, int);
int umb_decode_subscriber_status(struct umb_softc *, void *, int);
int umb_decode_radio_state(struct umb_softc *, void *, int);
int umb_decode_pin(struct umb_softc *, void *, int);
int umb_decode_packet_service(struct umb_softc *, void *, int);
int umb_decode_signal_state(struct umb_softc *, void *, int);
int umb_decode_connect_info(struct umb_softc *, void *, int);
void umb_clear_addr(struct umb_softc *);
int umb_add_inet_config(struct umb_softc *, struct in_addr, u_int,
struct in_addr);
int umb_add_inet6_config(struct umb_softc *, struct in6_addr *,
u_int, struct in6_addr *);
void umb_send_inet_proposal(struct umb_softc *, int);
int umb_decode_ip_configuration(struct umb_softc *, void *, int);
void umb_rx(struct umb_softc *);
void umb_rxeof(struct usbd_xfer *, void *, usbd_status);
int umb_encap(struct umb_softc *, int);
void umb_txeof(struct usbd_xfer *, void *, usbd_status);
void umb_decap(struct umb_softc *, struct usbd_xfer *);
usbd_status umb_send_encap_command(struct umb_softc *, void *, int);
int umb_get_encap_response(struct umb_softc *, void *, int *);
void umb_ctrl_msg(struct umb_softc *, uint32_t, void *, int);
void umb_open(struct umb_softc *);
void umb_close(struct umb_softc *);
int umb_setpin(struct umb_softc *, int, int, void *, int, void *,
int);
void umb_setdataclass(struct umb_softc *);
void umb_radio(struct umb_softc *, int);
void umb_allocate_cid(struct umb_softc *);
void umb_send_fcc_auth(struct umb_softc *);
void umb_packet_service(struct umb_softc *, int);
void umb_connect(struct umb_softc *);
void umb_disconnect(struct umb_softc *);
void umb_send_connect(struct umb_softc *, int);
void umb_qry_ipconfig(struct umb_softc *);
void umb_cmd(struct umb_softc *, int, int, void *, int);
void umb_cmd1(struct umb_softc *, int, int, void *, int, uint8_t *);
void umb_command_done(struct umb_softc *, void *, int);
void umb_decode_cid(struct umb_softc *, uint32_t, void *, int);
void umb_decode_qmi(struct umb_softc *, uint8_t *, int);
void umb_intr(struct usbd_xfer *, void *, usbd_status);
#if NKSTAT > 0
void umb_kstat_attach(struct umb_softc *);
void umb_kstat_detach(struct umb_softc *);
struct umb_kstat_signal {
struct kstat_kv rssi;
struct kstat_kv error_rate;
struct kstat_kv reports;
};
#endif
int umb_xfer_tout = USBD_DEFAULT_TIMEOUT;
uint8_t umb_uuid_basic_connect[] = MBIM_UUID_BASIC_CONNECT;
uint8_t umb_uuid_context_internet[] = MBIM_UUID_CONTEXT_INTERNET;
uint8_t umb_uuid_qmi_mbim[] = MBIM_UUID_QMI_MBIM;
uint32_t umb_session_id = 0;
struct cfdriver umb_cd = {
NULL, "umb", DV_IFNET
};
const struct cfattach umb_ca = {
sizeof (struct umb_softc),
umb_match,
umb_attach,
umb_detach,
NULL,
};
int umb_delay = 4000;
struct umb_quirk {
struct usb_devno dev;
u_int32_t umb_flags;
int umb_confno;
int umb_match;
};
const struct umb_quirk umb_quirks[] = {
{ { USB_VENDOR_DELL, USB_PRODUCT_DELL_DW5821E },
0,
2,
UMATCH_VENDOR_PRODUCT
},
{ { USB_VENDOR_HUAWEI, USB_PRODUCT_HUAWEI_ME906S },
UMBFLG_NDP_AT_END,
3,
UMATCH_VENDOR_PRODUCT
},
{ { USB_VENDOR_SIERRA, USB_PRODUCT_SIERRA_EM7455 },
UMBFLG_FCC_AUTH_REQUIRED,
0,
0
},
{ { USB_VENDOR_SIMCOM, USB_PRODUCT_SIMCOM_SIM7600 },
0,
1,
UMATCH_VENDOR_PRODUCT
},
};
#define umb_lookup(vid, pid) \
((const struct umb_quirk *)usb_lookup(umb_quirks, vid, pid))
uint8_t umb_qmi_alloc_cid[] = {
0x01,
0x0f, 0x00, /* len */
0x00, /* QMUX flags */
0x00, /* service "ctl" */
0x00, /* CID */
0x00, /* QMI flags */
0x01, /* transaction */
0x22, 0x00, /* msg "Allocate CID" */
0x04, 0x00, /* TLV len */
0x01, 0x01, 0x00, 0x02 /* TLV */
};
uint8_t umb_qmi_fcc_auth[] = {
0x01,
0x0c, 0x00, /* len */
0x00, /* QMUX flags */
0x02, /* service "dms" */
#define UMB_QMI_CID_OFFS 5
0x00, /* CID (filled in later) */
0x00, /* QMI flags */
0x01, 0x00, /* transaction */
0x5f, 0x55, /* msg "Send FCC Authentication" */
0x00, 0x00 /* TLV len */
};
int
umb_match(struct device *parent, void *match, void *aux)
{
struct usb_attach_arg *uaa = aux;
const struct umb_quirk *quirk;
usb_interface_descriptor_t *id;
quirk = umb_lookup(uaa->vendor, uaa->product);
if (quirk != NULL && quirk->umb_match)
return (quirk->umb_match);
if (!uaa->iface)
return UMATCH_NONE;
if ((id = usbd_get_interface_descriptor(uaa->iface)) == NULL)
return UMATCH_NONE;
/*
* If this function implements NCM, check if alternate setting
* 1 implements MBIM.
*/
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_NETWORK_CONTROL_MODEL)
id = usbd_find_idesc(uaa->device->cdesc, uaa->iface->index, 1);
if (id == NULL)
return UMATCH_NONE;
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_MOBILE_BROADBAND_INTERFACE_MODEL &&
id->bInterfaceProtocol == 0)
return UMATCH_IFACECLASS_IFACESUBCLASS_IFACEPROTO;
return UMATCH_NONE;
}
void
umb_attach(struct device *parent, struct device *self, void *aux)
{
struct umb_softc *sc = (struct umb_softc *)self;
struct usb_attach_arg *uaa = aux;
const struct umb_quirk *quirk;
usbd_status status;
struct usbd_desc_iter iter;
const usb_descriptor_t *desc;
int v;
struct usb_cdc_union_descriptor *ud;
struct mbim_descriptor *md;
int i;
int ctrl_ep;
usb_interface_descriptor_t *id;
usb_config_descriptor_t *cd;
usb_endpoint_descriptor_t *ed;
usb_interface_assoc_descriptor_t *ad;
int current_ifaceno = -1;
int data_ifaceno = -1;
int altnum;
int s;
struct ifnet *ifp;
sc->sc_udev = uaa->device;
sc->sc_ctrl_ifaceno = uaa->ifaceno;
ml_init(&sc->sc_tx_ml);
quirk = umb_lookup(uaa->vendor, uaa->product);
if (quirk != NULL && quirk->umb_flags) {
DPRINTF("%s: setting flags 0x%x from quirk\n", DEVNAM(sc),
quirk->umb_flags);
sc->sc_flags |= quirk->umb_flags;
}
/*
* Normally, MBIM devices are detected by their interface class and
* subclass. But for some models that have multiple configurations, it
* is better to match by vendor and product id so that we can select
* the desired configuration ourselves, e.g. to override a class-based
* match to another driver.
*/
if (uaa->configno < 0) {
if (quirk == NULL) {
printf("%s: unknown configuration for vid/pid match\n",
DEVNAM(sc));
goto fail;
}
uaa->configno = quirk->umb_confno;
DPRINTF("%s: switching to config #%d\n", DEVNAM(sc),
uaa->configno);
status = usbd_set_config_no(sc->sc_udev, uaa->configno, 1);
if (status) {
printf("%s: failed to switch to config #%d: %s\n",
DEVNAM(sc), uaa->configno, usbd_errstr(status));
goto fail;
}
usbd_delay_ms(sc->sc_udev, 200);
/*
* Need to do some manual setup that usbd_probe_and_attach()
* would do for us otherwise.
*/
uaa->nifaces = uaa->device->cdesc->bNumInterfaces;
for (i = 0; i < uaa->nifaces; i++) {
if (usbd_iface_claimed(sc->sc_udev, i))
continue;
id = usbd_get_interface_descriptor(&uaa->device->ifaces[i]);
if (id != NULL && id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_MOBILE_BROADBAND_INTERFACE_MODEL) {
uaa->iface = &uaa->device->ifaces[i];
uaa->ifaceno = uaa->iface->idesc->bInterfaceNumber;
sc->sc_ctrl_ifaceno = uaa->ifaceno;
break;
}
}
}
/*
* Some MBIM hardware does not provide the mandatory CDC Union
* Descriptor, so we also look at matching Interface
* Association Descriptors to find out the MBIM Data Interface
* number.
*/
sc->sc_ver_maj = sc->sc_ver_min = -1;
sc->sc_maxpktlen = MBIM_MAXSEGSZ_MINVAL;
usbd_desc_iter_init(sc->sc_udev, &iter);
while ((desc = usbd_desc_iter_next(&iter))) {
if (desc->bDescriptorType == UDESC_IFACE_ASSOC) {
ad = (usb_interface_assoc_descriptor_t *)desc;
if (ad->bFirstInterface == uaa->ifaceno &&
ad->bInterfaceCount > 1)
data_ifaceno = uaa->ifaceno + 1;
continue;
}
if (desc->bDescriptorType == UDESC_INTERFACE) {
id = (usb_interface_descriptor_t *)desc;
current_ifaceno = id->bInterfaceNumber;
continue;
}
if (current_ifaceno != uaa->ifaceno)
continue;
if (desc->bDescriptorType != UDESC_CS_INTERFACE)
continue;
switch (desc->bDescriptorSubtype) {
case UDESCSUB_CDC_UNION:
ud = (struct usb_cdc_union_descriptor *)desc;
data_ifaceno = ud->bSlaveInterface[0];
break;
case UDESCSUB_MBIM:
md = (struct mbim_descriptor *)desc;
v = UGETW(md->bcdMBIMVersion);
sc->sc_ver_maj = MBIM_VER_MAJOR(v);
sc->sc_ver_min = MBIM_VER_MINOR(v);
sc->sc_ctrl_len = UGETW(md->wMaxControlMessage);
/* Never trust a USB device! Could try to exploit us */
if (sc->sc_ctrl_len < MBIM_CTRLMSG_MINLEN ||
sc->sc_ctrl_len > MBIM_CTRLMSG_MAXLEN) {
DPRINTF("%s: control message len %d out of "
"bounds [%d .. %d]\n", DEVNAM(sc),
sc->sc_ctrl_len, MBIM_CTRLMSG_MINLEN,
MBIM_CTRLMSG_MAXLEN);
/* cont. anyway */
}
sc->sc_maxpktlen = UGETW(md->wMaxSegmentSize);
DPRINTFN(2, "%s: ctrl_len=%d, maxpktlen=%d, cap=0x%x\n",
DEVNAM(sc), sc->sc_ctrl_len, sc->sc_maxpktlen,
md->bmNetworkCapabilities);
break;
default:
break;
}
}
if (sc->sc_ver_maj < 0) {
printf("%s: missing MBIM descriptor\n", DEVNAM(sc));
goto fail;
}
if (sc->sc_flags & UMBFLG_FCC_AUTH_REQUIRED)
sc->sc_cid = -1;
for (i = 0; i < uaa->nifaces; i++) {
if (usbd_iface_claimed(sc->sc_udev, i))
continue;
id = usbd_get_interface_descriptor(&sc->sc_udev->ifaces[i]);
if (id != NULL && id->bInterfaceNumber == data_ifaceno) {
sc->sc_data_iface = &sc->sc_udev->ifaces[i];
usbd_claim_iface(sc->sc_udev, i);
}
}
if (sc->sc_data_iface == NULL) {
printf("%s: no data interface found\n", DEVNAM(sc));
goto fail;
}
/*
* If this is a combined NCM/MBIM function, switch to
* alternate setting one to enable MBIM.
*/
id = usbd_get_interface_descriptor(uaa->iface);
if (id->bInterfaceClass == UICLASS_CDC &&
id->bInterfaceSubClass ==
UISUBCLASS_NETWORK_CONTROL_MODEL)
usbd_set_interface(uaa->iface, 1);
id = usbd_get_interface_descriptor(uaa->iface);
ctrl_ep = -1;
for (i = 0; i < id->bNumEndpoints && ctrl_ep == -1; i++) {
ed = usbd_interface2endpoint_descriptor(uaa->iface, i);
if (ed == NULL)
break;
if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
ctrl_ep = ed->bEndpointAddress;
}
if (ctrl_ep == -1) {
printf("%s: missing interrupt endpoint\n", DEVNAM(sc));
goto fail;
}
/*
* For the MBIM Data Interface, select the appropriate
* alternate setting by looking for a matching descriptor that
* has two endpoints.
*/
cd = usbd_get_config_descriptor(sc->sc_udev);
altnum = usbd_get_no_alts(cd, data_ifaceno);
for (i = 0; i < altnum; i++) {
id = usbd_find_idesc(cd, sc->sc_data_iface->index, i);
if (id == NULL)
continue;
if (id->bInterfaceClass == UICLASS_CDC_DATA &&
id->bInterfaceSubClass == UISUBCLASS_DATA &&
id->bInterfaceProtocol == UIPROTO_DATA_MBIM &&
id->bNumEndpoints == 2)
break;
}
if (i == altnum || id == NULL) {
printf("%s: missing alt setting for interface #%d\n",
DEVNAM(sc), data_ifaceno);
goto fail;
}
status = usbd_set_interface(sc->sc_data_iface, i);
if (status) {
printf("%s: select alt setting %d for interface #%d "
"failed: %s\n", DEVNAM(sc), i, data_ifaceno,
usbd_errstr(status));
goto fail;
}
id = usbd_get_interface_descriptor(sc->sc_data_iface);
sc->sc_rx_ep = sc->sc_tx_ep = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
if ((ed = usbd_interface2endpoint_descriptor(sc->sc_data_iface,
i)) == NULL)
break;
if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
sc->sc_rx_ep = ed->bEndpointAddress;
else if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
sc->sc_tx_ep = ed->bEndpointAddress;
}
if (sc->sc_rx_ep == -1 || sc->sc_tx_ep == -1) {
printf("%s: missing bulk endpoints\n", DEVNAM(sc));
goto fail;
}
DPRINTFN(2, "%s: ctrl-ifno#%d: ep-ctrl=%d, data-ifno#%d: ep-rx=%d, "
"ep-tx=%d\n", DEVNAM(sc), sc->sc_ctrl_ifaceno,
UE_GET_ADDR(ctrl_ep), data_ifaceno,
UE_GET_ADDR(sc->sc_rx_ep), UE_GET_ADDR(sc->sc_tx_ep));
usb_init_task(&sc->sc_umb_task, umb_state_task, sc,
USB_TASK_TYPE_GENERIC);
usb_init_task(&sc->sc_get_response_task, umb_get_response_task, sc,
USB_TASK_TYPE_GENERIC);
timeout_set(&sc->sc_statechg_timer, umb_statechg_timeout, sc);
if (usbd_open_pipe_intr(uaa->iface, ctrl_ep, USBD_SHORT_XFER_OK,
&sc->sc_ctrl_pipe, sc, &sc->sc_intr_msg, sizeof (sc->sc_intr_msg),
umb_intr, USBD_DEFAULT_INTERVAL)) {
printf("%s: failed to open control pipe\n", DEVNAM(sc));
goto fail;
}
sc->sc_resp_buf = malloc(sc->sc_ctrl_len, M_USBDEV, M_NOWAIT);
if (sc->sc_resp_buf == NULL) {
printf("%s: allocation of resp buffer failed\n", DEVNAM(sc));
goto fail;
}
sc->sc_ctrl_msg = malloc(sc->sc_ctrl_len, M_USBDEV, M_NOWAIT);
if (sc->sc_ctrl_msg == NULL) {
printf("%s: allocation of ctrl msg buffer failed\n",
DEVNAM(sc));
goto fail;
}
sc->sc_info.regstate = MBIM_REGSTATE_UNKNOWN;
sc->sc_info.pin_attempts_left = UMB_VALUE_UNKNOWN;
sc->sc_info.rssi = UMB_VALUE_UNKNOWN;
sc->sc_info.ber = UMB_VALUE_UNKNOWN;
/* Default to 16 bit NTB format. */
sc->sc_ncm_format = NCM_FORMAT_NTB16;
umb_ncm_setup(sc);
umb_ncm_setup_format(sc);
if (sc->sc_ncm_supported_formats == 0)
goto fail;
DPRINTFN(2, "%s: rx/tx size %d/%d\n", DEVNAM(sc),
sc->sc_rx_bufsz, sc->sc_tx_bufsz);
s = splnet();
ifp = GET_IFP(sc);
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_POINTOPOINT;
ifp->if_ioctl = umb_ioctl;
ifp->if_start = umb_start;
ifp->if_rtrequest = umb_rtrequest;
ifp->if_watchdog = umb_watchdog;
strlcpy(ifp->if_xname, DEVNAM(sc), IFNAMSIZ);
ifp->if_link_state = LINK_STATE_DOWN;
ifp->if_type = IFT_MBIM;
ifp->if_priority = IF_WWAN_DEFAULT_PRIORITY;
ifp->if_addrlen = 0;
ifp->if_hdrlen = sizeof (struct ncm_header16) +
sizeof (struct ncm_pointer16);
ifp->if_mtu = 1500; /* use a common default */
ifp->if_hardmtu = sc->sc_maxpktlen;
ifp->if_bpf_mtap = p2p_bpf_mtap;
ifp->if_input = p2p_input;
ifp->if_output = umb_output;
if_attach(ifp);
if_alloc_sadl(ifp);
ifp->if_softc = sc;
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_LOOP, sizeof(uint32_t));
#endif
#if NKSTAT > 0
umb_kstat_attach(sc);
#endif
/*
* Open the device now so that we are able to query device information.
* XXX maybe close when done?
*/
umb_open(sc);
splx(s);
DPRINTF("%s: vers %d.%d\n", DEVNAM(sc), sc->sc_ver_maj, sc->sc_ver_min);
return;
fail:
usbd_deactivate(sc->sc_udev);
return;
}
int
umb_detach(struct device *self, int flags)
{
struct umb_softc *sc = (struct umb_softc *)self;
struct ifnet *ifp = GET_IFP(sc);
int s;
s = splnet();
if (ifp->if_flags & IFF_RUNNING)
umb_down(sc, 1);
umb_close(sc);
#if NKSTAT > 0
umb_kstat_detach(sc);
#endif
usb_rem_wait_task(sc->sc_udev, &sc->sc_get_response_task);
if (timeout_initialized(&sc->sc_statechg_timer))
timeout_del(&sc->sc_statechg_timer);
sc->sc_nresp = 0;
usb_rem_wait_task(sc->sc_udev, &sc->sc_umb_task);
if (sc->sc_ctrl_pipe) {
usbd_close_pipe(sc->sc_ctrl_pipe);
sc->sc_ctrl_pipe = NULL;
}
if (sc->sc_ctrl_msg) {
free(sc->sc_ctrl_msg, M_USBDEV, sc->sc_ctrl_len);
sc->sc_ctrl_msg = NULL;
}
if (sc->sc_resp_buf) {
free(sc->sc_resp_buf, M_USBDEV, sc->sc_ctrl_len);
sc->sc_resp_buf = NULL;
}
if (ifp->if_softc != NULL) {
if_detach(ifp);
}
splx(s);
return 0;
}
void
umb_ncm_setup(struct umb_softc *sc)
{
usb_device_request_t req;
struct ncm_ntb_parameters np;
/* Query NTB transfer sizes */
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = NCM_GET_NTB_PARAMETERS;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, sizeof (np));
if (usbd_do_request(sc->sc_udev, &req, &np) == USBD_NORMAL_COMPLETION &&
UGETW(np.wLength) == sizeof (np)) {
sc->sc_rx_bufsz = UGETDW(np.dwNtbInMaxSize);
sc->sc_tx_bufsz = UGETDW(np.dwNtbOutMaxSize);
sc->sc_maxdgram = UGETW(np.wNtbOutMaxDatagrams);
sc->sc_align = UGETW(np.wNdpOutAlignment);
sc->sc_ndp_div = UGETW(np.wNdpOutDivisor);
sc->sc_ndp_remainder = UGETW(np.wNdpOutPayloadRemainder);
/* Validate values */
if (!powerof2(sc->sc_align) || sc->sc_align == 0 ||
sc->sc_align >= sc->sc_tx_bufsz)
sc->sc_align = sizeof (uint32_t);
if (!powerof2(sc->sc_ndp_div) || sc->sc_ndp_div == 0 ||
sc->sc_ndp_div >= sc->sc_tx_bufsz)
sc->sc_ndp_div = sizeof (uint32_t);
if (sc->sc_ndp_remainder >= sc->sc_ndp_div)
sc->sc_ndp_remainder = 0;
DPRINTF("%s: NCM align=%d div=%d rem=%d\n", DEVNAM(sc),
sc->sc_align, sc->sc_ndp_div, sc->sc_ndp_remainder);
sc->sc_ncm_supported_formats = UGETW(np.bmNtbFormatsSupported);
} else {
sc->sc_rx_bufsz = sc->sc_tx_bufsz = 8 * 1024;
sc->sc_maxdgram = 0;
sc->sc_align = sc->sc_ndp_div = sizeof (uint32_t);
sc->sc_ndp_remainder = 0;
DPRINTF("%s: align=default div=default rem=default\n",
DEVNAM(sc));
sc->sc_ncm_supported_formats = NCM_FORMAT_NTB16_MASK;
}
}
void
umb_ncm_setup_format(struct umb_softc *sc)
{
usb_device_request_t req;
uWord wFmt;
uint16_t fmt;
assertwaitok();
if (sc->sc_ncm_supported_formats == 0)
goto fail;
/* NCM_GET_NTB_FORMAT is not allowed for 16-bit only devices. */
if (sc->sc_ncm_supported_formats == NCM_FORMAT_NTB16_MASK) {
DPRINTF("%s: Only NTB16 format supported.\n", DEVNAM(sc));
sc->sc_ncm_format = NCM_FORMAT_NTB16;
return;
}
/* Query NTB FORMAT (16 vs. 32 bit) */
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = NCM_GET_NTB_FORMAT;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, sizeof (wFmt));
if (usbd_do_request(sc->sc_udev, &req, wFmt) != USBD_NORMAL_COMPLETION)
goto fail;
fmt = UGETW(wFmt);
if ((sc->sc_ncm_supported_formats & (1UL << fmt)) == 0)
goto fail;
if (fmt != NCM_FORMAT_NTB16 && fmt != NCM_FORMAT_NTB32)
goto fail;
sc->sc_ncm_format = fmt;
DPRINTF("%s: Using NCM format %d, supported=0x%x\n",
DEVNAM(sc), sc->sc_ncm_format, sc->sc_ncm_supported_formats);
return;
fail:
DPRINTF("%s: Cannot setup NCM format\n", DEVNAM(sc));
sc->sc_ncm_supported_formats = 0;
}
int
umb_alloc_xfers(struct umb_softc *sc)
{
if (!sc->sc_rx_xfer) {
if ((sc->sc_rx_xfer = usbd_alloc_xfer(sc->sc_udev)) != NULL)
sc->sc_rx_buf = usbd_alloc_buffer(sc->sc_rx_xfer,
sc->sc_rx_bufsz);
}
if (!sc->sc_tx_xfer) {
if ((sc->sc_tx_xfer = usbd_alloc_xfer(sc->sc_udev)) != NULL)
sc->sc_tx_buf = usbd_alloc_buffer(sc->sc_tx_xfer,
sc->sc_tx_bufsz);
}
return (sc->sc_rx_buf && sc->sc_tx_buf) ? 1 : 0;
}
void
umb_free_xfers(struct umb_softc *sc)
{
if (sc->sc_rx_xfer) {
/* implicit usbd_free_buffer() */
usbd_free_xfer(sc->sc_rx_xfer);
sc->sc_rx_xfer = NULL;
sc->sc_rx_buf = NULL;
}
if (sc->sc_tx_xfer) {
usbd_free_xfer(sc->sc_tx_xfer);
sc->sc_tx_xfer = NULL;
sc->sc_tx_buf = NULL;
}
ml_purge(&sc->sc_tx_ml);
}
int
umb_alloc_bulkpipes(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
if (!(ifp->if_flags & IFF_RUNNING)) {
if (usbd_open_pipe(sc->sc_data_iface, sc->sc_rx_ep,
USBD_EXCLUSIVE_USE, &sc->sc_rx_pipe))
return 0;
if (usbd_open_pipe(sc->sc_data_iface, sc->sc_tx_ep,
USBD_EXCLUSIVE_USE, &sc->sc_tx_pipe))
return 0;
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
umb_rx(sc);
}
return 1;
}
void
umb_close_bulkpipes(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
if (sc->sc_rx_pipe) {
usbd_close_pipe(sc->sc_rx_pipe);
sc->sc_rx_pipe = NULL;
}
if (sc->sc_tx_pipe) {
usbd_close_pipe(sc->sc_tx_pipe);
sc->sc_tx_pipe = NULL;
}
}
int
umb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct proc *p = curproc;
struct umb_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
struct umb_parameter mp;
if (usbd_is_dying(sc->sc_udev))
return ENXIO;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
usb_add_task(sc->sc_udev, &sc->sc_umb_task);
break;
case SIOCGUMBINFO:
error = copyout(&sc->sc_info, ifr->ifr_data,
sizeof (sc->sc_info));
break;
case SIOCSUMBPARAM:
if ((error = suser(p)) != 0)
break;
if ((error = copyin(ifr->ifr_data, &mp, sizeof (mp))) != 0)
break;
if ((error = umb_setpin(sc, mp.op, mp.is_puk, mp.pin, mp.pinlen,
mp.newpin, mp.newpinlen)) != 0)
break;
if (mp.apnlen < 0 || mp.apnlen > sizeof (sc->sc_info.apn)) {
error = EINVAL;
break;
}
sc->sc_roaming = mp.roaming ? 1 : 0;
memset(sc->sc_info.apn, 0, sizeof (sc->sc_info.apn));
memcpy(sc->sc_info.apn, mp.apn, mp.apnlen);
sc->sc_info.apnlen = mp.apnlen;
sc->sc_info.preferredclasses = mp.preferredclasses;
umb_setdataclass(sc);
break;
case SIOCGUMBPARAM:
memset(&mp, 0, sizeof (mp));
memcpy(mp.apn, sc->sc_info.apn, sc->sc_info.apnlen);
mp.apnlen = sc->sc_info.apnlen;
mp.roaming = sc->sc_roaming;
mp.preferredclasses = sc->sc_info.preferredclasses;
error = copyout(&mp, ifr->ifr_data, sizeof (mp));
break;
case SIOCSIFMTU:
/* Does this include the NCM headers and tail? */
if (ifr->ifr_mtu > ifp->if_hardmtu) {
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFADDR:
case SIOCAIFADDR:
case SIOCSIFDSTADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
default:
error = ENOTTY;
break;
}
splx(s);
return error;
}
int
umb_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
struct rtentry *rtp)
{
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
m_freem(m);
return ENETDOWN;
}
m->m_pkthdr.ph_family = dst->sa_family;
return if_enqueue(ifp, m);
}
static inline int
umb_align(size_t bufsz, int offs, int alignment, int remainder)
{
size_t m = alignment - 1;
int align;
align = (((size_t)offs + m) & ~m) - alignment + remainder;
if (align < offs)
align += alignment;
if (align > bufsz)
align = bufsz;
return align - offs;
}
static inline int
umb_padding(void *buf, size_t bufsz, int offs, int alignment, int remainder)
{
int nb;
nb = umb_align(bufsz, offs, alignment, remainder);
if (nb > 0)
memset(buf + offs, 0, nb);
return nb;
}
void
umb_start(struct ifnet *ifp)
{
struct umb_softc *sc = ifp->if_softc;
struct mbuf *m = NULL;
int ndgram = 0;
int offs, len, mlen;
int maxoverhead;
if (usbd_is_dying(sc->sc_udev) ||
!(ifp->if_flags & IFF_RUNNING) ||
ifq_is_oactive(&ifp->if_snd))
return;
KASSERT(ml_empty(&sc->sc_tx_ml));
switch (sc->sc_ncm_format) {
case NCM_FORMAT_NTB16:
offs = sizeof (struct ncm_header16);
offs += umb_align(sc->sc_tx_bufsz, offs, sc->sc_align, 0);
offs += sizeof (struct ncm_pointer16);
maxoverhead = sizeof (struct ncm_pointer16_dgram);
break;
case NCM_FORMAT_NTB32:
offs = sizeof (struct ncm_header32);
offs += umb_align(sc->sc_tx_bufsz, offs, sc->sc_align, 0);
offs += sizeof (struct ncm_pointer32);
maxoverhead = sizeof (struct ncm_pointer32_dgram);
break;
}
/*
* Overhead for per packet alignment plus packet pointer. Note
* that 'struct ncm_pointer{16,32}' already includes space for
* the terminating zero pointer.
*/
maxoverhead += sc->sc_ndp_div - 1;
len = 0;
while (1) {
m = ifq_deq_begin(&ifp->if_snd);
if (m == NULL)
break;
/*
* Check if mbuf plus required NCM pointer still fits into
* xfer buffers. Assume maximal padding.
*/
mlen = maxoverhead + m->m_pkthdr.len;
if ((sc->sc_maxdgram != 0 && ndgram >= sc->sc_maxdgram) ||
(offs + len + mlen > sc->sc_tx_bufsz)) {
ifq_deq_rollback(&ifp->if_snd, m);
break;
}
ifq_deq_commit(&ifp->if_snd, m);
ndgram++;
len += mlen;
ml_enqueue(&sc->sc_tx_ml, m);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family, m,
BPF_DIRECTION_OUT);
#endif
}
if (ml_empty(&sc->sc_tx_ml))
return;
if (umb_encap(sc, ndgram)) {
ifq_set_oactive(&ifp->if_snd);
ifp->if_timer = (2 * umb_xfer_tout) / 1000;
}
}
void
umb_rtrequest(struct ifnet *ifp, int req, struct rtentry *rt)
{
struct umb_softc *sc = ifp->if_softc;
if (req == RTM_PROPOSAL) {
KERNEL_LOCK();
umb_send_inet_proposal(sc, AF_INET);
#ifdef INET6
umb_send_inet_proposal(sc, AF_INET6);
#endif
KERNEL_UNLOCK();
return;
}
p2p_rtrequest(ifp, req, rt);
}
void
umb_watchdog(struct ifnet *ifp)
{
struct umb_softc *sc = ifp->if_softc;
if (usbd_is_dying(sc->sc_udev))
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", DEVNAM(sc));
usbd_abort_pipe(sc->sc_tx_pipe);
return;
}
void
umb_statechg_timeout(void *arg)
{
struct umb_softc *sc = arg;
struct ifnet *ifp = GET_IFP(sc);
if (sc->sc_info.regstate != MBIM_REGSTATE_ROAMING || sc->sc_roaming)
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: state change timeout\n",
DEVNAM(sc));
usb_add_task(sc->sc_udev, &sc->sc_umb_task);
}
void
umb_newstate(struct umb_softc *sc, enum umb_state newstate, int flags)
{
struct ifnet *ifp = GET_IFP(sc);
if (newstate == sc->sc_state)
return;
if (((flags & UMB_NS_DONT_DROP) && newstate < sc->sc_state) ||
((flags & UMB_NS_DONT_RAISE) && newstate > sc->sc_state))
return;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: state going %s from '%s' to '%s'\n",
DEVNAM(sc), newstate > sc->sc_state ? "up" : "down",
umb_istate(sc->sc_state), umb_istate(newstate));
sc->sc_state = newstate;
usb_add_task(sc->sc_udev, &sc->sc_umb_task);
}
void
umb_state_task(void *arg)
{
struct umb_softc *sc = arg;
struct ifnet *ifp = GET_IFP(sc);
int s;
int state;
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING && !sc->sc_roaming) {
/*
* Query the registration state until we're with the home
* network again.
*/
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_QRY, NULL, 0);
return;
}
s = splnet();
if (ifp->if_flags & IFF_UP)
umb_up(sc);
else
umb_down(sc, 0);
state = sc->sc_state == UMB_S_UP ? LINK_STATE_UP : LINK_STATE_DOWN;
if (ifp->if_link_state != state) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: link state changed from %s to %s\n",
DEVNAM(sc),
LINK_STATE_IS_UP(ifp->if_link_state)
? "up" : "down",
LINK_STATE_IS_UP(state) ? "up" : "down");
ifp->if_link_state = state;
if_link_state_change(ifp);
}
splx(s);
}
void
umb_up(struct umb_softc *sc)
{
splassert(IPL_NET);
switch (sc->sc_state) {
case UMB_S_DOWN:
DPRINTF("%s: init: opening ...\n", DEVNAM(sc));
umb_open(sc);
break;
case UMB_S_OPEN:
if (sc->sc_flags & UMBFLG_FCC_AUTH_REQUIRED) {
if (sc->sc_cid == -1) {
DPRINTF("%s: init: allocating CID ...\n",
DEVNAM(sc));
umb_allocate_cid(sc);
break;
} else
umb_newstate(sc, UMB_S_CID, UMB_NS_DONT_DROP);
} else {
DPRINTF("%s: init: turning radio on ...\n", DEVNAM(sc));
umb_radio(sc, 1);
break;
}
/*FALLTHROUGH*/
case UMB_S_CID:
DPRINTF("%s: init: sending FCC auth ...\n", DEVNAM(sc));
umb_send_fcc_auth(sc);
break;
case UMB_S_RADIO:
DPRINTF("%s: init: checking SIM state ...\n", DEVNAM(sc));
umb_cmd(sc, MBIM_CID_SUBSCRIBER_READY_STATUS, MBIM_CMDOP_QRY,
NULL, 0);
break;
case UMB_S_SIMREADY:
DPRINTF("%s: init: attaching ...\n", DEVNAM(sc));
umb_packet_service(sc, 1);
break;
case UMB_S_ATTACHED:
sc->sc_tx_seq = 0;
if (!umb_alloc_xfers(sc)) {
umb_free_xfers(sc);
printf("%s: allocation of xfers failed\n", DEVNAM(sc));
break;
}
DPRINTF("%s: init: connecting ...\n", DEVNAM(sc));
umb_connect(sc);
break;
case UMB_S_CONNECTED:
DPRINTF("%s: init: getting IP config ...\n", DEVNAM(sc));
umb_qry_ipconfig(sc);
break;
case UMB_S_UP:
DPRINTF("%s: init: reached state UP\n", DEVNAM(sc));
if (!umb_alloc_bulkpipes(sc)) {
printf("%s: opening bulk pipes failed\n", DEVNAM(sc));
umb_down(sc, 1);
}
break;
}
if (sc->sc_state < UMB_S_UP)
timeout_add_sec(&sc->sc_statechg_timer,
UMB_STATE_CHANGE_TIMEOUT);
else
timeout_del(&sc->sc_statechg_timer);
return;
}
void
umb_down(struct umb_softc *sc, int force)
{
splassert(IPL_NET);
umb_close_bulkpipes(sc);
if (sc->sc_state < UMB_S_CONNECTED)
umb_free_xfers(sc);
switch (sc->sc_state) {
case UMB_S_UP:
umb_clear_addr(sc);
/*FALLTHROUGH*/
case UMB_S_CONNECTED:
DPRINTF("%s: stop: disconnecting ...\n", DEVNAM(sc));
umb_disconnect(sc);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_ATTACHED:
DPRINTF("%s: stop: detaching ...\n", DEVNAM(sc));
umb_packet_service(sc, 0);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_SIMREADY:
case UMB_S_RADIO:
DPRINTF("%s: stop: turning radio off ...\n", DEVNAM(sc));
umb_radio(sc, 0);
if (!force)
break;
/*FALLTHROUGH*/
case UMB_S_CID:
case UMB_S_OPEN:
case UMB_S_DOWN:
/* Do not close the device */
DPRINTF("%s: stop: reached state DOWN\n", DEVNAM(sc));
break;
}
if (force)
sc->sc_state = UMB_S_OPEN;
if (sc->sc_state > UMB_S_OPEN)
timeout_add_sec(&sc->sc_statechg_timer,
UMB_STATE_CHANGE_TIMEOUT);
else
timeout_del(&sc->sc_statechg_timer);
}
void
umb_get_response_task(void *arg)
{
struct umb_softc *sc = arg;
int len;
int s;
/*
* Function is required to send on RESPONSE_AVAILABLE notification for
* each encapsulated response that is to be processed by the host.
* But of course, we can receive multiple notifications before the
* response task is run.
*/
s = splusb();
while (sc->sc_nresp > 0) {
--sc->sc_nresp;
len = sc->sc_ctrl_len;
if (umb_get_encap_response(sc, sc->sc_resp_buf, &len))
umb_decode_response(sc, sc->sc_resp_buf, len);
}
splx(s);
}
void
umb_decode_response(struct umb_softc *sc, void *response, int len)
{
struct mbim_msghdr *hdr = response;
struct mbim_fragmented_msg_hdr *fraghdr;
uint32_t type;
uint32_t tid;
DPRINTFN(3, "%s: got response: len %d\n", DEVNAM(sc), len);
DDUMPN(4, response, len);
if (len < sizeof (*hdr) || letoh32(hdr->len) != len) {
/*
* We should probably cancel a transaction, but since the
* message is too short, we cannot decode the transaction
* id (tid) and hence don't know, whom to cancel. Must wait
* for the timeout.
*/
DPRINTF("%s: received short response (len %d)\n",
DEVNAM(sc), len);
return;
}
/*
* XXX FIXME: if message is fragmented, store it until last frag
* is received and then re-assemble all fragments.
*/
type = letoh32(hdr->type);
tid = letoh32(hdr->tid);
switch (type) {
case MBIM_INDICATE_STATUS_MSG:
case MBIM_COMMAND_DONE:
fraghdr = response;
if (letoh32(fraghdr->frag.nfrag) != 1) {
DPRINTF("%s: discarding fragmented messages\n",
DEVNAM(sc));
return;
}
break;
default:
break;
}
DPRINTF("%s: <- rcv %s (tid %u)\n", DEVNAM(sc), umb_request2str(type),
tid);
switch (type) {
case MBIM_FUNCTION_ERROR_MSG:
case MBIM_HOST_ERROR_MSG:
{
struct mbim_f2h_hosterr *e;
int err;
if (len >= sizeof (*e)) {
e = response;
err = letoh32(e->err);
DPRINTF("%s: %s message, error %s (tid %u)\n",
DEVNAM(sc), umb_request2str(type),
umb_error2str(err), tid);
if (err == MBIM_ERROR_NOT_OPENED)
umb_newstate(sc, UMB_S_DOWN, 0);
}
break;
}
case MBIM_INDICATE_STATUS_MSG:
umb_handle_indicate_status_msg(sc, response, len);
break;
case MBIM_OPEN_DONE:
umb_handle_opendone_msg(sc, response, len);
break;
case MBIM_CLOSE_DONE:
umb_handle_closedone_msg(sc, response, len);
break;
case MBIM_COMMAND_DONE:
umb_command_done(sc, response, len);
break;
default:
DPRINTF("%s: discard message %s\n", DEVNAM(sc),
umb_request2str(type));
break;
}
}
void
umb_handle_indicate_status_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_indicate_status *m = data;
uint32_t infolen;
uint32_t cid;
if (len < sizeof (*m)) {
DPRINTF("%s: discard short %s message\n", DEVNAM(sc),
umb_request2str(letoh32(m->hdr.type)));
return;
}
if (memcmp(m->devid, umb_uuid_basic_connect, sizeof (m->devid))) {
DPRINTF("%s: discard %s message for other UUID '%s'\n",
DEVNAM(sc), umb_request2str(letoh32(m->hdr.type)),
umb_uuid2str(m->devid));
return;
}
infolen = letoh32(m->infolen);
if (len < sizeof (*m) + infolen) {
DPRINTF("%s: discard truncated %s message (want %d, got %d)\n",
DEVNAM(sc), umb_request2str(letoh32(m->hdr.type)),
(int)sizeof (*m) + infolen, len);
return;
}
cid = letoh32(m->cid);
DPRINTF("%s: indicate %s status\n", DEVNAM(sc), umb_cid2str(cid));
umb_decode_cid(sc, cid, m->info, infolen);
}
void
umb_handle_opendone_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_openclosedone *resp = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t status;
status = letoh32(resp->status);
if (status == MBIM_STATUS_SUCCESS) {
if (sc->sc_maxsessions == 0) {
umb_cmd(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_QRY, NULL,
0);
umb_cmd(sc, MBIM_CID_PIN, MBIM_CMDOP_QRY, NULL, 0);
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_QRY,
NULL, 0);
}
umb_newstate(sc, UMB_S_OPEN, UMB_NS_DONT_DROP);
} else if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: open error: %s\n", DEVNAM(sc),
umb_status2str(status));
return;
}
void
umb_handle_closedone_msg(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_openclosedone *resp = data;
uint32_t status;
status = letoh32(resp->status);
if (status == MBIM_STATUS_SUCCESS)
umb_newstate(sc, UMB_S_DOWN, 0);
else
DPRINTF("%s: close error: %s\n", DEVNAM(sc),
umb_status2str(status));
return;
}
static inline void
umb_getinfobuf(void *in, int inlen, uint32_t offs, uint32_t sz,
void *out, size_t outlen)
{
offs = letoh32(offs);
sz = letoh32(sz);
if (inlen >= offs + sz) {
memset(out, 0, outlen);
memcpy(out, in + offs, MIN(sz, outlen));
}
}
static inline int
umb_addstr(void *buf, size_t bufsz, int *offs, void *str, int slen,
uint32_t *offsmember, uint32_t *sizemember)
{
if (*offs + slen > bufsz)
return 0;
*sizemember = htole32((uint32_t)slen);
if (slen && str) {
*offsmember = htole32((uint32_t)*offs);
memcpy(buf + *offs, str, slen);
*offs += slen;
*offs += umb_padding(buf, bufsz, *offs, sizeof (uint32_t), 0);
} else
*offsmember = htole32(0);
return 1;
}
int
umb_decode_register_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_registration_state_info *rs = data;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof (*rs))
return 0;
sc->sc_info.nwerror = letoh32(rs->nwerror);
sc->sc_info.regstate = letoh32(rs->regstate);
sc->sc_info.regmode = letoh32(rs->regmode);
sc->sc_info.cellclass = letoh32(rs->curcellclass);
umb_getinfobuf(data, len, rs->provname_offs, rs->provname_size,
sc->sc_info.provider, sizeof (sc->sc_info.provider));
umb_getinfobuf(data, len, rs->provid_offs, rs->provid_size,
sc->sc_info.providerid, sizeof (sc->sc_info.providerid));
umb_getinfobuf(data, len, rs->roamingtxt_offs, rs->roamingtxt_size,
sc->sc_info.roamingtxt, sizeof (sc->sc_info.roamingtxt));
DPRINTFN(2, "%s: %s, availclass 0x%x, class 0x%x, regmode %d\n",
DEVNAM(sc), umb_regstate(sc->sc_info.regstate),
letoh32(rs->availclasses), sc->sc_info.cellclass,
sc->sc_info.regmode);
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING &&
!sc->sc_roaming &&
sc->sc_info.activation == MBIM_ACTIVATION_STATE_ACTIVATED) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO,
"%s: disconnecting from roaming network\n",
DEVNAM(sc));
umb_disconnect(sc);
}
return 1;
}
int
umb_decode_devices_caps(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_device_caps *dc = data;
if (len < sizeof (*dc))
return 0;
sc->sc_maxsessions = letoh32(dc->max_sessions);
sc->sc_info.supportedclasses = letoh32(dc->dataclass);
umb_getinfobuf(data, len, dc->devid_offs, dc->devid_size,
sc->sc_info.devid, sizeof (sc->sc_info.devid));
umb_getinfobuf(data, len, dc->fwinfo_offs, dc->fwinfo_size,
sc->sc_info.fwinfo, sizeof (sc->sc_info.fwinfo));
umb_getinfobuf(data, len, dc->hwinfo_offs, dc->hwinfo_size,
sc->sc_info.hwinfo, sizeof (sc->sc_info.hwinfo));
DPRINTFN(2, "%s: max sessions %d, supported classes 0x%x\n",
DEVNAM(sc), sc->sc_maxsessions, sc->sc_info.supportedclasses);
return 1;
}
int
umb_decode_subscriber_status(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_subscriber_ready_info *si = data;
struct ifnet *ifp = GET_IFP(sc);
int npn;
if (len < sizeof (*si))
return 0;
sc->sc_info.sim_state = letoh32(si->ready);
umb_getinfobuf(data, len, si->sid_offs, si->sid_size,
sc->sc_info.sid, sizeof (sc->sc_info.sid));
umb_getinfobuf(data, len, si->icc_offs, si->icc_size,
sc->sc_info.iccid, sizeof (sc->sc_info.iccid));
npn = letoh32(si->no_pn);
if (npn > 0)
umb_getinfobuf(data, len, si->pn[0].offs, si->pn[0].size,
sc->sc_info.pn, sizeof (sc->sc_info.pn));
else
memset(sc->sc_info.pn, 0, sizeof (sc->sc_info.pn));
if (sc->sc_info.sim_state == MBIM_SIMSTATE_LOCKED)
sc->sc_info.pin_state = UMB_PUK_REQUIRED;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: SIM %s\n", DEVNAM(sc),
umb_simstate(sc->sc_info.sim_state));
if (sc->sc_info.sim_state == MBIM_SIMSTATE_INITIALIZED)
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_DROP);
return 1;
}
int
umb_decode_radio_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_radio_state_info *rs = data;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof (*rs))
return 0;
sc->sc_info.hw_radio_on =
(letoh32(rs->hw_state) == MBIM_RADIO_STATE_ON) ? 1 : 0;
sc->sc_info.sw_radio_on =
(letoh32(rs->sw_state) == MBIM_RADIO_STATE_ON) ? 1 : 0;
if (!sc->sc_info.hw_radio_on) {
printf("%s: radio is disabled by hardware switch\n",
DEVNAM(sc));
/*
* XXX do we need a time to poll the state of the rfkill switch
* or will the device send an unsolicited notification
* in case the state changes?
*/
umb_newstate(sc, UMB_S_OPEN, 0);
} else if (!sc->sc_info.sw_radio_on) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: radio is off\n", DEVNAM(sc));
umb_newstate(sc, UMB_S_OPEN, 0);
} else
umb_newstate(sc, UMB_S_RADIO, UMB_NS_DONT_DROP);
return 1;
}
int
umb_decode_pin(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_pin_info *pi = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t attempts_left;
if (len < sizeof (*pi))
return 0;
attempts_left = letoh32(pi->remaining_attempts);
if (attempts_left != 0xffffffff)
sc->sc_info.pin_attempts_left = attempts_left;
switch (letoh32(pi->state)) {
case MBIM_PIN_STATE_UNLOCKED:
sc->sc_info.pin_state = UMB_PIN_UNLOCKED;
break;
case MBIM_PIN_STATE_LOCKED:
switch (letoh32(pi->type)) {
case MBIM_PIN_TYPE_PIN1:
sc->sc_info.pin_state = UMB_PIN_REQUIRED;
break;
case MBIM_PIN_TYPE_PUK1:
sc->sc_info.pin_state = UMB_PUK_REQUIRED;
break;
case MBIM_PIN_TYPE_PIN2:
case MBIM_PIN_TYPE_PUK2:
/* Assume that PIN1 was accepted */
sc->sc_info.pin_state = UMB_PIN_UNLOCKED;
break;
}
break;
}
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: %s state %s (%d attempts left)\n",
DEVNAM(sc), umb_pin_type(letoh32(pi->type)),
(letoh32(pi->state) == MBIM_PIN_STATE_UNLOCKED) ?
"unlocked" : "locked",
letoh32(pi->remaining_attempts));
/*
* In case the PIN was set after IFF_UP, retrigger the state machine
*/
usb_add_task(sc->sc_udev, &sc->sc_umb_task);
return 1;
}
int
umb_decode_packet_service(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_packet_service_info *psi = data;
int state, highestclass;
uint64_t up_speed, down_speed;
struct ifnet *ifp = GET_IFP(sc);
if (len < sizeof (*psi))
return 0;
sc->sc_info.nwerror = letoh32(psi->nwerror);
state = letoh32(psi->state);
highestclass = letoh32(psi->highest_dataclass);
up_speed = letoh64(psi->uplink_speed);
down_speed = letoh64(psi->downlink_speed);
if (sc->sc_info.packetstate != state ||
sc->sc_info.uplink_speed != up_speed ||
sc->sc_info.downlink_speed != down_speed) {
if (ifp->if_flags & IFF_DEBUG) {
log(LOG_INFO, "%s: packet service ", DEVNAM(sc));
if (sc->sc_info.packetstate != state)
addlog("changed from %s to ",
umb_packet_state(sc->sc_info.packetstate));
addlog("%s, class %s, speed: %llu up / %llu down\n",
umb_packet_state(state),
umb_dataclass(highestclass), up_speed, down_speed);
}
}
sc->sc_info.packetstate = state;
sc->sc_info.highestclass = highestclass;
sc->sc_info.uplink_speed = up_speed;
sc->sc_info.downlink_speed = down_speed;
if (sc->sc_info.regmode == MBIM_REGMODE_AUTOMATIC) {
/*
* For devices using automatic registration mode, just proceed,
* once registration has completed.
*/
if (ifp->if_flags & IFF_UP) {
switch (sc->sc_info.regstate) {
case MBIM_REGSTATE_HOME:
case MBIM_REGSTATE_ROAMING:
case MBIM_REGSTATE_PARTNER:
umb_newstate(sc, UMB_S_ATTACHED,
UMB_NS_DONT_DROP);
break;
default:
break;
}
} else
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_RAISE);
} else switch (sc->sc_info.packetstate) {
case MBIM_PKTSERVICE_STATE_ATTACHED:
umb_newstate(sc, UMB_S_ATTACHED, UMB_NS_DONT_DROP);
break;
case MBIM_PKTSERVICE_STATE_DETACHED:
umb_newstate(sc, UMB_S_SIMREADY, UMB_NS_DONT_RAISE);
break;
}
return 1;
}
int
umb_decode_signal_state(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_signal_state *ss = data;
struct ifnet *ifp = GET_IFP(sc);
int rssi;
#if NKSTAT > 0
struct kstat *ks;
#endif
if (len < sizeof (*ss))
return 0;
if (letoh32(ss->rssi) == 99)
rssi = UMB_VALUE_UNKNOWN;
else {
rssi = -113 + 2 * letoh32(ss->rssi);
if ((ifp->if_flags & IFF_DEBUG) && sc->sc_info.rssi != rssi &&
sc->sc_state >= UMB_S_CONNECTED)
log(LOG_INFO, "%s: rssi %d dBm\n", DEVNAM(sc), rssi);
}
sc->sc_info.rssi = rssi;
sc->sc_info.ber = letoh32(ss->err_rate);
if (sc->sc_info.ber == 99)
sc->sc_info.ber = UMB_VALUE_UNKNOWN;
#if NKSTAT > 0
ks = sc->sc_kstat_signal;
if (ks != NULL) {
struct umb_kstat_signal *uks = ks->ks_data;
rw_enter_write(&sc->sc_kstat_lock);
kstat_kv_u64(&uks->reports)++;
if (sc->sc_info.rssi == UMB_VALUE_UNKNOWN)
uks->rssi.kv_type = KSTAT_KV_T_NULL;
else {
uks->rssi.kv_type = KSTAT_KV_T_INT32;
kstat_kv_s32(&uks->rssi) = sc->sc_info.rssi;
}
if (sc->sc_info.ber == UMB_VALUE_UNKNOWN)
uks->error_rate.kv_type = KSTAT_KV_T_NULL;
else {
uks->error_rate.kv_type = KSTAT_KV_T_INT32;
kstat_kv_s32(&uks->error_rate) = sc->sc_info.ber;
}
ks->ks_interval.tv_sec = letoh32(ss->ss_intvl);
getnanouptime(&ks->ks_updated);
rw_exit_write(&sc->sc_kstat_lock);
}
#endif
return 1;
}
int
umb_decode_connect_info(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_connect_info *ci = data;
struct ifnet *ifp = GET_IFP(sc);
int act;
if (len < sizeof (*ci))
return 0;
if (letoh32(ci->sessionid) != umb_session_id) {
DPRINTF("%s: discard connection info for session %u\n",
DEVNAM(sc), letoh32(ci->sessionid));
return 1;
}
if (memcmp(ci->context, umb_uuid_context_internet,
sizeof (ci->context))) {
DPRINTF("%s: discard connection info for other context\n",
DEVNAM(sc));
return 1;
}
act = letoh32(ci->activation);
if (sc->sc_info.activation != act) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: connection %s\n", DEVNAM(sc),
umb_activation(act));
sc->sc_info.activation = act;
sc->sc_info.nwerror = letoh32(ci->nwerror);
if (sc->sc_info.activation == MBIM_ACTIVATION_STATE_ACTIVATED)
umb_newstate(sc, UMB_S_CONNECTED, UMB_NS_DONT_DROP);
else if (sc->sc_info.activation ==
MBIM_ACTIVATION_STATE_DEACTIVATED)
umb_newstate(sc, UMB_S_ATTACHED, 0);
/* else: other states are purely transitional */
}
return 1;
}
void
umb_clear_addr(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
memset(sc->sc_info.ipv4dns, 0, sizeof (sc->sc_info.ipv4dns));
memset(sc->sc_info.ipv6dns, 0, sizeof (sc->sc_info.ipv6dns));
umb_send_inet_proposal(sc, AF_INET);
#ifdef INET6
umb_send_inet_proposal(sc, AF_INET6);
#endif
NET_LOCK();
in_ifdetach(ifp);
#ifdef INET6
in6_ifdetach(ifp);
#endif
NET_UNLOCK();
}
int
umb_add_inet_config(struct umb_softc *sc, struct in_addr ip, u_int prefixlen,
struct in_addr gw)
{
struct ifnet *ifp = GET_IFP(sc);
struct in_aliasreq ifra;
struct sockaddr_in *sin, default_sin;
struct rt_addrinfo info;
struct rtentry *rt;
int rv;
memset(&ifra, 0, sizeof (ifra));
rv = in_ioctl(SIOCDIFADDR, (caddr_t)&ifra, ifp, 1);
if (rv != 0 && rv != EADDRNOTAVAIL) {
printf("%s: unable to delete IPv4 address, error %d\n",
DEVNAM(ifp->if_softc), rv);
return rv;
}
memset(&ifra, 0, sizeof (ifra));
sin = &ifra.ifra_addr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof (*sin);
sin->sin_addr = ip;
sin = &ifra.ifra_dstaddr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof (*sin);
sin->sin_addr = gw;
sin = &ifra.ifra_mask;
sin->sin_family = AF_INET;
sin->sin_len = sizeof (*sin);
in_len2mask(&sin->sin_addr, prefixlen);
rv = in_ioctl(SIOCAIFADDR, (caddr_t)&ifra, ifp, 1);
if (rv != 0) {
printf("%s: unable to set IPv4 address, error %d\n",
DEVNAM(ifp->if_softc), rv);
return rv;
}
memset(&default_sin, 0, sizeof(default_sin));
default_sin.sin_family = AF_INET;
default_sin.sin_len = sizeof (default_sin);
memset(&info, 0, sizeof(info));
NET_LOCK();
info.rti_flags = RTF_GATEWAY /* maybe | RTF_STATIC */;
info.rti_ifa = ifa_ifwithaddr(sintosa(&ifra.ifra_addr),
ifp->if_rdomain);
info.rti_info[RTAX_DST] = sintosa(&default_sin);
info.rti_info[RTAX_NETMASK] = sintosa(&default_sin);
info.rti_info[RTAX_GATEWAY] = sintosa(&ifra.ifra_dstaddr);
rv = rtrequest(RTM_ADD, &info, 0, &rt, ifp->if_rdomain);
if (rv) {
printf("%s: unable to set IPv4 default route, "
"error %d\n", DEVNAM(ifp->if_softc), rv);
rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, rv,
ifp->if_rdomain);
} else {
/* Inform listeners of the new route */
rtm_send(rt, RTM_ADD, rv, ifp->if_rdomain);
rtfree(rt);
}
NET_UNLOCK();
if (ifp->if_flags & IFF_DEBUG) {
char str[3][INET_ADDRSTRLEN];
log(LOG_INFO, "%s: IPv4 addr %s, mask %s, gateway %s\n",
DEVNAM(ifp->if_softc),
sockaddr_ntop(sintosa(&ifra.ifra_addr), str[0],
sizeof(str[0])),
sockaddr_ntop(sintosa(&ifra.ifra_mask), str[1],
sizeof(str[1])),
sockaddr_ntop(sintosa(&ifra.ifra_dstaddr), str[2],
sizeof(str[2])));
}
return 0;
}
#ifdef INET6
int
umb_add_inet6_config(struct umb_softc *sc, struct in6_addr *ip, u_int prefixlen,
struct in6_addr *gw)
{
struct ifnet *ifp = GET_IFP(sc);
struct in6_aliasreq ifra;
struct sockaddr_in6 *sin6, default_sin6;
struct rt_addrinfo info;
struct rtentry *rt;
int rv;
memset(&ifra, 0, sizeof (ifra));
sin6 = &ifra.ifra_addr;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof (*sin6);
memcpy(&sin6->sin6_addr, ip, sizeof (sin6->sin6_addr));
sin6 = &ifra.ifra_dstaddr;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof (*sin6);
memcpy(&sin6->sin6_addr, gw, sizeof (sin6->sin6_addr));
/* XXX: in6_update_ifa() accepts only 128 bits for P2P interfaces. */
prefixlen = 128;
sin6 = &ifra.ifra_prefixmask;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof (*sin6);
in6_prefixlen2mask(&sin6->sin6_addr, prefixlen);
ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME;
ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME;
rv = in6_ioctl(SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, 1);
if (rv != 0) {
printf("%s: unable to set IPv6 address, error %d\n",
DEVNAM(ifp->if_softc), rv);
return rv;
}
memset(&default_sin6, 0, sizeof(default_sin6));
default_sin6.sin6_family = AF_INET6;
default_sin6.sin6_len = sizeof (default_sin6);
memset(&info, 0, sizeof(info));
NET_LOCK();
info.rti_flags = RTF_GATEWAY /* maybe | RTF_STATIC */;
info.rti_ifa = ifa_ifwithaddr(sin6tosa(&ifra.ifra_addr),
ifp->if_rdomain);
info.rti_info[RTAX_DST] = sin6tosa(&default_sin6);
info.rti_info[RTAX_NETMASK] = sin6tosa(&default_sin6);
info.rti_info[RTAX_GATEWAY] = sin6tosa(&ifra.ifra_dstaddr);
rv = rtrequest(RTM_ADD, &info, 0, &rt, ifp->if_rdomain);
if (rv) {
printf("%s: unable to set IPv6 default route, "
"error %d\n", DEVNAM(ifp->if_softc), rv);
rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, rv,
ifp->if_rdomain);
} else {
/* Inform listeners of the new route */
rtm_send(rt, RTM_ADD, rv, ifp->if_rdomain);
rtfree(rt);
}
NET_UNLOCK();
if (ifp->if_flags & IFF_DEBUG) {
char str[3][INET6_ADDRSTRLEN];
log(LOG_INFO, "%s: IPv6 addr %s, mask %s, gateway %s\n",
DEVNAM(ifp->if_softc),
sockaddr_ntop(sin6tosa(&ifra.ifra_addr), str[0],
sizeof(str[0])),
sockaddr_ntop(sin6tosa(&ifra.ifra_prefixmask), str[1],
sizeof(str[1])),
sockaddr_ntop(sin6tosa(&ifra.ifra_dstaddr), str[2],
sizeof(str[2])));
}
return 0;
}
#endif
void
umb_send_inet_proposal(struct umb_softc *sc, int af)
{
struct ifnet *ifp = GET_IFP(sc);
struct sockaddr_rtdns rtdns;
struct rt_addrinfo info;
int i, flag = 0;
size_t sz = 0;
memset(&rtdns, 0, sizeof(rtdns));
memset(&info, 0, sizeof(info));
for (i = 0; i < UMB_MAX_DNSSRV; i++) {
if (af == AF_INET) {
sz = sizeof (sc->sc_info.ipv4dns[i]);
if (sc->sc_info.ipv4dns[i].s_addr == INADDR_ANY)
break;
memcpy(rtdns.sr_dns + i * sz, &sc->sc_info.ipv4dns[i],
sz);
flag = RTF_UP;
#ifdef INET6
} else if (af == AF_INET6) {
sz = sizeof (sc->sc_info.ipv6dns[i]);
if (IN6_ARE_ADDR_EQUAL(&sc->sc_info.ipv6dns[i],
&in6addr_any))
break;
memcpy(rtdns.sr_dns + i * sz, &sc->sc_info.ipv6dns[i],
sz);
flag = RTF_UP;
#endif
}
}
rtdns.sr_family = af;
rtdns.sr_len = 2 + i * sz;
info.rti_info[RTAX_DNS] = srtdnstosa(&rtdns);
rtm_proposal(ifp, &info, flag, RTP_PROPOSAL_UMB);
}
int
umb_decode_ip_configuration(struct umb_softc *sc, void *data, int len)
{
struct mbim_cid_ip_configuration_info *ic = data;
struct ifnet *ifp = GET_IFP(sc);
int s;
uint32_t avail_v4;
uint32_t val;
int n, i;
int off;
struct mbim_cid_ipv4_element ipv4elem;
struct in_addr addr, gw;
int state = -1;
int rv;
int hasmtu = 0;
#ifdef INET6
uint32_t avail_v6;
struct mbim_cid_ipv6_element ipv6elem;
struct in6_addr addr6, gw6;
#endif
if (len < sizeof (*ic))
return 0;
if (letoh32(ic->sessionid) != umb_session_id) {
DPRINTF("%s: ignore IP configuration for session id %d\n",
DEVNAM(sc), letoh32(ic->sessionid));
return 0;
}
s = splnet();
memset(sc->sc_info.ipv4dns, 0, sizeof (sc->sc_info.ipv4dns));
memset(sc->sc_info.ipv6dns, 0, sizeof (sc->sc_info.ipv6dns));
/*
* IPv4 configuration
*/
avail_v4 = letoh32(ic->ipv4_available);
if ((avail_v4 & (MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) ==
(MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) {
n = letoh32(ic->ipv4_naddr);
off = letoh32(ic->ipv4_addroffs);
if (n == 0 || off + sizeof (ipv4elem) > len)
goto tryv6;
if (n != 1 && ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: more than one IPv4 addr: %d\n",
DEVNAM(ifp->if_softc), n);
/* Only pick the first one */
memcpy(&ipv4elem, data + off, sizeof (ipv4elem));
ipv4elem.prefixlen = letoh32(ipv4elem.prefixlen);
addr.s_addr = ipv4elem.addr;
off = letoh32(ic->ipv4_gwoffs);
if (off + sizeof (gw) > len)
goto done;
memcpy(&gw, data + off, sizeof(gw));
rv = umb_add_inet_config(sc, addr, ipv4elem.prefixlen, gw);
if (rv == 0)
state = UMB_S_UP;
}
memset(sc->sc_info.ipv4dns, 0, sizeof (sc->sc_info.ipv4dns));
if (avail_v4 & MBIM_IPCONF_HAS_DNSINFO) {
n = letoh32(ic->ipv4_ndnssrv);
off = letoh32(ic->ipv4_dnssrvoffs);
i = 0;
while (n-- > 0) {
if (off + sizeof (addr) > len)
break;
memcpy(&addr, data + off, sizeof(addr));
if (i < UMB_MAX_DNSSRV)
sc->sc_info.ipv4dns[i++] = addr;
off += sizeof(addr);
if (ifp->if_flags & IFF_DEBUG) {
char str[INET_ADDRSTRLEN];
log(LOG_INFO, "%s: IPv4 nameserver %s\n",
DEVNAM(ifp->if_softc), inet_ntop(AF_INET,
&addr, str, sizeof(str)));
}
}
umb_send_inet_proposal(sc, AF_INET);
}
if ((avail_v4 & MBIM_IPCONF_HAS_MTUINFO)) {
val = letoh32(ic->ipv4_mtu);
if (ifp->if_hardmtu != val && val <= sc->sc_maxpktlen) {
hasmtu = 1;
ifp->if_hardmtu = val;
if (ifp->if_mtu > val)
ifp->if_mtu = val;
}
}
tryv6:;
#ifdef INET6
/*
* IPv6 configuration
*/
avail_v6 = letoh32(ic->ipv6_available);
if (avail_v6 == 0) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: ISP or WWAN module offers no IPv6 "
"support\n", DEVNAM(ifp->if_softc));
goto done;
}
if ((avail_v6 & (MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) ==
(MBIM_IPCONF_HAS_ADDRINFO | MBIM_IPCONF_HAS_GWINFO)) {
n = letoh32(ic->ipv6_naddr);
off = letoh32(ic->ipv6_addroffs);
if (n == 0 || off + sizeof (ipv6elem) > len)
goto done;
if (n != 1 && ifp->if_flags & IFF_DEBUG)
log(LOG_INFO, "%s: more than one IPv6 addr: %d\n",
DEVNAM(ifp->if_softc), n);
/* Only pick the first one */
memcpy(&ipv6elem, data + off, sizeof (ipv6elem));
memcpy(&addr6, ipv6elem.addr, sizeof (addr6));
off = letoh32(ic->ipv6_gwoffs);
if (off + sizeof (gw6) > len)
goto done;
memcpy(&gw6, data + off, sizeof (gw6));
rv = umb_add_inet6_config(sc, &addr6, ipv6elem.prefixlen, &gw6);
if (rv == 0)
state = UMB_S_UP;
}
if (avail_v6 & MBIM_IPCONF_HAS_DNSINFO) {
n = letoh32(ic->ipv6_ndnssrv);
off = letoh32(ic->ipv6_dnssrvoffs);
i = 0;
while (n-- > 0) {
if (off + sizeof (addr6) > len)
break;
memcpy(&addr6, data + off, sizeof(addr6));
if (i < UMB_MAX_DNSSRV)
sc->sc_info.ipv6dns[i++] = addr6;
off += sizeof(addr6);
if (ifp->if_flags & IFF_DEBUG) {
char str[INET6_ADDRSTRLEN];
log(LOG_INFO, "%s: IPv6 nameserver %s\n",
DEVNAM(ifp->if_softc), inet_ntop(AF_INET6,
&addr6, str, sizeof(str)));
}
}
umb_send_inet_proposal(sc, AF_INET6);
}
if ((avail_v6 & MBIM_IPCONF_HAS_MTUINFO)) {
val = letoh32(ic->ipv6_mtu);
if (ifp->if_hardmtu != val && val <= sc->sc_maxpktlen) {
hasmtu = 1;
ifp->if_hardmtu = val;
if (ifp->if_mtu > val)
ifp->if_mtu = val;
}
}
#endif
done:
if (hasmtu && (ifp->if_flags & IFF_DEBUG))
log(LOG_INFO, "%s: MTU %d\n", DEVNAM(sc), ifp->if_hardmtu);
if (state != -1)
umb_newstate(sc, state, 0);
splx(s);
return 1;
}
void
umb_rx(struct umb_softc *sc)
{
usbd_setup_xfer(sc->sc_rx_xfer, sc->sc_rx_pipe, sc, sc->sc_rx_buf,
sc->sc_rx_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, umb_rxeof);
usbd_transfer(sc->sc_rx_xfer);
}
void
umb_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
if (usbd_is_dying(sc->sc_udev) || !(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
DPRINTF("%s: rx error: %s\n", DEVNAM(sc), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rx_pipe);
if (++sc->sc_rx_nerr > 100) {
log(LOG_ERR, "%s: too many rx errors, disabling\n",
DEVNAM(sc));
usbd_deactivate(sc->sc_udev);
}
} else {
sc->sc_rx_nerr = 0;
umb_decap(sc, xfer);
}
umb_rx(sc);
return;
}
int
umb_encap(struct umb_softc *sc, int ndgram)
{
struct ncm_header16 *hdr16 = NULL;
struct ncm_header32 *hdr32 = NULL;
struct ncm_pointer16 *ptr16 = NULL;
struct ncm_pointer32 *ptr32 = NULL;
struct ncm_pointer16_dgram *dgram16 = NULL;
struct ncm_pointer32_dgram *dgram32 = NULL;
int offs = 0, plen = 0;
int dgoffs = 0, poffs;
struct mbuf *m;
usbd_status err;
/* All size constraints have been validated by the caller! */
/* NCM Header */
switch (sc->sc_ncm_format) {
case NCM_FORMAT_NTB16:
hdr16 = sc->sc_tx_buf;
USETDW(hdr16->dwSignature, NCM_HDR16_SIG);
USETW(hdr16->wHeaderLength, sizeof (*hdr16));
USETW(hdr16->wSequence, sc->sc_tx_seq);
USETW(hdr16->wBlockLength, 0);
offs = sizeof (*hdr16);
break;
case NCM_FORMAT_NTB32:
hdr32 = sc->sc_tx_buf;
USETDW(hdr32->dwSignature, NCM_HDR32_SIG);
USETW(hdr32->wHeaderLength, sizeof (*hdr32));
USETW(hdr32->wSequence, sc->sc_tx_seq);
USETDW(hdr32->dwBlockLength, 0);
offs = sizeof (*hdr32);
break;
}
offs += umb_padding(sc->sc_tx_buf, sc->sc_tx_bufsz, offs,
sc->sc_align, 0);
if (sc->sc_flags & UMBFLG_NDP_AT_END) {
dgoffs = offs;
/*
* Calculate space needed for datagrams.
*
* XXX cannot use ml_len(&sc->sc_tx_ml), since it ignores
* the padding requirements.
*/
poffs = dgoffs;
MBUF_LIST_FOREACH(&sc->sc_tx_ml, m) {
poffs += umb_padding(sc->sc_tx_buf, sc->sc_tx_bufsz,
poffs, sc->sc_ndp_div, sc->sc_ndp_remainder);
poffs += m->m_pkthdr.len;
}
poffs += umb_padding(sc->sc_tx_buf, sc->sc_tx_bufsz,
poffs, sc->sc_ndp_div, sc->sc_ndp_remainder);
} else
poffs = offs;
/* NCM Pointer */
switch (sc->sc_ncm_format) {
case NCM_FORMAT_NTB16:
USETW(hdr16->wNdpIndex, poffs);
ptr16 = (struct ncm_pointer16 *)(sc->sc_tx_buf + poffs);
plen = sizeof(*ptr16) + ndgram * sizeof(*dgram16);
USETDW(ptr16->dwSignature, MBIM_NCM_NTH16_SIG(umb_session_id));
USETW(ptr16->wLength, plen);
USETW(ptr16->wNextNdpIndex, 0);
dgram16 = ptr16->dgram;
break;
case NCM_FORMAT_NTB32:
USETDW(hdr32->dwNdpIndex, poffs);
ptr32 = (struct ncm_pointer32 *)(sc->sc_tx_buf + poffs);
plen = sizeof(*ptr32) + ndgram * sizeof(*dgram32);
USETDW(ptr32->dwSignature, MBIM_NCM_NTH32_SIG(umb_session_id));
USETW(ptr32->wLength, plen);
USETW(ptr32->wReserved6, 0);
USETDW(ptr32->dwNextNdpIndex, 0);
USETDW(ptr32->dwReserved12, 0);
dgram32 = ptr32->dgram;
break;
}
if (!(sc->sc_flags & UMBFLG_NDP_AT_END))
dgoffs = offs + plen;
/* Encap mbufs to NCM dgrams */
sc->sc_tx_seq++;
while ((m = ml_dequeue(&sc->sc_tx_ml)) != NULL) {
dgoffs += umb_padding(sc->sc_tx_buf, sc->sc_tx_bufsz, dgoffs,
sc->sc_ndp_div, sc->sc_ndp_remainder);
switch (sc->sc_ncm_format) {
case NCM_FORMAT_NTB16:
USETW(dgram16->wDatagramIndex, dgoffs);
USETW(dgram16->wDatagramLen, m->m_pkthdr.len);
dgram16++;
break;
case NCM_FORMAT_NTB32:
USETDW(dgram32->dwDatagramIndex, dgoffs);
USETDW(dgram32->dwDatagramLen, m->m_pkthdr.len);
dgram32++;
break;
}
m_copydata(m, 0, m->m_pkthdr.len, sc->sc_tx_buf + dgoffs);
dgoffs += m->m_pkthdr.len;
m_freem(m);
}
if (sc->sc_flags & UMBFLG_NDP_AT_END)
offs = poffs + plen;
else
offs = dgoffs;
/* Terminating pointer and datagram size */
switch (sc->sc_ncm_format) {
case NCM_FORMAT_NTB16:
USETW(dgram16->wDatagramIndex, 0);
USETW(dgram16->wDatagramLen, 0);
USETW(hdr16->wBlockLength, offs);
KASSERT(dgram16 - ptr16->dgram == ndgram);
break;
case NCM_FORMAT_NTB32:
USETDW(dgram32->dwDatagramIndex, 0);
USETDW(dgram32->dwDatagramLen, 0);
USETDW(hdr32->dwBlockLength, offs);
KASSERT(dgram32 - ptr32->dgram == ndgram);
break;
}
DPRINTFN(3, "%s: encap %d bytes\n", DEVNAM(sc), offs);
DDUMPN(5, sc->sc_tx_buf, offs);
KASSERT(offs <= sc->sc_tx_bufsz);
usbd_setup_xfer(sc->sc_tx_xfer, sc->sc_tx_pipe, sc, sc->sc_tx_buf, offs,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, umb_xfer_tout, umb_txeof);
err = usbd_transfer(sc->sc_tx_xfer);
if (err != USBD_IN_PROGRESS) {
DPRINTF("%s: start tx error: %s\n", DEVNAM(sc),
usbd_errstr(err));
ml_purge(&sc->sc_tx_ml);
return 0;
}
return 1;
}
void
umb_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
int s;
s = splnet();
ml_purge(&sc->sc_tx_ml);
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
if (status != USBD_NORMAL_COMPLETION) {
if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
ifp->if_oerrors++;
DPRINTF("%s: tx error: %s\n", DEVNAM(sc),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_tx_pipe);
}
}
if (ifq_empty(&ifp->if_snd) == 0)
umb_start(ifp);
splx(s);
}
void
umb_decap(struct umb_softc *sc, struct usbd_xfer *xfer)
{
struct ifnet *ifp = GET_IFP(sc);
int s;
void *buf;
uint32_t len;
char *dp;
struct ncm_header16 *hdr16;
struct ncm_header32 *hdr32;
struct ncm_pointer16 *ptr16;
struct ncm_pointer16_dgram *dgram16;
struct ncm_pointer32_dgram *dgram32;
uint32_t hsig, psig;
int blen;
int ptrlen, ptroff, dgentryoff;
uint32_t doff, dlen;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *m;
usbd_get_xfer_status(xfer, NULL, &buf, &len, NULL);
DPRINTFN(4, "%s: recv %d bytes\n", DEVNAM(sc), len);
DDUMPN(5, buf, len);
s = splnet();
if (len < sizeof (*hdr16))
goto toosmall;
hdr16 = (struct ncm_header16 *)buf;
hsig = UGETDW(hdr16->dwSignature);
switch (hsig) {
case NCM_HDR16_SIG:
blen = UGETW(hdr16->wBlockLength);
ptroff = UGETW(hdr16->wNdpIndex);
if (UGETW(hdr16->wHeaderLength) != sizeof (*hdr16)) {
DPRINTF("%s: bad header len %d for NTH16 (exp %zu)\n",
DEVNAM(sc), UGETW(hdr16->wHeaderLength),
sizeof (*hdr16));
goto fail;
}
break;
case NCM_HDR32_SIG:
if (len < sizeof (*hdr32))
goto toosmall;
hdr32 = (struct ncm_header32 *)hdr16;
blen = UGETDW(hdr32->dwBlockLength);
ptroff = UGETDW(hdr32->dwNdpIndex);
if (UGETW(hdr32->wHeaderLength) != sizeof (*hdr32)) {
DPRINTF("%s: bad header len %d for NTH32 (exp %zu)\n",
DEVNAM(sc), UGETW(hdr32->wHeaderLength),
sizeof (*hdr32));
goto fail;
}
break;
default:
DPRINTF("%s: unsupported NCM header signature (0x%08x)\n",
DEVNAM(sc), hsig);
goto fail;
}
if (blen != 0 && len < blen) {
DPRINTF("%s: bad NTB len (%d) for %d bytes of data\n",
DEVNAM(sc), blen, len);
goto fail;
}
ptr16 = (struct ncm_pointer16 *)(buf + ptroff);
psig = UGETDW(ptr16->dwSignature);
ptrlen = UGETW(ptr16->wLength);
if (len < ptrlen + ptroff)
goto toosmall;
if (!MBIM_NCM_NTH16_ISISG(psig) && !MBIM_NCM_NTH32_ISISG(psig)) {
DPRINTF("%s: unsupported NCM pointer signature (0x%08x)\n",
DEVNAM(sc), psig);
goto fail;
}
switch (hsig) {
case NCM_HDR16_SIG:
dgentryoff = offsetof(struct ncm_pointer16, dgram);
break;
case NCM_HDR32_SIG:
dgentryoff = offsetof(struct ncm_pointer32, dgram);
break;
default:
goto fail;
}
while (dgentryoff < ptrlen) {
switch (hsig) {
case NCM_HDR16_SIG:
if (ptroff + dgentryoff < sizeof (*dgram16))
goto done;
dgram16 = (struct ncm_pointer16_dgram *)
(buf + ptroff + dgentryoff);
dgentryoff += sizeof (*dgram16);
dlen = UGETW(dgram16->wDatagramLen);
doff = UGETW(dgram16->wDatagramIndex);
break;
case NCM_HDR32_SIG:
if (ptroff + dgentryoff < sizeof (*dgram32))
goto done;
dgram32 = (struct ncm_pointer32_dgram *)
(buf + ptroff + dgentryoff);
dgentryoff += sizeof (*dgram32);
dlen = UGETDW(dgram32->dwDatagramLen);
doff = UGETDW(dgram32->dwDatagramIndex);
break;
default:
ifp->if_ierrors++;
goto done;
}
/* Terminating zero entry */
if (dlen == 0 || doff == 0)
break;
if (len < dlen + doff) {
/* Skip giant datagram but continue processing */
DPRINTF("%s: datagram too large (%d @ off %d)\n",
DEVNAM(sc), dlen, doff);
continue;
}
dp = buf + doff;
DPRINTFN(3, "%s: decap %d bytes\n", DEVNAM(sc), dlen);
m = m_devget(dp, dlen, sizeof(uint32_t));
if (m == NULL) {
ifp->if_iqdrops++;
continue;
}
switch (*dp & 0xf0) {
case 4 << 4:
m->m_pkthdr.ph_family = AF_INET;
break;
case 6 << 4:
m->m_pkthdr.ph_family = AF_INET6;
break;
}
ml_enqueue(&ml, m);
}
done:
if_input(ifp, &ml);
splx(s);
return;
toosmall:
DPRINTF("%s: packet too small (%d)\n", DEVNAM(sc), len);
fail:
ifp->if_ierrors++;
splx(s);
}
usbd_status
umb_send_encap_command(struct umb_softc *sc, void *data, int len)
{
struct usbd_xfer *xfer;
usb_device_request_t req;
char *buf;
if (len > sc->sc_ctrl_len)
return USBD_INVAL;
if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
return USBD_NOMEM;
if ((buf = usbd_alloc_buffer(xfer, len)) == NULL) {
usbd_free_xfer(xfer);
return USBD_NOMEM;
}
memcpy(buf, data, len);
/* XXX FIXME: if (total len > sc->sc_ctrl_len) => must fragment */
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UCDC_SEND_ENCAPSULATED_COMMAND;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, len);
DELAY(umb_delay);
return usbd_request_async(xfer, &req, NULL, NULL);
}
int
umb_get_encap_response(struct umb_softc *sc, void *buf, int *len)
{
usb_device_request_t req;
usbd_status err;
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UCDC_GET_ENCAPSULATED_RESPONSE;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_ctrl_ifaceno);
USETW(req.wLength, *len);
/* XXX FIXME: re-assemble fragments */
DELAY(umb_delay);
err = usbd_do_request_flags(sc->sc_udev, &req, buf, USBD_SHORT_XFER_OK,
len, umb_xfer_tout);
if (err == USBD_NORMAL_COMPLETION)
return 1;
DPRINTF("%s: ctrl recv: %s\n", DEVNAM(sc), usbd_errstr(err));
return 0;
}
void
umb_ctrl_msg(struct umb_softc *sc, uint32_t req, void *data, int len)
{
struct ifnet *ifp = GET_IFP(sc);
uint32_t tid;
struct mbim_msghdr *hdr = data;
usbd_status err;
int s;
assertwaitok();
if (usbd_is_dying(sc->sc_udev))
return;
if (len < sizeof (*hdr))
return;
tid = ++sc->sc_tid;
hdr->type = htole32(req);
hdr->len = htole32(len);
hdr->tid = htole32(tid);
#ifdef UMB_DEBUG
if (umb_debug) {
const char *op, *str;
if (req == MBIM_COMMAND_MSG) {
struct mbim_h2f_cmd *c = data;
if (letoh32(c->op) == MBIM_CMDOP_SET)
op = "set";
else
op = "qry";
str = umb_cid2str(letoh32(c->cid));
} else {
op = "snd";
str = umb_request2str(req);
}
DPRINTF("%s: -> %s %s (tid %u)\n", DEVNAM(sc), op, str, tid);
}
#endif
s = splusb();
err = umb_send_encap_command(sc, data, len);
splx(s);
if (err != USBD_NORMAL_COMPLETION) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: send %s msg (tid %u) failed: %s\n",
DEVNAM(sc), umb_request2str(req), tid,
usbd_errstr(err));
/* will affect other transactions, too */
usbd_abort_pipe(sc->sc_udev->default_pipe);
} else {
DPRINTFN(2, "%s: sent %s (tid %u)\n", DEVNAM(sc),
umb_request2str(req), tid);
DDUMPN(3, data, len);
}
return;
}
void
umb_open(struct umb_softc *sc)
{
struct mbim_h2f_openmsg msg;
memset(&msg, 0, sizeof (msg));
msg.maxlen = htole32(sc->sc_ctrl_len);
umb_ctrl_msg(sc, MBIM_OPEN_MSG, &msg, sizeof (msg));
return;
}
void
umb_close(struct umb_softc *sc)
{
struct mbim_h2f_closemsg msg;
memset(&msg, 0, sizeof (msg));
umb_ctrl_msg(sc, MBIM_CLOSE_MSG, &msg, sizeof (msg));
}
int
umb_setpin(struct umb_softc *sc, int op, int is_puk, void *pin, int pinlen,
void *newpin, int newpinlen)
{
struct mbim_cid_pin cp;
int off;
if (pinlen == 0)
return 0;
if (pinlen < 0 || pinlen > MBIM_PIN_MAXLEN ||
newpinlen < 0 || newpinlen > MBIM_PIN_MAXLEN ||
op < 0 || op > MBIM_PIN_OP_CHANGE ||
(is_puk && op != MBIM_PIN_OP_ENTER))
return EINVAL;
memset(&cp, 0, sizeof (cp));
cp.type = htole32(is_puk ? MBIM_PIN_TYPE_PUK1 : MBIM_PIN_TYPE_PIN1);
off = offsetof(struct mbim_cid_pin, data);
if (!umb_addstr(&cp, sizeof (cp), &off, pin, pinlen,
&cp.pin_offs, &cp.pin_size))
return EINVAL;
cp.op = htole32(op);
if (newpinlen) {
if (!umb_addstr(&cp, sizeof (cp), &off, newpin, newpinlen,
&cp.newpin_offs, &cp.newpin_size))
return EINVAL;
} else {
if ((op == MBIM_PIN_OP_CHANGE) || is_puk)
return EINVAL;
if (!umb_addstr(&cp, sizeof (cp), &off, NULL, 0,
&cp.newpin_offs, &cp.newpin_size))
return EINVAL;
}
umb_cmd(sc, MBIM_CID_PIN, MBIM_CMDOP_SET, &cp, off);
return 0;
}
void
umb_setdataclass(struct umb_softc *sc)
{
struct mbim_cid_registration_state rs;
uint32_t classes;
if (sc->sc_info.supportedclasses == MBIM_DATACLASS_NONE)
return;
memset(&rs, 0, sizeof (rs));
rs.regaction = htole32(MBIM_REGACTION_AUTOMATIC);
classes = sc->sc_info.supportedclasses;
if (sc->sc_info.preferredclasses != MBIM_DATACLASS_NONE)
classes &= sc->sc_info.preferredclasses;
rs.data_class = htole32(classes);
umb_cmd(sc, MBIM_CID_REGISTER_STATE, MBIM_CMDOP_SET, &rs, sizeof (rs));
}
void
umb_radio(struct umb_softc *sc, int on)
{
struct mbim_cid_radio_state s;
DPRINTF("%s: set radio %s\n", DEVNAM(sc), on ? "on" : "off");
memset(&s, 0, sizeof (s));
s.state = htole32(on ? MBIM_RADIO_STATE_ON : MBIM_RADIO_STATE_OFF);
umb_cmd(sc, MBIM_CID_RADIO_STATE, MBIM_CMDOP_SET, &s, sizeof (s));
}
void
umb_allocate_cid(struct umb_softc *sc)
{
umb_cmd1(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_SET,
umb_qmi_alloc_cid, sizeof (umb_qmi_alloc_cid), umb_uuid_qmi_mbim);
}
void
umb_send_fcc_auth(struct umb_softc *sc)
{
uint8_t fccauth[sizeof (umb_qmi_fcc_auth)];
if (sc->sc_cid == -1) {
DPRINTF("%s: missing CID, cannot send FCC auth\n", DEVNAM(sc));
umb_allocate_cid(sc);
return;
}
memcpy(fccauth, umb_qmi_fcc_auth, sizeof (fccauth));
fccauth[UMB_QMI_CID_OFFS] = sc->sc_cid;
umb_cmd1(sc, MBIM_CID_DEVICE_CAPS, MBIM_CMDOP_SET,
fccauth, sizeof (fccauth), umb_uuid_qmi_mbim);
}
void
umb_packet_service(struct umb_softc *sc, int attach)
{
struct mbim_cid_packet_service s;
DPRINTF("%s: %s packet service\n", DEVNAM(sc),
attach ? "attach" : "detach");
memset(&s, 0, sizeof (s));
s.action = htole32(attach ?
MBIM_PKTSERVICE_ACTION_ATTACH : MBIM_PKTSERVICE_ACTION_DETACH);
umb_cmd(sc, MBIM_CID_PACKET_SERVICE, MBIM_CMDOP_SET, &s, sizeof (s));
}
void
umb_connect(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
if (sc->sc_info.regstate == MBIM_REGSTATE_ROAMING && !sc->sc_roaming) {
log(LOG_INFO, "%s: connection disabled in roaming network\n",
DEVNAM(sc));
return;
}
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: connecting ...\n", DEVNAM(sc));
umb_send_connect(sc, MBIM_CONNECT_ACTIVATE);
}
void
umb_disconnect(struct umb_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: disconnecting ...\n", DEVNAM(sc));
umb_send_connect(sc, MBIM_CONNECT_DEACTIVATE);
}
void
umb_send_connect(struct umb_softc *sc, int command)
{
struct mbim_cid_connect *c;
int off;
/* Too large or the stack */
c = malloc(sizeof (*c), M_USBDEV, M_WAIT|M_ZERO);
c->sessionid = htole32(umb_session_id);
c->command = htole32(command);
off = offsetof(struct mbim_cid_connect, data);
if (!umb_addstr(c, sizeof (*c), &off, sc->sc_info.apn,
sc->sc_info.apnlen, &c->access_offs, &c->access_size))
goto done;
/* XXX FIXME: support user name and passphrase */
c->user_offs = htole32(0);
c->user_size = htole32(0);
c->passwd_offs = htole32(0);
c->passwd_size = htole32(0);
c->authprot = htole32(MBIM_AUTHPROT_NONE);
c->compression = htole32(MBIM_COMPRESSION_NONE);
c->iptype = htole32(MBIM_CONTEXT_IPTYPE_IPV4);
#ifdef INET6
/* XXX FIXME: support IPv6-only mode, too */
if ((sc->sc_flags & UMBFLG_NO_INET6) == 0 &&
in6ifa_ifpforlinklocal(GET_IFP(sc), 0) != NULL)
c->iptype = htole32(MBIM_CONTEXT_IPTYPE_IPV4V6);
#endif
memcpy(c->context, umb_uuid_context_internet, sizeof (c->context));
umb_cmd(sc, MBIM_CID_CONNECT, MBIM_CMDOP_SET, c, off);
done:
free(c, M_USBDEV, sizeof (*c));
return;
}
void
umb_qry_ipconfig(struct umb_softc *sc)
{
struct mbim_cid_ip_configuration_info ipc;
memset(&ipc, 0, sizeof (ipc));
ipc.sessionid = htole32(umb_session_id);
umb_cmd(sc, MBIM_CID_IP_CONFIGURATION, MBIM_CMDOP_QRY,
&ipc, sizeof (ipc));
}
void
umb_cmd(struct umb_softc *sc, int cid, int op, void *data, int len)
{
umb_cmd1(sc, cid, op, data, len, umb_uuid_basic_connect);
}
void
umb_cmd1(struct umb_softc *sc, int cid, int op, void *data, int len,
uint8_t *uuid)
{
struct mbim_h2f_cmd *cmd;
int totlen;
/* XXX FIXME support sending fragments */
if (sizeof (*cmd) + len > sc->sc_ctrl_len) {
DPRINTF("%s: set %s msg too long: cannot send\n",
DEVNAM(sc), umb_cid2str(cid));
return;
}
cmd = sc->sc_ctrl_msg;
memset(cmd, 0, sizeof (*cmd));
cmd->frag.nfrag = htole32(1);
memcpy(cmd->devid, uuid, sizeof (cmd->devid));
cmd->cid = htole32(cid);
cmd->op = htole32(op);
cmd->infolen = htole32(len);
totlen = sizeof (*cmd);
if (len > 0) {
memcpy(cmd + 1, data, len);
totlen += len;
}
umb_ctrl_msg(sc, MBIM_COMMAND_MSG, cmd, totlen);
}
void
umb_command_done(struct umb_softc *sc, void *data, int len)
{
struct mbim_f2h_cmddone *cmd = data;
struct ifnet *ifp = GET_IFP(sc);
uint32_t status;
uint32_t cid;
uint32_t infolen;
int qmimsg = 0;
if (len < sizeof (*cmd)) {
DPRINTF("%s: discard short %s message\n", DEVNAM(sc),
umb_request2str(letoh32(cmd->hdr.type)));
return;
}
cid = letoh32(cmd->cid);
if (memcmp(cmd->devid, umb_uuid_basic_connect, sizeof (cmd->devid))) {
if (memcmp(cmd->devid, umb_uuid_qmi_mbim,
sizeof (cmd->devid))) {
DPRINTF("%s: discard %s message for other UUID '%s'\n",
DEVNAM(sc), umb_request2str(letoh32(cmd->hdr.type)),
umb_uuid2str(cmd->devid));
return;
} else
qmimsg = 1;
}
status = letoh32(cmd->status);
switch (status) {
case MBIM_STATUS_SUCCESS:
break;
#ifdef INET6
case MBIM_STATUS_NO_DEVICE_SUPPORT:
if ((cid == MBIM_CID_CONNECT) &&
(sc->sc_flags & UMBFLG_NO_INET6) == 0) {
sc->sc_flags |= UMBFLG_NO_INET6;
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR,
"%s: device does not support IPv6\n",
DEVNAM(sc));
}
/* Re-trigger the connect, this time IPv4 only */
usb_add_task(sc->sc_udev, &sc->sc_umb_task);
return;
#endif
case MBIM_STATUS_NOT_INITIALIZED:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: SIM not initialized (PIN missing)\n",
DEVNAM(sc));
return;
case MBIM_STATUS_PIN_REQUIRED:
sc->sc_info.pin_state = UMB_PIN_REQUIRED;
/*FALLTHROUGH*/
default:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_ERR, "%s: set/qry %s failed: %s\n", DEVNAM(sc),
umb_cid2str(cid), umb_status2str(status));
return;
}
infolen = letoh32(cmd->infolen);
if (len < sizeof (*cmd) + infolen) {
DPRINTF("%s: discard truncated %s message (want %d, got %d)\n",
DEVNAM(sc), umb_cid2str(cid),
(int)sizeof (*cmd) + infolen, len);
return;
}
if (qmimsg) {
if (sc->sc_flags & UMBFLG_FCC_AUTH_REQUIRED)
umb_decode_qmi(sc, cmd->info, infolen);
} else {
DPRINTFN(2, "%s: set/qry %s done\n", DEVNAM(sc),
umb_cid2str(cid));
umb_decode_cid(sc, cid, cmd->info, infolen);
}
}
void
umb_decode_cid(struct umb_softc *sc, uint32_t cid, void *data, int len)
{
int ok = 1;
switch (cid) {
case MBIM_CID_DEVICE_CAPS:
ok = umb_decode_devices_caps(sc, data, len);
break;
case MBIM_CID_SUBSCRIBER_READY_STATUS:
ok = umb_decode_subscriber_status(sc, data, len);
break;
case MBIM_CID_RADIO_STATE:
ok = umb_decode_radio_state(sc, data, len);
break;
case MBIM_CID_PIN:
ok = umb_decode_pin(sc, data, len);
break;
case MBIM_CID_REGISTER_STATE:
ok = umb_decode_register_state(sc, data, len);
break;
case MBIM_CID_PACKET_SERVICE:
ok = umb_decode_packet_service(sc, data, len);
break;
case MBIM_CID_SIGNAL_STATE:
ok = umb_decode_signal_state(sc, data, len);
break;
case MBIM_CID_CONNECT:
ok = umb_decode_connect_info(sc, data, len);
break;
case MBIM_CID_IP_CONFIGURATION:
ok = umb_decode_ip_configuration(sc, data, len);
break;
default:
/*
* Note: the above list is incomplete and only contains
* mandatory CIDs from the BASIC_CONNECT set.
* So alternate values are not unusual.
*/
DPRINTFN(4, "%s: ignore %s\n", DEVNAM(sc), umb_cid2str(cid));
break;
}
if (!ok)
DPRINTF("%s: discard %s with bad info length %d\n",
DEVNAM(sc), umb_cid2str(cid), len);
return;
}
void
umb_decode_qmi(struct umb_softc *sc, uint8_t *data, int len)
{
uint8_t srv;
uint16_t msg, tlvlen;
uint32_t val;
#define UMB_QMI_QMUXLEN 6
if (len < UMB_QMI_QMUXLEN)
goto tooshort;
srv = data[4];
data += UMB_QMI_QMUXLEN;
len -= UMB_QMI_QMUXLEN;
#define UMB_GET16(p) ((uint16_t)*p | (uint16_t)*(p + 1) << 8)
#define UMB_GET32(p) ((uint32_t)*p | (uint32_t)*(p + 1) << 8 | \
(uint32_t)*(p + 2) << 16 |(uint32_t)*(p + 3) << 24)
switch (srv) {
case 0: /* ctl */
#define UMB_QMI_CTLLEN 6
if (len < UMB_QMI_CTLLEN)
goto tooshort;
msg = UMB_GET16(&data[2]);
tlvlen = UMB_GET16(&data[4]);
data += UMB_QMI_CTLLEN;
len -= UMB_QMI_CTLLEN;
break;
case 2: /* dms */
#define UMB_QMI_DMSLEN 7
if (len < UMB_QMI_DMSLEN)
goto tooshort;
msg = UMB_GET16(&data[3]);
tlvlen = UMB_GET16(&data[5]);
data += UMB_QMI_DMSLEN;
len -= UMB_QMI_DMSLEN;
break;
default:
DPRINTF("%s: discard QMI message for unknown service type %d\n",
DEVNAM(sc), srv);
return;
}
if (len < tlvlen)
goto tooshort;
#define UMB_QMI_TLVLEN 3
while (len > 0) {
if (len < UMB_QMI_TLVLEN)
goto tooshort;
tlvlen = UMB_GET16(&data[1]);
if (len < UMB_QMI_TLVLEN + tlvlen)
goto tooshort;
switch (data[0]) {
case 1: /* allocation info */
if (msg == 0x0022) { /* Allocate CID */
if (tlvlen != 2 || data[3] != 2) /* dms */
break;
sc->sc_cid = data[4];
DPRINTF("%s: QMI CID %d allocated\n",
DEVNAM(sc), sc->sc_cid);
umb_newstate(sc, UMB_S_CID, UMB_NS_DONT_DROP);
}
break;
case 2: /* response */
if (tlvlen != sizeof (val))
break;
val = UMB_GET32(&data[3]);
switch (msg) {
case 0x0022: /* Allocate CID */
if (val != 0) {
log(LOG_ERR, "%s: allocation of QMI CID"
" failed, error 0x%x\n", DEVNAM(sc),
val);
/* XXX how to proceed? */
return;
}
break;
case 0x555f: /* Send FCC Authentication */
if (val == 0)
DPRINTF("%s: send FCC "
"Authentication succeeded\n",
DEVNAM(sc));
else if (val == 0x001a0001)
DPRINTF("%s: FCC Authentication "
"not required\n", DEVNAM(sc));
else
log(LOG_INFO, "%s: send FCC "
"Authentication failed, "
"error 0x%x\n", DEVNAM(sc), val);
/* FCC Auth is needed only once after power-on*/
sc->sc_flags &= ~UMBFLG_FCC_AUTH_REQUIRED;
/* Try to proceed anyway */
DPRINTF("%s: init: turning radio on ...\n",
DEVNAM(sc));
umb_radio(sc, 1);
break;
default:
break;
}
break;
default:
break;
}
data += UMB_QMI_TLVLEN + tlvlen;
len -= UMB_QMI_TLVLEN + tlvlen;
}
return;
tooshort:
DPRINTF("%s: discard short QMI message\n", DEVNAM(sc));
return;
}
void
umb_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct umb_softc *sc = priv;
struct ifnet *ifp = GET_IFP(sc);
int total_len;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("%s: notification error: %s\n", DEVNAM(sc),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_ctrl_pipe);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
if (total_len < UCDC_NOTIFICATION_LENGTH) {
DPRINTF("%s: short notification (%d<%d)\n", DEVNAM(sc),
total_len, UCDC_NOTIFICATION_LENGTH);
return;
}
if (sc->sc_intr_msg.bmRequestType != UCDC_NOTIFICATION) {
DPRINTF("%s: unexpected notification (type=0x%02x)\n",
DEVNAM(sc), sc->sc_intr_msg.bmRequestType);
return;
}
switch (sc->sc_intr_msg.bNotification) {
case UCDC_N_NETWORK_CONNECTION:
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: network %sconnected\n", DEVNAM(sc),
UGETW(sc->sc_intr_msg.wValue) ? "" : "dis");
break;
case UCDC_N_RESPONSE_AVAILABLE:
DPRINTFN(2, "%s: umb_intr: response available\n", DEVNAM(sc));
++sc->sc_nresp;
usb_add_task(sc->sc_udev, &sc->sc_get_response_task);
break;
case UCDC_N_CONNECTION_SPEED_CHANGE:
DPRINTFN(2, "%s: umb_intr: connection speed changed\n",
DEVNAM(sc));
break;
default:
DPRINTF("%s: unexpected notification (0x%02x)\n",
DEVNAM(sc), sc->sc_intr_msg.bNotification);
break;
}
}
/*
* Diagnostic routines
*/
#ifdef UMB_DEBUG
char *
umb_uuid2str(uint8_t uuid[MBIM_UUID_LEN])
{
static char uuidstr[2 * MBIM_UUID_LEN + 5];
#define UUID_BFMT "%02X"
#define UUID_SEP "-"
snprintf(uuidstr, sizeof (uuidstr),
UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_SEP
UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT UUID_BFMT,
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5],
uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11],
uuid[12], uuid[13], uuid[14], uuid[15]);
return uuidstr;
}
void
umb_dump(void *buf, int len)
{
int i = 0;
uint8_t *c = buf;
if (len == 0)
return;
while (i < len) {
if ((i % 16) == 0) {
if (i > 0)
addlog("\n");
log(LOG_DEBUG, "%4d: ", i);
}
addlog(" %02x", *c);
c++;
i++;
}
addlog("\n");
}
#endif /* UMB_DEBUG */
#if NKSTAT > 0
void
umb_kstat_attach(struct umb_softc *sc)
{
struct kstat *ks;
struct umb_kstat_signal *uks;
rw_init(&sc->sc_kstat_lock, "umbkstat");
ks = kstat_create(DEVNAM(sc), 0, "mbim-signal", 0, KSTAT_T_KV, 0);
if (ks == NULL)
return;
uks = malloc(sizeof(*uks), M_DEVBUF, M_WAITOK|M_ZERO);
kstat_kv_init(&uks->rssi, "rssi", KSTAT_KV_T_NULL);
kstat_kv_init(&uks->error_rate, "error rate", KSTAT_KV_T_NULL);
kstat_kv_init(&uks->reports, "reports", KSTAT_KV_T_COUNTER64);
kstat_set_rlock(ks, &sc->sc_kstat_lock);
ks->ks_data = uks;
ks->ks_datalen = sizeof(*uks);
ks->ks_read = kstat_read_nop;
ks->ks_softc = sc;
sc->sc_kstat_signal = ks;
kstat_install(ks);
}
void
umb_kstat_detach(struct umb_softc *sc)
{
struct kstat *ks = sc->sc_kstat_signal;
struct umb_kstat_signal *uks;
if (ks == NULL)
return;
kstat_remove(ks);
sc->sc_kstat_signal = NULL;
uks = ks->ks_data;
free(uks, M_DEVBUF, sizeof(*uks));
kstat_destroy(ks);
}
#endif /* NKSTAT > 0 */