src/sys/ufs/ffs/ffs_balloc.c

837 lines
20 KiB
C

/* $OpenBSD: ffs_balloc.c,v 1.47 2024/04/13 23:44:11 jsg Exp $ */
/* $NetBSD: ffs_balloc.c,v 1.3 1996/02/09 22:22:21 christos Exp $ */
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program.
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_balloc.c 8.4 (Berkeley) 9/23/93
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
int ffs1_balloc(struct inode *, off_t, int, struct ucred *, int, struct buf **);
#ifdef FFS2
int ffs2_balloc(struct inode *, off_t, int, struct ucred *, int, struct buf **);
#endif
/*
* Balloc defines the structure of file system storage
* by allocating the physical blocks on a device given
* the inode and the logical block number in a file.
*/
int
ffs1_balloc(struct inode *ip, off_t startoffset, int size, struct ucred *cred,
int flags, struct buf **bpp)
{
daddr_t lbn, nb, newb, pref;
struct fs *fs;
struct buf *bp, *nbp;
struct vnode *vp;
struct proc *p;
struct indir indirs[NIADDR + 2];
int32_t *bap;
int deallocated, osize, nsize, num, i, error;
int32_t *allocib, *blkp, *allocblk, allociblk[NIADDR+1];
int unwindidx = -1;
vp = ITOV(ip);
fs = ip->i_fs;
p = curproc;
lbn = lblkno(fs, startoffset);
size = blkoff(fs, startoffset) + size;
if (size > fs->fs_bsize)
panic("ffs1_balloc: blk too big");
if (bpp != NULL)
*bpp = NULL;
if (lbn < 0)
return (EFBIG);
/*
* If the next write will extend the file into a new block,
* and the file is currently composed of a fragment
* this fragment has to be extended to be a full block.
*/
nb = lblkno(fs, ip->i_ffs1_size);
if (nb < NDADDR && nb < lbn) {
osize = blksize(fs, ip, nb);
if (osize < fs->fs_bsize && osize > 0) {
error = ffs_realloccg(ip, nb,
ffs1_blkpref(ip, nb, (int)nb, &ip->i_ffs1_db[0]),
osize, (int)fs->fs_bsize, cred, bpp, &newb);
if (error)
return (error);
ip->i_ffs1_size = lblktosize(fs, nb + 1);
uvm_vnp_setsize(vp, ip->i_ffs1_size);
ip->i_ffs1_db[nb] = newb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp != NULL) {
if (flags & B_SYNC)
bwrite(*bpp);
else
bawrite(*bpp);
}
}
}
/*
* The first NDADDR blocks are direct blocks
*/
if (lbn < NDADDR) {
nb = ip->i_ffs1_db[lbn];
if (nb != 0 && ip->i_ffs1_size >= lblktosize(fs, lbn + 1)) {
/*
* The block is an already-allocated direct block
* and the file already extends past this block,
* thus this must be a whole block.
* Just read the block (if requested).
*/
if (bpp != NULL) {
error = bread(vp, lbn, fs->fs_bsize, bpp);
if (error) {
brelse(*bpp);
return (error);
}
}
return (0);
}
if (nb != 0) {
/*
* Consider need to reallocate a fragment.
*/
osize = fragroundup(fs, blkoff(fs, ip->i_ffs1_size));
nsize = fragroundup(fs, size);
if (nsize <= osize) {
/*
* The existing block is already
* at least as big as we want.
* Just read the block (if requested).
*/
if (bpp != NULL) {
error = bread(vp, lbn, fs->fs_bsize,
bpp);
if (error) {
brelse(*bpp);
return (error);
}
buf_adjcnt((*bpp), osize);
}
return (0);
} else {
/*
* The existing block is smaller than we
* want, grow it.
*/
error = ffs_realloccg(ip, lbn,
ffs1_blkpref(ip, lbn, (int)lbn,
&ip->i_ffs1_db[0]),
osize, nsize, cred, bpp, &newb);
if (error)
return (error);
}
} else {
/*
* The block was not previously allocated,
* allocate a new block or fragment.
*/
if (ip->i_ffs1_size < lblktosize(fs, lbn + 1))
nsize = fragroundup(fs, size);
else
nsize = fs->fs_bsize;
error = ffs_alloc(ip, lbn,
ffs1_blkpref(ip, lbn, (int)lbn, &ip->i_ffs1_db[0]),
nsize, cred, &newb);
if (error)
return (error);
if (bpp != NULL) {
*bpp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
if (nsize < fs->fs_bsize)
(*bpp)->b_bcount = nsize;
(*bpp)->b_blkno = fsbtodb(fs, newb);
if (flags & B_CLRBUF)
clrbuf(*bpp);
}
}
ip->i_ffs1_db[lbn] = newb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
return (0);
}
/*
* Determine the number of levels of indirection.
*/
pref = 0;
if ((error = ufs_getlbns(vp, lbn, indirs, &num)) != 0)
return(error);
#ifdef DIAGNOSTIC
if (num < 1)
panic ("ffs1_balloc: ufs_bmaparray returned indirect block");
#endif
/*
* Fetch the first indirect block allocating if necessary.
*/
--num;
nb = ip->i_ffs1_ib[indirs[0].in_off];
allocib = NULL;
allocblk = allociblk;
if (nb == 0) {
pref = ffs1_blkpref(ip, lbn, -indirs[0].in_off - 1, NULL);
error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
cred, &newb);
if (error)
goto fail;
nb = newb;
*allocblk++ = nb;
bp = getblk(vp, indirs[1].in_lbn, fs->fs_bsize, 0, INFSLP);
bp->b_blkno = fsbtodb(fs, nb);
clrbuf(bp);
/*
* Write synchronously so that indirect blocks
* never point at garbage.
*/
if ((error = bwrite(bp)) != 0)
goto fail;
allocib = &ip->i_ffs1_ib[indirs[0].in_off];
*allocib = nb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* Fetch through the indirect blocks, allocating as necessary.
*/
for (i = 1;;) {
error = bread(vp, indirs[i].in_lbn, (int)fs->fs_bsize, &bp);
if (error) {
brelse(bp);
goto fail;
}
bap = (int32_t *)bp->b_data;
nb = bap[indirs[i].in_off];
if (i == num)
break;
i++;
if (nb != 0) {
brelse(bp);
continue;
}
if (pref == 0)
pref = ffs1_blkpref(ip, lbn, i - num - 1, NULL);
error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred,
&newb);
if (error) {
brelse(bp);
goto fail;
}
nb = newb;
*allocblk++ = nb;
nbp = getblk(vp, indirs[i].in_lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
clrbuf(nbp);
/*
* Write synchronously so that indirect blocks
* never point at garbage.
*/
if ((error = bwrite(nbp)) != 0) {
brelse(bp);
goto fail;
}
bap[indirs[i - 1].in_off] = nb;
if (allocib == NULL && unwindidx < 0)
unwindidx = i - 1;
/*
* If required, write synchronously, otherwise use
* delayed write.
*/
if (flags & B_SYNC) {
bwrite(bp);
} else {
bdwrite(bp);
}
}
/*
* Get the data block, allocating if necessary.
*/
if (nb == 0) {
pref = ffs1_blkpref(ip, lbn, indirs[i].in_off, &bap[0]);
error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred,
&newb);
if (error) {
brelse(bp);
goto fail;
}
nb = newb;
*allocblk++ = nb;
if (bpp != NULL) {
nbp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
if (flags & B_CLRBUF)
clrbuf(nbp);
*bpp = nbp;
}
bap[indirs[i].in_off] = nb;
/*
* If required, write synchronously, otherwise use
* delayed write.
*/
if (flags & B_SYNC) {
bwrite(bp);
} else {
bdwrite(bp);
}
return (0);
}
brelse(bp);
if (bpp != NULL) {
if (flags & B_CLRBUF) {
error = bread(vp, lbn, (int)fs->fs_bsize, &nbp);
if (error) {
brelse(nbp);
goto fail;
}
} else {
nbp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
}
*bpp = nbp;
}
return (0);
fail:
/*
* If we have failed to allocate any blocks, simply return the error.
* This is the usual case and avoids the need to fsync the file.
*/
if (allocblk == allociblk && allocib == NULL && unwindidx == -1)
return (error);
/*
* If we have failed part way through block allocation, we have to
* deallocate any indirect blocks that we have allocated. We have to
* fsync the file before we start to get rid of all of its
* dependencies so that we do not leave them dangling. We have to sync
* it at the end so that the softdep code does not find any untracked
* changes. Although this is really slow, running out of disk space is
* not expected to be a common occurrence. The error return from fsync
* is ignored as we already have an error to return to the user.
*/
VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p);
for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) {
ffs_blkfree(ip, *blkp, fs->fs_bsize);
deallocated += fs->fs_bsize;
}
if (allocib != NULL) {
*allocib = 0;
} else if (unwindidx >= 0) {
int r;
r = bread(vp, indirs[unwindidx].in_lbn, (int)fs->fs_bsize, &bp);
if (r)
panic("Could not unwind indirect block, error %d", r);
bap = (int32_t *)bp->b_data;
bap[indirs[unwindidx].in_off] = 0;
if (flags & B_SYNC) {
bwrite(bp);
} else {
bdwrite(bp);
}
}
if (deallocated) {
/*
* Restore user's disk quota because allocation failed.
*/
(void)ufs_quota_free_blocks(ip, btodb(deallocated), cred);
ip->i_ffs1_blocks -= btodb(deallocated);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p);
return (error);
}
#ifdef FFS2
int
ffs2_balloc(struct inode *ip, off_t off, int size, struct ucred *cred,
int flags, struct buf **bpp)
{
daddr_t lbn, lastlbn, nb, newb, *blkp;
daddr_t pref, *allocblk, allociblk[NIADDR + 1];
daddr_t *bap, *allocib;
int deallocated, osize, nsize, num, i, error, unwindidx, r;
struct buf *bp, *nbp;
struct indir indirs[NIADDR + 2];
struct fs *fs;
struct vnode *vp;
struct proc *p;
vp = ITOV(ip);
fs = ip->i_fs;
p = curproc;
unwindidx = -1;
lbn = lblkno(fs, off);
size = blkoff(fs, off) + size;
if (size > fs->fs_bsize)
panic("ffs2_balloc: block too big");
if (bpp != NULL)
*bpp = NULL;
if (lbn < 0)
return (EFBIG);
/*
* If the next write will extend the file into a new block, and the
* file is currently composed of a fragment, this fragment has to be
* extended to be a full block.
*/
lastlbn = lblkno(fs, ip->i_ffs2_size);
if (lastlbn < NDADDR && lastlbn < lbn) {
nb = lastlbn;
osize = blksize(fs, ip, nb);
if (osize < fs->fs_bsize && osize > 0) {
error = ffs_realloccg(ip, nb, ffs2_blkpref(ip,
lastlbn, nb, &ip->i_ffs2_db[0]), osize,
(int) fs->fs_bsize, cred, bpp, &newb);
if (error)
return (error);
ip->i_ffs2_size = lblktosize(fs, nb + 1);
uvm_vnp_setsize(vp, ip->i_ffs2_size);
ip->i_ffs2_db[nb] = newb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp) {
if (flags & B_SYNC)
bwrite(*bpp);
else
bawrite(*bpp);
}
}
}
/*
* The first NDADDR blocks are direct.
*/
if (lbn < NDADDR) {
nb = ip->i_ffs2_db[lbn];
if (nb != 0 && ip->i_ffs2_size >= lblktosize(fs, lbn + 1)) {
/*
* The direct block is already allocated and the file
* extends past this block, thus this must be a whole
* block. Just read it, if requested.
*/
if (bpp != NULL) {
error = bread(vp, lbn, fs->fs_bsize, bpp);
if (error) {
brelse(*bpp);
return (error);
}
}
return (0);
}
if (nb != 0) {
/*
* Consider the need to allocate a fragment.
*/
osize = fragroundup(fs, blkoff(fs, ip->i_ffs2_size));
nsize = fragroundup(fs, size);
if (nsize <= osize) {
/*
* The existing block is already at least as
* big as we want. Just read it, if requested.
*/
if (bpp != NULL) {
error = bread(vp, lbn, fs->fs_bsize,
bpp);
if (error) {
brelse(*bpp);
return (error);
}
buf_adjcnt((*bpp), osize);
}
return (0);
} else {
/*
* The existing block is smaller than we want,
* grow it.
*/
error = ffs_realloccg(ip, lbn,
ffs2_blkpref(ip, lbn, (int) lbn,
&ip->i_ffs2_db[0]), osize, nsize, cred,
bpp, &newb);
if (error)
return (error);
}
} else {
/*
* The block was not previously allocated, allocate a
* new block or fragment.
*/
if (ip->i_ffs2_size < lblktosize(fs, lbn + 1))
nsize = fragroundup(fs, size);
else
nsize = fs->fs_bsize;
error = ffs_alloc(ip, lbn, ffs2_blkpref(ip, lbn,
(int) lbn, &ip->i_ffs2_db[0]), nsize, cred, &newb);
if (error)
return (error);
if (bpp != NULL) {
bp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
if (nsize < fs->fs_bsize)
bp->b_bcount = nsize;
bp->b_blkno = fsbtodb(fs, newb);
if (flags & B_CLRBUF)
clrbuf(bp);
*bpp = bp;
}
}
ip->i_ffs2_db[lbn] = newb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
return (0);
}
/*
* Determine the number of levels of indirection.
*/
pref = 0;
error = ufs_getlbns(vp, lbn, indirs, &num);
if (error)
return (error);
#ifdef DIAGNOSTIC
if (num < 1)
panic("ffs2_balloc: ufs_bmaparray returned indirect block");
#endif
/*
* Fetch the first indirect block allocating it necessary.
*/
--num;
nb = ip->i_ffs2_ib[indirs[0].in_off];
allocib = NULL;
allocblk = allociblk;
if (nb == 0) {
pref = ffs2_blkpref(ip, lbn, -indirs[0].in_off - 1, NULL);
error = ffs_alloc(ip, lbn, pref, (int) fs->fs_bsize, cred,
&newb);
if (error)
goto fail;
nb = newb;
*allocblk++ = nb;
bp = getblk(vp, indirs[1].in_lbn, fs->fs_bsize, 0, INFSLP);
bp->b_blkno = fsbtodb(fs, nb);
clrbuf(bp);
/*
* Write synchronously so that indirect blocks never
* point at garbage.
*/
error = bwrite(bp);
if (error)
goto fail;
unwindidx = 0;
allocib = &ip->i_ffs2_ib[indirs[0].in_off];
*allocib = nb;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* Fetch through the indirect blocks, allocating as necessary.
*/
for (i = 1;;) {
error = bread(vp, indirs[i].in_lbn, (int)fs->fs_bsize, &bp);
if (error) {
brelse(bp);
goto fail;
}
bap = (int64_t *) bp->b_data;
nb = bap[indirs[i].in_off];
if (i == num)
break;
i++;
if (nb != 0) {
brelse(bp);
continue;
}
if (pref == 0)
pref = ffs2_blkpref(ip, lbn, i - num - 1, NULL);
error = ffs_alloc(ip, lbn, pref, (int) fs->fs_bsize, cred,
&newb);
if (error) {
brelse(bp);
goto fail;
}
nb = newb;
*allocblk++ = nb;
nbp = getblk(vp, indirs[i].in_lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
clrbuf(nbp);
/*
* Write synchronously so that indirect blocks never
* point at garbage.
*/
error = bwrite(nbp);
if (error) {
brelse(bp);
goto fail;
}
if (unwindidx < 0)
unwindidx = i - 1;
bap[indirs[i - 1].in_off] = nb;
/*
* If required, write synchronously, otherwise use delayed
* write.
*/
if (flags & B_SYNC)
bwrite(bp);
else
bdwrite(bp);
}
/*
* Get the data block, allocating if necessary.
*/
if (nb == 0) {
pref = ffs2_blkpref(ip, lbn, indirs[num].in_off, &bap[0]);
error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred,
&newb);
if (error) {
brelse(bp);
goto fail;
}
nb = newb;
*allocblk++ = nb;
if (bpp != NULL) {
nbp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
if (flags & B_CLRBUF)
clrbuf(nbp);
*bpp = nbp;
}
bap[indirs[num].in_off] = nb;
if (allocib == NULL && unwindidx < 0)
unwindidx = i - 1;
/*
* If required, write synchronously, otherwise use delayed
* write.
*/
if (flags & B_SYNC)
bwrite(bp);
else
bdwrite(bp);
return (0);
}
brelse(bp);
if (bpp != NULL) {
if (flags & B_CLRBUF) {
error = bread(vp, lbn, (int)fs->fs_bsize, &nbp);
if (error) {
brelse(nbp);
goto fail;
}
} else {
nbp = getblk(vp, lbn, fs->fs_bsize, 0, INFSLP);
nbp->b_blkno = fsbtodb(fs, nb);
clrbuf(nbp);
}
*bpp = nbp;
}
return (0);
fail:
/*
* If we have failed to allocate any blocks, simply return the error.
* This is the usual case and avoids the need to fsync the file.
*/
if (allocblk == allociblk && allocib == NULL && unwindidx == -1)
return (error);
/*
* If we have failed part way through block allocation, we have to
* deallocate any indirect blocks that we have allocated. We have to
* fsync the file before we start to get rid of all of its
* dependencies so that we do not leave them dangling. We have to sync
* it at the end so that the softdep code does not find any untracked
* changes. Although this is really slow, running out of disk space is
* not expected to be a common occurrence. The error return from fsync
* is ignored as we already have an error to return to the user.
*/
VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p);
if (unwindidx >= 0) {
/*
* First write out any buffers we've created to resolve their
* softdeps. This must be done in reverse order of creation so
* that we resolve the dependencies in one pass.
* Write the cylinder group buffers for these buffers too.
*/
for (i = num; i >= unwindidx; i--) {
if (i == 0)
break;
bp = getblk(vp, indirs[i].in_lbn, (int) fs->fs_bsize,
0, INFSLP);
if (bp->b_flags & B_DELWRI) {
nb = fsbtodb(fs, cgtod(fs, dtog(fs,
dbtofsb(fs, bp->b_blkno))));
bwrite(bp);
bp = getblk(ip->i_devvp, nb,
(int) fs->fs_cgsize, 0, INFSLP);
if (bp->b_flags & B_DELWRI)
bwrite(bp);
else {
bp->b_flags |= B_INVAL;
brelse(bp);
}
} else {
bp->b_flags |= B_INVAL;
brelse(bp);
}
}
/*
* Now that any dependencies that we created have been
* resolved, we can undo the partial allocation.
*/
if (unwindidx == 0) {
*allocib = 0;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
} else {
r = bread(vp, indirs[unwindidx].in_lbn,
(int)fs->fs_bsize, &bp);
if (r)
panic("ffs2_balloc: unwind failed");
bap = (int64_t *) bp->b_data;
bap[indirs[unwindidx].in_off] = 0;
bwrite(bp);
}
for (i = unwindidx + 1; i <= num; i++) {
bp = getblk(vp, indirs[i].in_lbn, (int)fs->fs_bsize, 0,
INFSLP);
bp->b_flags |= B_INVAL;
brelse(bp);
}
}
for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) {
ffs_blkfree(ip, *blkp, fs->fs_bsize);
deallocated += fs->fs_bsize;
}
if (deallocated) {
/*
* Restore user's disk quota because allocation failed.
*/
(void) ufs_quota_free_blocks(ip, btodb(deallocated), cred);
ip->i_ffs2_blocks -= btodb(deallocated);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p);
return (error);
}
#endif /* FFS2 */
/*
* Balloc defines the structure of file system storage by allocating the
* physical blocks given the inode and the logical block number in a file.
*/
int
ffs_balloc(struct inode *ip, off_t off, int size, struct ucred *cred,
int flags, struct buf **bpp)
{
#ifdef FFS2
if (ip->i_fs->fs_magic == FS_UFS2_MAGIC)
return (ffs2_balloc(ip, off, size, cred, flags, bpp));
else
#endif
return (ffs1_balloc(ip, off, size, cred, flags, bpp));
}