src/sys/dev/ic/rtsx.c
2023-07-10 00:10:46 +00:00

1475 lines
38 KiB
C

/* $OpenBSD: rtsx.c,v 1.22 2020/02/18 00:06:56 cheloha Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Copyright (c) 2012 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Realtek RTS52xx/RTL84xx Card Reader driver.
*/
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <dev/ic/rtsxreg.h>
#include <dev/ic/rtsxvar.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
/*
* We use three DMA buffers: a command buffer, a data buffer, and a buffer for
* ADMA transfer descriptors which describe scatter-gather (SG) I/O operations.
*
* The command buffer contains a command queue for the host controller,
* which describes SD/MMC commands to run, and other parameters. The chip
* runs the command queue when a special bit in the RTSX_HCBAR register is
* set and signals completion with the TRANS_OK interrupt.
* Each command is encoded as a 4 byte sequence containing command number
* (read, write, or check a host controller register), a register address,
* and a data bit-mask and value.
* SD/MMC commands which do not transfer any data from/to the card only use
* the command buffer.
*
* The smmmc stack provides DMA-safe buffers with data transfer commands.
* In this case we write a list of descriptors to the ADMA descriptor buffer,
* instructing the chip to transfer data directly from/to sdmmc DMA buffers.
*
* However, some sdmmc commands used during card initialization also carry
* data, and these don't come with DMA-safe buffers. In this case, we transfer
* data from/to the SD card via a DMA data bounce buffer.
*
* In both cases, data transfer is controlled via the RTSX_HDBAR register
* and completion is signalled by the TRANS_OK interrupt.
*
* The chip is unable to perform DMA above 4GB.
*/
#define RTSX_DMA_MAX_SEGSIZE 0x80000
#define RTSX_HOSTCMD_MAX 256
#define RTSX_HOSTCMD_BUFSIZE (sizeof(u_int32_t) * RTSX_HOSTCMD_MAX)
#define RTSX_DMA_DATA_BUFSIZE MAXPHYS
#define RTSX_ADMA_DESC_SIZE (sizeof(uint64_t) * SDMMC_MAXNSEGS)
#define READ4(sc, reg) \
(bus_space_read_4((sc)->iot, (sc)->ioh, (reg)))
#define WRITE4(sc, reg, val) \
bus_space_write_4((sc)->iot, (sc)->ioh, (reg), (val))
#define RTSX_READ(sc, reg, val) \
do { \
int err = rtsx_read((sc), (reg), (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_WRITE(sc, reg, val) \
do { \
int err = rtsx_write((sc), (reg), 0xff, (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_CLR(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0); \
if (err) \
return (err); \
} while (0)
#define RTSX_SET(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0xff);\
if (err) \
return (err); \
} while (0)
int rtsx_host_reset(sdmmc_chipset_handle_t);
u_int32_t rtsx_host_ocr(sdmmc_chipset_handle_t);
int rtsx_host_maxblklen(sdmmc_chipset_handle_t);
int rtsx_card_detect(sdmmc_chipset_handle_t);
int rtsx_bus_power(sdmmc_chipset_handle_t, u_int32_t);
int rtsx_bus_clock(sdmmc_chipset_handle_t, int, int);
int rtsx_bus_width(sdmmc_chipset_handle_t, int);
void rtsx_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
int rtsx_init(struct rtsx_softc *, int);
void rtsx_soft_reset(struct rtsx_softc *);
int rtsx_bus_power_off(struct rtsx_softc *);
int rtsx_bus_power_on(struct rtsx_softc *);
int rtsx_set_bus_width(struct rtsx_softc *, int);
int rtsx_stop_sd_clock(struct rtsx_softc *);
int rtsx_switch_sd_clock(struct rtsx_softc *, u_int8_t, int, int);
int rtsx_wait_intr(struct rtsx_softc *, int, int);
int rtsx_read(struct rtsx_softc *, u_int16_t, u_int8_t *);
int rtsx_write(struct rtsx_softc *, u_int16_t, u_int8_t, u_int8_t);
#ifdef notyet
int rtsx_read_phy(struct rtsx_softc *, u_int8_t, u_int16_t *);
#endif
int rtsx_write_phy(struct rtsx_softc *, u_int8_t, u_int16_t);
int rtsx_read_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t *);
#ifdef notyet
int rtsx_write_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t,
u_int32_t);
#endif
void rtsx_hostcmd(u_int32_t *, int *, u_int8_t, u_int16_t, u_int8_t,
u_int8_t);
int rtsx_hostcmd_send(struct rtsx_softc *, int);
u_int8_t rtsx_response_type(u_int16_t);
int rtsx_xfer_exec(struct rtsx_softc *, bus_dmamap_t, int);
int rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *, u_int32_t *);
int rtsx_xfer_bounce(struct rtsx_softc *, struct sdmmc_command *);
int rtsx_xfer_adma(struct rtsx_softc *, struct sdmmc_command *);
void rtsx_card_insert(struct rtsx_softc *);
void rtsx_card_eject(struct rtsx_softc *);
int rtsx_led_enable(struct rtsx_softc *);
int rtsx_led_disable(struct rtsx_softc *);
void rtsx_save_regs(struct rtsx_softc *);
void rtsx_restore_regs(struct rtsx_softc *);
#ifdef RTSX_DEBUG
int rtsxdebug = 0;
#define DPRINTF(n,s) do { if ((n) <= rtsxdebug) printf s; } while (0)
#else
#define DPRINTF(n,s) do {} while(0)
#endif
struct sdmmc_chip_functions rtsx_functions = {
/* host controller reset */
rtsx_host_reset,
/* host controller capabilities */
rtsx_host_ocr,
rtsx_host_maxblklen,
/* card detection */
rtsx_card_detect,
/* bus power and clock frequency */
rtsx_bus_power,
rtsx_bus_clock,
rtsx_bus_width,
/* command execution */
rtsx_exec_command,
/* card interrupt */
NULL, NULL
};
struct cfdriver rtsx_cd = {
NULL, "rtsx", DV_DULL
};
/*
* Called by attachment driver.
*/
int
rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot,
bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags)
{
struct sdmmcbus_attach_args saa;
u_int32_t sdio_cfg;
int rsegs;
sc->iot = iot;
sc->ioh = ioh;
sc->dmat = dmat;
sc->flags = flags;
if (rtsx_init(sc, 1))
return 1;
if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
if ((sdio_cfg & RTSX_SDIOCFG_SDIO_ONLY) ||
(sdio_cfg & RTSX_SDIOCFG_HAVE_SDIO))
sc->flags |= RTSX_F_SDIO_SUPPORT;
}
if (bus_dmamap_create(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 1,
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
&sc->dmap_cmd) != 0)
return 1;
if (bus_dmamap_create(sc->dmat, RTSX_DMA_DATA_BUFSIZE, 1,
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
&sc->dmap_data) != 0)
goto destroy_cmd;
if (bus_dmamap_create(sc->dmat, RTSX_ADMA_DESC_SIZE, 1,
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
&sc->dmap_adma) != 0)
goto destroy_data;
if (bus_dmamem_alloc(sc->dmat, RTSX_ADMA_DESC_SIZE, 0, 0,
sc->adma_segs, 1, &rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO))
goto destroy_adma;
if (bus_dmamem_map(sc->dmat, sc->adma_segs, rsegs, RTSX_ADMA_DESC_SIZE,
&sc->admabuf, BUS_DMA_WAITOK|BUS_DMA_COHERENT))
goto free_adma;
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
bzero(&saa, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.sct = &rtsx_functions;
saa.sch = sc;
saa.flags = SMF_STOP_AFTER_MULTIPLE;
saa.caps = SMC_CAPS_4BIT_MODE | SMC_CAPS_DMA;
saa.dmat = sc->dmat;
sc->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
if (sc->sdmmc == NULL)
goto unmap_adma;
/* Now handle cards discovered during attachment. */
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_card_insert(sc);
return 0;
unmap_adma:
bus_dmamem_unmap(sc->dmat, sc->admabuf, RTSX_ADMA_DESC_SIZE);
free_adma:
bus_dmamem_free(sc->dmat, sc->adma_segs, rsegs);
destroy_adma:
bus_dmamap_destroy(sc->dmat, sc->dmap_adma);
destroy_data:
bus_dmamap_destroy(sc->dmat, sc->dmap_data);
destroy_cmd:
bus_dmamap_destroy(sc->dmat, sc->dmap_cmd);
return 1;
}
int
rtsx_init(struct rtsx_softc *sc, int attaching)
{
u_int32_t status;
u_int8_t version;
int error;
/* Read IC version from dummy register. */
if (sc->flags & RTSX_F_5229) {
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
switch (version & 0x0F) {
case RTSX_IC_VERSION_A:
case RTSX_IC_VERSION_B:
case RTSX_IC_VERSION_D:
break;
case RTSX_IC_VERSION_C:
sc->flags |= RTSX_F_5229_TYPE_C;
break;
default:
printf("rtsx_init: unknown ic %02x\n", version);
return (1);
}
}
/* Enable interrupt write-clear (default is read-clear). */
RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
/* Clear any pending interrupts. */
status = READ4(sc, RTSX_BIPR);
WRITE4(sc, RTSX_BIPR, status);
/* Check for cards already inserted at attach time. */
if (attaching && (status & RTSX_SD_EXIST))
sc->flags |= RTSX_F_CARD_PRESENT;
/* Enable interrupts. */
WRITE4(sc, RTSX_BIER,
RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN);
/* Power on SSC clock. */
RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
delay(200);
/* XXX magic numbers from linux driver */
if (sc->flags & RTSX_F_5209)
error = rtsx_write_phy(sc, 0x00, 0xB966);
else
error = rtsx_write_phy(sc, 0x00, 0xBA42);
if (error) {
printf("%s: cannot write phy register\n", DEVNAME(sc));
return (1);
}
RTSX_SET(sc, RTSX_CLK_DIV, 0x07);
/* Disable sleep mode. */
RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
/* Disable card clock. */
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04);
RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3);
/* Enable SSC clock. */
RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG);
RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT);
RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
/* Set RC oscillator to 400K. */
RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
/* Request clock by driving CLKREQ pin to zero. */
RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN);
/* Set up LED GPIO. */
if (sc->flags & RTSX_F_5209) {
RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
} else {
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD);
}
return (0);
}
int
rtsx_activate(struct device *self, int act)
{
struct rtsx_softc *sc = (struct rtsx_softc *)self;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
rv = config_activate_children(self, act);
rtsx_save_regs(sc);
break;
case DVACT_RESUME:
rtsx_restore_regs(sc);
/* Handle cards ejected/inserted during suspend. */
if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST)
rtsx_card_insert(sc);
else
rtsx_card_eject(sc);
rv = config_activate_children(self, act);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
int
rtsx_led_enable(struct rtsx_softc *sc)
{
if (sc->flags & RTSX_F_5209) {
RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
} else {
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
}
return 0;
}
int
rtsx_led_disable(struct rtsx_softc *sc)
{
if (sc->flags & RTSX_F_5209) {
RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
} else {
RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
}
return 0;
}
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
int
rtsx_host_reset(sdmmc_chipset_handle_t sch)
{
struct rtsx_softc *sc = sch;
int s;
DPRINTF(1,("%s: host reset\n", DEVNAME(sc)));
s = splsdmmc();
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_soft_reset(sc);
if (rtsx_init(sc, 0)) {
splx(s);
return 1;
}
splx(s);
return 0;
}
u_int32_t
rtsx_host_ocr(sdmmc_chipset_handle_t sch)
{
return RTSX_SUPPORT_VOLTAGE;
}
int
rtsx_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 512;
}
/*
* Return non-zero if the card is currently inserted.
*/
int
rtsx_card_detect(sdmmc_chipset_handle_t sch)
{
struct rtsx_softc *sc = sch;
return ISSET(sc->flags, RTSX_F_CARD_PRESENT);
}
/*
* Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
* RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
* it is a mask of *enabled* gates.
*/
int
rtsx_bus_power_off(struct rtsx_softc *sc)
{
int error;
u_int8_t disable3;
error = rtsx_stop_sd_clock(sc);
if (error)
return error;
/* Disable SD output. */
RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN);
/* Turn off power. */
disable3 = RTSX_PULL_CTL_DISABLE3;
if (sc->flags & RTSX_F_5209)
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
else {
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 |
RTSX_LDO3318_VCC2);
if (sc->flags & RTSX_F_5229_TYPE_C)
disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C;
}
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
/* Disable pull control. */
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3);
return 0;
}
int
rtsx_bus_power_on(struct rtsx_softc *sc)
{
u_int8_t enable3;
int err;
if (sc->flags & RTSX_F_525A) {
err = rtsx_write(sc, RTSX_LDO_VCC_CFG1, RTSX_LDO_VCC_TUNE_MASK,
RTSX_LDO_VCC_3V3);
if (err)
return (err);
}
/* Select SD card. */
RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL);
RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD);
RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
/* Enable pull control. */
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
if (sc->flags & RTSX_F_5229_TYPE_C)
enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C;
else
enable3 = RTSX_PULL_CTL_ENABLE3;
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3);
/*
* To avoid a current peak, enable card power in two phases with a
* delay in between.
*/
/* Partial power. */
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON);
if (sc->flags & RTSX_F_5209)
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND);
else
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1);
delay(200);
/* Full power. */
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
if (sc->flags & RTSX_F_5209)
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
else
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2);
/* Enable SD card output. */
RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
return 0;
}
int
rtsx_set_bus_width(struct rtsx_softc *sc, int w)
{
u_int32_t bus_width;
int error;
switch (w) {
case 8:
bus_width = RTSX_BUS_WIDTH_8;
break;
case 4:
bus_width = RTSX_BUS_WIDTH_4;
break;
case 1:
default:
bus_width = RTSX_BUS_WIDTH_1;
break;
}
error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK, bus_width);
return error;
}
int
rtsx_stop_sd_clock(struct rtsx_softc *sc)
{
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
return 0;
}
int
rtsx_switch_sd_clock(struct rtsx_softc *sc, u_int8_t n, int div, int mcu)
{
/* Enable SD 2.0 mode. */
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK);
RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK);
RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK);
RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB);
delay(100);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
return 0;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
int
rtsx_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
{
struct rtsx_softc *sc = sch;
int s, error = 0;
DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr));
s = splsdmmc();
/*
* Disable bus power before voltage change.
*/
error = rtsx_bus_power_off(sc);
if (error)
goto ret;
delay(200);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
splx(s);
(void)rtsx_host_reset(sc);
return 0;
}
if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) {
/* Unsupported voltage level requested. */
DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n",
DEVNAME(sc), ocr));
error = EINVAL;
goto ret;
}
error = rtsx_bus_power_on(sc);
if (error)
goto ret;
error = rtsx_set_bus_width(sc, 1);
ret:
splx(s);
return error;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
int
rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
{
struct rtsx_softc *sc = sch;
int s;
u_int8_t n;
int div;
int mcu;
int error = 0;
s = splsdmmc();
if (freq == SDMMC_SDCLK_OFF) {
error = rtsx_stop_sd_clock(sc);
goto ret;
}
/* Round down to a supported frequency. */
if (freq >= SDMMC_SDCLK_50MHZ)
freq = SDMMC_SDCLK_50MHZ;
else if (freq >= SDMMC_SDCLK_25MHZ)
freq = SDMMC_SDCLK_25MHZ;
else
freq = SDMMC_SDCLK_400KHZ;
/*
* Configure the clock frequency.
*/
switch (freq) {
case SDMMC_SDCLK_400KHZ:
n = 80; /* minimum */
div = RTSX_CLK_DIV_8;
mcu = 7;
RTSX_SET(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128);
break;
case SDMMC_SDCLK_25MHZ:
n = 100;
div = RTSX_CLK_DIV_4;
mcu = 7;
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
break;
case SDMMC_SDCLK_50MHZ:
n = 100;
div = RTSX_CLK_DIV_2;
mcu = 7;
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
break;
default:
error = EINVAL;
goto ret;
}
/*
* Enable SD clock.
*/
error = rtsx_switch_sd_clock(sc, n, div, mcu);
ret:
splx(s);
return error;
}
int
rtsx_bus_width(sdmmc_chipset_handle_t sch, int width)
{
struct rtsx_softc *sc = sch;
return rtsx_set_bus_width(sc, width);
}
int
rtsx_read(struct rtsx_softc *sc, u_int16_t addr, u_int8_t *val)
{
int tries = 1024;
u_int32_t reg;
WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
(u_int32_t)((addr & 0x3FFF) << 16));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY))
break;
}
*val = (reg & 0xff);
return (tries == 0) ? ETIMEDOUT : 0;
}
int
rtsx_write(struct rtsx_softc *sc, u_int16_t addr, u_int8_t mask, u_int8_t val)
{
int tries = 1024;
u_int32_t reg;
WRITE4(sc, RTSX_HAIMR,
RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
(u_int32_t)(((addr & 0x3FFF) << 16) |
(mask << 8) | val));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY)) {
if (val != (reg & 0xff))
return EIO;
return 0;
}
}
return ETIMEDOUT;
}
#ifdef notyet
int
rtsx_read_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t *val)
{
int timeout = 100000;
u_int8_t data0;
u_int8_t data1;
u_int8_t rwctl;
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ);
while (timeout--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
if (timeout == 0)
return ETIMEDOUT;
RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
*val = data0 | (data1 << 8);
return 0;
}
#endif
int
rtsx_write_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t val)
{
int timeout = 100000;
u_int8_t rwctl;
RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE);
while (timeout--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
if (timeout == 0)
return ETIMEDOUT;
return 0;
}
int
rtsx_read_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
u_int32_t *val)
{
int tries = 1024;
u_int8_t data0, data1, data2, data3, rwctl;
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
while (tries--) {
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
if (!(rwctl & RTSX_CFG_BUSY))
break;
}
if (tries == 0)
return EIO;
RTSX_READ(sc, RTSX_CFGDATA0, &data0);
RTSX_READ(sc, RTSX_CFGDATA1, &data1);
RTSX_READ(sc, RTSX_CFGDATA2, &data2);
RTSX_READ(sc, RTSX_CFGDATA3, &data3);
*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
return 0;
}
#ifdef notyet
int
rtsx_write_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
u_int32_t mask, u_int32_t val)
{
int i, writemask = 0, tries = 1024;
u_int8_t rwctl;
for (i = 0; i < 4; i++) {
if (mask & 0xff) {
RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff);
writemask |= (1 << i);
}
mask >>= 8;
val >>= 8;
}
if (writemask) {
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
RTSX_WRITE(sc, RTSX_CFGRWCTL,
RTSX_CFG_BUSY | writemask | (func & 0x03 << 4));
}
while (tries--) {
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
if (!(rwctl & RTSX_CFG_BUSY))
break;
}
if (tries == 0)
return EIO;
return 0;
}
#endif
/* Append a properly encoded host command to the host command buffer. */
void
rtsx_hostcmd(u_int32_t *cmdbuf, int *n, u_int8_t cmd, u_int16_t reg,
u_int8_t mask, u_int8_t data)
{
KASSERT(*n < RTSX_HOSTCMD_MAX);
cmdbuf[(*n)++] = htole32((u_int32_t)(cmd & 0x3) << 30) |
((u_int32_t)(reg & 0x3fff) << 16) |
((u_int32_t)(mask) << 8) |
((u_int32_t)data);
}
void
rtsx_save_regs(struct rtsx_softc *sc)
{
int s, i;
u_int16_t reg;
s = splsdmmc();
i = 0;
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
for (reg = 0xFD52; reg < 0xFD69; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
for (reg = 0xFE20; reg < 0xFE34; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
sc->regs4[0] = READ4(sc, RTSX_HCBAR);
sc->regs4[1] = READ4(sc, RTSX_HCBCTLR);
sc->regs4[2] = READ4(sc, RTSX_HDBAR);
sc->regs4[3] = READ4(sc, RTSX_HDBCTLR);
sc->regs4[4] = READ4(sc, RTSX_HAIMR);
sc->regs4[5] = READ4(sc, RTSX_BIER);
/* Not saving RTSX_BIPR. */
splx(s);
}
void
rtsx_restore_regs(struct rtsx_softc *sc)
{
int s, i;
u_int16_t reg;
s = splsdmmc();
WRITE4(sc, RTSX_HCBAR, sc->regs4[0]);
WRITE4(sc, RTSX_HCBCTLR, sc->regs4[1]);
WRITE4(sc, RTSX_HDBAR, sc->regs4[2]);
WRITE4(sc, RTSX_HDBCTLR, sc->regs4[3]);
WRITE4(sc, RTSX_HAIMR, sc->regs4[4]);
WRITE4(sc, RTSX_BIER, sc->regs4[5]);
/* Not writing RTSX_BIPR since doing so would clear it. */
i = 0;
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
for (reg = 0xFD52; reg < 0xFD69; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
for (reg = 0xFE20; reg < 0xFE34; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
splx(s);
}
u_int8_t
rtsx_response_type(u_int16_t sdmmc_rsp)
{
int i;
struct rsp_type {
u_int16_t sdmmc_rsp;
u_int8_t rtsx_rsp;
} rsp_types[] = {
{ SCF_RSP_R0, RTSX_SD_RSP_TYPE_R0 },
{ SCF_RSP_R1, RTSX_SD_RSP_TYPE_R1 },
{ SCF_RSP_R1B, RTSX_SD_RSP_TYPE_R1B },
{ SCF_RSP_R2, RTSX_SD_RSP_TYPE_R2 },
{ SCF_RSP_R3, RTSX_SD_RSP_TYPE_R3 },
{ SCF_RSP_R4, RTSX_SD_RSP_TYPE_R4 },
{ SCF_RSP_R5, RTSX_SD_RSP_TYPE_R5 },
{ SCF_RSP_R6, RTSX_SD_RSP_TYPE_R6 },
{ SCF_RSP_R7, RTSX_SD_RSP_TYPE_R7 }
};
for (i = 0; i < nitems(rsp_types); i++) {
if (sdmmc_rsp == rsp_types[i].sdmmc_rsp)
return rsp_types[i].rtsx_rsp;
}
return 0;
}
int
rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd)
{
int s;
s = splsdmmc();
/* Tell the chip where the command buffer is and run the commands. */
WRITE4(sc, RTSX_HCBAR, sc->dmap_cmd->dm_segs[0].ds_addr);
WRITE4(sc, RTSX_HCBCTLR,
((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
splx(s);
return 0;
}
int
rtsx_xfer_exec(struct rtsx_softc *sc, bus_dmamap_t dmap, int dmaflags)
{
int s = splsdmmc();
/* Tell the chip where the data buffer is and run the transfer. */
WRITE4(sc, RTSX_HDBAR, dmap->dm_segs[0].ds_addr);
WRITE4(sc, RTSX_HDBCTLR, dmaflags);
splx(s);
/* Wait for completion. */
return rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10);
}
int
rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, u_int32_t *cmdbuf)
{
int ncmd, dma_dir, error, tmode;
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
u_int8_t cfg2;
DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc),
read ? "read" : "write",
cmd->c_datalen, cmd->c_blklen));
if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) {
DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE));
return ENOMEM;
}
/* Configure DMA transfer mode parameters. */
cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 |
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
if (read) {
dma_dir = RTSX_DMA_DIR_FROM_CARD;
/* Use transfer mode AUTO_READ3, which assumes we've already
* sent the read command and gotten the response, and will
* send CMD 12 manually after reading multiple blocks. */
tmode = RTSX_TM_AUTO_READ3;
cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
} else {
dma_dir = RTSX_DMA_DIR_TO_CARD;
/* Use transfer mode AUTO_WRITE3, which assumes we've already
* sent the write command and gotten the response, and will
* send CMD 12 manually after writing multiple blocks. */
tmode = RTSX_TM_AUTO_WRITE3;
cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
}
ncmd = 0;
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
0xff, cfg2);
/* Queue commands to configure data transfer size. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L, 0xff,
(cmd->c_blklen & 0xff));
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H, 0xff,
(cmd->c_blklen >> 8));
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L, 0xff,
((cmd->c_datalen / cmd->c_blklen) & 0xff));
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H, 0xff,
((cmd->c_datalen / cmd->c_blklen) >> 8));
/* Use the DMA ring buffer for commands which transfer data. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE, 0x01, RTSX_RING_BUFFER);
/* Configure DMA controller. */
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC3, 0xff, cmd->c_datalen >> 24);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC2, 0xff, cmd->c_datalen >> 16);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC1, 0xff, cmd->c_datalen >> 8);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC0, 0xff, cmd->c_datalen);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMACTL,
0x03 | RTSX_DMA_PACK_SIZE_MASK,
dma_dir | RTSX_DMA_EN | RTSX_DMA_512);
/* Queue commands to perform SD transfer. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, tmode | RTSX_SD_TRANSFER_START);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
error = rtsx_hostcmd_send(sc, ncmd);
if (error)
goto ret;
if (cmd->c_dmamap)
error = rtsx_xfer_adma(sc, cmd);
else
error = rtsx_xfer_bounce(sc, cmd);
ret:
DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error));
return error;
}
int
rtsx_xfer_bounce(struct rtsx_softc *sc, struct sdmmc_command *cmd)
{
caddr_t datakvap;
bus_dma_segment_t segs;
int rsegs, error;
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
/* Allocate and map DMA bounce buffer for data transfer. */
error = bus_dmamem_alloc(sc->dmat, cmd->c_datalen, 0, 0, &segs, 1,
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
if (error) {
DPRINTF(3, ("%s: could not allocate %d bytes\n",
DEVNAME(sc), cmd->c_datalen));
return error;
}
error = bus_dmamem_map(sc->dmat, &segs, rsegs, cmd->c_datalen,
&datakvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error) {
DPRINTF(3, ("%s: could not map data buffer\n", DEVNAME(sc)));
goto free_databuf;
}
/* If this is a write, copy data from sdmmc-provided buffer. */
if (!read)
memcpy(datakvap, cmd->c_data, cmd->c_datalen);
/* Load the data buffer and sync it. */
error = bus_dmamap_load(sc->dmat, sc->dmap_data, datakvap,
cmd->c_datalen, NULL, BUS_DMA_WAITOK);
if (error) {
DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc)));
goto unmap_databuf;
}
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_PREWRITE);
error = rtsx_xfer_exec(sc, sc->dmap_data,
RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
(cmd->c_datalen & 0x00ffffff));
if (error)
goto unload_databuf;
/* Sync and unload data DMA buffer. */
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_POSTWRITE);
unload_databuf:
bus_dmamap_unload(sc->dmat, sc->dmap_data);
/* If this is a read, copy data into sdmmc-provided buffer. */
if (error == 0 && read)
memcpy(cmd->c_data, datakvap, cmd->c_datalen);
/* Free DMA data buffer. */
unmap_databuf:
bus_dmamem_unmap(sc->dmat, datakvap, cmd->c_datalen);
free_databuf:
bus_dmamem_free(sc->dmat, &segs, rsegs);
return error;
}
int
rtsx_xfer_adma(struct rtsx_softc *sc, struct sdmmc_command *cmd)
{
int i, error;
uint64_t *descp;
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
/* Initialize scatter-gather transfer descriptors. */
descp = (uint64_t *)sc->admabuf;
for (i = 0; i < cmd->c_dmamap->dm_nsegs; i++) {
uint64_t paddr = cmd->c_dmamap->dm_segs[i].ds_addr;
uint64_t len = cmd->c_dmamap->dm_segs[i].ds_len;
uint8_t sgflags = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
uint64_t desc;
if (i == cmd->c_dmamap->dm_nsegs - 1)
sgflags |= RTSX_SG_END;
len &= 0x00ffffff;
desc = htole64((paddr << 32) | (len << 12) | sgflags);
memcpy(descp, &desc, sizeof(*descp));
descp++;
}
error = bus_dmamap_load(sc->dmat, sc->dmap_adma, sc->admabuf,
RTSX_ADMA_DESC_SIZE, NULL, BUS_DMA_WAITOK);
if (error) {
DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc)));
return error;
}
bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE,
BUS_DMASYNC_PREWRITE);
error = rtsx_xfer_exec(sc, sc->dmap_adma,
RTSX_ADMA_MODE | RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0));
bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->dmat, sc->dmap_adma);
return error;
}
void
rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct rtsx_softc *sc = sch;
bus_dma_segment_t segs;
int rsegs;
caddr_t cmdkvap;
u_int32_t *cmdbuf;
u_int8_t rsp_type;
u_int16_t r;
int ncmd;
int error = 0;
DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode));
/* Refuse SDIO probe if the chip doesn't support SDIO. */
if (cmd->c_opcode == SD_IO_SEND_OP_COND &&
!ISSET(sc->flags, RTSX_F_SDIO_SUPPORT)) {
error = ENOTSUP;
goto ret;
}
rsp_type = rtsx_response_type(cmd->c_flags & 0xff00);
if (rsp_type == 0) {
printf("%s: unknown response type 0x%x\n", DEVNAME(sc),
(cmd->c_flags & 0xff00));
error = EINVAL;
goto ret;
}
/* Allocate and map the host command buffer. */
error = bus_dmamem_alloc(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0, &segs, 1,
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
if (error)
goto ret;
error = bus_dmamem_map(sc->dmat, &segs, rsegs, RTSX_HOSTCMD_BUFSIZE,
&cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error)
goto free_cmdbuf;
/* The command buffer queues commands the host controller will
* run asynchronously. */
cmdbuf = (u_int32_t *)cmdkvap;
ncmd = 0;
/* Queue commands to set SD command index and argument. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD0, 0xff, 0x40 | cmd->c_opcode);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD1, 0xff, cmd->c_arg >> 24);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD2, 0xff, cmd->c_arg >> 16);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD3, 0xff, cmd->c_arg >> 8);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD4, 0xff, cmd->c_arg);
/* Queue command to set response type. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, rsp_type);
/* Use the ping-pong buffer for commands which do not transfer data. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
0x01, RTSX_PINGPONG_BUFFER);
/* Queue commands to perform SD transfer. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE);
/* Queue commands to read back card status response.*/
if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--)
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5,
0, 0);
} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++)
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
}
/* Load and sync command DMA buffer. */
error = bus_dmamap_load(sc->dmat, sc->dmap_cmd, cmdkvap,
RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK);
if (error)
goto unmap_cmdbuf;
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_PREWRITE);
/* Run the command queue and wait for completion. */
error = rtsx_hostcmd_send(sc, ncmd);
if (error == 0)
error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 1);
if (error)
goto unload_cmdbuf;
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_POSTWRITE);
/* Copy card response into sdmmc response buffer. */
if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
/* Copy bytes like sdhc(4), which on little-endian uses
* different byte order for short and long responses... */
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
memcpy(cmd->c_resp, cmdkvap + 1, sizeof(cmd->c_resp));
} else {
/* First byte is CHECK_REG_CMD return value, second
* one is the command op code -- we skip those. */
cmd->c_resp[0] =
((betoh32(cmdbuf[0]) & 0x0000ffff) << 16) |
((betoh32(cmdbuf[1]) & 0xffff0000) >> 16);
}
}
if (cmd->c_data) {
error = rtsx_xfer(sc, cmd, cmdbuf);
if (error) {
u_int8_t stat1;
if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
(stat1 & RTSX_SD_CRC_ERR))
printf("%s: CRC error\n", DEVNAME(sc));
}
}
unload_cmdbuf:
bus_dmamap_unload(sc->dmat, sc->dmap_cmd);
unmap_cmdbuf:
bus_dmamem_unmap(sc->dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE);
free_cmdbuf:
bus_dmamem_free(sc->dmat, &segs, rsegs);
ret:
SET(cmd->c_flags, SCF_ITSDONE);
cmd->c_error = error;
}
/* Prepare for another command. */
void
rtsx_soft_reset(struct rtsx_softc *sc)
{
DPRINTF(1,("%s: soft reset\n", DEVNAME(sc)));
/* Stop command transfer. */
WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
(void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR,
RTSX_SD_STOP|RTSX_SD_CLR_ERR);
/* Stop DMA transfer. */
WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
(void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
(void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
}
int
rtsx_wait_intr(struct rtsx_softc *sc, int mask, int secs)
{
int status;
int error = 0;
int s;
mask |= RTSX_TRANS_FAIL_INT;
s = splsdmmc();
status = sc->intr_status & mask;
while (status == 0) {
if (tsleep_nsec(&sc->intr_status, PRIBIO, "rtsxintr",
SEC_TO_NSEC(secs)) == EWOULDBLOCK) {
rtsx_soft_reset(sc);
error = ETIMEDOUT;
break;
}
status = sc->intr_status & mask;
}
sc->intr_status &= ~status;
/* Has the card disappeared? */
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
error = ENODEV;
splx(s);
if (error == 0 && (status & RTSX_TRANS_FAIL_INT))
error = EIO;
return error;
}
void
rtsx_card_insert(struct rtsx_softc *sc)
{
DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc)));
sc->flags |= RTSX_F_CARD_PRESENT;
(void)rtsx_led_enable(sc);
/* Schedule card discovery task. */
sdmmc_needs_discover(sc->sdmmc);
}
void
rtsx_card_eject(struct rtsx_softc *sc)
{
DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc)));
sc->flags &= ~RTSX_F_CARD_PRESENT;
(void)rtsx_led_disable(sc);
/* Schedule card discovery task. */
sdmmc_needs_discover(sc->sdmmc);
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
rtsx_intr(void *arg)
{
struct rtsx_softc *sc = arg;
u_int32_t enabled, status;
enabled = READ4(sc, RTSX_BIER);
status = READ4(sc, RTSX_BIPR);
/* Ack interrupts. */
WRITE4(sc, RTSX_BIPR, status);
if (((enabled & status) == 0) || status == 0xffffffff)
return 0;
if (status & RTSX_SD_INT) {
if (status & RTSX_SD_EXIST) {
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_card_insert(sc);
} else {
rtsx_card_eject(sc);
}
}
if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) {
sc->intr_status |= status;
wakeup(&sc->intr_status);
}
return 1;
}