1993-06-12 16:58:17 +02:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* William Jolitz and Don Ahn.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1993-10-16 14:48:52 +01:00
|
|
|
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
1996-04-05 20:56:10 +02:00
|
|
|
* $Id: clock.c,v 1.55 1996/04/05 03:36:31 ache Exp $
|
1994-09-20 02:31:07 +02:00
|
|
|
*/
|
|
|
|
|
1994-09-29 09:24:45 +01:00
|
|
|
/*
|
|
|
|
* inittodr, settodr and support routines written
|
|
|
|
* by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
|
|
|
|
*
|
|
|
|
* reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
|
1993-06-12 16:58:17 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Primitive clock interrupt routines.
|
|
|
|
*/
|
1996-01-04 22:13:23 +01:00
|
|
|
#include "opt_ddb.h"
|
|
|
|
|
1994-08-13 05:50:34 +02:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <sys/kernel.h>
|
1994-11-06 00:55:07 +01:00
|
|
|
#include <machine/clock.h>
|
1994-08-13 05:50:34 +02:00
|
|
|
#include <machine/frame.h>
|
|
|
|
#include <i386/isa/icu.h>
|
|
|
|
#include <i386/isa/isa.h>
|
1995-03-16 19:17:34 +01:00
|
|
|
#include <i386/isa/isa_device.h>
|
1994-08-13 05:50:34 +02:00
|
|
|
#include <i386/isa/rtc.h>
|
|
|
|
#include <i386/isa/timerreg.h>
|
1994-09-19 01:08:56 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
|
|
|
|
* can use a simple formula for leap years.
|
|
|
|
*/
|
|
|
|
#define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
|
1994-09-20 02:31:07 +02:00
|
|
|
#define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31)
|
1993-06-12 16:58:17 +02:00
|
|
|
|
|
|
|
/* X-tals being what they are, it's nice to be able to fudge this one... */
|
|
|
|
#ifndef TIMER_FREQ
|
|
|
|
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
|
|
|
|
#endif
|
1994-04-21 16:19:16 +02:00
|
|
|
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
|
1993-06-12 16:58:17 +02:00
|
|
|
|
1994-11-06 00:55:07 +01:00
|
|
|
/*
|
|
|
|
* Time in timer cycles that it takes for microtime() to disable interrupts
|
|
|
|
* and latch the count. microtime() currently uses "cli; outb ..." so it
|
|
|
|
* normally takes less than 2 timer cycles. Add a few for cache misses.
|
|
|
|
* Add a few more to allow for latency in bogus calls to microtime() with
|
|
|
|
* interrupts already disabled.
|
|
|
|
*/
|
|
|
|
#define TIMER0_LATCH_COUNT 20
|
1994-04-21 16:19:16 +02:00
|
|
|
|
1994-11-06 00:55:07 +01:00
|
|
|
/*
|
|
|
|
* Minimum maximum count that we are willing to program into timer0.
|
|
|
|
* Must be large enough to guarantee that the timer interrupt handler
|
|
|
|
* returns before the next timer interrupt. Must be larger than
|
|
|
|
* TIMER0_LATCH_COUNT so that we don't have to worry about underflow in
|
|
|
|
* the calculation of timer0_overflow_threshold.
|
|
|
|
*/
|
|
|
|
#define TIMER0_MIN_MAX_COUNT TIMER_DIV(20000)
|
|
|
|
|
1996-04-05 05:36:31 +02:00
|
|
|
int adjkerntz; /* local offset from GMT in seconds */
|
|
|
|
int disable_rtc_set; /* disable resettodr() if != 0 */
|
|
|
|
int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */
|
|
|
|
|
1995-05-11 09:44:40 +02:00
|
|
|
u_int idelayed;
|
1995-12-24 09:10:52 +01:00
|
|
|
#if defined(I586_CPU) || defined(I686_CPU)
|
1995-11-29 20:57:22 +01:00
|
|
|
unsigned i586_ctr_rate;
|
1995-10-12 21:39:49 +01:00
|
|
|
long long i586_ctr_bias;
|
|
|
|
long long i586_last_tick;
|
1996-01-30 19:56:47 +01:00
|
|
|
unsigned long i586_avg_tick;
|
1994-08-11 02:28:24 +02:00
|
|
|
#endif
|
1994-12-30 13:43:35 +01:00
|
|
|
u_int stat_imask = SWI_CLOCK_MASK;
|
1994-11-06 00:55:07 +01:00
|
|
|
int timer0_max_count;
|
|
|
|
u_int timer0_overflow_threshold;
|
|
|
|
u_int timer0_prescaler_count;
|
|
|
|
|
|
|
|
static int beeping = 0;
|
1994-12-30 13:43:35 +01:00
|
|
|
static u_int clk_imask = HWI_MASK | SWI_MASK;
|
1994-11-06 00:55:07 +01:00
|
|
|
static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
|
|
|
|
static u_int hardclock_max_count;
|
|
|
|
/*
|
|
|
|
* XXX new_function and timer_func should not handle clockframes, but
|
|
|
|
* timer_func currently needs to hold hardclock to handle the
|
|
|
|
* timer0_state == 0 case. We should use register_intr()/unregister_intr()
|
|
|
|
* to switch between clkintr() and a slightly different timerintr().
|
|
|
|
* This will require locking when acquiring and releasing timer0 - the
|
|
|
|
* current (nonexistent) locking doesn't seem to be adequate even now.
|
|
|
|
*/
|
|
|
|
static void (*new_function) __P((struct clockframe *frame));
|
|
|
|
static u_int new_rate;
|
|
|
|
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
|
|
|
|
static char timer0_state = 0;
|
|
|
|
static char timer2_state = 0;
|
|
|
|
static void (*timer_func) __P((struct clockframe *frame)) = hardclock;
|
1994-04-21 16:19:16 +02:00
|
|
|
|
1994-09-29 09:24:45 +01:00
|
|
|
#if 0
|
1994-04-21 16:19:16 +02:00
|
|
|
void
|
1994-09-29 09:24:45 +01:00
|
|
|
clkintr(struct clockframe frame)
|
1994-04-21 16:19:16 +02:00
|
|
|
{
|
1994-05-25 11:21:21 +02:00
|
|
|
hardclock(&frame);
|
1995-05-11 09:44:40 +02:00
|
|
|
setdelayed();
|
1994-05-25 11:21:21 +02:00
|
|
|
}
|
1994-09-29 09:24:45 +01:00
|
|
|
#else
|
1995-12-10 14:40:44 +01:00
|
|
|
static void
|
1994-09-29 09:24:45 +01:00
|
|
|
clkintr(struct clockframe frame)
|
1994-05-25 11:21:21 +02:00
|
|
|
{
|
|
|
|
timer_func(&frame);
|
1994-05-02 11:41:24 +02:00
|
|
|
switch (timer0_state) {
|
|
|
|
case 0:
|
1995-05-11 09:44:40 +02:00
|
|
|
setdelayed();
|
1994-05-02 11:41:24 +02:00
|
|
|
break;
|
|
|
|
case 1:
|
1994-11-06 00:55:07 +01:00
|
|
|
if ((timer0_prescaler_count += timer0_max_count)
|
|
|
|
>= hardclock_max_count) {
|
1994-05-25 11:21:21 +02:00
|
|
|
hardclock(&frame);
|
1995-05-11 09:44:40 +02:00
|
|
|
setdelayed();
|
1994-11-06 00:55:07 +01:00
|
|
|
timer0_prescaler_count -= hardclock_max_count;
|
1994-05-02 11:41:24 +02:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 2:
|
1995-05-11 09:44:40 +02:00
|
|
|
setdelayed();
|
1994-11-06 00:55:07 +01:00
|
|
|
timer0_max_count = TIMER_DIV(new_rate);
|
|
|
|
timer0_overflow_threshold =
|
|
|
|
timer0_max_count - TIMER0_LATCH_COUNT;
|
1994-05-02 11:41:24 +02:00
|
|
|
disable_intr();
|
1994-11-06 00:55:07 +01:00
|
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count & 0xff);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count >> 8);
|
1994-05-02 11:41:24 +02:00
|
|
|
enable_intr();
|
1994-11-06 00:55:07 +01:00
|
|
|
timer0_prescaler_count = 0;
|
1994-05-02 11:41:24 +02:00
|
|
|
timer_func = new_function;
|
|
|
|
timer0_state = 1;
|
|
|
|
break;
|
|
|
|
case 3:
|
1994-11-06 00:55:07 +01:00
|
|
|
if ((timer0_prescaler_count += timer0_max_count)
|
|
|
|
>= hardclock_max_count) {
|
1994-05-25 11:21:21 +02:00
|
|
|
hardclock(&frame);
|
1995-05-11 09:44:40 +02:00
|
|
|
setdelayed();
|
1994-12-30 13:43:35 +01:00
|
|
|
timer0_max_count = hardclock_max_count;
|
1994-11-06 00:55:07 +01:00
|
|
|
timer0_overflow_threshold =
|
|
|
|
timer0_max_count - TIMER0_LATCH_COUNT;
|
1994-05-02 11:41:24 +02:00
|
|
|
disable_intr();
|
1994-11-06 00:55:07 +01:00
|
|
|
outb(TIMER_MODE,
|
|
|
|
TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count & 0xff);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count >> 8);
|
1994-05-02 11:41:24 +02:00
|
|
|
enable_intr();
|
1994-11-06 00:55:07 +01:00
|
|
|
/*
|
|
|
|
* See microtime.s for this magic.
|
|
|
|
*/
|
|
|
|
time.tv_usec += (27645 *
|
|
|
|
(timer0_prescaler_count - hardclock_max_count))
|
|
|
|
>> 15;
|
|
|
|
if (time.tv_usec >= 1000000)
|
|
|
|
time.tv_usec -= 1000000;
|
|
|
|
timer0_prescaler_count = 0;
|
1994-05-02 11:41:24 +02:00
|
|
|
timer_func = hardclock;;
|
|
|
|
timer0_state = 0;
|
1994-04-21 16:19:16 +02:00
|
|
|
}
|
1994-05-02 11:41:24 +02:00
|
|
|
break;
|
|
|
|
}
|
1994-04-21 16:19:16 +02:00
|
|
|
}
|
1994-05-25 11:21:21 +02:00
|
|
|
#endif
|
1994-04-21 16:19:16 +02:00
|
|
|
|
|
|
|
int
|
1994-11-06 00:55:07 +01:00
|
|
|
acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
|
1994-04-21 16:19:16 +02:00
|
|
|
{
|
1994-11-06 00:55:07 +01:00
|
|
|
if (timer0_state || TIMER_DIV(rate) < TIMER0_MIN_MAX_COUNT ||
|
1995-05-30 10:16:23 +02:00
|
|
|
!function)
|
1994-04-21 16:19:16 +02:00
|
|
|
return -1;
|
1994-05-02 11:41:24 +02:00
|
|
|
new_function = function;
|
|
|
|
new_rate = rate;
|
|
|
|
timer0_state = 2;
|
1994-04-21 16:19:16 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
acquire_timer2(int mode)
|
|
|
|
{
|
1995-05-30 10:16:23 +02:00
|
|
|
if (timer2_state)
|
1994-04-21 16:19:16 +02:00
|
|
|
return -1;
|
1994-05-02 11:41:24 +02:00
|
|
|
timer2_state = 1;
|
1994-04-21 16:19:16 +02:00
|
|
|
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
release_timer0()
|
|
|
|
{
|
1994-05-02 11:41:24 +02:00
|
|
|
if (!timer0_state)
|
1994-04-21 16:19:16 +02:00
|
|
|
return -1;
|
1994-05-02 11:41:24 +02:00
|
|
|
timer0_state = 3;
|
1994-04-21 16:19:16 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
release_timer2()
|
|
|
|
{
|
1994-05-02 11:41:24 +02:00
|
|
|
if (!timer2_state)
|
1994-04-21 16:19:16 +02:00
|
|
|
return -1;
|
1994-05-02 11:41:24 +02:00
|
|
|
timer2_state = 0;
|
1994-04-21 16:19:16 +02:00
|
|
|
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1994-09-29 09:24:45 +01:00
|
|
|
/*
|
|
|
|
* This routine receives statistical clock interrupts from the RTC.
|
|
|
|
* As explained above, these occur at 128 interrupts per second.
|
|
|
|
* When profiling, we receive interrupts at a rate of 1024 Hz.
|
|
|
|
*
|
|
|
|
* This does not actually add as much overhead as it sounds, because
|
|
|
|
* when the statistical clock is active, the hardclock driver no longer
|
|
|
|
* needs to keep (inaccurate) statistics on its own. This decouples
|
|
|
|
* statistics gathering from scheduling interrupts.
|
|
|
|
*
|
|
|
|
* The RTC chip requires that we read status register C (RTC_INTR)
|
|
|
|
* to acknowledge an interrupt, before it will generate the next one.
|
|
|
|
*/
|
1995-12-10 14:40:44 +01:00
|
|
|
static void
|
1994-09-29 09:24:45 +01:00
|
|
|
rtcintr(struct clockframe frame)
|
|
|
|
{
|
|
|
|
u_char stat;
|
|
|
|
stat = rtcin(RTC_INTR);
|
|
|
|
if(stat & RTCIR_PERIOD) {
|
|
|
|
statclock(&frame);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
#ifdef DDB
|
1995-12-15 00:01:51 +01:00
|
|
|
static void
|
1995-12-10 14:40:44 +01:00
|
|
|
DDB_printrtc(void)
|
1994-09-29 09:24:45 +01:00
|
|
|
{
|
1994-12-30 13:43:35 +01:00
|
|
|
printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
|
|
|
|
rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
|
|
|
|
rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
|
|
|
|
rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
|
1994-09-29 09:24:45 +01:00
|
|
|
}
|
1996-03-23 22:36:03 +01:00
|
|
|
#endif
|
1994-04-21 16:19:16 +02:00
|
|
|
|
|
|
|
static int
|
1995-08-25 21:24:56 +02:00
|
|
|
getit(void)
|
1994-04-21 16:19:16 +02:00
|
|
|
{
|
|
|
|
int high, low;
|
|
|
|
|
|
|
|
disable_intr();
|
|
|
|
/* select timer0 and latch counter value */
|
|
|
|
outb(TIMER_MODE, TIMER_SEL0);
|
|
|
|
low = inb(TIMER_CNTR0);
|
|
|
|
high = inb(TIMER_CNTR0);
|
|
|
|
enable_intr();
|
|
|
|
return ((high << 8) | low);
|
|
|
|
}
|
|
|
|
|
1995-12-24 09:10:52 +01:00
|
|
|
#if defined(I586_CPU) || defined(I686_CPU)
|
1994-08-11 02:28:24 +02:00
|
|
|
/*
|
|
|
|
* Figure out how fast the cyclecounter runs. This must be run with
|
|
|
|
* clock interrupts disabled, but with the timer/counter programmed
|
|
|
|
* and running.
|
|
|
|
*/
|
1994-08-11 01:28:33 +02:00
|
|
|
void
|
|
|
|
calibrate_cyclecounter(void)
|
|
|
|
{
|
1995-01-19 23:05:27 +01:00
|
|
|
/*
|
|
|
|
* Don't need volatile; should always use unsigned if 2's
|
|
|
|
* complement arithmetic is desired.
|
|
|
|
*/
|
1995-10-12 21:39:49 +01:00
|
|
|
unsigned long long count;
|
1994-08-11 01:28:33 +02:00
|
|
|
|
1995-12-20 21:57:33 +01:00
|
|
|
#define howlong 131072UL
|
1995-10-12 21:39:49 +01:00
|
|
|
__asm __volatile(".byte 0x0f, 0x30" : : "A"(0LL), "c" (0x10));
|
1995-11-29 20:57:22 +01:00
|
|
|
DELAY(howlong);
|
1995-01-19 23:05:27 +01:00
|
|
|
__asm __volatile(".byte 0xf,0x31" : "=A" (count));
|
1995-11-29 20:57:22 +01:00
|
|
|
|
|
|
|
i586_ctr_rate = (count << I586_CTR_RATE_SHIFT) / howlong;
|
|
|
|
#undef howlong
|
1994-08-11 01:28:33 +02:00
|
|
|
}
|
|
|
|
#endif
|
1994-04-21 16:19:16 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait "n" microseconds.
|
1995-05-30 10:16:23 +02:00
|
|
|
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
|
1994-04-21 16:19:16 +02:00
|
|
|
* Note: timer had better have been programmed before this is first used!
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
DELAY(int n)
|
|
|
|
{
|
1994-09-19 01:08:56 +02:00
|
|
|
int prev_tick, tick, ticks_left, sec, usec;
|
1994-04-21 16:19:16 +02:00
|
|
|
|
|
|
|
#ifdef DELAYDEBUG
|
|
|
|
int getit_calls = 1;
|
|
|
|
int n1;
|
|
|
|
static int state = 0;
|
|
|
|
|
|
|
|
if (state == 0) {
|
|
|
|
state = 1;
|
|
|
|
for (n1 = 1; n1 <= 10000000; n1 *= 10)
|
|
|
|
DELAY(n1);
|
|
|
|
state = 2;
|
|
|
|
}
|
|
|
|
if (state == 1)
|
|
|
|
printf("DELAY(%d)...", n);
|
|
|
|
#endif
|
|
|
|
/*
|
|
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
|
|
* counted. Guess the initial overhead is 20 usec (on most systems it
|
|
|
|
* takes about 1.5 usec for each of the i/o's in getit(). The loop
|
|
|
|
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
|
|
|
|
* multiplications and divisions to scale the count take a while).
|
|
|
|
*/
|
1995-08-25 21:24:56 +02:00
|
|
|
prev_tick = getit();
|
1994-04-21 16:19:16 +02:00
|
|
|
n -= 20;
|
|
|
|
/*
|
1995-05-30 10:16:23 +02:00
|
|
|
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
|
1994-04-21 16:19:16 +02:00
|
|
|
* and without any avoidable overflows.
|
|
|
|
*/
|
|
|
|
sec = n / 1000000;
|
|
|
|
usec = n - sec * 1000000;
|
|
|
|
ticks_left = sec * TIMER_FREQ
|
|
|
|
+ usec * (TIMER_FREQ / 1000000)
|
|
|
|
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
|
|
|
|
+ usec * (TIMER_FREQ % 1000) / 1000000;
|
|
|
|
|
|
|
|
while (ticks_left > 0) {
|
1995-08-25 21:24:56 +02:00
|
|
|
tick = getit();
|
1994-04-21 16:19:16 +02:00
|
|
|
#ifdef DELAYDEBUG
|
|
|
|
++getit_calls;
|
|
|
|
#endif
|
|
|
|
if (tick > prev_tick)
|
1994-11-06 00:55:07 +01:00
|
|
|
ticks_left -= prev_tick - (tick - timer0_max_count);
|
1994-04-21 16:19:16 +02:00
|
|
|
else
|
|
|
|
ticks_left -= prev_tick - tick;
|
|
|
|
prev_tick = tick;
|
|
|
|
}
|
|
|
|
#ifdef DELAYDEBUG
|
|
|
|
if (state == 1)
|
|
|
|
printf(" %d calls to getit() at %d usec each\n",
|
|
|
|
getit_calls, (n + 5) / getit_calls);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
1994-09-29 09:24:45 +01:00
|
|
|
sysbeepstop(void *chan)
|
1994-04-21 16:19:16 +02:00
|
|
|
{
|
|
|
|
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
|
|
|
|
release_timer2();
|
|
|
|
beeping = 0;
|
|
|
|
}
|
|
|
|
|
1995-05-30 10:16:23 +02:00
|
|
|
int
|
1994-04-21 16:19:16 +02:00
|
|
|
sysbeep(int pitch, int period)
|
|
|
|
{
|
|
|
|
|
1995-05-30 10:16:23 +02:00
|
|
|
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
|
1994-04-21 16:19:16 +02:00
|
|
|
return -1;
|
1994-05-02 11:41:24 +02:00
|
|
|
disable_intr();
|
1994-04-21 16:19:16 +02:00
|
|
|
outb(TIMER_CNTR2, pitch);
|
|
|
|
outb(TIMER_CNTR2, (pitch>>8));
|
1994-05-02 11:41:24 +02:00
|
|
|
enable_intr();
|
1994-04-21 16:19:16 +02:00
|
|
|
if (!beeping) {
|
|
|
|
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
|
|
|
|
beeping = period;
|
1994-09-19 01:08:56 +02:00
|
|
|
timeout(sysbeepstop, (void *)NULL, period);
|
1994-04-21 16:19:16 +02:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1994-09-20 02:31:07 +02:00
|
|
|
/*
|
|
|
|
* RTC support routines
|
|
|
|
*/
|
|
|
|
|
1996-03-31 06:05:36 +02:00
|
|
|
int
|
|
|
|
rtcin(reg)
|
|
|
|
int reg;
|
|
|
|
{
|
|
|
|
u_char val;
|
|
|
|
|
|
|
|
outb(IO_RTC, reg);
|
|
|
|
inb(0x84);
|
|
|
|
val = inb(IO_RTC + 1);
|
|
|
|
inb(0x84);
|
|
|
|
return (val);
|
|
|
|
}
|
|
|
|
|
1996-01-15 22:26:43 +01:00
|
|
|
static __inline void
|
1994-12-30 13:43:35 +01:00
|
|
|
writertc(u_char reg, u_char val)
|
1994-09-20 02:31:07 +02:00
|
|
|
{
|
1994-12-30 13:43:35 +01:00
|
|
|
outb(IO_RTC, reg);
|
|
|
|
outb(IO_RTC + 1, val);
|
1994-09-20 02:31:07 +02:00
|
|
|
}
|
|
|
|
|
1996-01-15 22:26:43 +01:00
|
|
|
static __inline int
|
1994-09-20 02:31:07 +02:00
|
|
|
readrtc(int port)
|
|
|
|
{
|
1996-01-15 22:26:43 +01:00
|
|
|
return(bcd2bin(rtcin(port)));
|
1994-09-20 02:31:07 +02:00
|
|
|
}
|
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
/*
|
|
|
|
* Initialize 8253 timer 0 early so that it can be used in DELAY().
|
|
|
|
* XXX initialization of other timers is unintentionally left blank.
|
|
|
|
*/
|
1993-11-25 02:38:01 +01:00
|
|
|
void
|
1995-05-30 10:16:23 +02:00
|
|
|
startrtclock()
|
1993-11-25 02:38:01 +01:00
|
|
|
{
|
1994-11-06 00:55:07 +01:00
|
|
|
timer0_max_count = hardclock_max_count = TIMER_DIV(hz);
|
|
|
|
timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
|
|
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count & 0xff);
|
|
|
|
outb(TIMER_CNTR0, timer0_max_count >> 8);
|
1993-06-12 16:58:17 +02:00
|
|
|
}
|
|
|
|
|
1994-09-20 02:31:07 +02:00
|
|
|
/*
|
|
|
|
* Initialize the time of day register, based on the time base which is, e.g.
|
|
|
|
* from a filesystem.
|
|
|
|
*/
|
|
|
|
void
|
1994-09-29 09:24:45 +01:00
|
|
|
inittodr(time_t base)
|
1993-06-12 16:58:17 +02:00
|
|
|
{
|
1994-09-20 02:31:07 +02:00
|
|
|
unsigned long sec, days;
|
|
|
|
int yd;
|
|
|
|
int year, month;
|
|
|
|
int y, m, s;
|
|
|
|
|
|
|
|
s = splclock();
|
|
|
|
time.tv_sec = base;
|
|
|
|
time.tv_usec = 0;
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
/* Look if we have a RTC present and the time is valid */
|
1995-06-11 21:33:05 +02:00
|
|
|
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
|
1994-09-20 02:31:07 +02:00
|
|
|
goto wrong_time;
|
|
|
|
|
|
|
|
/* wait for time update to complete */
|
|
|
|
/* If RTCSA_TUP is zero, we have at least 244us before next update */
|
|
|
|
while (rtcin(RTC_STATUSA) & RTCSA_TUP);
|
|
|
|
|
|
|
|
days = 0;
|
1994-10-04 14:59:44 +01:00
|
|
|
#ifdef USE_RTC_CENTURY
|
1994-09-20 02:31:07 +02:00
|
|
|
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
|
1994-10-04 14:59:44 +01:00
|
|
|
#else
|
|
|
|
year = readrtc(RTC_YEAR) + 1900;
|
|
|
|
if (year < 1970)
|
|
|
|
year += 100;
|
|
|
|
#endif
|
1994-09-20 02:31:07 +02:00
|
|
|
if (year < 1970)
|
|
|
|
goto wrong_time;
|
|
|
|
month = readrtc(RTC_MONTH);
|
|
|
|
for (m = 1; m < month; m++)
|
|
|
|
days += daysinmonth[m-1];
|
|
|
|
if ((month > 2) && LEAPYEAR(year))
|
|
|
|
days ++;
|
|
|
|
days += readrtc(RTC_DAY) - 1;
|
|
|
|
yd = days;
|
|
|
|
for (y = 1970; y < year; y++)
|
|
|
|
days += DAYSPERYEAR + LEAPYEAR(y);
|
|
|
|
sec = ((( days * 24 +
|
|
|
|
readrtc(RTC_HRS)) * 60 +
|
|
|
|
readrtc(RTC_MIN)) * 60 +
|
|
|
|
readrtc(RTC_SEC));
|
|
|
|
/* sec now contains the number of seconds, since Jan 1 1970,
|
|
|
|
in the local time zone */
|
1993-06-12 16:58:17 +02:00
|
|
|
|
1996-04-05 20:56:10 +02:00
|
|
|
sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
|
1993-06-12 16:58:17 +02:00
|
|
|
|
1994-09-20 02:31:07 +02:00
|
|
|
s = splclock();
|
|
|
|
time.tv_sec = sec;
|
|
|
|
splx(s);
|
|
|
|
return;
|
1994-04-21 16:19:16 +02:00
|
|
|
|
1994-09-20 02:31:07 +02:00
|
|
|
wrong_time:
|
|
|
|
printf("Invalid time in real time clock.\n");
|
|
|
|
printf("Check and reset the date immediately!\n");
|
1993-06-12 16:58:17 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1994-09-20 02:31:07 +02:00
|
|
|
* Write system time back to RTC
|
1993-06-12 16:58:17 +02:00
|
|
|
*/
|
1994-11-06 00:55:07 +01:00
|
|
|
void
|
|
|
|
resettodr()
|
1993-06-12 16:58:17 +02:00
|
|
|
{
|
1994-09-20 02:31:07 +02:00
|
|
|
unsigned long tm;
|
1995-10-28 16:39:31 +01:00
|
|
|
int y, m, s;
|
1994-09-20 02:31:07 +02:00
|
|
|
|
1994-10-04 19:39:10 +01:00
|
|
|
if (disable_rtc_set)
|
|
|
|
return;
|
|
|
|
|
1994-09-20 02:31:07 +02:00
|
|
|
s = splclock();
|
|
|
|
tm = time.tv_sec;
|
|
|
|
splx(s);
|
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
/* Disable RTC updates and interrupts. */
|
1994-09-20 02:31:07 +02:00
|
|
|
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
|
|
|
|
|
1994-10-04 19:39:10 +01:00
|
|
|
/* Calculate local time to put in RTC */
|
1994-09-20 02:31:07 +02:00
|
|
|
|
1996-04-05 20:56:10 +02:00
|
|
|
tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
|
1994-09-20 02:31:07 +02:00
|
|
|
|
1996-01-15 22:26:43 +01:00
|
|
|
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
|
|
|
|
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
|
|
|
|
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
|
1994-09-20 02:31:07 +02:00
|
|
|
|
|
|
|
/* We have now the days since 01-01-1970 in tm */
|
|
|
|
writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
|
1996-01-08 19:50:14 +01:00
|
|
|
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
|
|
|
|
tm >= m;
|
|
|
|
y++, m = DAYSPERYEAR + LEAPYEAR(y))
|
|
|
|
tm -= m;
|
1994-09-20 02:31:07 +02:00
|
|
|
|
|
|
|
/* Now we have the years in y and the day-of-the-year in tm */
|
1996-01-15 22:26:43 +01:00
|
|
|
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
|
1996-01-16 07:35:40 +01:00
|
|
|
#ifdef USE_RTC_CENTURY
|
1996-01-15 22:26:43 +01:00
|
|
|
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
|
1994-10-04 14:59:44 +01:00
|
|
|
#endif
|
1996-01-12 18:33:12 +01:00
|
|
|
for (m = 0; ; m++) {
|
|
|
|
int ml;
|
|
|
|
|
|
|
|
ml = daysinmonth[m];
|
|
|
|
if (m == 1 && LEAPYEAR(y))
|
|
|
|
ml++;
|
|
|
|
if (tm < ml)
|
|
|
|
break;
|
|
|
|
tm -= ml;
|
|
|
|
}
|
1994-09-20 02:31:07 +02:00
|
|
|
|
1996-01-15 22:26:43 +01:00
|
|
|
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
|
|
|
|
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
|
1994-09-20 02:31:07 +02:00
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
/* Reenable RTC updates and interrupts. */
|
|
|
|
writertc(RTC_STATUSB, RTCSB_24HR | RTCSB_PINTR);
|
1993-06-12 16:58:17 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1994-12-30 13:43:35 +01:00
|
|
|
* Start both clocks running.
|
1993-06-12 16:58:17 +02:00
|
|
|
*/
|
1994-12-30 13:43:35 +01:00
|
|
|
void
|
|
|
|
cpu_initclocks()
|
1993-06-12 16:58:17 +02:00
|
|
|
{
|
1994-12-30 13:43:35 +01:00
|
|
|
int diag;
|
1993-06-12 16:58:17 +02:00
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
stathz = RTC_NOPROFRATE;
|
|
|
|
profhz = RTC_PROFRATE;
|
1994-10-25 23:35:12 +01:00
|
|
|
|
1994-12-30 13:43:35 +01:00
|
|
|
/* Finish initializing 8253 timer 0. */
|
1995-03-16 19:17:34 +01:00
|
|
|
register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
|
|
|
|
/* XXX */ (inthand2_t *)clkintr, &clk_imask,
|
|
|
|
/* unit */ 0);
|
1993-06-12 16:58:17 +02:00
|
|
|
INTREN(IRQ0);
|
1995-12-24 09:10:52 +01:00
|
|
|
#if defined(I586_CPU) || defined(I686_CPU)
|
1995-10-12 21:39:49 +01:00
|
|
|
/*
|
|
|
|
* Finish setting up anti-jitter measures.
|
|
|
|
*/
|
1995-11-29 20:57:22 +01:00
|
|
|
if (i586_ctr_rate) {
|
1995-10-12 21:39:49 +01:00
|
|
|
I586_CYCLECTR(i586_last_tick);
|
|
|
|
i586_ctr_bias = i586_last_tick;
|
|
|
|
}
|
|
|
|
#endif
|
1994-12-30 13:43:35 +01:00
|
|
|
|
|
|
|
/* Initialize RTC. */
|
|
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
|
|
|
writertc(RTC_STATUSB, RTCSB_24HR);
|
|
|
|
diag = rtcin(RTC_DIAG);
|
|
|
|
if (diag != 0)
|
|
|
|
printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
|
1995-03-16 19:17:34 +01:00
|
|
|
register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
|
|
|
|
/* XXX */ (inthand2_t *)rtcintr, &stat_imask,
|
|
|
|
/* unit */ 0);
|
1994-08-15 05:15:20 +02:00
|
|
|
INTREN(IRQ8);
|
1994-12-30 13:43:35 +01:00
|
|
|
writertc(RTC_STATUSB, RTCSB_24HR | RTCSB_PINTR);
|
1994-05-25 11:21:21 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
setstatclockrate(int newhz)
|
|
|
|
{
|
1994-12-30 13:43:35 +01:00
|
|
|
if (newhz == RTC_PROFRATE)
|
1994-08-15 05:15:20 +02:00
|
|
|
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
|
1994-12-30 13:43:35 +01:00
|
|
|
else
|
1994-08-15 05:15:20 +02:00
|
|
|
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
|
1994-12-30 13:43:35 +01:00
|
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
1994-05-25 11:21:21 +02:00
|
|
|
}
|