HardenedBSD/lib/libufs/libufs.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

194 lines
5.8 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2002 Juli Mallett. All rights reserved.
*
* This software was written by Juli Mallett <jmallett@FreeBSD.org> for the
* FreeBSD project. Redistribution and use in source and binary forms, with
* or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __LIBUFS_H__
#define __LIBUFS_H__
/*
* Various disk controllers require their buffers to be aligned to the size
* of a cache line. The LIBUFS_BUFALIGN defines the required alignment size.
* The alignment must be a power of 2.
*/
#define LIBUFS_BUFALIGN 128
/*
* libufs structures.
*/
union dinodep {
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
};
/*
* userland ufs disk.
*/
struct uufsd {
union {
struct fs d_fs; /* filesystem information */
char d_sb[SBLOCKSIZE]; /* superblock as buffer */
} d_sbunion __aligned(LIBUFS_BUFALIGN);
union {
struct cg d_cg; /* cylinder group */
char d_buf[MAXBSIZE]; /* cylinder group storage */
} d_cgunion __aligned(LIBUFS_BUFALIGN);
union {
union dinodep d_ino[1]; /* inode block */
char d_inos[MAXBSIZE]; /* inode block as buffer */
} d_inosunion __aligned(LIBUFS_BUFALIGN);
const char *d_name; /* disk name */
const char *d_error; /* human readable disk error */
ufs2_daddr_t d_sblock; /* superblock location */
struct fs_summary_info *d_si; /* Superblock summary info */
union dinodep d_dp; /* pointer to currently active inode */
ino_t d_inomin; /* low ino */
ino_t d_inomax; /* high ino */
Add a flags parameter to the ffs_sbget() function that reads UFS superblocks. Rather than trying to shoehorn flags into the requested superblock address, create a separate flags parameter to the ffs_sbget() function in sys/ufs/ffs/ffs_subr.c. The ffs_sbget() function is used both in the kernel and in user-level utilities through export to the sbget() function in the libufs(3) library (see sbget(3) for details). The kernel uses ffs_sbget() when mounting UFS filesystems, in the glabel(8) and gjournal(8) GEOM utilities, and in the standalone library used when booting the system from a UFS root filesystem. The ffs_sbget() function reads the superblock located at the byte offset specified by its sblockloc parameter. The value UFS_STDSB may be specified for sblockloc to request that the standard location for the superblock be read. The two existing options are now flags: UFS_NOHASHFAIL will note if the check hash is wrong but will still return the superblock. This is used by the bootstrap code to give the system a chance to come up so that fsck can be run to correct the problem. UFS_NOMSG indicates that superblock inconsistency error messages should not be printed. It is used by programs like fsck that want to print their own error message and programs like glabel(8) that just want to know if a UFS filesystem exists on a partition. One additional flag is added: UFS_NOCSUM causes only the superblock itself to be returned, but does not read in any auxiliary data structures like the cylinder group summary information. It is used by clients like glabel(8) that just want to check for possible filesystem types. Using UFS_NOCSUM skips the superblock checks for csum data which allows superblocks that have corrupted csum data to be read and used. The validate_sblock() function checks that the superblock has not been corrupted in a way that can crash or hang the system. Unless the UFS_NOMSG flag is specified, it will print out any errors that it finds. Prior to this commit, validate_sblock() returned as soon as it found an inconsistency so would print at most one message. It now does all its checks so when UFS_NOMSG has not been specified will print out everything that it finds inconsistent. Sponsored by: The FreeBSD Foundation
2022-07-31 07:44:01 +02:00
off_t d_sblockloc; /* where to look for the superblock */
int64_t d_bsize; /* device bsize */
int64_t d_lookupflags; /* flags to superblock lookup */
int64_t d_mine; /* internal flags */
int32_t d_ccg; /* current cylinder group */
int32_t d_ufs; /* decimal UFS version */
int32_t d_fd; /* raw device file descriptor */
int32_t d_lcg; /* last cylinder group (in d_cg) */
};
#define d_inos d_inosunion.d_inos
#define d_fs d_sbunion.d_fs
#define d_cg d_cgunion.d_cg
/*
* libufs macros (internal, non-exported).
*/
#ifdef _LIBUFS
/*
* Ensure that the buffer is aligned to the I/O subsystem requirements.
*/
#define BUF_MALLOC(newbufpp, data, size) { \
if (data != NULL && (((intptr_t)data) & (LIBUFS_BUFALIGN - 1)) == 0) \
*newbufpp = (void *)data; \
else \
*newbufpp = aligned_alloc(LIBUFS_BUFALIGN, size); \
}
/*
* Trace steps through libufs, to be used at entry and erroneous return.
*/
static inline void
ERROR(struct uufsd *u, const char *str)
{
#ifdef _LIBUFS_DEBUGGING
if (str != NULL) {
fprintf(stderr, "libufs: %s", str);
if (errno != 0)
fprintf(stderr, ": %s", strerror(errno));
fprintf(stderr, "\n");
}
#endif
if (u != NULL)
u->d_error = str;
}
#endif /* _LIBUFS */
__BEGIN_DECLS
/*
* libufs prototypes.
*/
/*
* ffs_subr.c
*/
void ffs_clrblock(struct fs *, u_char *, ufs1_daddr_t);
void ffs_clusteracct(struct fs *, struct cg *, ufs1_daddr_t, int);
void ffs_fragacct(struct fs *, int, int32_t [], int);
int ffs_isblock(struct fs *, u_char *, ufs1_daddr_t);
int ffs_isfreeblock(struct fs *, u_char *, ufs1_daddr_t);
Move the ability to search for alternate UFS superblocks from fsck_ffs(8) into ffs_sbsearch() to allow use by other parts of the system. Historically only fsck_ffs(8), the UFS filesystem checker, had code to track down and use alternate UFS superblocks. Since fsdb(8) used much of the fsck_ffs(8) implementation it had some ability to track down alternate superblocks. This change extracts the code to track down alternate superblocks from fsck_ffs(8) and puts it into a new function ffs_sbsearch() in sys/ufs/ffs/ffs_subr.c. Like ffs_sbget() and ffs_sbput() also found in ffs_subr.c, these functions can be used directly by the kernel subsystems. Additionally they are exported to the UFS library, libufs(8) so that they can be used by user-level programs. The new functions added to libufs(8) are sbfind(3) that is an alternative to sbread(3) and sbsearch(3) that is an alternative to sbget(3). See their manual pages for further details. The utilities that have been changed to search for superblocks are dumpfs(8), fsdb(8), ffsinfo(8), and fsck_ffs(8). Also, the prtblknos(8) tool found in tools/diag/prtblknos searches for superblocks. The UFS specific mount code uses the superblock search interface when mounting the root filesystem and when the administrator doing a mount(8) command specifies the force flag (-f). The standalone UFS boot code (found in stand/libsa/ufs.c) uses the superblock search code in the hope of being able to get the system up and running so that fsck_ffs(8) can be used to get the filesystem cleaned up. The following utilities have not been changed to search for superblocks: clri(8), tunefs(8), snapinfo(8), fstyp(8), quot(8), dump(8), fsirand(8), growfs(8), quotacheck(8), gjournal(8), and glabel(8). When these utilities fail, they do report the cause of the failure. The one exception is the tasting code used to try and figure what a given disk contains. The tasting code will remain silent so as not to put out a slew of messages as it trying to taste every new mass storage device that shows up. Reviewed by: kib Reviewed by: Warner Losh Tested by: Peter Holm Differential Revision: https://reviews.freebsd.org/D36053 Sponsored by: The FreeBSD Foundation
2022-08-13 21:41:53 +02:00
int ffs_sbsearch(void *, struct fs **, int, char *,
int (*)(void *, off_t, void **, int));
void ffs_setblock(struct fs *, u_char *, ufs1_daddr_t);
Add a flags parameter to the ffs_sbget() function that reads UFS superblocks. Rather than trying to shoehorn flags into the requested superblock address, create a separate flags parameter to the ffs_sbget() function in sys/ufs/ffs/ffs_subr.c. The ffs_sbget() function is used both in the kernel and in user-level utilities through export to the sbget() function in the libufs(3) library (see sbget(3) for details). The kernel uses ffs_sbget() when mounting UFS filesystems, in the glabel(8) and gjournal(8) GEOM utilities, and in the standalone library used when booting the system from a UFS root filesystem. The ffs_sbget() function reads the superblock located at the byte offset specified by its sblockloc parameter. The value UFS_STDSB may be specified for sblockloc to request that the standard location for the superblock be read. The two existing options are now flags: UFS_NOHASHFAIL will note if the check hash is wrong but will still return the superblock. This is used by the bootstrap code to give the system a chance to come up so that fsck can be run to correct the problem. UFS_NOMSG indicates that superblock inconsistency error messages should not be printed. It is used by programs like fsck that want to print their own error message and programs like glabel(8) that just want to know if a UFS filesystem exists on a partition. One additional flag is added: UFS_NOCSUM causes only the superblock itself to be returned, but does not read in any auxiliary data structures like the cylinder group summary information. It is used by clients like glabel(8) that just want to check for possible filesystem types. Using UFS_NOCSUM skips the superblock checks for csum data which allows superblocks that have corrupted csum data to be read and used. The validate_sblock() function checks that the superblock has not been corrupted in a way that can crash or hang the system. Unless the UFS_NOMSG flag is specified, it will print out any errors that it finds. Prior to this commit, validate_sblock() returned as soon as it found an inconsistency so would print at most one message. It now does all its checks so when UFS_NOMSG has not been specified will print out everything that it finds inconsistent. Sponsored by: The FreeBSD Foundation
2022-07-31 07:44:01 +02:00
int ffs_sbget(void *, struct fs **, off_t, int, char *,
int (*)(void *, off_t, void **, int));
int ffs_sbput(void *, struct fs *, off_t,
int (*)(void *, off_t, void *, int));
void ffs_update_dinode_ckhash(struct fs *, struct ufs2_dinode *);
int ffs_verify_dinode_ckhash(struct fs *, struct ufs2_dinode *);
/*
* block.c
*/
ssize_t bread(struct uufsd *, ufs2_daddr_t, void *, size_t);
ssize_t bwrite(struct uufsd *, ufs2_daddr_t, const void *, size_t);
int berase(struct uufsd *, ufs2_daddr_t, ufs2_daddr_t);
/*
* cgroup.c
*/
ufs2_daddr_t cgballoc(struct uufsd *);
int cgbfree(struct uufsd *, ufs2_daddr_t, long);
ino_t cgialloc(struct uufsd *);
int cgget(int, struct fs *, int, struct cg *);
int cgput(int, struct fs *, struct cg *);
int cgread(struct uufsd *);
int cgread1(struct uufsd *, int);
int cgwrite(struct uufsd *);
int cgwrite1(struct uufsd *, int);
/*
* inode.c
*/
int getinode(struct uufsd *, union dinodep *, ino_t);
int putinode(struct uufsd *);
/*
* sblock.c
*/
int sbread(struct uufsd *);
Move the ability to search for alternate UFS superblocks from fsck_ffs(8) into ffs_sbsearch() to allow use by other parts of the system. Historically only fsck_ffs(8), the UFS filesystem checker, had code to track down and use alternate UFS superblocks. Since fsdb(8) used much of the fsck_ffs(8) implementation it had some ability to track down alternate superblocks. This change extracts the code to track down alternate superblocks from fsck_ffs(8) and puts it into a new function ffs_sbsearch() in sys/ufs/ffs/ffs_subr.c. Like ffs_sbget() and ffs_sbput() also found in ffs_subr.c, these functions can be used directly by the kernel subsystems. Additionally they are exported to the UFS library, libufs(8) so that they can be used by user-level programs. The new functions added to libufs(8) are sbfind(3) that is an alternative to sbread(3) and sbsearch(3) that is an alternative to sbget(3). See their manual pages for further details. The utilities that have been changed to search for superblocks are dumpfs(8), fsdb(8), ffsinfo(8), and fsck_ffs(8). Also, the prtblknos(8) tool found in tools/diag/prtblknos searches for superblocks. The UFS specific mount code uses the superblock search interface when mounting the root filesystem and when the administrator doing a mount(8) command specifies the force flag (-f). The standalone UFS boot code (found in stand/libsa/ufs.c) uses the superblock search code in the hope of being able to get the system up and running so that fsck_ffs(8) can be used to get the filesystem cleaned up. The following utilities have not been changed to search for superblocks: clri(8), tunefs(8), snapinfo(8), fstyp(8), quot(8), dump(8), fsirand(8), growfs(8), quotacheck(8), gjournal(8), and glabel(8). When these utilities fail, they do report the cause of the failure. The one exception is the tasting code used to try and figure what a given disk contains. The tasting code will remain silent so as not to put out a slew of messages as it trying to taste every new mass storage device that shows up. Reviewed by: kib Reviewed by: Warner Losh Tested by: Peter Holm Differential Revision: https://reviews.freebsd.org/D36053 Sponsored by: The FreeBSD Foundation
2022-08-13 21:41:53 +02:00
int sbfind(struct uufsd *, int);
int sbwrite(struct uufsd *, int);
/* low level superblock read/write functions */
Add a flags parameter to the ffs_sbget() function that reads UFS superblocks. Rather than trying to shoehorn flags into the requested superblock address, create a separate flags parameter to the ffs_sbget() function in sys/ufs/ffs/ffs_subr.c. The ffs_sbget() function is used both in the kernel and in user-level utilities through export to the sbget() function in the libufs(3) library (see sbget(3) for details). The kernel uses ffs_sbget() when mounting UFS filesystems, in the glabel(8) and gjournal(8) GEOM utilities, and in the standalone library used when booting the system from a UFS root filesystem. The ffs_sbget() function reads the superblock located at the byte offset specified by its sblockloc parameter. The value UFS_STDSB may be specified for sblockloc to request that the standard location for the superblock be read. The two existing options are now flags: UFS_NOHASHFAIL will note if the check hash is wrong but will still return the superblock. This is used by the bootstrap code to give the system a chance to come up so that fsck can be run to correct the problem. UFS_NOMSG indicates that superblock inconsistency error messages should not be printed. It is used by programs like fsck that want to print their own error message and programs like glabel(8) that just want to know if a UFS filesystem exists on a partition. One additional flag is added: UFS_NOCSUM causes only the superblock itself to be returned, but does not read in any auxiliary data structures like the cylinder group summary information. It is used by clients like glabel(8) that just want to check for possible filesystem types. Using UFS_NOCSUM skips the superblock checks for csum data which allows superblocks that have corrupted csum data to be read and used. The validate_sblock() function checks that the superblock has not been corrupted in a way that can crash or hang the system. Unless the UFS_NOMSG flag is specified, it will print out any errors that it finds. Prior to this commit, validate_sblock() returned as soon as it found an inconsistency so would print at most one message. It now does all its checks so when UFS_NOMSG has not been specified will print out everything that it finds inconsistent. Sponsored by: The FreeBSD Foundation
2022-07-31 07:44:01 +02:00
int sbget(int, struct fs **, off_t, int);
Move the ability to search for alternate UFS superblocks from fsck_ffs(8) into ffs_sbsearch() to allow use by other parts of the system. Historically only fsck_ffs(8), the UFS filesystem checker, had code to track down and use alternate UFS superblocks. Since fsdb(8) used much of the fsck_ffs(8) implementation it had some ability to track down alternate superblocks. This change extracts the code to track down alternate superblocks from fsck_ffs(8) and puts it into a new function ffs_sbsearch() in sys/ufs/ffs/ffs_subr.c. Like ffs_sbget() and ffs_sbput() also found in ffs_subr.c, these functions can be used directly by the kernel subsystems. Additionally they are exported to the UFS library, libufs(8) so that they can be used by user-level programs. The new functions added to libufs(8) are sbfind(3) that is an alternative to sbread(3) and sbsearch(3) that is an alternative to sbget(3). See their manual pages for further details. The utilities that have been changed to search for superblocks are dumpfs(8), fsdb(8), ffsinfo(8), and fsck_ffs(8). Also, the prtblknos(8) tool found in tools/diag/prtblknos searches for superblocks. The UFS specific mount code uses the superblock search interface when mounting the root filesystem and when the administrator doing a mount(8) command specifies the force flag (-f). The standalone UFS boot code (found in stand/libsa/ufs.c) uses the superblock search code in the hope of being able to get the system up and running so that fsck_ffs(8) can be used to get the filesystem cleaned up. The following utilities have not been changed to search for superblocks: clri(8), tunefs(8), snapinfo(8), fstyp(8), quot(8), dump(8), fsirand(8), growfs(8), quotacheck(8), gjournal(8), and glabel(8). When these utilities fail, they do report the cause of the failure. The one exception is the tasting code used to try and figure what a given disk contains. The tasting code will remain silent so as not to put out a slew of messages as it trying to taste every new mass storage device that shows up. Reviewed by: kib Reviewed by: Warner Losh Tested by: Peter Holm Differential Revision: https://reviews.freebsd.org/D36053 Sponsored by: The FreeBSD Foundation
2022-08-13 21:41:53 +02:00
int sbsearch(int, struct fs **, int);
int sbput(int, struct fs *, int);
/*
* type.c
*/
int ufs_disk_close(struct uufsd *);
int ufs_disk_fillout(struct uufsd *, const char *);
int ufs_disk_fillout_blank(struct uufsd *, const char *);
int ufs_disk_write(struct uufsd *);
Continuing efforts to provide hardening of FFS, this change adds a check hash to cylinder groups. If a check hash fails when a cylinder group is read, no further allocations are attempted in that cylinder group until it has been fixed by fsck. This avoids a class of filesystem panics related to corrupted cylinder group maps. The hash is done using crc32c. Check hases are added only to UFS2 and not to UFS1 as UFS1 is primarily used in embedded systems with small memories and low-powered processors which need as light-weight a filesystem as possible. Specifics of the changes: sys/sys/buf.h: Add BX_FSPRIV to reserve a set of eight b_xflags that may be used by individual filesystems for their own purpose. Their specific definitions are found in the header files for each filesystem that uses them. Also add fields to struct buf as noted below. sys/kern/vfs_bio.c: It is only necessary to compute a check hash for a cylinder group when it is actually read from disk. When calling bread, you do not know whether the buffer was found in the cache or read. So a new flag (GB_CKHASH) and a pointer to a function to perform the hash has been added to breadn_flags to say that the function should be called to calculate a hash if the data has been read. The check hash is placed in b_ckhash and the B_CKHASH flag is set to indicate that a read was done and a check hash calculated. Though a rather elaborate mechanism, it should also work for check hashing other metadata in the future. A kernel internal API change was to change breada into a static fucntion and add flags and a function pointer to a check-hash function. sys/ufs/ffs/fs.h: Add flags for types of check hashes; stored in a new word in the superblock. Define corresponding BX_ flags for the different types of check hashes. Add a check hash word in the cylinder group. sys/ufs/ffs/ffs_alloc.c: In ffs_getcg do the dance with breadn_flags to get a check hash and if one is provided, check it. sys/ufs/ffs/ffs_vfsops.c: Copy across the BX_FFSTYPES flags in background writes. Update the check hash when writing out buffers that need them. sys/ufs/ffs/ffs_snapshot.c: Recompute check hash when updating snapshot cylinder groups. sys/libkern/crc32.c: lib/libufs/Makefile: lib/libufs/libufs.h: lib/libufs/cgroup.c: Include libkern/crc32.c in libufs and use it to compute check hashes when updating cylinder groups. Four utilities are affected: sbin/newfs/mkfs.c: Add the check hashes when building the cylinder groups. sbin/fsck_ffs/fsck.h: sbin/fsck_ffs/fsutil.c: Verify and update check hashes when checking and writing cylinder groups. sbin/fsck_ffs/pass5.c: Offer to add check hashes to existing filesystems. Precompute check hashes when rebuilding cylinder group (although this will be done when it is written in fsutil.c it is necessary to do it early before comparing with the old cylinder group) sbin/dumpfs/dumpfs.c Print out the new check hash flag(s) sbin/fsdb/Makefile: Needs to add libufs now used by pass5.c imported from fsck_ffs. Reviewed by: kib Tested by: Peter Holm (pho)
2017-09-22 14:45:15 +02:00
/*
* crc32c.c
*/
uint32_t calculate_crc32c(uint32_t, const void *, size_t);
__END_DECLS
#endif /* __LIBUFS_H__ */