HardenedBSD/sys/crypto/aesni/intel_sha1.c

263 lines
9.1 KiB
C
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2013, Intel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
*
* Intel SHA Extensions optimized implementation of a SHA-1 update function
*
* The function takes a pointer to the current hash values, a pointer to the
* input data, and a number of 64 byte blocks to process. Once all blocks have
* been processed, the digest pointer is updated with the resulting hash value.
* The function only processes complete blocks, there is no functionality to
* store partial blocks. All message padding and hash value initialization must
* be done outside the update function.
*
* The indented lines in the loop are instructions related to rounds processing.
* The non-indented lines are instructions related to the message schedule.
*
* Author: Sean Gulley <sean.m.gulley@intel.com>
* Date: July 2013
*
********************************************************************************
*
* Example complier command line:
* icc intel_sha_extensions_sha1_intrinsic.c
* gcc -msha -msse4 intel_sha_extensions_sha1_intrinsic.c
*
*******************************************************************************/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <crypto/aesni/aesni_os.h>
#include <crypto/aesni/sha_sse.h>
#include <immintrin.h>
void intel_sha1_step(uint32_t *digest, const char *data, uint32_t num_blks) {
__m128i abcd, e0, e1;
__m128i abcd_save, e_save;
__m128i msg0, msg1, msg2, msg3;
__m128i shuf_mask, e_mask;
#if 0
e_mask = _mm_set_epi64x(0xFFFFFFFF00000000ull, 0x0000000000000000ull);
#else
(void)e_mask;
e0 = _mm_set_epi64x(0, 0);
#endif
shuf_mask = _mm_set_epi64x(0x0001020304050607ull, 0x08090a0b0c0d0e0full);
// Load initial hash values
abcd = _mm_loadu_si128((__m128i*) digest);
e0 = _mm_insert_epi32(e0, *(digest+4), 3);
abcd = _mm_shuffle_epi32(abcd, 0x1B);
#if 0
e0 = _mm_and_si128(e0, e_mask);
#endif
while (num_blks > 0) {
// Save hash values for addition after rounds
abcd_save = abcd;
e_save = e0;
// Rounds 0-3
msg0 = _mm_loadu_si128((const __m128i*) data);
msg0 = _mm_shuffle_epi8(msg0, shuf_mask);
e0 = _mm_add_epi32(e0, msg0);
e1 = abcd;
abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
// Rounds 4-7
msg1 = _mm_loadu_si128((const __m128i*) (data+16));
msg1 = _mm_shuffle_epi8(msg1, shuf_mask);
e1 = _mm_sha1nexte_epu32(e1, msg1);
e0 = abcd;
abcd = _mm_sha1rnds4_epu32(abcd, e1, 0);
msg0 = _mm_sha1msg1_epu32(msg0, msg1);
// Rounds 8-11
msg2 = _mm_loadu_si128((const __m128i*) (data+32));
msg2 = _mm_shuffle_epi8(msg2, shuf_mask);
e0 = _mm_sha1nexte_epu32(e0, msg2);
e1 = abcd;
abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
msg1 = _mm_sha1msg1_epu32(msg1, msg2);
msg0 = _mm_xor_si128(msg0, msg2);
// Rounds 12-15
msg3 = _mm_loadu_si128((const __m128i*) (data+48));
msg3 = _mm_shuffle_epi8(msg3, shuf_mask);
e1 = _mm_sha1nexte_epu32(e1, msg3);
e0 = abcd;
msg0 = _mm_sha1msg2_epu32(msg0, msg3);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 0);
msg2 = _mm_sha1msg1_epu32(msg2, msg3);
msg1 = _mm_xor_si128(msg1, msg3);
// Rounds 16-19
e0 = _mm_sha1nexte_epu32(e0, msg0);
e1 = abcd;
msg1 = _mm_sha1msg2_epu32(msg1, msg0);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
msg3 = _mm_sha1msg1_epu32(msg3, msg0);
msg2 = _mm_xor_si128(msg2, msg0);
// Rounds 20-23
e1 = _mm_sha1nexte_epu32(e1, msg1);
e0 = abcd;
msg2 = _mm_sha1msg2_epu32(msg2, msg1);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
msg0 = _mm_sha1msg1_epu32(msg0, msg1);
msg3 = _mm_xor_si128(msg3, msg1);
// Rounds 24-27
e0 = _mm_sha1nexte_epu32(e0, msg2);
e1 = abcd;
msg3 = _mm_sha1msg2_epu32(msg3, msg2);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 1);
msg1 = _mm_sha1msg1_epu32(msg1, msg2);
msg0 = _mm_xor_si128(msg0, msg2);
// Rounds 28-31
e1 = _mm_sha1nexte_epu32(e1, msg3);
e0 = abcd;
msg0 = _mm_sha1msg2_epu32(msg0, msg3);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
msg2 = _mm_sha1msg1_epu32(msg2, msg3);
msg1 = _mm_xor_si128(msg1, msg3);
// Rounds 32-35
e0 = _mm_sha1nexte_epu32(e0, msg0);
e1 = abcd;
msg1 = _mm_sha1msg2_epu32(msg1, msg0);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 1);
msg3 = _mm_sha1msg1_epu32(msg3, msg0);
msg2 = _mm_xor_si128(msg2, msg0);
// Rounds 36-39
e1 = _mm_sha1nexte_epu32(e1, msg1);
e0 = abcd;
msg2 = _mm_sha1msg2_epu32(msg2, msg1);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
msg0 = _mm_sha1msg1_epu32(msg0, msg1);
msg3 = _mm_xor_si128(msg3, msg1);
// Rounds 40-43
e0 = _mm_sha1nexte_epu32(e0, msg2);
e1 = abcd;
msg3 = _mm_sha1msg2_epu32(msg3, msg2);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
msg1 = _mm_sha1msg1_epu32(msg1, msg2);
msg0 = _mm_xor_si128(msg0, msg2);
// Rounds 44-47
e1 = _mm_sha1nexte_epu32(e1, msg3);
e0 = abcd;
msg0 = _mm_sha1msg2_epu32(msg0, msg3);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 2);
msg2 = _mm_sha1msg1_epu32(msg2, msg3);
msg1 = _mm_xor_si128(msg1, msg3);
// Rounds 48-51
e0 = _mm_sha1nexte_epu32(e0, msg0);
e1 = abcd;
msg1 = _mm_sha1msg2_epu32(msg1, msg0);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
msg3 = _mm_sha1msg1_epu32(msg3, msg0);
msg2 = _mm_xor_si128(msg2, msg0);
// Rounds 52-55
e1 = _mm_sha1nexte_epu32(e1, msg1);
e0 = abcd;
msg2 = _mm_sha1msg2_epu32(msg2, msg1);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 2);
msg0 = _mm_sha1msg1_epu32(msg0, msg1);
msg3 = _mm_xor_si128(msg3, msg1);
// Rounds 56-59
e0 = _mm_sha1nexte_epu32(e0, msg2);
e1 = abcd;
msg3 = _mm_sha1msg2_epu32(msg3, msg2);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
msg1 = _mm_sha1msg1_epu32(msg1, msg2);
msg0 = _mm_xor_si128(msg0, msg2);
// Rounds 60-63
e1 = _mm_sha1nexte_epu32(e1, msg3);
e0 = abcd;
msg0 = _mm_sha1msg2_epu32(msg0, msg3);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
msg2 = _mm_sha1msg1_epu32(msg2, msg3);
msg1 = _mm_xor_si128(msg1, msg3);
// Rounds 64-67
e0 = _mm_sha1nexte_epu32(e0, msg0);
e1 = abcd;
msg1 = _mm_sha1msg2_epu32(msg1, msg0);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 3);
msg3 = _mm_sha1msg1_epu32(msg3, msg0);
msg2 = _mm_xor_si128(msg2, msg0);
// Rounds 68-71
e1 = _mm_sha1nexte_epu32(e1, msg1);
e0 = abcd;
msg2 = _mm_sha1msg2_epu32(msg2, msg1);
abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
msg3 = _mm_xor_si128(msg3, msg1);
// Rounds 72-75
e0 = _mm_sha1nexte_epu32(e0, msg2);
e1 = abcd;
msg3 = _mm_sha1msg2_epu32(msg3, msg2);
abcd = _mm_sha1rnds4_epu32(abcd, e0, 3);
// Rounds 76-79
e1 = _mm_sha1nexte_epu32(e1, msg3);
e0 = abcd;
abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
// Add current hash values with previously saved
e0 = _mm_sha1nexte_epu32(e0, e_save);
abcd = _mm_add_epi32(abcd, abcd_save);
data += 64;
num_blks--;
}
abcd = _mm_shuffle_epi32(abcd, 0x1B);
_mm_store_si128((__m128i*) digest, abcd);
*(digest+4) = _mm_extract_epi32(e0, 3);
}