HardenedBSD/sys/dev/gve/gve_rx.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

686 lines
18 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2023 Google LLC
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "gve.h"
#include "gve_adminq.h"
static void
gve_rx_free_ring(struct gve_priv *priv, int i)
{
struct gve_rx_ring *rx = &priv->rx[i];
struct gve_ring_com *com = &rx->com;
/* Safe to call even if never allocated */
gve_free_counters((counter_u64_t *)&rx->stats, NUM_RX_STATS);
if (rx->page_info != NULL) {
free(rx->page_info, M_GVE);
rx->page_info = NULL;
}
if (rx->data_ring != NULL) {
gve_dma_free_coherent(&rx->data_ring_mem);
rx->data_ring = NULL;
}
if (rx->desc_ring != NULL) {
gve_dma_free_coherent(&rx->desc_ring_mem);
rx->desc_ring = NULL;
}
if (com->q_resources != NULL) {
gve_dma_free_coherent(&com->q_resources_mem);
com->q_resources = NULL;
}
}
static void
gve_prefill_rx_slots(struct gve_rx_ring *rx)
{
struct gve_ring_com *com = &rx->com;
struct gve_dma_handle *dma;
int i;
for (i = 0; i < com->priv->rx_desc_cnt; i++) {
rx->data_ring[i].qpl_offset = htobe64(PAGE_SIZE * i);
rx->page_info[i].page_offset = 0;
rx->page_info[i].page_address = com->qpl->dmas[i].cpu_addr;
rx->page_info[i].page = com->qpl->pages[i];
dma = &com->qpl->dmas[i];
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREREAD);
}
bus_dmamap_sync(rx->data_ring_mem.tag, rx->data_ring_mem.map,
BUS_DMASYNC_PREWRITE);
}
static int
gve_rx_alloc_ring(struct gve_priv *priv, int i)
{
struct gve_rx_ring *rx = &priv->rx[i];
struct gve_ring_com *com = &rx->com;
int err;
com->priv = priv;
com->id = i;
rx->mask = priv->rx_pages_per_qpl - 1;
com->qpl = &priv->qpls[priv->tx_cfg.max_queues + i];
if (com->qpl == NULL) {
device_printf(priv->dev, "No QPL left for rx ring %d", i);
return (ENOMEM);
}
rx->page_info = malloc(priv->rx_desc_cnt * sizeof(*rx->page_info), M_GVE,
M_WAITOK | M_ZERO);
gve_alloc_counters((counter_u64_t *)&rx->stats, NUM_RX_STATS);
err = gve_dma_alloc_coherent(priv, sizeof(struct gve_queue_resources),
PAGE_SIZE, &com->q_resources_mem);
if (err != 0) {
device_printf(priv->dev, "Failed to alloc queue resources for rx ring %d", i);
goto abort;
}
com->q_resources = com->q_resources_mem.cpu_addr;
err = gve_dma_alloc_coherent(priv,
sizeof(struct gve_rx_desc) * priv->rx_desc_cnt,
CACHE_LINE_SIZE, &rx->desc_ring_mem);
if (err != 0) {
device_printf(priv->dev, "Failed to alloc desc ring for rx ring %d", i);
goto abort;
}
rx->desc_ring = rx->desc_ring_mem.cpu_addr;
err = gve_dma_alloc_coherent(priv,
sizeof(union gve_rx_data_slot) * priv->rx_desc_cnt,
CACHE_LINE_SIZE, &rx->data_ring_mem);
if (err != 0) {
device_printf(priv->dev, "Failed to alloc data ring for rx ring %d", i);
goto abort;
}
rx->data_ring = rx->data_ring_mem.cpu_addr;
gve_prefill_rx_slots(rx);
return (0);
abort:
gve_rx_free_ring(priv, i);
return (err);
}
int
gve_alloc_rx_rings(struct gve_priv *priv)
{
int err = 0;
int i;
priv->rx = malloc(sizeof(struct gve_rx_ring) * priv->rx_cfg.num_queues,
M_GVE, M_WAITOK | M_ZERO);
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
err = gve_rx_alloc_ring(priv, i);
if (err != 0)
goto free_rings;
}
return (0);
free_rings:
while (i--)
gve_rx_free_ring(priv, i);
free(priv->rx, M_GVE);
return (err);
}
void
gve_free_rx_rings(struct gve_priv *priv)
{
int i;
for (i = 0; i < priv->rx_cfg.num_queues; i++)
gve_rx_free_ring(priv, i);
free(priv->rx, M_GVE);
}
static void
gve_rx_clear_data_ring(struct gve_rx_ring *rx)
{
struct gve_priv *priv = rx->com.priv;
int i;
/*
* The Rx data ring has this invariant: "the networking stack is not
* using the buffer beginning at any page_offset". This invariant is
* established initially by gve_prefill_rx_slots at alloc-time and is
* maintained by the cleanup taskqueue. This invariant implies that the
* ring can be considered to be fully posted with buffers at this point,
* even if there are unfreed mbufs still being processed, which is why we
* can fill the ring without waiting on can_flip at each slot to become true.
*/
for (i = 0; i < priv->rx_desc_cnt; i++) {
rx->data_ring[i].qpl_offset = htobe64(PAGE_SIZE * i +
rx->page_info[i].page_offset);
rx->fill_cnt++;
}
bus_dmamap_sync(rx->data_ring_mem.tag, rx->data_ring_mem.map,
BUS_DMASYNC_PREWRITE);
}
static void
gve_rx_clear_desc_ring(struct gve_rx_ring *rx)
{
struct gve_priv *priv = rx->com.priv;
int i;
for (i = 0; i < priv->rx_desc_cnt; i++)
rx->desc_ring[i] = (struct gve_rx_desc){};
bus_dmamap_sync(rx->desc_ring_mem.tag, rx->desc_ring_mem.map,
BUS_DMASYNC_PREWRITE);
}
static void
gve_clear_rx_ring(struct gve_priv *priv, int i)
{
struct gve_rx_ring *rx = &priv->rx[i];
rx->seq_no = 1;
rx->cnt = 0;
rx->fill_cnt = 0;
rx->mask = priv->rx_desc_cnt - 1;
gve_rx_clear_desc_ring(rx);
gve_rx_clear_data_ring(rx);
}
static void
gve_start_rx_ring(struct gve_priv *priv, int i)
{
struct gve_rx_ring *rx = &priv->rx[i];
struct gve_ring_com *com = &rx->com;
if ((if_getcapenable(priv->ifp) & IFCAP_LRO) != 0) {
if (tcp_lro_init(&rx->lro) != 0)
device_printf(priv->dev, "Failed to init lro for rx ring %d", i);
rx->lro.ifp = priv->ifp;
}
NET_TASK_INIT(&com->cleanup_task, 0, gve_rx_cleanup_tq, rx);
com->cleanup_tq = taskqueue_create_fast("gve rx", M_WAITOK,
taskqueue_thread_enqueue, &com->cleanup_tq);
taskqueue_start_threads(&com->cleanup_tq, 1, PI_NET,
"%s rxq %d", device_get_nameunit(priv->dev), i);
gve_db_bar_write_4(priv, com->db_offset, rx->fill_cnt);
}
int
gve_create_rx_rings(struct gve_priv *priv)
{
struct gve_ring_com *com;
struct gve_rx_ring *rx;
int err;
int i;
if (gve_get_state_flag(priv, GVE_STATE_FLAG_RX_RINGS_OK))
return (0);
for (i = 0; i < priv->rx_cfg.num_queues; i++)
gve_clear_rx_ring(priv, i);
err = gve_adminq_create_rx_queues(priv, priv->rx_cfg.num_queues);
if (err != 0)
return (err);
bus_dmamap_sync(priv->irqs_db_mem.tag, priv->irqs_db_mem.map,
BUS_DMASYNC_POSTREAD);
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
rx = &priv->rx[i];
com = &rx->com;
com->irq_db_offset = 4 * be32toh(priv->irq_db_indices[com->ntfy_id].index);
bus_dmamap_sync(com->q_resources_mem.tag, com->q_resources_mem.map,
BUS_DMASYNC_POSTREAD);
com->db_offset = 4 * be32toh(com->q_resources->db_index);
com->counter_idx = be32toh(com->q_resources->counter_index);
gve_start_rx_ring(priv, i);
}
gve_set_state_flag(priv, GVE_STATE_FLAG_RX_RINGS_OK);
return (0);
}
static void
gve_stop_rx_ring(struct gve_priv *priv, int i)
{
struct gve_rx_ring *rx = &priv->rx[i];
struct gve_ring_com *com = &rx->com;
if (com->cleanup_tq != NULL) {
taskqueue_quiesce(com->cleanup_tq);
taskqueue_free(com->cleanup_tq);
com->cleanup_tq = NULL;
}
tcp_lro_free(&rx->lro);
rx->ctx = (struct gve_rx_ctx){};
}
int
gve_destroy_rx_rings(struct gve_priv *priv)
{
int err;
int i;
for (i = 0; i < priv->rx_cfg.num_queues; i++)
gve_stop_rx_ring(priv, i);
if (gve_get_state_flag(priv, GVE_STATE_FLAG_RX_RINGS_OK)) {
err = gve_adminq_destroy_rx_queues(priv, priv->rx_cfg.num_queues);
if (err != 0)
return (err);
gve_clear_state_flag(priv, GVE_STATE_FLAG_RX_RINGS_OK);
}
return (0);
}
int
gve_rx_intr(void *arg)
{
struct gve_rx_ring *rx = arg;
struct gve_priv *priv = rx->com.priv;
struct gve_ring_com *com = &rx->com;
if (__predict_false((if_getdrvflags(priv->ifp) & IFF_DRV_RUNNING) == 0))
return (FILTER_STRAY);
gve_db_bar_write_4(priv, com->irq_db_offset, GVE_IRQ_MASK);
taskqueue_enqueue(rx->com.cleanup_tq, &rx->com.cleanup_task);
return (FILTER_HANDLED);
}
static inline void
gve_set_rss_type(__be16 flag, struct mbuf *mbuf)
{
if ((flag & GVE_RXF_IPV4) != 0) {
if ((flag & GVE_RXF_TCP) != 0)
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
else if ((flag & GVE_RXF_UDP) != 0)
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
else
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
return;
}
if ((flag & GVE_RXF_IPV6) != 0) {
if ((flag & GVE_RXF_TCP) != 0)
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
else if ((flag & GVE_RXF_UDP) != 0)
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
else
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
return;
}
}
static void
gve_mextadd_free(struct mbuf *mbuf)
{
vm_page_t page = (vm_page_t)mbuf->m_ext.ext_arg1;
vm_offset_t va = (vm_offset_t)mbuf->m_ext.ext_arg2;
/*
* Free the page only if this is the last ref.
* The interface might no longer exist by the time
* this callback is called, see gve_free_qpl.
*/
if (__predict_false(vm_page_unwire_noq(page))) {
pmap_qremove(va, 1);
kva_free(va, PAGE_SIZE);
vm_page_free(page);
}
}
static void
gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
{
const __be64 offset = htobe64(GVE_DEFAULT_RX_BUFFER_OFFSET);
page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
*(slot_addr) ^= offset;
}
static struct mbuf *
gve_rx_create_mbuf(struct gve_priv *priv, struct gve_rx_ring *rx,
struct gve_rx_slot_page_info *page_info, uint16_t len,
union gve_rx_data_slot *data_slot, bool is_only_frag)
{
struct gve_rx_ctx *ctx = &rx->ctx;
struct mbuf *mbuf;
u_int ref_count;
bool can_flip;
uint32_t offset = page_info->page_offset + page_info->pad;
void *va = (char *)page_info->page_address + offset;
if (len <= priv->rx_copybreak && is_only_frag) {
mbuf = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(mbuf == NULL))
return (NULL);
m_copyback(mbuf, 0, len, va);
counter_enter();
counter_u64_add_protected(rx->stats.rx_copybreak_cnt, 1);
counter_exit();
ctx->mbuf_head = mbuf;
ctx->mbuf_tail = mbuf;
} else {
struct mbuf *mbuf_tail = ctx->mbuf_tail;
KASSERT(len <= MCLBYTES, ("gve rx fragment bigger than cluster mbuf"));
/*
* This page was created with VM_ALLOC_WIRED, thus the lowest
* wire count experienced by the page until the interface is
* destroyed is 1.
*
* We wire the page again before supplying an mbuf pointing to
* it to the networking stack, so before the mbuf leaves the
* driver, the wire count rises to 2.
*
* If it is 1 again, it necessarily means that the mbuf has been
* consumed and it was gve_mextadd_free that brought down the wire
* count back to 1. We only need to eventually observe the 1.
*/
ref_count = atomic_load_int(&page_info->page->ref_count);
can_flip = VPRC_WIRE_COUNT(ref_count) == 1;
if (mbuf_tail == NULL) {
if (can_flip)
mbuf = m_gethdr(M_NOWAIT, MT_DATA);
else
mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
ctx->mbuf_head = mbuf;
ctx->mbuf_tail = mbuf;
} else {
if (can_flip)
mbuf = m_get(M_NOWAIT, MT_DATA);
else
mbuf = m_getcl(M_NOWAIT, MT_DATA, 0);
mbuf_tail->m_next = mbuf;
ctx->mbuf_tail = mbuf;
}
if (__predict_false(mbuf == NULL))
return (NULL);
if (can_flip) {
MEXTADD(mbuf, va, len, gve_mextadd_free,
page_info->page, page_info->page_address,
0, EXT_NET_DRV);
counter_enter();
counter_u64_add_protected(rx->stats.rx_frag_flip_cnt, 1);
counter_exit();
/*
* Grab an extra ref to the page so that gve_mextadd_free
* does not end up freeing the page while the interface exists.
*/
vm_page_wire(page_info->page);
gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
} else {
m_copyback(mbuf, 0, len, va);
counter_enter();
counter_u64_add_protected(rx->stats.rx_frag_copy_cnt, 1);
counter_exit();
}
}
mbuf->m_len = len;
ctx->total_size += len;
return (mbuf);
}
static inline bool
gve_needs_rss(__be16 flag)
{
if ((flag & GVE_RXF_FRAG) != 0)
return (false);
if ((flag & (GVE_RXF_IPV4 | GVE_RXF_IPV6)) != 0)
return (true);
return (false);
}
static void
gve_rx(struct gve_priv *priv, struct gve_rx_ring *rx, struct gve_rx_desc *desc,
uint32_t idx)
{
struct gve_rx_slot_page_info *page_info;
struct gve_dma_handle *page_dma_handle;
union gve_rx_data_slot *data_slot;
struct gve_rx_ctx *ctx = &rx->ctx;
struct mbuf *mbuf = NULL;
if_t ifp = priv->ifp;
bool do_if_input;
uint16_t len;
bool is_first_frag = ctx->frag_cnt == 0;
bool is_last_frag = !(GVE_RXF_PKT_CONT & desc->flags_seq);
bool is_only_frag = is_first_frag && is_last_frag;
if (__predict_false(ctx->drop_pkt))
goto finish_frag;
if ((desc->flags_seq & GVE_RXF_ERR) != 0) {
ctx->drop_pkt = true;
counter_enter();
counter_u64_add_protected(rx->stats.rx_dropped_pkt_desc_err, 1);
counter_u64_add_protected(rx->stats.rx_dropped_pkt, 1);
counter_exit();
m_freem(ctx->mbuf_head);
goto finish_frag;
}
page_info = &rx->page_info[idx];
data_slot = &rx->data_ring[idx];
page_dma_handle = &(rx->com.qpl->dmas[idx]);
page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
len = be16toh(desc->len) - page_info->pad;
bus_dmamap_sync(page_dma_handle->tag, page_dma_handle->map,
BUS_DMASYNC_POSTREAD);
mbuf = gve_rx_create_mbuf(priv, rx, page_info, len, data_slot,
is_only_frag);
if (mbuf == NULL) {
ctx->drop_pkt = true;
counter_enter();
counter_u64_add_protected(rx->stats.rx_dropped_pkt_mbuf_alloc_fail, 1);
counter_u64_add_protected(rx->stats.rx_dropped_pkt, 1);
counter_exit();
m_freem(ctx->mbuf_head);
goto finish_frag;
}
if (is_first_frag) {
mbuf->m_pkthdr.rcvif = priv->ifp;
ctx->is_tcp = desc->flags_seq & GVE_RXF_TCP;
if (gve_needs_rss(desc->flags_seq)) {
gve_set_rss_type(desc->flags_seq, mbuf);
mbuf->m_pkthdr.flowid = be32toh(desc->rss_hash);
}
if ((desc->csum != 0) && ((desc->flags_seq & GVE_RXF_FRAG) == 0)) {
mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED |
CSUM_IP_VALID |
CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
mbuf->m_pkthdr.csum_data = 0xffff;
}
}
if (is_last_frag) {
mbuf = ctx->mbuf_head;
mbuf->m_pkthdr.len = ctx->total_size;
do_if_input = true;
if (((if_getcapenable(priv->ifp) & IFCAP_LRO) != 0) && /* LRO is enabled */
(ctx->is_tcp) && /* pkt is a TCP pkt */
((mbuf->m_pkthdr.csum_flags & CSUM_DATA_VALID) != 0) && /* NIC verified csum */
(rx->lro.lro_cnt != 0) && /* LRO resources exist */
(tcp_lro_rx(&rx->lro, mbuf, 0) == 0))
do_if_input = false;
if (do_if_input)
if_input(ifp, mbuf);
counter_enter();
counter_u64_add_protected(rx->stats.rbytes, ctx->total_size);
counter_u64_add_protected(rx->stats.rpackets, 1);
counter_exit();
}
finish_frag:
ctx->frag_cnt++;
if (is_last_frag)
rx->ctx = (struct gve_rx_ctx){};
}
static bool
gve_rx_work_pending(struct gve_rx_ring *rx)
{
struct gve_rx_desc *desc;
__be16 flags_seq;
uint32_t next_idx;
next_idx = rx->cnt & rx->mask;
desc = rx->desc_ring + next_idx;
flags_seq = desc->flags_seq;
return (GVE_SEQNO(flags_seq) == rx->seq_no);
}
static inline uint8_t
gve_next_seqno(uint8_t seq)
{
return ((seq + 1) == 8 ? 1 : seq + 1);
}
static void
gve_rx_cleanup(struct gve_priv *priv, struct gve_rx_ring *rx, int budget)
{
uint32_t idx = rx->cnt & rx->mask;
struct gve_rx_desc *desc;
struct gve_rx_ctx *ctx = &rx->ctx;
uint32_t work_done = 0;
NET_EPOCH_ASSERT();
bus_dmamap_sync(rx->desc_ring_mem.tag, rx->desc_ring_mem.map,
BUS_DMASYNC_POSTREAD);
desc = &rx->desc_ring[idx];
while ((work_done < budget || ctx->frag_cnt) &&
(GVE_SEQNO(desc->flags_seq) == rx->seq_no)) {
gve_rx(priv, rx, desc, idx);
rx->cnt++;
idx = rx->cnt & rx->mask;
desc = &rx->desc_ring[idx];
rx->seq_no = gve_next_seqno(rx->seq_no);
work_done++;
}
/* The device will only send whole packets. */
if (__predict_false(ctx->frag_cnt)) {
m_freem(ctx->mbuf_head);
rx->ctx = (struct gve_rx_ctx){};
device_printf(priv->dev,
"Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
GVE_SEQNO(desc->flags_seq), rx->seq_no);
gve_schedule_reset(priv);
}
if (work_done != 0)
tcp_lro_flush_all(&rx->lro);
bus_dmamap_sync(rx->data_ring_mem.tag, rx->data_ring_mem.map,
BUS_DMASYNC_PREWRITE);
/* Buffers are refilled as the descs are processed */
rx->fill_cnt += work_done;
gve_db_bar_write_4(priv, rx->com.db_offset, rx->fill_cnt);
}
void
gve_rx_cleanup_tq(void *arg, int pending)
{
struct gve_rx_ring *rx = arg;
struct gve_priv *priv = rx->com.priv;
if (__predict_false((if_getdrvflags(priv->ifp) & IFF_DRV_RUNNING) == 0))
return;
gve_rx_cleanup(priv, rx, /*budget=*/128);
gve_db_bar_write_4(priv, rx->com.irq_db_offset,
GVE_IRQ_ACK | GVE_IRQ_EVENT);
/*
* Fragments received before this barrier MAY NOT cause the NIC to send an
* interrupt but they will still be handled by the enqueue below.
* Fragments received after the barrier WILL trigger an interrupt.
*/
mb();
if (gve_rx_work_pending(rx)) {
gve_db_bar_write_4(priv, rx->com.irq_db_offset, GVE_IRQ_MASK);
taskqueue_enqueue(rx->com.cleanup_tq, &rx->com.cleanup_task);
}
}