HardenedBSD/sys/netlink/ktest_netlink_message_writer.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

114 lines
3.5 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2023 Alexander V. Chernikov
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <tests/ktest.h>
#include <sys/cdefs.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <netlink/netlink.h>
#include <netlink/netlink_ctl.h>
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
#include <netlink/netlink_var.h>
#include <netlink/netlink_message_writer.h>
#define KTEST_CALLER
#include <netlink/ktest_netlink_message_writer.h>
#ifdef INVARIANTS
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
struct test_nlbuf_attrs {
uint32_t size;
uint32_t expected_avail;
int waitok;
};
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
#define _OUT(_field) offsetof(struct test_nlbuf_attrs, _field)
static const struct nlattr_parser nla_p_nlbuf_w[] = {
{ .type = 1, .off = _OUT(size), .cb = nlattr_get_uint32 },
{ .type = 2, .off = _OUT(expected_avail), .cb = nlattr_get_uint32 },
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
{ .type = 3, .off = _OUT(waitok), .cb = nlattr_get_uint32 },
};
#undef _OUT
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
NL_DECLARE_ATTR_PARSER(nlbuf_w_parser, nla_p_nlbuf_w);
static int
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
test_nlbuf_parser(struct ktest_test_context *ctx, struct nlattr *nla)
{
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
struct test_nlbuf_attrs *attrs = npt_alloc(ctx->npt, sizeof(*attrs));
ctx->arg = attrs;
if (attrs != NULL)
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
return (nl_parse_nested(nla, &nlbuf_w_parser, ctx->npt, attrs));
return (ENOMEM);
}
static int
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
test_nlbuf_writer_allocation(struct ktest_test_context *ctx)
{
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
struct test_nlbuf_attrs *attrs = ctx->arg;
struct nl_writer nw = {};
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
u_int alloc_len;
bool ret;
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
ret = nlmsg_get_buf_wrapper(&nw, attrs->size, attrs->waitok);
if (!ret)
return (EINVAL);
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
alloc_len = nw.buf->buflen;
KTEST_LOG(ctx, "requested %u, allocated %d", attrs->size, alloc_len);
/* Mark enomem to avoid reallocation */
nw.enomem = true;
if (nlmsg_reserve_data(&nw, alloc_len, void *) == NULL) {
KTEST_LOG(ctx, "unable to get %d bytes from the writer", alloc_len);
return (EINVAL);
}
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
nl_buf_free(nw.buf);
if (alloc_len < attrs->expected_avail) {
KTEST_LOG(ctx, "alloc_len %d, expected %u",
alloc_len, attrs->expected_avail);
return (EINVAL);
}
return (0);
}
#endif
static const struct ktest_test_info tests[] = {
#ifdef INVARIANTS
{
netlink: use protocol specific receive buffer Implement Netlink socket receive buffer as a simple TAILQ of nl_buf's, same part of struct sockbuf that is used for send buffer already. This shaves a lot of code and a lot of extra processing. The pcb rids of the I/O queues as the socket buffer is exactly the queue. The message writer is simplified a lot, as we now always deal with linear buf. Notion of different buffer types goes away as way as different kinds of writers. The only things remaining are: a socket writer and a group writer. The impact on the network stack is that we no longer use mbufs, so a workaround from d18715475071 disappears. Note on message throttling. Now the taskqueue throttling mechanism needs to look at both socket buffers protected by their respective locks and on flags in the pcb that are protected by the pcb lock. There is definitely some room for optimization, but this changes tries to preserve as much as possible. Note on new nl_soreceive(). It emulates soreceive_generic(). It must undergo further optimization, see large comment put in there. Note on tests/sys/netlink/test_netlink_message_writer.py. This test boiled down almost to nothing with mbufs removed. However, I left it with minimal functionality (it basically checks that allocating N bytes we get N bytes) as it is one of not so many examples of ktest framework that allows to test KPIs with python. Note on Linux support. It got much simplier: Netlink message writer loses notion of Linux support lifetime, it is same regardless of process ABI. On socket write from Linux process we perform conversion immediately in nl_receive_message() and on an output conversion to Linux happens in in nl_send_one(). XXX: both conversions use M_NOWAIT allocation, which used to be the case before this change, too. Reviewed by: melifaro Differential Revision: https://reviews.freebsd.org/D42524
2024-01-02 22:04:01 +01:00
.name = "test_nlbuf_writer_allocation",
.desc = "test different buffer sizes in the netlink writer",
.func = &test_nlbuf_writer_allocation,
.parse = &test_nlbuf_parser,
},
#endif
};
KTEST_MODULE_DECLARE(ktest_netlink_message_writer, tests);