independent elf loader and have access to kld modules. Jordan and I were
not sure how to create boot floppies, and the things we tried just made
SRM laugh in our faces - but it was upset at boot1 which was not touched
by these changes. Essentially this has been untested. :-(
What this does is to steal the last three slots from the nine spare longs
in the bootinfo_v1 struct to pass the module base pointer through.
The startup code now to set up and fills in the module and environment
structures, hopefully close enough to the i386 layout to be able to use
the same kernel code. We now pass though the updated end of the kernel
space used, rather than _end. (like the i386).
If this does not work, it needs to be beaten into shape pronto. Otherwise
it should be backed out before 3.0.
Pre-approved in principle by: dfr
one error recovery action oustanding for a given peripheral.
This is bad for several reasons. The first problem is that the error
recovery actions would likely be to fix the same problem. (e.g., we
queue 5 CCBs to a disk, and the first one comes back with 0x04,0x02. We
start error recovery, and the second one comes back with the same status.
Then the third one comes back, and so on. Each one causes the drive to get
nailed with a start unit, when we really only need one.)
The other problem is that we only have space to store one CCB while we're
doing error recovery. The subsequent error recovery actions that got
started were over-writing the CCBs from previous error recovery actions,
but we still tried to call the done routine N times for N error recovery
actions. Each call to dadone() was done with the same CCB, though. So on
the second one, we got a "biodone: buffer not busy" panic, since the buffer
in question had already been through biodone().
In any case, this fixes things so that any any given time, there's only one
error recovery action outstanding for any given peripheral driver.
Reviewed by: gibbs
Reported by: Philippe Regnauld <regnauld@deepo.prosa.dk>
[ Philippe wins the "bug finder of the week" award ]
sequence of things:
- spin up a disk
- send an async event to refresh the inquiry data
- run through xpt_scan_lun() to re-probe the device
- eventually finish the probe, but panic in xpt_done() because the
periph pointer wasn't set.
Reviewed by: gibbs
Reported by: Philippe Regnauld <regnauld@deepo.prosa.dk>
but when i_effnlink was added to support soft updates, there was only
room for 4 spares. The number of spares was not reduced, so the inode
size became 260 (on i386's), or 512 after rounding up by malloc().
Use one spare field in `struct dinode' instead of the 5th spare field
in the inode and reduced to 4 spares in the inode so that the size is
256 again.
Changed the types of the spares in the inode from int to u_int32_t
so that the inode size has more chance of being <= 256 under other
arches, and downdated ext2fs to match (it was broken to use ints
before rev.1.1).
1) The vnode pager wasn't properly tracking the file size due to
"size" being page rounded in some cases and not in others.
This sometimes resulted in corrupted files. First noticed by
Terry Lambert.
Fixed by changing the "size" pager_alloc parameter to be a 64bit
byte value (as opposed to a 32bit page index) and changing the
pagers and their callers to deal with this properly.
2) Fixed a bogus type cast in round_page() and trunc_page() that
caused some 64bit offsets and sizes to be scrambled. Removing
the cast required adding casts at a few dozen callers.
There may be problems with other bogus casts in close-by
macros. A quick check seemed to indicate that those were okay,
however.
have the passthrough device configured in their kernel.
This will hopefully reduce the number of people complaining that they can't
get {camcontrol, xmcd, tosha, cdrecord, etc.} to work.
Reviewed by: gibbs
things, like msdosfs, do not work (panic) on devices with VMIO enabled.
FFS enable VMIO on mounted devices, and nothing previously disabled it, so,
after you mounted FFS floppy, you could not mount msdosfs floppy anymore...)
This is mostly a quick before-release fix.
Reviewed by: bde
hasseen_isadev so this will be less noisy when conflicts do exist.
Also eliminate redundant warnings about conflicts.
Requested by: bde
Reviewed by: gibbs
2217's (reported by Matthew Jacob in NetBSD PR kern/6027) and Fujitsu
M2954's (reported by Tom Jackson).
Some of the Fujitsus at least hang when they get a cache sync command.
(Others just return illegal request.)
Also, make error printing in dashutdown() a little more selective. Don't
print any error when the sense key is illegal request. Drives that don't
support the synchronize cache command usually return illegal request.
Also, make sure the scsi status is check condition before going into
scsi_sense_print().
Reviewed by: gibbs
specified. This makes haveseen_isadev() useful for searching for a
free resource. This increases the bitrot in the pci RESOURCE_CHECK
code.
Fixed the pre-attach conflict message. The flag for distinguishing
pre-attach conflict checks from pre-probe ones was never set.
Drastically quieten down the verbose load progress messages. They were
more useful for debugging than anything, but are beyond a joke when loading
a few dozen modules.
Simplify the ELF extended symbol table load format. Just take the main
symbol table and the string table that corresponds. This is what we will
be getting local symbols from. (needed for the alpha stack tracebacks).
Use the (optional) full symbol tables in lookups. This means we have to
furhter distinguish between symbols that can come from the dynamic linking
table and the complete table.
The alpha boot code now needs to be adapted as ddb/db_elf.c cannot use
the simpler format.
I have not implemented loading the extended symbol tables from the syscall
interface yet, just for preloaded modules.
I am not sure about the symbol resolution. I *think* it's possible that
a local symbol can be found in preference to a global, depending on the
search sequence and dependency tree.
Change the ELF registration/unregistration scheme to be less error prone.
Adding a new brand requires a single addition to linux_brandlist instead of
modifying linux_load(), linux_unload(), and linux_elf_init().
Approved by: jkh
Reviewed by: msmith
Formerly, the heuristic involving the interpreter path took
precedence.
Also, print a better error message if the brand is missing or not
recognized. If there is no brand at all, give the user a hint that
"brandelf" needs to be run.
Remove /sys/boot from legacy-build.
Add btxld to build-tools.
In src/sys/Makefile:
Add /sys/boot for i386 ELF.
I'm still not sure why the new boot code was being built along with the
legacy stuff, which meant a completely wrong default environment for it.
This may well still be the wrong way to go about this, but it can't work
all that much worse than it has been.
difference, but might later on when we implement some sort of multi-head
console mode. Select a console after probing them all.
Don't strdup a potentially NULL return from getenv().
If we don't select an active console, choose the first regardless.
Call the console init function, at startup time and on a manual change.
The env_setenv() function needs EV_VOLATILE because it's pointing to
data that isn't malloc'ed and will cause a fault if it's freed later.
Cosmetic change to the init-time character eater (like, make it increment
the index counter - if there's a problem, it would sit there in an infinite
loop instead of only running 10 times).
Also, make sure we set %dx each time around otherwise the commands
suddenly start trying to work on things like com92 instead of com1.
Make sure comc_init() is only run once.
Cosmetic change to init-time character eater.
fxp_stop is called as the first thing in fxp_init, and if the tx desc
list has junk in it, the system may panic. This bug showed up as a side
effect of the changes in rev 1.56, but has been in the code since the
beginning.
Linux and FreeBSD signal numbers. Also, check signal numbers passed
in from application programs for validity. Without these checks,
it is trivial to panic the system from a Linux program.
be converted to fixed-sized integers when they are passed across the
binary interface to the kernel.
Didn't fix rotted bits (including not passing dosdev to the kernel and
serious out of dateness when initially committed).
this myself for ages, but wasn't able to get any feedback from the people
that I sent it to for testing.
Guy Helmer <ghelmer@scl.ameslab.gov> has given it a shot (before getting on
a plane, thanks!) and it appears to stop his reproducable page fault panic
in the testing he was able to do.
o For bt and aha only probe the one I/O range if a specific I/O is specified
in the config file.
o Don't even try to probe I/O ranges that have been seen already.
o If we conflict with an IRQ or DRQ, then fail the probe.
Requested by: bde, gibbs
Approved by: jkh
Implement preloading in a fairly MI way, assuming the information is
prepared.
DDB interface helpers.. Provide some support for db_kld.c so that we
don't have to export too much detail.
Debugging and cosmetic nits left in from development..
The other half of the containing file hack so modules can associate
themselves with their "file".
but I can't think of another (relatively) easy way of getting the info
since the boot-time initialization is not done immediately after "loading".
XXX module_register() gained an extra arg. This might break the alpha
compile, if so, just add a zero to get the old behavior.
should probably be moved to i386/i386/link_machdep.c (and the same for the
alpha).
Implement "deleting" a preloaded module by destroying it's tags. This is a
hack. We cannot reuse the data, it's been destroyed by relocation,
statically initialized variables have been modified, etc. Note that to
reclaim the load space is going to be more machine-dependent work.
Implement a relocate hook for machdep.c to call so that the physical
addresses get converted to the equivalent KVM addresses.
- seperate unload for preloaded linker objects.
- Don't build a kernel object if running as an a.out kernel.
- extract the real kernel name rather than hardwiring "kernel" for kldstat.
(sysctl kern.bootfile getst the full name via bootinfo)
- use real addresses on the kernel "module" rather than fictitious ones.
- preloaded module support
- search module path for file modules.
- symbols are checked to see if they are in the right containing file
before using their indexes into string tables. This is to help ddb
since it only supplies a pointer to an opaque symbol and there is no
telling which file/object/module/whatever it came from.
- symbol_values checks that the symbol is indeed belonging to the
correct symbol and string table pairs before looking up. (since there
could be many pairs, and KLD/DDB need to find out).
- different ops for files versus preload modules - the unload mechanism
is different. (a preloaded module has to be deleted on unload since
the in-core image is tainted by relocation and variables used)
- Do not build an a.out kernel module if we're running on an elf
kernel. :-) Note that it should theoretically be possible to
mix a.out and elf KLD modules providing -mno-underscores was used
to compile it, or some other symbol conversion takes place.
- Support preload modules (even though /boot/loader doesn't yet)
- Search the module path when loading files.
check off SYSINIT entries as they are run, and when more arrive, we re-sort
and restart (skipping the already-run entries).
This can *only* be done after KMEM (and malloc) is up and running - this is
fine because KLD is the only consumer of this and it's done after that.
The nice thing about this is that the SYSINIT's within preloaded KLD modules
are executed in their natural order. It should be possible to register
devices for the probes which follow, etc. (soon.. several key things
prevent this, such as use of linker sets for things like pci devices).
trying to do it in locore. We also walk through the module table
and relocate any MODINFO_ADDR pointers so that they become KVM relative
rather than physical addresses. This means that hacks for adding
0xf0000000 in places like MFS go away.
get to all the symbol tables for all modules, not just the core kernel
symbol table. Yes, DDB can see KLD module symbols with this, both by
lookup and in tracebacks. No more references to _end from tracebacks
within an LKM. :-)
because the alpha boot loader hasn't been converted yet, and because
it needs the full symbol tables with local symbols in order to make sense
of stack tracebacks. KLD will implement this (using full sybmol table
rather than the globals only) shortly.