/* * PPP Compression Control Protocol (CCP) Module * * Written by Toshiharu OHNO (tony-o@iij.ad.jp) * * Copyright (C) 1994, Internet Initiative Japan, Inc. All rights reserverd. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the Internet Initiative Japan, Inc. The name of the * IIJ may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * $Id: ccp.c,v 1.44 1999/03/11 01:49:15 brian Exp $ * * TODO: * o Support other compression protocols */ #include #include #include #include #include #include #include #include #include #include "defs.h" #include "command.h" #include "mbuf.h" #include "log.h" #include "timer.h" #include "fsm.h" #include "lcpproto.h" #include "lcp.h" #include "ccp.h" #include "pred.h" #include "deflate.h" #include "throughput.h" #include "iplist.h" #include "slcompress.h" #include "lqr.h" #include "hdlc.h" #include "ipcp.h" #include "filter.h" #include "descriptor.h" #include "prompt.h" #include "link.h" #include "mp.h" #include "async.h" #include "physical.h" #ifndef NORADIUS #include "radius.h" #endif #include "bundle.h" static void CcpSendConfigReq(struct fsm *); static void CcpSentTerminateReq(struct fsm *); static void CcpSendTerminateAck(struct fsm *, u_char); static void CcpDecodeConfig(struct fsm *, u_char *, int, int, struct fsm_decode *); static void CcpLayerStart(struct fsm *); static void CcpLayerFinish(struct fsm *); static int CcpLayerUp(struct fsm *); static void CcpLayerDown(struct fsm *); static void CcpInitRestartCounter(struct fsm *, int); static void CcpRecvResetReq(struct fsm *); static void CcpRecvResetAck(struct fsm *, u_char); static struct fsm_callbacks ccp_Callbacks = { CcpLayerUp, CcpLayerDown, CcpLayerStart, CcpLayerFinish, CcpInitRestartCounter, CcpSendConfigReq, CcpSentTerminateReq, CcpSendTerminateAck, CcpDecodeConfig, CcpRecvResetReq, CcpRecvResetAck }; static const char *ccp_TimerNames[] = {"CCP restart", "CCP openmode", "CCP stopped"}; static char const *cftypes[] = { /* Check out the latest ``Compression Control Protocol'' rfc (rfc1962.txt) */ "OUI", /* 0: OUI */ "PRED1", /* 1: Predictor type 1 */ "PRED2", /* 2: Predictor type 2 */ "PUDDLE", /* 3: Puddle Jumber */ "???", "???", "???", "???", "???", "???", "???", "???", "???", "???", "???", "???", "HWPPC", /* 16: Hewlett-Packard PPC */ "STAC", /* 17: Stac Electronics LZS (rfc1974) */ "MPPC", /* 18: Microsoft PPC (rfc2118) */ "GAND", /* 19: Gandalf FZA (rfc1993) */ "V42BIS", /* 20: ARG->DATA.42bis compression */ "BSD", /* 21: BSD LZW Compress */ "???", "LZS-DCP", /* 23: LZS-DCP Compression Protocol (rfc1967) */ "MAGNALINK/DEFLATE", /* 24: Magnalink Variable Resource (rfc1975) */ /* 24: Deflate (according to pppd-2.3.*) */ "DCE", /* 25: Data Circuit-Terminating Equip (rfc1976) */ "DEFLATE", /* 26: Deflate (rfc1979) */ }; #define NCFTYPES (sizeof cftypes/sizeof cftypes[0]) static const char * protoname(int proto) { if (proto < 0 || proto > NCFTYPES) return "none"; return cftypes[proto]; } /* We support these algorithms, and Req them in the given order */ static const struct ccp_algorithm *algorithm[] = { &DeflateAlgorithm, &Pred1Algorithm, &PppdDeflateAlgorithm }; #define NALGORITHMS (sizeof algorithm/sizeof algorithm[0]) int ccp_ReportStatus(struct cmdargs const *arg) { struct link *l; struct ccp *ccp; l = command_ChooseLink(arg); ccp = &l->ccp; prompt_Printf(arg->prompt, "%s: %s [%s]\n", l->name, ccp->fsm.name, State2Nam(ccp->fsm.state)); prompt_Printf(arg->prompt, " My protocol = %s, His protocol = %s\n", protoname(ccp->my_proto), protoname(ccp->his_proto)); prompt_Printf(arg->prompt, " Output: %ld --> %ld, Input: %ld --> %ld\n", ccp->uncompout, ccp->compout, ccp->compin, ccp->uncompin); prompt_Printf(arg->prompt, "\n Defaults: "); prompt_Printf(arg->prompt, "FSM retry = %us, max %u Config" " REQ%s, %u Term REQ%s\n", ccp->cfg.fsm.timeout, ccp->cfg.fsm.maxreq, ccp->cfg.fsm.maxreq == 1 ? "" : "s", ccp->cfg.fsm.maxtrm, ccp->cfg.fsm.maxtrm == 1 ? "" : "s"); prompt_Printf(arg->prompt, " deflate windows: "); prompt_Printf(arg->prompt, "incoming = %d, ", ccp->cfg.deflate.in.winsize); prompt_Printf(arg->prompt, "outgoing = %d\n", ccp->cfg.deflate.out.winsize); prompt_Printf(arg->prompt, " DEFLATE: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE])); prompt_Printf(arg->prompt, " PREDICTOR1: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_PRED1])); prompt_Printf(arg->prompt, " DEFLATE24: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE24])); return 0; } void ccp_SetupCallbacks(struct ccp *ccp) { ccp->fsm.fn = &ccp_Callbacks; ccp->fsm.FsmTimer.name = ccp_TimerNames[0]; ccp->fsm.OpenTimer.name = ccp_TimerNames[1]; ccp->fsm.StoppedTimer.name = ccp_TimerNames[2]; } void ccp_Init(struct ccp *ccp, struct bundle *bundle, struct link *l, const struct fsm_parent *parent) { /* Initialise ourselves */ fsm_Init(&ccp->fsm, "CCP", PROTO_CCP, 1, CCP_MAXCODE, LogCCP, bundle, l, parent, &ccp_Callbacks, ccp_TimerNames); ccp->cfg.deflate.in.winsize = 0; ccp->cfg.deflate.out.winsize = 15; ccp->cfg.fsm.timeout = DEF_FSMRETRY; ccp->cfg.fsm.maxreq = DEF_FSMTRIES; ccp->cfg.fsm.maxtrm = DEF_FSMTRIES; ccp->cfg.neg[CCP_NEG_DEFLATE] = NEG_ENABLED|NEG_ACCEPTED; ccp->cfg.neg[CCP_NEG_PRED1] = NEG_ENABLED|NEG_ACCEPTED; ccp->cfg.neg[CCP_NEG_DEFLATE24] = 0; ccp_Setup(ccp); } void ccp_Setup(struct ccp *ccp) { /* Set ourselves up for a startup */ ccp->fsm.open_mode = 0; ccp->his_proto = ccp->my_proto = -1; ccp->reset_sent = ccp->last_reset = -1; ccp->in.algorithm = ccp->out.algorithm = -1; ccp->in.state = ccp->out.state = NULL; ccp->in.opt.id = -1; ccp->out.opt = NULL; ccp->his_reject = ccp->my_reject = 0; ccp->uncompout = ccp->compout = 0; ccp->uncompin = ccp->compin = 0; } static void CcpInitRestartCounter(struct fsm *fp, int what) { /* Set fsm timer load */ struct ccp *ccp = fsm2ccp(fp); fp->FsmTimer.load = ccp->cfg.fsm.timeout * SECTICKS; switch (what) { case FSM_REQ_TIMER: fp->restart = ccp->cfg.fsm.maxreq; break; case FSM_TRM_TIMER: fp->restart = ccp->cfg.fsm.maxtrm; break; default: fp->restart = 1; break; } } static void CcpSendConfigReq(struct fsm *fp) { /* Send config REQ please */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt **o; u_char *cp, buff[100]; int f, alloc; cp = buff; o = &ccp->out.opt; alloc = ccp->his_reject == 0 && ccp->out.opt == NULL; ccp->my_proto = -1; ccp->out.algorithm = -1; for (f = 0; f < NALGORITHMS; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg]) && !REJECTED(ccp, algorithm[f]->id)) { if (!alloc) for (o = &ccp->out.opt; *o != NULL; o = &(*o)->next) if ((*o)->val.id == algorithm[f]->id && (*o)->algorithm == f) break; if (alloc || *o == NULL) { *o = (struct ccp_opt *)malloc(sizeof(struct ccp_opt)); (*o)->val.id = algorithm[f]->id; (*o)->val.len = 2; (*o)->next = NULL; (*o)->algorithm = f; (*algorithm[f]->o.OptInit)(&(*o)->val, &ccp->cfg); } if (cp + (*o)->val.len > buff + sizeof buff) { log_Printf(LogERROR, "%s: CCP REQ buffer overrun !\n", fp->link->name); break; } memcpy(cp, &(*o)->val, (*o)->val.len); cp += (*o)->val.len; ccp->my_proto = (*o)->val.id; ccp->out.algorithm = f; if (alloc) o = &(*o)->next; } fsm_Output(fp, CODE_CONFIGREQ, fp->reqid, buff, cp - buff); } void ccp_SendResetReq(struct fsm *fp) { /* We can't read our input - ask peer to reset */ struct ccp *ccp = fsm2ccp(fp); ccp->reset_sent = fp->reqid; ccp->last_reset = -1; fsm_Output(fp, CODE_RESETREQ, fp->reqid, NULL, 0); } static void CcpSentTerminateReq(struct fsm *fp) { /* Term REQ just sent by FSM */ } static void CcpSendTerminateAck(struct fsm *fp, u_char id) { /* Send Term ACK please */ fsm_Output(fp, CODE_TERMACK, id, NULL, 0); } static void CcpRecvResetReq(struct fsm *fp) { /* Got a reset REQ, reset outgoing dictionary */ struct ccp *ccp = fsm2ccp(fp); if (ccp->out.state != NULL) (*algorithm[ccp->out.algorithm]->o.Reset)(ccp->out.state); } static void CcpLayerStart(struct fsm *fp) { /* We're about to start up ! */ struct ccp *ccp = fsm2ccp(fp); log_Printf(LogCCP, "%s: LayerStart.\n", fp->link->name); fp->more.reqs = fp->more.naks = fp->more.rejs = ccp->cfg.fsm.maxreq * 3; } static void CcpLayerDown(struct fsm *fp) { /* About to come down */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt *next; log_Printf(LogCCP, "%s: LayerDown.\n", fp->link->name); if (ccp->in.state != NULL) { (*algorithm[ccp->in.algorithm]->i.Term)(ccp->in.state); ccp->in.state = NULL; ccp->in.algorithm = -1; } if (ccp->out.state != NULL) { (*algorithm[ccp->out.algorithm]->o.Term)(ccp->out.state); ccp->out.state = NULL; ccp->out.algorithm = -1; } ccp->his_reject = ccp->my_reject = 0; while (ccp->out.opt) { next = ccp->out.opt->next; free(ccp->out.opt); ccp->out.opt = next; } ccp_Setup(ccp); } static void CcpLayerFinish(struct fsm *fp) { /* We're now down */ log_Printf(LogCCP, "%s: LayerFinish.\n", fp->link->name); } /* * Called when CCP has reached the OPEN state */ static int CcpLayerUp(struct fsm *fp) { /* We're now up */ struct ccp *ccp = fsm2ccp(fp); log_Printf(LogCCP, "%s: LayerUp.\n", fp->link->name); if (ccp->in.state == NULL && ccp->in.algorithm >= 0 && ccp->in.algorithm < NALGORITHMS) { ccp->in.state = (*algorithm[ccp->in.algorithm]->i.Init)(&ccp->in.opt); if (ccp->in.state == NULL) { log_Printf(LogERROR, "%s: %s (in) initialisation failure\n", fp->link->name, protoname(ccp->his_proto)); ccp->his_proto = ccp->my_proto = -1; fsm_Close(fp); return 0; } } if (ccp->out.state == NULL && ccp->out.algorithm >= 0 && ccp->out.algorithm < NALGORITHMS) { ccp->out.state = (*algorithm[ccp->out.algorithm]->o.Init) (&ccp->out.opt->val); if (ccp->out.state == NULL) { log_Printf(LogERROR, "%s: %s (out) initialisation failure\n", fp->link->name, protoname(ccp->my_proto)); ccp->his_proto = ccp->my_proto = -1; fsm_Close(fp); return 0; } } fp->more.reqs = fp->more.naks = fp->more.rejs = ccp->cfg.fsm.maxreq * 3; log_Printf(LogCCP, "%s: Out = %s[%d], In = %s[%d]\n", fp->link->name, protoname(ccp->my_proto), ccp->my_proto, protoname(ccp->his_proto), ccp->his_proto); return 1; } static void CcpDecodeConfig(struct fsm *fp, u_char *cp, int plen, int mode_type, struct fsm_decode *dec) { /* Deal with incoming data */ struct ccp *ccp = fsm2ccp(fp); int type, length; int f; const char *end; while (plen >= sizeof(struct fsmconfig)) { type = *cp; length = cp[1]; if (length == 0) { log_Printf(LogCCP, "%s: CCP size zero\n", fp->link->name); break; } if (length > sizeof(struct lcp_opt)) { length = sizeof(struct lcp_opt); log_Printf(LogCCP, "%s: Warning: Truncating length to %d\n", fp->link->name, length); } for (f = NALGORITHMS-1; f > -1; f--) if (algorithm[f]->id == type) break; end = f == -1 ? "" : (*algorithm[f]->Disp)((struct lcp_opt *)cp); if (end == NULL) end = ""; if (type < NCFTYPES) log_Printf(LogCCP, " %s[%d] %s\n", cftypes[type], length, end); else log_Printf(LogCCP, " ???[%d] %s\n", length, end); if (f == -1) { /* Don't understand that :-( */ if (mode_type == MODE_REQ) { ccp->my_reject |= (1 << type); memcpy(dec->rejend, cp, length); dec->rejend += length; } } else { struct ccp_opt *o; switch (mode_type) { case MODE_REQ: if (IsAccepted(ccp->cfg.neg[algorithm[f]->Neg]) && ccp->in.algorithm == -1) { memcpy(&ccp->in.opt, cp, length); switch ((*algorithm[f]->i.Set)(&ccp->in.opt, &ccp->cfg)) { case MODE_REJ: memcpy(dec->rejend, &ccp->in.opt, ccp->in.opt.len); dec->rejend += ccp->in.opt.len; break; case MODE_NAK: memcpy(dec->nakend, &ccp->in.opt, ccp->in.opt.len); dec->nakend += ccp->in.opt.len; break; case MODE_ACK: memcpy(dec->ackend, cp, length); dec->ackend += length; ccp->his_proto = type; ccp->in.algorithm = f; /* This one'll do :-) */ break; } } else { memcpy(dec->rejend, cp, length); dec->rejend += length; } break; case MODE_NAK: for (o = ccp->out.opt; o != NULL; o = o->next) if (o->val.id == cp[0]) break; if (o == NULL) log_Printf(LogCCP, "%s: Warning: Ignoring peer NAK of unsent option\n", fp->link->name); else { memcpy(&o->val, cp, length); if ((*algorithm[f]->o.Set)(&o->val) == MODE_ACK) ccp->my_proto = algorithm[f]->id; else { ccp->his_reject |= (1 << type); ccp->my_proto = -1; } } break; case MODE_REJ: ccp->his_reject |= (1 << type); ccp->my_proto = -1; break; } } plen -= cp[1]; cp += cp[1]; } if (mode_type != MODE_NOP) { if (dec->rejend != dec->rej) { /* rejects are preferred */ dec->ackend = dec->ack; dec->nakend = dec->nak; if (ccp->in.state == NULL) { ccp->his_proto = -1; ccp->in.algorithm = -1; } } else if (dec->nakend != dec->nak) { /* then NAKs */ dec->ackend = dec->ack; if (ccp->in.state == NULL) { ccp->his_proto = -1; ccp->in.algorithm = -1; } } } } void ccp_Input(struct ccp *ccp, struct bundle *bundle, struct mbuf *bp) { /* Got PROTO_CCP from link */ if (bundle_Phase(bundle) == PHASE_NETWORK) fsm_Input(&ccp->fsm, bp); else { if (bundle_Phase(bundle) < PHASE_NETWORK) log_Printf(LogCCP, "%s: Error: Unexpected CCP in phase %s (ignored)\n", ccp->fsm.link->name, bundle_PhaseName(bundle)); mbuf_Free(bp); } } static void CcpRecvResetAck(struct fsm *fp, u_char id) { /* Got a reset ACK, reset incoming dictionary */ struct ccp *ccp = fsm2ccp(fp); if (ccp->reset_sent != -1) { if (id != ccp->reset_sent) { log_Printf(LogCCP, "%s: Incorrect ResetAck (id %d, not %d)" " ignored\n", fp->link->name, id, ccp->reset_sent); return; } /* Whaddaya know - a correct reset ack */ } else if (id == ccp->last_reset) log_Printf(LogCCP, "%s: Duplicate ResetAck (resetting again)\n", fp->link->name); else { log_Printf(LogCCP, "%s: Unexpected ResetAck (id %d) ignored\n", fp->link->name, id); return; } ccp->last_reset = ccp->reset_sent; ccp->reset_sent = -1; if (ccp->in.state != NULL) (*algorithm[ccp->in.algorithm]->i.Reset)(ccp->in.state); } int ccp_Compress(struct ccp *ccp, struct link *l, int pri, u_short proto, struct mbuf *m) { /* * Compress outgoing data. It's already deemed to be suitable Network * Layer data. */ if (ccp->fsm.state == ST_OPENED && ccp->out.state != NULL) return (*algorithm[ccp->out.algorithm]->o.Write) (ccp->out.state, ccp, l, pri, proto, m); return 0; } struct mbuf * ccp_Decompress(struct ccp *ccp, u_short *proto, struct mbuf *bp) { /* * If proto isn't PROTO_[I]COMPD, we still want to pass it to the * decompression routines so that the dictionary's updated */ if (ccp->fsm.state == ST_OPENED) { if (*proto == PROTO_COMPD || *proto == PROTO_ICOMPD) { /* Decompress incoming data */ if (ccp->reset_sent != -1) /* Send another REQ and put the packet in the bit bucket */ fsm_Output(&ccp->fsm, CODE_RESETREQ, ccp->reset_sent, NULL, 0); else if (ccp->in.state != NULL) return (*algorithm[ccp->in.algorithm]->i.Read) (ccp->in.state, ccp, proto, bp); mbuf_Free(bp); bp = NULL; } else if (PROTO_COMPRESSIBLE(*proto) && ccp->in.state != NULL) /* Add incoming Network Layer traffic to our dictionary */ (*algorithm[ccp->in.algorithm]->i.DictSetup) (ccp->in.state, ccp, *proto, bp); } return bp; } u_short ccp_Proto(struct ccp *ccp) { return !link2physical(ccp->fsm.link) || !ccp->fsm.bundle->ncp.mp.active ? PROTO_COMPD : PROTO_ICOMPD; } int ccp_SetOpenMode(struct ccp *ccp) { int f; for (f = 0; f < CCP_NEG_TOTAL; f++) if (IsEnabled(ccp->cfg.neg[f])) { ccp->fsm.open_mode = 0; return 1; } ccp->fsm.open_mode = OPEN_PASSIVE; /* Go straight to ST_STOPPED ? */ for (f = 0; f < CCP_NEG_TOTAL; f++) if (IsAccepted(ccp->cfg.neg[f])) return 1; return 0; /* No CCP at all */ }