/* * Copyright (c) 1980, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char copyright[] = "@(#) Copyright (c) 1980, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint static char sccsid[] = "@(#)fmt.c 8.1 (Berkeley) 7/20/93"; #endif /* not lint */ #include <stdio.h> #include <ctype.h> /* * fmt -- format the concatenation of input files or standard input * onto standard output. Designed for use with Mail ~| * * Syntax : fmt [ goal [ max ] ] [ name ... ] * Authors: Kurt Shoens (UCB) 12/7/78; * Liz Allen (UMCP) 2/24/83 [Addition of goal length concept]. */ /* LIZ@UOM 6/18/85 -- Don't need LENGTH any more. * #define LENGTH 72 Max line length in output */ #define NOSTR ((char *) 0) /* Null string pointer for lint */ /* LIZ@UOM 6/18/85 --New variables goal_length and max_length */ #define GOAL_LENGTH 65 #define MAX_LENGTH 75 int goal_length; /* Target or goal line length in output */ int max_length; /* Max line length in output */ int pfx; /* Current leading blank count */ int lineno; /* Current input line */ int mark; /* Last place we saw a head line */ char *malloc(); /* for lint . . . */ char *headnames[] = {"To", "Subject", "Cc", 0}; /* * Drive the whole formatter by managing input files. Also, * cause initialization of the output stuff and flush it out * at the end. */ main(argc, argv) int argc; char **argv; { register FILE *fi; register int errs = 0; int number; /* LIZ@UOM 6/18/85 */ goal_length = GOAL_LENGTH; max_length = MAX_LENGTH; setout(); lineno = 1; mark = -10; /* * LIZ@UOM 6/18/85 -- Check for goal and max length arguments */ if (argc > 1 && (1 == (sscanf(argv[1], "%d", &number)))) { argv++; argc--; goal_length = number; if (argc > 1 && (1 == (sscanf(argv[1], "%d", &number)))) { argv++; argc--; max_length = number; } } if (max_length <= goal_length) { fprintf(stderr, "Max length must be greater than %s\n", "goal length"); exit(1); } if (argc < 2) { fmt(stdin); oflush(); exit(0); } while (--argc) { if ((fi = fopen(*++argv, "r")) == NULL) { perror(*argv); errs++; continue; } fmt(fi); fclose(fi); } oflush(); exit(errs); } /* * Read up characters from the passed input file, forming lines, * doing ^H processing, expanding tabs, stripping trailing blanks, * and sending each line down for analysis. */ fmt(fi) FILE *fi; { char linebuf[BUFSIZ], canonb[BUFSIZ]; register char *cp, *cp2; register int c, col; c = getc(fi); while (c != EOF) { /* * Collect a line, doing ^H processing. * Leave tabs for now. */ cp = linebuf; while (c != '\n' && c != EOF && cp-linebuf < BUFSIZ-1) { if (c == '\b') { if (cp > linebuf) cp--; c = getc(fi); continue; } if ((c < ' ' || c >= 0177) && c != '\t') { c = getc(fi); continue; } *cp++ = c; c = getc(fi); } *cp = '\0'; /* * Toss anything remaining on the input line. */ while (c != '\n' && c != EOF) c = getc(fi); /* * Expand tabs on the way to canonb. */ col = 0; cp = linebuf; cp2 = canonb; while (c = *cp++) { if (c != '\t') { col++; if (cp2-canonb < BUFSIZ-1) *cp2++ = c; continue; } do { if (cp2-canonb < BUFSIZ-1) *cp2++ = ' '; col++; } while ((col & 07) != 0); } /* * Swipe trailing blanks from the line. */ for (cp2--; cp2 >= canonb && *cp2 == ' '; cp2--) ; *++cp2 = '\0'; prefix(canonb); if (c != EOF) c = getc(fi); } } /* * Take a line devoid of tabs and other garbage and determine its * blank prefix. If the indent changes, call for a linebreak. * If the input line is blank, echo the blank line on the output. * Finally, if the line minus the prefix is a mail header, try to keep * it on a line by itself. */ prefix(line) char line[]; { register char *cp, **hp; register int np, h; if (strlen(line) == 0) { oflush(); putchar('\n'); return; } for (cp = line; *cp == ' '; cp++) ; np = cp - line; /* * The following horrible expression attempts to avoid linebreaks * when the indent changes due to a paragraph. */ if (np != pfx && (np > pfx || abs(pfx-np) > 8)) oflush(); if (h = ishead(cp)) oflush(), mark = lineno; if (lineno - mark < 3 && lineno - mark > 0) for (hp = &headnames[0]; *hp != (char *) 0; hp++) if (ispref(*hp, cp)) { h = 1; oflush(); break; } if (!h && (h = (*cp == '.'))) oflush(); pfx = np; if (h) pack(cp, strlen(cp)); else split(cp); if (h) oflush(); lineno++; } /* * Split up the passed line into output "words" which are * maximal strings of non-blanks with the blank separation * attached at the end. Pass these words along to the output * line packer. */ split(line) char line[]; { register char *cp, *cp2; char word[BUFSIZ]; int wordl; /* LIZ@UOM 6/18/85 */ cp = line; while (*cp) { cp2 = word; wordl = 0; /* LIZ@UOM 6/18/85 */ /* * Collect a 'word,' allowing it to contain escaped white * space. */ while (*cp && *cp != ' ') { if (*cp == '\\' && isspace(cp[1])) *cp2++ = *cp++; *cp2++ = *cp++; wordl++;/* LIZ@UOM 6/18/85 */ } /* * Guarantee a space at end of line. Two spaces after end of * sentence punctuation. */ if (*cp == '\0') { *cp2++ = ' '; if (index(".:!", cp[-1])) *cp2++ = ' '; } while (*cp == ' ') *cp2++ = *cp++; *cp2 = '\0'; /* * LIZ@UOM 6/18/85 pack(word); */ pack(word, wordl); } } /* * Output section. * Build up line images from the words passed in. Prefix * each line with correct number of blanks. The buffer "outbuf" * contains the current partial line image, including prefixed blanks. * "outp" points to the next available space therein. When outp is NOSTR, * there ain't nothing in there yet. At the bottom of this whole mess, * leading tabs are reinserted. */ char outbuf[BUFSIZ]; /* Sandbagged output line image */ char *outp; /* Pointer in above */ /* * Initialize the output section. */ setout() { outp = NOSTR; } /* * Pack a word onto the output line. If this is the beginning of * the line, push on the appropriately-sized string of blanks first. * If the word won't fit on the current line, flush and begin a new * line. If the word is too long to fit all by itself on a line, * just give it its own and hope for the best. * * LIZ@UOM 6/18/85 -- If the new word will fit in at less than the * goal length, take it. If not, then check to see if the line * will be over the max length; if so put the word on the next * line. If not, check to see if the line will be closer to the * goal length with or without the word and take it or put it on * the next line accordingly. */ /* * LIZ@UOM 6/18/85 -- pass in the length of the word as well * pack(word) * char word[]; */ pack(word,wl) char word[]; int wl; { register char *cp; register int s, t; if (outp == NOSTR) leadin(); /* * LIZ@UOM 6/18/85 -- change condition to check goal_length; s is the * length of the line before the word is added; t is now the length * of the line after the word is added * t = strlen(word); * if (t+s <= LENGTH) */ s = outp - outbuf; t = wl + s; if ((t <= goal_length) || ((t <= max_length) && (t - goal_length <= goal_length - s))) { /* * In like flint! */ for (cp = word; *cp; *outp++ = *cp++); return; } if (s > pfx) { oflush(); leadin(); } for (cp = word; *cp; *outp++ = *cp++); } /* * If there is anything on the current output line, send it on * its way. Set outp to NOSTR to indicate the absence of the current * line prefix. */ oflush() { if (outp == NOSTR) return; *outp = '\0'; tabulate(outbuf); outp = NOSTR; } /* * Take the passed line buffer, insert leading tabs where possible, and * output on standard output (finally). */ tabulate(line) char line[]; { register char *cp; register int b, t; /* * Toss trailing blanks in the output line. */ cp = line + strlen(line) - 1; while (cp >= line && *cp == ' ') cp--; *++cp = '\0'; /* * Count the leading blank space and tabulate. */ for (cp = line; *cp == ' '; cp++) ; b = cp-line; t = b >> 3; b &= 07; if (t > 0) do putc('\t', stdout); while (--t); if (b > 0) do putc(' ', stdout); while (--b); while (*cp) putc(*cp++, stdout); putc('\n', stdout); } /* * Initialize the output line with the appropriate number of * leading blanks. */ leadin() { register int b; register char *cp; for (b = 0, cp = outbuf; b < pfx; b++) *cp++ = ' '; outp = cp; } /* * Save a string in dynamic space. * This little goodie is needed for * a headline detector in head.c */ char * savestr(str) char str[]; { register char *top; top = malloc(strlen(str) + 1); if (top == NOSTR) { fprintf(stderr, "fmt: Ran out of memory\n"); exit(1); } strcpy(top, str); return (top); } /* * Is s1 a prefix of s2?? */ ispref(s1, s2) register char *s1, *s2; { while (*s1++ == *s2) ; return (*s1 == '\0'); }