/* * Copyright (c) 1997, 1998 John S. Dyson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Absolutely no warranty of function or purpose is made by the author * John S. Dyson. * * $Id: vm_zone.c,v 1.21 1998/04/25 04:50:01 dyson Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header"); /* * This file comprises a very simple zone allocator. This is used * in lieu of the malloc allocator, where needed or more optimal. * * Note that the initial implementation of this had coloring, and * absolutely no improvement (actually perf degradation) occurred. * * Note also that the zones are type stable. The only restriction is * that the first two longwords of a data structure can be changed * between allocations. Any data that must be stable between allocations * must reside in areas after the first two longwords. * * zinitna, zinit, zbootinit are the initialization routines. * zalloc, zfree, are the interrupt/lock unsafe allocation/free routines. * zalloci, zfreei, are the interrupt/lock safe allocation/free routines. */ static struct vm_zone *zlist; static int sysctl_vm_zone SYSCTL_HANDLER_ARGS; static int zone_kmem_pages, zone_kern_pages, zone_kmem_kvaspace; /* * Create a zone, but don't allocate the zone structure. If the * zone had been previously created by the zone boot code, initialize * various parts of the zone code. * * If waits are not allowed during allocation (e.g. during interrupt * code), a-priori allocate the kernel virtual space, and allocate * only pages when needed. * * Arguments: * z pointer to zone structure. * obj pointer to VM object (opt). * name name of zone. * size size of zone entries. * nentries number of zone entries allocated (only ZONE_INTERRUPT.) * flags ZONE_INTERRUPT -- items can be allocated at interrupt time. * zalloc number of pages allocated when memory is needed. * * Note that when using ZONE_INTERRUPT, the size of the zone is limited * by the nentries argument. The size of the memory allocatable is * unlimited if ZONE_INTERRUPT is not set. * */ int zinitna(vm_zone_t z, vm_object_t obj, char *name, int size, int nentries, int flags, int zalloc) { int totsize; if ((z->zflags & ZONE_BOOT) == 0) { z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1); simple_lock_init(&z->zlock); z->zfreecnt = 0; z->ztotal = 0; z->zmax = 0; z->zname = name; z->znalloc = 0; z->zitems = NULL; if (zlist == 0) { zlist = z; } else { z->znext = zlist; zlist = z; } } z->zflags |= flags; /* * If we cannot wait, allocate KVA space up front, and we will fill * in pages as needed. */ if (z->zflags & ZONE_INTERRUPT) { totsize = round_page(z->zsize * nentries); zone_kmem_kvaspace += totsize; z->zkva = kmem_alloc_pageable(kernel_map, totsize); if (z->zkva == 0) return 0; z->zpagemax = totsize / PAGE_SIZE; if (obj == NULL) { z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax); } else { z->zobj = obj; _vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj); } z->zallocflag = VM_ALLOC_INTERRUPT; z->zmax += nentries; } else { z->zallocflag = VM_ALLOC_SYSTEM; z->zmax = 0; } if (z->zsize > PAGE_SIZE) z->zfreemin = 1; else z->zfreemin = PAGE_SIZE / z->zsize; z->zpagecount = 0; if (zalloc) z->zalloc = zalloc; else z->zalloc = 1; return 1; } /* * Subroutine same as zinitna, except zone data structure is allocated * automatically by malloc. This routine should normally be used, except * in certain tricky startup conditions in the VM system -- then * zbootinit and zinitna can be used. Zinit is the standard zone * initialization call. */ vm_zone_t zinit(char *name, int size, int nentries, int flags, int zalloc) { vm_zone_t z; z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT); if (z == NULL) return NULL; z->zflags = 0; if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) { free(z, M_ZONE); return NULL; } return z; } /* * Initialize a zone before the system is fully up. This routine should * only be called before full VM startup. */ void zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems) { int i; z->zname = name; z->zsize = size; z->zpagemax = 0; z->zobj = NULL; z->zflags = ZONE_BOOT; z->zfreemin = 0; z->zallocflag = 0; z->zpagecount = 0; z->zalloc = 0; z->znalloc = 0; simple_lock_init(&z->zlock); bzero(item, nitems * z->zsize); z->zitems = NULL; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #if defined(DIAGNOSTIC) ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; (char *) item += z->zsize; } z->zfreecnt = nitems; z->zmax = nitems; z->ztotal = nitems; if (zlist == 0) { zlist = z; } else { z->znext = zlist; zlist = z; } } /* * Zone critical region locks. */ static __inline int zlock(vm_zone_t z) { int s; s = splhigh(); simple_lock(&z->zlock); return s; } static __inline void zunlock(vm_zone_t z, int s) { simple_unlock(&z->zlock); splx(s); } /* * void *zalloc(vm_zone_t zone) -- * Returns an item from a specified zone. * * void zfree(vm_zone_t zone, void *item) -- * Frees an item back to a specified zone. * * void *zalloci(vm_zone_t zone) -- * Returns an item from a specified zone, interrupt safe. * * void zfreei(vm_zone_t zone, void *item) -- * Frees an item back to a specified zone, interrupt safe. * */ /* * Zone allocator/deallocator. These are interrupt / (or potentially SMP) * safe. The raw zalloc/zfree routines are in the vm_zone header file, * and are not interrupt safe, but are fast. */ void * zalloci(vm_zone_t z) { int s; void *item; s = zlock(z); item = _zalloc(z); zunlock(z, s); return item; } void zfreei(vm_zone_t z, void *item) { int s; s = zlock(z); _zfree(z, item); zunlock(z, s); return; } /* * Internal zone routine. Not to be called from external (non vm_zone) code. */ void * _zget(vm_zone_t z) { int i; vm_page_t m; int nitems, nbytes; void *item; if (z == NULL) panic("zget: null zone"); if (z->zflags & ZONE_INTERRUPT) { item = (char *) z->zkva + z->zpagecount * PAGE_SIZE; for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax)); i++) { vm_offset_t zkva; m = vm_page_alloc(z->zobj, z->zpagecount, z->zallocflag); if (m == NULL) break; zkva = z->zkva + z->zpagecount * PAGE_SIZE; pmap_kenter(zkva, VM_PAGE_TO_PHYS(m)); bzero((caddr_t) zkva, PAGE_SIZE); z->zpagecount++; zone_kmem_pages++; } nitems = (i * PAGE_SIZE) / z->zsize; } else { nbytes = z->zalloc * PAGE_SIZE; /* * Check to see if the kernel map is already locked. We could allow * for recursive locks, but that eliminates a valuable debugging * mechanism, and opens up the kernel map for potential corruption * by inconsistent data structure manipulation. We could also use * the interrupt allocation mechanism, but that has size limitations. * Luckily, we have kmem_map that is a submap of kernel map available * for memory allocation, and manipulation of that map doesn't affect * the kernel map structures themselves. * * We can wait, so just do normal map allocation in the appropriate * map. */ if (lockstatus(&kernel_map->lock)) { int s; s = splvm(); #ifdef SMP simple_unlock(&z->zlock); #endif item = (void *) kmem_malloc(kmem_map, nbytes, M_WAITOK); #ifdef SMP simple_lock(&z->zlock); #endif zone_kmem_pages += z->zalloc; splx(s); } else { #ifdef SMP simple_unlock(&z->zlock); #endif item = (void *) kmem_alloc(kernel_map, nbytes); #ifdef SMP simple_lock(&z->zlock); #endif zone_kern_pages += z->zalloc; } bzero(item, nbytes); nitems = nbytes / z->zsize; } z->ztotal += nitems; /* * Save one for immediate allocation */ if (nitems != 0) { nitems -= 1; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #if defined(DIAGNOSTIC) ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; (char *) item += z->zsize; } z->zfreecnt += nitems; } else if (z->zfreecnt > 0) { item = z->zitems; z->zitems = ((void **) item)[0]; #if defined(DIAGNOSTIC) if (((void **) item)[1] != (void *) ZENTRY_FREE) zerror(ZONE_ERROR_NOTFREE); ((void **) item)[1] = 0; #endif z->zfreecnt--; } else { item = NULL; } return item; } static int sysctl_vm_zone SYSCTL_HANDLER_ARGS { int error=0; vm_zone_t curzone, nextzone; char tmpbuf[128]; char tmpname[14]; sprintf(tmpbuf, "\nITEM SIZE LIMIT USED FREE REQUESTS\n"); error = SYSCTL_OUT(req, tmpbuf, strlen(tmpbuf)); if (error) return (error); for (curzone = zlist; curzone; curzone = nextzone) { int i; int len; int offset; nextzone = curzone->znext; len = strlen(curzone->zname); if (len >= (sizeof(tmpname) - 1)) len = (sizeof(tmpname) - 1); for(i = 0; i < sizeof(tmpname) - 1; i++) tmpname[i] = ' '; tmpname[i] = 0; memcpy(tmpname, curzone->zname, len); tmpname[len] = ':'; offset = 0; if (curzone == zlist) { offset = 1; tmpbuf[0] = '\n'; } sprintf(tmpbuf + offset, "%s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n", tmpname, curzone->zsize, curzone->zmax, (curzone->ztotal - curzone->zfreecnt), curzone->zfreecnt, curzone->znalloc); len = strlen((char *)tmpbuf); if (nextzone == NULL) tmpbuf[len - 1] = 0; error = SYSCTL_OUT(req, tmpbuf, len); if (error) return (error); } return (0); } #if defined(DIAGNOSTIC) void zerror(int error) { char *msg; switch (error) { case ZONE_ERROR_INVALID: msg = "zone: invalid zone"; break; case ZONE_ERROR_NOTFREE: msg = "zone: entry not free"; break; case ZONE_ERROR_ALREADYFREE: msg = "zone: freeing free entry"; break; default: msg = "zone: invalid error"; break; } panic(msg); } #endif SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, \ NULL, 0, sysctl_vm_zone, "A", "Zone Info"); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0, ""); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0, ""); SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0, "");