/*
 * random_machdep.c -- A strong random number generator
 *
 * $Id: random_machdep.c,v 1.5 1996/04/07 17:38:39 bde Exp $
 *
 * Version 0.95, last modified 18-Oct-95
 * 
 * Copyright Theodore Ts'o, 1994, 1995.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 * 
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 * 
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define MAX_BLKDEV 4

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>

#include <machine/clock.h>
#include <machine/random.h>

#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/timerreg.h>

/*
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 */
#define POOLWORDS 128    /* Power of 2 - note that this is 32-bit words */
#define POOLBITS (POOLWORDS*32)

#if POOLWORDS == 128
#define TAP1    99     /* The polynomial taps */
#define TAP2    59
#define TAP3    31
#define TAP4    9
#define TAP5    7
#elif POOLWORDS == 64
#define TAP1    62      /* The polynomial taps */
#define TAP2    38
#define TAP3    10
#define TAP4    6
#define TAP5    1
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif

#define WRITEBUFFER 512 /* size in bytes */

/* There is actually only one of these, globally. */
struct random_bucket {
	u_int	add_ptr;
	u_int	entropy_count;
	int	input_rotate;
	u_int32_t *pool;
};

/* There is one of these per entropy source */
struct timer_rand_state {
	u_long	last_time;
	int 	last_delta;
	int 	nbits;
};

static struct random_bucket random_state;
static u_int32_t random_pool[POOLWORDS];
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state extract_timer_state;
static struct timer_rand_state irq_timer_state[ICU_LEN];
static struct timer_rand_state blkdev_timer_state[MAX_BLKDEV];
static struct wait_queue *random_wait;

inthand2_t *sec_intr_handler[ICU_LEN];
int sec_intr_unit[ICU_LEN];

#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
	
void
rand_initialize(void)
{
	random_state.add_ptr = 0;
	random_state.entropy_count = 0;
	random_state.pool = random_pool;
	random_wait = NULL;
}

/*
 * This function adds an int into the entropy "pool".  It does not
 * update the entropy estimate.  The caller must do this if appropriate.
 *
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 * 
 * We rotate the input word by a changing number of bits, to help
 * assure that all bits in the entropy get toggled.  Otherwise, if we
 * consistently feed the entropy pool small numbers (like ticks and
 * scancodes, for example), the upper bits of the entropy pool don't
 * get affected. --- TYT, 10/11/95
 */
static inline void
add_entropy_word(struct random_bucket *r, const u_int32_t input)
{
	u_int i;
	u_int32_t w;

	w = (input << r->input_rotate) | (input >> (32 - r->input_rotate));
	i = r->add_ptr = (r->add_ptr - 1) & (POOLWORDS-1);
	if (i)
		r->input_rotate = (r->input_rotate + 7) & 31;
	else
		/*
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
		r->input_rotate = (r->input_rotate + 14) & 31;

	/* XOR in the various taps */
	w ^= r->pool[(i+TAP1)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP2)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP3)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP4)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP5)&(POOLWORDS-1)];
	w ^= r->pool[i];
	/* Rotate w left 1 bit (stolen from SHA) and store */
	r->pool[i] = (w << 1) | (w >> 31);
}

/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how  any bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 * On the i386, this is assumed to be at most 16 bits, and the high bits
 * are used for a high-resolution timer.
 */
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
	u_int num)
{
	int		delta, delta2;
	u_int		nbits;
	u_int32_t	time;

#if defined(I586_CPU) || defined(I686_CPU)
	if (i586_ctr_rate != 0) {
		num ^= (u_int32_t) rdtsc() << 16;
		r->entropy_count += 2;
	} else {
#endif
		disable_intr();
		outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
		num ^= inb(TIMER_CNTR0) << 16;
		num ^= inb(TIMER_CNTR0) << 24;
		enable_intr();
		r->entropy_count += 2;
#if defined(I586_CPU) || defined(I686_CPU)
	}
#endif
		
	time = ticks;

	add_entropy_word(r, (u_int32_t) num);
	add_entropy_word(r, time);

	/*
	 * Calculate number of bits of randomness we probably
	 * added.  We take into account the first and second order
	 * deltas in order to make our estimate.
	 */
	delta = time - state->last_time;
	state->last_time = time;

	delta2 = delta - state->last_delta;
	state->last_delta = delta;

	if (delta < 0) delta = -delta;
	if (delta2 < 0) delta2 = -delta2;
	delta = MIN(delta, delta2) >> 1;
	for (nbits = 0; delta; nbits++)
		delta >>= 1;

	r->entropy_count += nbits;
	
	/* Prevent overflow */
	if (r->entropy_count > POOLBITS)
		r->entropy_count = POOLBITS;
}

void
add_keyboard_randomness(u_char scancode)
{
	add_timer_randomness(&random_state, &keyboard_timer_state, scancode);
}

void
add_interrupt_randomness(int irq)
{
	(sec_intr_handler[irq])(sec_intr_unit[irq]);
	add_timer_randomness(&random_state, &irq_timer_state[irq], irq);
}

#ifdef notused
void
add_blkdev_randomness(int major)
{
	if (major >= MAX_BLKDEV)
		return;

	add_timer_randomness(&random_state, &blkdev_timer_state[major],
			     0x200+major);
}
#endif /* notused */

/*
 * MD5 transform algorithm, taken from code written by Colin Plumb,
 * and put into the public domain
 *
 * QUESTION: Replace this with SHA, which as generally received better
 * reviews from the cryptographic community?
 */

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void
MD5Transform(u_int32_t buf[4],
			 u_int32_t const in[16])
{
	u_int32_t a, b, c, d;

	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];

	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);

	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);

	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);

	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);

	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}

#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP


#if POOLWORDS % 16
#error extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
#endif
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.  This function computes how many remaining
 * bits of entropy are left in the pool, but it does not restrict the
 * number of bytes that are actually obtained.
 */
static inline int
extract_entropy(struct random_bucket *r, char *buf, int nbytes)
{
	int ret, i;
	u_int32_t tmp[4];
	
	add_timer_randomness(r, &extract_timer_state, nbytes);
	
	/* Redundant, but just in case... */
	if (r->entropy_count > POOLBITS) 
		r->entropy_count = POOLBITS;
	/* Why is this here?  Left in from Ted Ts'o.  Perhaps to limit time. */
	if (nbytes > 32768)
		nbytes = 32768;

	ret = nbytes;
	if (r->entropy_count / 8 >= nbytes)
		r->entropy_count -= nbytes*8;
	else
		r->entropy_count = 0;

	while (nbytes) {
		/* Hash the pool to get the output */
		tmp[0] = 0x67452301;
		tmp[1] = 0xefcdab89;
		tmp[2] = 0x98badcfe;
		tmp[3] = 0x10325476;
		for (i = 0; i < POOLWORDS; i += 16)
			MD5Transform(tmp, r->pool+i);
		/* Modify pool so next hash will produce different results */
		add_entropy_word(r, tmp[0]);
		add_entropy_word(r, tmp[1]);
		add_entropy_word(r, tmp[2]);
		add_entropy_word(r, tmp[3]);
		/*
		 * Run the MD5 Transform one more time, since we want
		 * to add at least minimal obscuring of the inputs to
		 * add_entropy_word().  --- TYT
		 */
		MD5Transform(tmp, r->pool);
		
		/* Copy data to destination buffer */
		i = MIN(nbytes, 16);
		memcpy(buf, (u_int8_t const *)tmp, i);
		nbytes -= i;
		buf += i;
	}

	/* Wipe data from memory */
	bzero(tmp, sizeof(tmp));
	
	return ret;
}

#ifdef notused /* XXX NOT the exported kernel interface */
/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for seeding TCP sequence
 * numbers, etc.
 */
void
get_random_bytes(void *buf, u_int nbytes)
{
	extract_entropy(&random_state, (char *) buf, nbytes);
}
#endif /* notused */

u_int
read_random(char *buf, u_int nbytes)
{
	if ((nbytes * 8) > random_state.entropy_count)
		nbytes = random_state.entropy_count / 8;
	
	return extract_entropy(&random_state, buf, nbytes);
}

u_int
read_random_unlimited(char *buf, u_int nbytes)
{
	return extract_entropy(&random_state, buf, nbytes);
}

#ifdef notused
u_int
write_random(const char *buf, u_int nbytes)
{
	u_int i;
	u_int32_t word, *p;

	for (i = nbytes, p = (u_int32_t *)buf;
	     i >= sizeof(u_int32_t);
	     i-= sizeof(u_int32_t), p++)
		add_entropy_word(&random_state, *p);
	if (i) {
		word = 0;
		memcpy(&word, p, i);
		add_entropy_word(&random_state, word);
	}
	return nbytes;
}
#endif /* notused */