// -*- C++ -*- /* Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc. Written by James Clark (jjc@jclark.com) This file is part of groff. groff is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. groff is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with groff; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "pic.h" #include "common.h" // output a dashed circle as a series of arcs void common_output::dashed_circle(const position ¢, double rad, const line_type <) { assert(lt.type == line_type::dashed); line_type slt = lt; slt.type = line_type::solid; double dash_angle = lt.dash_width/rad; int ndashes; double gap_angle; if (dash_angle >= M_PI/4.0) { if (dash_angle < M_PI/2.0) { gap_angle = M_PI/2.0 - dash_angle; ndashes = 4; } else if (dash_angle < M_PI) { gap_angle = M_PI - dash_angle; ndashes = 2; } else { circle(cent, rad, slt, -1.0); return; } } else { ndashes = 4*int(ceil(M_PI/(4.0*dash_angle))); gap_angle = (M_PI*2.0)/ndashes - dash_angle; } for (int i = 0; i < ndashes; i++) { double start_angle = i*(dash_angle+gap_angle) - dash_angle/2.0; solid_arc(cent, rad, start_angle, start_angle + dash_angle, lt); } } // output a dotted circle as a series of dots void common_output::dotted_circle(const position ¢, double rad, const line_type <) { assert(lt.type == line_type::dotted); double gap_angle = lt.dash_width/rad; int ndots; if (gap_angle >= M_PI/2.0) { // always have at least 2 dots gap_angle = M_PI; ndots = 2; } else { ndots = 4*int(M_PI/(2.0*gap_angle)); gap_angle = (M_PI*2.0)/ndots; } double ang = 0.0; for (int i = 0; i < ndots; i++, ang += gap_angle) dot(cent + position(cos(ang), sin(ang))*rad, lt); } // return non-zero iff we can compute a center int compute_arc_center(const position &start, const position ¢, const position &end, position *result) { // This finds the point along the vector from start to cent that // is equidistant between start and end. distance c = cent - start; distance e = end - start; double n = c*e; if (n == 0.0) return 0; *result = start + c*((e*e)/(2.0*n)); return 1; } // output a dashed arc as a series of arcs void common_output::dashed_arc(const position &start, const position ¢, const position &end, const line_type <) { assert(lt.type == line_type::dashed); position c; if (!compute_arc_center(start, cent, end, &c)) { line(start, &end, 1, lt); return; } distance start_offset = start - c; distance end_offset = end - c; double start_angle = atan2(start_offset.y, start_offset.x); double end_angle = atan2(end_offset.y, end_offset.x); double rad = hypot(c - start); double dash_angle = lt.dash_width/rad; double total_angle = end_angle - start_angle; while (total_angle < 0) total_angle += M_PI + M_PI; if (total_angle <= dash_angle*2.0) { solid_arc(cent, rad, start_angle, end_angle, lt); return; } int ndashes = int((total_angle - dash_angle)/(dash_angle*2.0) + .5); double dash_and_gap_angle = (total_angle - dash_angle)/ndashes; for (int i = 0; i <= ndashes; i++) solid_arc(cent, rad, start_angle + i*dash_and_gap_angle, start_angle + i*dash_and_gap_angle + dash_angle, lt); } // output a dotted arc as a series of dots void common_output::dotted_arc(const position &start, const position ¢, const position &end, const line_type <) { assert(lt.type == line_type::dotted); position c; if (!compute_arc_center(start, cent, end, &c)) { line(start, &end, 1, lt); return; } distance start_offset = start - c; distance end_offset = end - c; double start_angle = atan2(start_offset.y, start_offset.x); double total_angle = atan2(end_offset.y, end_offset.x) - start_angle; while (total_angle < 0) total_angle += M_PI + M_PI; double rad = hypot(c - start); int ndots = int(total_angle/(lt.dash_width/rad) + .5); if (ndots == 0) dot(start, lt); else { for (int i = 0; i <= ndots; i++) { double a = start_angle + (total_angle*i)/ndots; dot(cent + position(cos(a), sin(a))*rad, lt); } } } void common_output::solid_arc(const position ¢, double rad, double start_angle, double end_angle, const line_type <) { line_type slt = lt; slt.type = line_type::solid; arc(cent + position(cos(start_angle), sin(start_angle))*rad, cent, cent + position(cos(end_angle), sin(end_angle))*rad, slt); } void common_output::rounded_box(const position ¢, const distance &dim, double rad, const line_type <, double fill) { if (fill >= 0.0) filled_rounded_box(cent, dim, rad, fill); switch (lt.type) { case line_type::invisible: break; case line_type::dashed: dashed_rounded_box(cent, dim, rad, lt); break; case line_type::dotted: dotted_rounded_box(cent, dim, rad, lt); break; case line_type::solid: solid_rounded_box(cent, dim, rad, lt); break; default: assert(0); } } void common_output::dashed_rounded_box(const position ¢, const distance &dim, double rad, const line_type <) { line_type slt = lt; slt.type = line_type::solid; double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad; int n_hor_dashes = int(hor_length/(lt.dash_width*2.0) + .5); double hor_gap_width = (n_hor_dashes != 0 ? hor_length/n_hor_dashes - lt.dash_width : 0.0); double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad; int n_vert_dashes = int(vert_length/(lt.dash_width*2.0) + .5); double vert_gap_width = (n_vert_dashes != 0 ? vert_length/n_vert_dashes - lt.dash_width : 0.0); // Note that each corner arc has to be split into two for dashing, // because one part is dashed using vert_gap_width, and the other // using hor_gap_width. double offset = lt.dash_width/2.0; dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, -M_PI/4.0, 0, slt, lt.dash_width, vert_gap_width, &offset); dash_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad), cent + position(dim.x/2.0, dim.y/2.0 - rad), slt, lt.dash_width, vert_gap_width, &offset); dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, 0, M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset); offset = lt.dash_width/2.0; dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, M_PI/4.0, M_PI/2, slt, lt.dash_width, hor_gap_width, &offset); dash_line(cent + position(dim.x/2.0 - rad, dim.y/2.0), cent + position(-dim.x/2.0 + rad, dim.y/2.0), slt, lt.dash_width, hor_gap_width, &offset); dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, M_PI/2, 3*M_PI/4.0, slt, lt.dash_width, hor_gap_width, &offset); offset = lt.dash_width/2.0; dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, 3.0*M_PI/4.0, M_PI, slt, lt.dash_width, vert_gap_width, &offset); dash_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad), cent + position(-dim.x/2.0, -dim.y/2.0 + rad), slt, lt.dash_width, vert_gap_width, &offset); dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, M_PI, 5.0*M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset); offset = lt.dash_width/2.0; dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, 5*M_PI/4.0, 3*M_PI/2.0, slt, lt.dash_width, hor_gap_width, &offset); dash_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0), cent + position(dim.x/2.0 - rad, -dim.y/2.0), slt, lt.dash_width, hor_gap_width, &offset); dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, 3*M_PI/2, 7*M_PI/4, slt, lt.dash_width, hor_gap_width, &offset); } // Used by dashed_rounded_box. void common_output::dash_arc(const position ¢, double rad, double start_angle, double end_angle, const line_type <, double dash_width, double gap_width, double *offsetp) { double length = (end_angle - start_angle)*rad; double pos = 0.0; for (;;) { if (*offsetp >= dash_width) { double rem = dash_width + gap_width - *offsetp; if (pos + rem > length) { *offsetp += length - pos; break; } else { pos += rem; *offsetp = 0.0; } } else { double rem = dash_width - *offsetp; if (pos + rem > length) { solid_arc(cent, rad, start_angle + pos/rad, end_angle, lt); *offsetp += length - pos; break; } else { solid_arc(cent, rad, start_angle + pos/rad, start_angle + (pos + rem)/rad, lt); pos += rem; *offsetp = dash_width; } } } } // Used by dashed_rounded_box. void common_output::dash_line(const position &start, const position &end, const line_type <, double dash_width, double gap_width, double *offsetp) { distance dist = end - start; double length = hypot(dist); if (length == 0.0) return; double pos = 0.0; for (;;) { if (*offsetp >= dash_width) { double rem = dash_width + gap_width - *offsetp; if (pos + rem > length) { *offsetp += length - pos; break; } else { pos += rem; *offsetp = 0.0; } } else { double rem = dash_width - *offsetp; if (pos + rem > length) { line(start + dist*(pos/length), &end, 1, lt); *offsetp += length - pos; break; } else { position p(start + dist*((pos + rem)/length)); line(start + dist*(pos/length), &p, 1, lt); pos += rem; *offsetp = dash_width; } } } } void common_output::dotted_rounded_box(const position ¢, const distance &dim, double rad, const line_type <) { line_type slt = lt; slt.type = line_type::solid; double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad; int n_hor_dots = int(hor_length/lt.dash_width + .5); double hor_gap_width = (n_hor_dots != 0 ? hor_length/n_hor_dots : lt.dash_width); double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad; int n_vert_dots = int(vert_length/lt.dash_width + .5); double vert_gap_width = (n_vert_dots != 0 ? vert_length/n_vert_dots : lt.dash_width); double epsilon = lt.dash_width/(rad*100.0); double offset = 0.0; dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, -M_PI/4.0, 0, slt, vert_gap_width, &offset); dot_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad), cent + position(dim.x/2.0, dim.y/2.0 - rad), slt, vert_gap_width, &offset); dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, 0, M_PI/4.0 - epsilon, slt, vert_gap_width, &offset); offset = 0.0; dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, M_PI/4.0, M_PI/2, slt, hor_gap_width, &offset); dot_line(cent + position(dim.x/2.0 - rad, dim.y/2.0), cent + position(-dim.x/2.0 + rad, dim.y/2.0), slt, hor_gap_width, &offset); dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, M_PI/2, 3*M_PI/4.0 - epsilon, slt, hor_gap_width, &offset); offset = 0.0; dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, 3.0*M_PI/4.0, M_PI, slt, vert_gap_width, &offset); dot_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad), cent + position(-dim.x/2.0, -dim.y/2.0 + rad), slt, vert_gap_width, &offset); dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, M_PI, 5.0*M_PI/4.0 - epsilon, slt, vert_gap_width, &offset); offset = 0.0; dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, 5*M_PI/4.0, 3*M_PI/2.0, slt, hor_gap_width, &offset); dot_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0), cent + position(dim.x/2.0 - rad, -dim.y/2.0), slt, hor_gap_width, &offset); dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, 3*M_PI/2, 7*M_PI/4 - epsilon, slt, hor_gap_width, &offset); } // Used by dotted_rounded_box. void common_output::dot_arc(const position ¢, double rad, double start_angle, double end_angle, const line_type <, double gap_width, double *offsetp) { double length = (end_angle - start_angle)*rad; double pos = 0.0; for (;;) { if (*offsetp == 0.0) { double ang = start_angle + pos/rad; dot(cent + position(cos(ang), sin(ang))*rad, lt); } double rem = gap_width - *offsetp; if (pos + rem > length) { *offsetp += length - pos; break; } else { pos += rem; *offsetp = 0.0; } } } // Used by dotted_rounded_box. void common_output::dot_line(const position &start, const position &end, const line_type <, double gap_width, double *offsetp) { distance dist = end - start; double length = hypot(dist); if (length == 0.0) return; double pos = 0.0; for (;;) { if (*offsetp == 0.0) dot(start + dist*(pos/length), lt); double rem = gap_width - *offsetp; if (pos + rem > length) { *offsetp += length - pos; break; } else { pos += rem; *offsetp = 0.0; } } } void common_output::solid_rounded_box(const position ¢, const distance &dim, double rad, const line_type <) { position tem = cent - dim/2.0; arc(tem + position(0.0, rad), tem + position(rad, rad), tem + position(rad, 0.0), lt); tem = cent + position(-dim.x/2.0, dim.y/2.0); arc(tem + position(rad, 0.0), tem + position(rad, -rad), tem + position(0.0, -rad), lt); tem = cent + dim/2.0; arc(tem + position(0.0, -rad), tem + position(-rad, -rad), tem + position(-rad, 0.0), lt); tem = cent + position(dim.x/2.0, -dim.y/2.0); arc(tem + position(-rad, 0.0), tem + position(-rad, rad), tem + position(0.0, rad), lt); position end; end = cent + position(-dim.x/2.0, dim.y/2.0 - rad); line(cent - dim/2.0 + position(0.0, rad), &end, 1, lt); end = cent + position(dim.x/2.0 - rad, dim.y/2.0); line(cent + position(-dim.x/2.0 + rad, dim.y/2.0), &end, 1, lt); end = cent + position(dim.x/2.0, -dim.y/2.0 + rad); line(cent + position(dim.x/2.0, dim.y/2.0 - rad), &end, 1, lt); end = cent + position(-dim.x/2.0 + rad, -dim.y/2.0); line(cent + position(dim.x/2.0 - rad, -dim.y/2.0), &end, 1, lt); } void common_output::filled_rounded_box(const position ¢, const distance &dim, double rad, double fill) { line_type ilt; ilt.type = line_type::invisible; circle(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, ilt, fill); circle(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, ilt, fill); circle(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, ilt, fill); circle(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, ilt, fill); position vec[4]; vec[0] = cent + position(dim.x/2.0, dim.y/2.0 - rad); vec[1] = cent + position(-dim.x/2.0, dim.y/2.0 - rad); vec[2] = cent + position(-dim.x/2.0, -dim.y/2.0 + rad); vec[3] = cent + position(dim.x/2.0, -dim.y/2.0 + rad); polygon(vec, 4, ilt, fill); vec[0] = cent + position(dim.x/2.0 - rad, dim.y/2.0); vec[1] = cent + position(-dim.x/2.0 + rad, dim.y/2.0); vec[2] = cent + position(-dim.x/2.0 + rad, -dim.y/2.0); vec[3] = cent + position(dim.x/2.0 - rad, -dim.y/2.0); polygon(vec, 4, ilt, fill); }