/* $NetBSD: svc.c,v 1.21 2000/07/06 03:10:35 christos Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009, Sun Microsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of Sun Microsystems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include /* * svc.c, Server-side remote procedure call interface. * * There are two sets of procedures here. The xprt routines are * for handling transport handles. The svc routines handle the * list of service routines. * * Copyright (C) 1984, Sun Microsystems, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SVC_VERSQUIET 0x0001 /* keep quiet about vers mismatch */ #define version_keepquiet(xp) (SVC_EXT(xp)->xp_flags & SVC_VERSQUIET) static struct svc_callout *svc_find(SVCPOOL *pool, rpcprog_t, rpcvers_t, char *); static void svc_new_thread(SVCGROUP *grp); static void xprt_unregister_locked(SVCXPRT *xprt); static void svc_change_space_used(SVCPOOL *pool, long delta); static bool_t svc_request_space_available(SVCPOOL *pool); static void svcpool_cleanup(SVCPOOL *pool); /* *************** SVCXPRT related stuff **************** */ static int svcpool_minthread_sysctl(SYSCTL_HANDLER_ARGS); static int svcpool_maxthread_sysctl(SYSCTL_HANDLER_ARGS); static int svcpool_threads_sysctl(SYSCTL_HANDLER_ARGS); SVCPOOL* svcpool_create(const char *name, struct sysctl_oid_list *sysctl_base) { SVCPOOL *pool; SVCGROUP *grp; int g; pool = malloc(sizeof(SVCPOOL), M_RPC, M_WAITOK|M_ZERO); mtx_init(&pool->sp_lock, "sp_lock", NULL, MTX_DEF); pool->sp_name = name; pool->sp_state = SVCPOOL_INIT; pool->sp_proc = NULL; TAILQ_INIT(&pool->sp_callouts); TAILQ_INIT(&pool->sp_lcallouts); pool->sp_minthreads = 1; pool->sp_maxthreads = 1; pool->sp_groupcount = 1; for (g = 0; g < SVC_MAXGROUPS; g++) { grp = &pool->sp_groups[g]; mtx_init(&grp->sg_lock, "sg_lock", NULL, MTX_DEF); grp->sg_pool = pool; grp->sg_state = SVCPOOL_ACTIVE; TAILQ_INIT(&grp->sg_xlist); TAILQ_INIT(&grp->sg_active); LIST_INIT(&grp->sg_idlethreads); grp->sg_minthreads = 1; grp->sg_maxthreads = 1; } /* * Don't use more than a quarter of mbuf clusters. Nota bene: * nmbclusters is an int, but nmbclusters*MCLBYTES may overflow * on LP64 architectures, so cast to u_long to avoid undefined * behavior. (ILP32 architectures cannot have nmbclusters * large enough to overflow for other reasons.) */ pool->sp_space_high = (u_long)nmbclusters * MCLBYTES / 4; pool->sp_space_low = (pool->sp_space_high / 3) * 2; sysctl_ctx_init(&pool->sp_sysctl); if (IS_DEFAULT_VNET(curvnet) && sysctl_base) { SYSCTL_ADD_PROC(&pool->sp_sysctl, sysctl_base, OID_AUTO, "minthreads", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pool, 0, svcpool_minthread_sysctl, "I", "Minimal number of threads"); SYSCTL_ADD_PROC(&pool->sp_sysctl, sysctl_base, OID_AUTO, "maxthreads", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pool, 0, svcpool_maxthread_sysctl, "I", "Maximal number of threads"); SYSCTL_ADD_PROC(&pool->sp_sysctl, sysctl_base, OID_AUTO, "threads", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pool, 0, svcpool_threads_sysctl, "I", "Current number of threads"); SYSCTL_ADD_INT(&pool->sp_sysctl, sysctl_base, OID_AUTO, "groups", CTLFLAG_RD, &pool->sp_groupcount, 0, "Number of thread groups"); SYSCTL_ADD_ULONG(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_used", CTLFLAG_RD, &pool->sp_space_used, "Space in parsed but not handled requests."); SYSCTL_ADD_ULONG(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_used_highest", CTLFLAG_RD, &pool->sp_space_used_highest, "Highest space used since reboot."); SYSCTL_ADD_ULONG(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_high", CTLFLAG_RW, &pool->sp_space_high, "Maximum space in parsed but not handled requests."); SYSCTL_ADD_ULONG(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_low", CTLFLAG_RW, &pool->sp_space_low, "Low water mark for request space."); SYSCTL_ADD_INT(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_throttled", CTLFLAG_RD, &pool->sp_space_throttled, 0, "Whether nfs requests are currently throttled"); SYSCTL_ADD_INT(&pool->sp_sysctl, sysctl_base, OID_AUTO, "request_space_throttle_count", CTLFLAG_RD, &pool->sp_space_throttle_count, 0, "Count of times throttling based on request space has occurred"); } return pool; } /* * Code common to svcpool_destroy() and svcpool_close(), which cleans up * the pool data structures. */ static void svcpool_cleanup(SVCPOOL *pool) { SVCGROUP *grp; SVCXPRT *xprt, *nxprt; struct svc_callout *s; struct svc_loss_callout *sl; struct svcxprt_list cleanup; int g; TAILQ_INIT(&cleanup); for (g = 0; g < SVC_MAXGROUPS; g++) { grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); while ((xprt = TAILQ_FIRST(&grp->sg_xlist)) != NULL) { xprt_unregister_locked(xprt); TAILQ_INSERT_TAIL(&cleanup, xprt, xp_link); } mtx_unlock(&grp->sg_lock); } TAILQ_FOREACH_SAFE(xprt, &cleanup, xp_link, nxprt) { if (xprt->xp_socket != NULL) soshutdown(xprt->xp_socket, SHUT_WR); SVC_RELEASE(xprt); } mtx_lock(&pool->sp_lock); while ((s = TAILQ_FIRST(&pool->sp_callouts)) != NULL) { mtx_unlock(&pool->sp_lock); svc_unreg(pool, s->sc_prog, s->sc_vers); mtx_lock(&pool->sp_lock); } while ((sl = TAILQ_FIRST(&pool->sp_lcallouts)) != NULL) { mtx_unlock(&pool->sp_lock); svc_loss_unreg(pool, sl->slc_dispatch); mtx_lock(&pool->sp_lock); } mtx_unlock(&pool->sp_lock); } void svcpool_destroy(SVCPOOL *pool) { SVCGROUP *grp; int g; svcpool_cleanup(pool); for (g = 0; g < SVC_MAXGROUPS; g++) { grp = &pool->sp_groups[g]; mtx_destroy(&grp->sg_lock); } mtx_destroy(&pool->sp_lock); if (pool->sp_rcache) replay_freecache(pool->sp_rcache); sysctl_ctx_free(&pool->sp_sysctl); free(pool, M_RPC); } /* * Similar to svcpool_destroy(), except that it does not destroy the actual * data structures. As such, "pool" may be used again. */ void svcpool_close(SVCPOOL *pool) { SVCGROUP *grp; int g; svcpool_cleanup(pool); /* Now, initialize the pool's state for a fresh svc_run() call. */ mtx_lock(&pool->sp_lock); pool->sp_state = SVCPOOL_INIT; mtx_unlock(&pool->sp_lock); for (g = 0; g < SVC_MAXGROUPS; g++) { grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); grp->sg_state = SVCPOOL_ACTIVE; mtx_unlock(&grp->sg_lock); } } /* * Sysctl handler to get the present thread count on a pool */ static int svcpool_threads_sysctl(SYSCTL_HANDLER_ARGS) { SVCPOOL *pool; int threads, error, g; pool = oidp->oid_arg1; threads = 0; mtx_lock(&pool->sp_lock); for (g = 0; g < pool->sp_groupcount; g++) threads += pool->sp_groups[g].sg_threadcount; mtx_unlock(&pool->sp_lock); error = sysctl_handle_int(oidp, &threads, 0, req); return (error); } /* * Sysctl handler to set the minimum thread count on a pool */ static int svcpool_minthread_sysctl(SYSCTL_HANDLER_ARGS) { SVCPOOL *pool; int newminthreads, error, g; pool = oidp->oid_arg1; newminthreads = pool->sp_minthreads; error = sysctl_handle_int(oidp, &newminthreads, 0, req); if (error == 0 && newminthreads != pool->sp_minthreads) { if (newminthreads > pool->sp_maxthreads) return (EINVAL); mtx_lock(&pool->sp_lock); pool->sp_minthreads = newminthreads; for (g = 0; g < pool->sp_groupcount; g++) { pool->sp_groups[g].sg_minthreads = max(1, pool->sp_minthreads / pool->sp_groupcount); } mtx_unlock(&pool->sp_lock); } return (error); } /* * Sysctl handler to set the maximum thread count on a pool */ static int svcpool_maxthread_sysctl(SYSCTL_HANDLER_ARGS) { SVCPOOL *pool; int newmaxthreads, error, g; pool = oidp->oid_arg1; newmaxthreads = pool->sp_maxthreads; error = sysctl_handle_int(oidp, &newmaxthreads, 0, req); if (error == 0 && newmaxthreads != pool->sp_maxthreads) { if (newmaxthreads < pool->sp_minthreads) return (EINVAL); mtx_lock(&pool->sp_lock); pool->sp_maxthreads = newmaxthreads; for (g = 0; g < pool->sp_groupcount; g++) { pool->sp_groups[g].sg_maxthreads = max(1, pool->sp_maxthreads / pool->sp_groupcount); } mtx_unlock(&pool->sp_lock); } return (error); } /* * Activate a transport handle. */ void xprt_register(SVCXPRT *xprt) { SVCPOOL *pool = xprt->xp_pool; SVCGROUP *grp; int g; SVC_ACQUIRE(xprt); g = atomic_fetchadd_int(&pool->sp_nextgroup, 1) % pool->sp_groupcount; xprt->xp_group = grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); xprt->xp_registered = TRUE; xprt->xp_active = FALSE; TAILQ_INSERT_TAIL(&grp->sg_xlist, xprt, xp_link); mtx_unlock(&grp->sg_lock); } /* * De-activate a transport handle. Note: the locked version doesn't * release the transport - caller must do that after dropping the pool * lock. */ static void xprt_unregister_locked(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; mtx_assert(&grp->sg_lock, MA_OWNED); KASSERT(xprt->xp_registered == TRUE, ("xprt_unregister_locked: not registered")); xprt_inactive_locked(xprt); TAILQ_REMOVE(&grp->sg_xlist, xprt, xp_link); xprt->xp_registered = FALSE; } void xprt_unregister(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; mtx_lock(&grp->sg_lock); if (xprt->xp_registered == FALSE) { /* Already unregistered by another thread */ mtx_unlock(&grp->sg_lock); return; } xprt_unregister_locked(xprt); mtx_unlock(&grp->sg_lock); if (xprt->xp_socket != NULL) soshutdown(xprt->xp_socket, SHUT_WR); SVC_RELEASE(xprt); } /* * Attempt to assign a service thread to this transport. */ static int xprt_assignthread(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; SVCTHREAD *st; mtx_assert(&grp->sg_lock, MA_OWNED); st = LIST_FIRST(&grp->sg_idlethreads); if (st) { LIST_REMOVE(st, st_ilink); SVC_ACQUIRE(xprt); xprt->xp_thread = st; st->st_xprt = xprt; cv_signal(&st->st_cond); return (TRUE); } else { /* * See if we can create a new thread. The * actual thread creation happens in * svc_run_internal because our locking state * is poorly defined (we are typically called * from a socket upcall). Don't create more * than one thread per second. */ if (grp->sg_state == SVCPOOL_ACTIVE && grp->sg_lastcreatetime < time_uptime && grp->sg_threadcount < grp->sg_maxthreads) { grp->sg_state = SVCPOOL_THREADWANTED; } } return (FALSE); } void xprt_active(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; mtx_lock(&grp->sg_lock); if (!xprt->xp_registered) { /* * Race with xprt_unregister - we lose. */ mtx_unlock(&grp->sg_lock); return; } if (!xprt->xp_active) { xprt->xp_active = TRUE; if (xprt->xp_thread == NULL) { if (!svc_request_space_available(xprt->xp_pool) || !xprt_assignthread(xprt)) TAILQ_INSERT_TAIL(&grp->sg_active, xprt, xp_alink); } } mtx_unlock(&grp->sg_lock); } void xprt_inactive_locked(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; mtx_assert(&grp->sg_lock, MA_OWNED); if (xprt->xp_active) { if (xprt->xp_thread == NULL) TAILQ_REMOVE(&grp->sg_active, xprt, xp_alink); xprt->xp_active = FALSE; } } void xprt_inactive(SVCXPRT *xprt) { SVCGROUP *grp = xprt->xp_group; mtx_lock(&grp->sg_lock); xprt_inactive_locked(xprt); mtx_unlock(&grp->sg_lock); } /* * Variant of xprt_inactive() for use only when sure that port is * assigned to thread. For example, within receive handlers. */ void xprt_inactive_self(SVCXPRT *xprt) { KASSERT(xprt->xp_thread != NULL, ("xprt_inactive_self(%p) with NULL xp_thread", xprt)); xprt->xp_active = FALSE; } /* * Add a service program to the callout list. * The dispatch routine will be called when a rpc request for this * program number comes in. */ bool_t svc_reg(SVCXPRT *xprt, const rpcprog_t prog, const rpcvers_t vers, void (*dispatch)(struct svc_req *, SVCXPRT *), const struct netconfig *nconf) { SVCPOOL *pool = xprt->xp_pool; struct svc_callout *s; char *netid = NULL; int flag = 0; /* VARIABLES PROTECTED BY svc_lock: s, svc_head */ if (xprt->xp_netid) { netid = strdup(xprt->xp_netid, M_RPC); flag = 1; } else if (nconf && nconf->nc_netid) { netid = strdup(nconf->nc_netid, M_RPC); flag = 1; } /* must have been created with svc_raw_create */ if ((netid == NULL) && (flag == 1)) { return (FALSE); } mtx_lock(&pool->sp_lock); if ((s = svc_find(pool, prog, vers, netid)) != NULL) { if (netid) free(netid, M_RPC); if (s->sc_dispatch == dispatch) goto rpcb_it; /* he is registering another xptr */ mtx_unlock(&pool->sp_lock); return (FALSE); } s = malloc(sizeof (struct svc_callout), M_RPC, M_NOWAIT); if (s == NULL) { if (netid) free(netid, M_RPC); mtx_unlock(&pool->sp_lock); return (FALSE); } s->sc_prog = prog; s->sc_vers = vers; s->sc_dispatch = dispatch; s->sc_netid = netid; TAILQ_INSERT_TAIL(&pool->sp_callouts, s, sc_link); if ((xprt->xp_netid == NULL) && (flag == 1) && netid) ((SVCXPRT *) xprt)->xp_netid = strdup(netid, M_RPC); rpcb_it: mtx_unlock(&pool->sp_lock); /* now register the information with the local binder service */ if (nconf) { bool_t dummy; struct netconfig tnc; struct netbuf nb; tnc = *nconf; nb.buf = &xprt->xp_ltaddr; nb.len = xprt->xp_ltaddr.ss_len; dummy = rpcb_set(prog, vers, &tnc, &nb); return (dummy); } return (TRUE); } /* * Remove a service program from the callout list. */ void svc_unreg(SVCPOOL *pool, const rpcprog_t prog, const rpcvers_t vers) { struct svc_callout *s; /* unregister the information anyway */ (void) rpcb_unset(prog, vers, NULL); mtx_lock(&pool->sp_lock); while ((s = svc_find(pool, prog, vers, NULL)) != NULL) { TAILQ_REMOVE(&pool->sp_callouts, s, sc_link); if (s->sc_netid) mem_free(s->sc_netid, sizeof (s->sc_netid) + 1); mem_free(s, sizeof (struct svc_callout)); } mtx_unlock(&pool->sp_lock); } /* * Add a service connection loss program to the callout list. * The dispatch routine will be called when some port in ths pool die. */ bool_t svc_loss_reg(SVCXPRT *xprt, void (*dispatch)(SVCXPRT *)) { SVCPOOL *pool = xprt->xp_pool; struct svc_loss_callout *s; mtx_lock(&pool->sp_lock); TAILQ_FOREACH(s, &pool->sp_lcallouts, slc_link) { if (s->slc_dispatch == dispatch) break; } if (s != NULL) { mtx_unlock(&pool->sp_lock); return (TRUE); } s = malloc(sizeof(struct svc_loss_callout), M_RPC, M_NOWAIT); if (s == NULL) { mtx_unlock(&pool->sp_lock); return (FALSE); } s->slc_dispatch = dispatch; TAILQ_INSERT_TAIL(&pool->sp_lcallouts, s, slc_link); mtx_unlock(&pool->sp_lock); return (TRUE); } /* * Remove a service connection loss program from the callout list. */ void svc_loss_unreg(SVCPOOL *pool, void (*dispatch)(SVCXPRT *)) { struct svc_loss_callout *s; mtx_lock(&pool->sp_lock); TAILQ_FOREACH(s, &pool->sp_lcallouts, slc_link) { if (s->slc_dispatch == dispatch) { TAILQ_REMOVE(&pool->sp_lcallouts, s, slc_link); free(s, M_RPC); break; } } mtx_unlock(&pool->sp_lock); } /* ********************** CALLOUT list related stuff ************* */ /* * Search the callout list for a program number, return the callout * struct. */ static struct svc_callout * svc_find(SVCPOOL *pool, rpcprog_t prog, rpcvers_t vers, char *netid) { struct svc_callout *s; mtx_assert(&pool->sp_lock, MA_OWNED); TAILQ_FOREACH(s, &pool->sp_callouts, sc_link) { if (s->sc_prog == prog && s->sc_vers == vers && (netid == NULL || s->sc_netid == NULL || strcmp(netid, s->sc_netid) == 0)) break; } return (s); } /* ******************* REPLY GENERATION ROUTINES ************ */ static bool_t svc_sendreply_common(struct svc_req *rqstp, struct rpc_msg *rply, struct mbuf *body) { SVCXPRT *xprt = rqstp->rq_xprt; bool_t ok; if (rqstp->rq_args) { m_freem(rqstp->rq_args); rqstp->rq_args = NULL; } if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, rply, svc_getrpccaller(rqstp), body); if (!SVCAUTH_WRAP(&rqstp->rq_auth, &body)) return (FALSE); ok = SVC_REPLY(xprt, rply, rqstp->rq_addr, body, &rqstp->rq_reply_seq); if (rqstp->rq_addr) { free(rqstp->rq_addr, M_SONAME); rqstp->rq_addr = NULL; } return (ok); } /* * Send a reply to an rpc request */ bool_t svc_sendreply(struct svc_req *rqstp, xdrproc_t xdr_results, void * xdr_location) { struct rpc_msg rply; struct mbuf *m; XDR xdrs; bool_t ok; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = SUCCESS; rply.acpted_rply.ar_results.where = NULL; rply.acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; m = m_getcl(M_WAITOK, MT_DATA, 0); xdrmbuf_create(&xdrs, m, XDR_ENCODE); ok = xdr_results(&xdrs, xdr_location); XDR_DESTROY(&xdrs); if (ok) { return (svc_sendreply_common(rqstp, &rply, m)); } else { m_freem(m); return (FALSE); } } bool_t svc_sendreply_mbuf(struct svc_req *rqstp, struct mbuf *m) { struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = SUCCESS; rply.acpted_rply.ar_results.where = NULL; rply.acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; return (svc_sendreply_common(rqstp, &rply, m)); } /* * No procedure error reply */ void svcerr_noproc(struct svc_req *rqstp) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = PROC_UNAVAIL; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, svc_getrpccaller(rqstp), NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Can't decode args error reply */ void svcerr_decode(struct svc_req *rqstp) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = GARBAGE_ARGS; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, (struct sockaddr *) &xprt->xp_rtaddr, NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Some system error */ void svcerr_systemerr(struct svc_req *rqstp) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = SYSTEM_ERR; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, svc_getrpccaller(rqstp), NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Authentication error reply */ void svcerr_auth(struct svc_req *rqstp, enum auth_stat why) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_DENIED; rply.rjcted_rply.rj_stat = AUTH_ERROR; rply.rjcted_rply.rj_why = why; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, svc_getrpccaller(rqstp), NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Auth too weak error reply */ void svcerr_weakauth(struct svc_req *rqstp) { svcerr_auth(rqstp, AUTH_TOOWEAK); } /* * Program unavailable error reply */ void svcerr_noprog(struct svc_req *rqstp) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = PROG_UNAVAIL; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, svc_getrpccaller(rqstp), NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Program version mismatch error reply */ void svcerr_progvers(struct svc_req *rqstp, rpcvers_t low_vers, rpcvers_t high_vers) { SVCXPRT *xprt = rqstp->rq_xprt; struct rpc_msg rply; rply.rm_xid = rqstp->rq_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = rqstp->rq_verf; rply.acpted_rply.ar_stat = PROG_MISMATCH; rply.acpted_rply.ar_vers.low = (uint32_t)low_vers; rply.acpted_rply.ar_vers.high = (uint32_t)high_vers; if (xprt->xp_pool->sp_rcache) replay_setreply(xprt->xp_pool->sp_rcache, &rply, svc_getrpccaller(rqstp), NULL); svc_sendreply_common(rqstp, &rply, NULL); } /* * Allocate a new server transport structure. All fields are * initialized to zero and xp_p3 is initialized to point at an * extension structure to hold various flags and authentication * parameters. */ SVCXPRT * svc_xprt_alloc(void) { SVCXPRT *xprt; SVCXPRT_EXT *ext; xprt = mem_alloc(sizeof(SVCXPRT)); ext = mem_alloc(sizeof(SVCXPRT_EXT)); xprt->xp_p3 = ext; refcount_init(&xprt->xp_refs, 1); return (xprt); } /* * Free a server transport structure. */ void svc_xprt_free(SVCXPRT *xprt) { mem_free(xprt->xp_p3, sizeof(SVCXPRT_EXT)); /* The size argument is ignored, so 0 is ok. */ mem_free(xprt->xp_gidp, 0); mem_free(xprt, sizeof(SVCXPRT)); } /* ******************* SERVER INPUT STUFF ******************* */ /* * Read RPC requests from a transport and queue them to be * executed. We handle authentication and replay cache replies here. * Actually dispatching the RPC is deferred till svc_executereq. */ static enum xprt_stat svc_getreq(SVCXPRT *xprt, struct svc_req **rqstp_ret) { SVCPOOL *pool = xprt->xp_pool; struct svc_req *r; struct rpc_msg msg; struct mbuf *args; struct svc_loss_callout *s; enum xprt_stat stat; /* now receive msgs from xprtprt (support batch calls) */ r = malloc(sizeof(*r), M_RPC, M_WAITOK|M_ZERO); msg.rm_call.cb_cred.oa_base = r->rq_credarea; msg.rm_call.cb_verf.oa_base = &r->rq_credarea[MAX_AUTH_BYTES]; r->rq_clntcred = &r->rq_credarea[2*MAX_AUTH_BYTES]; if (SVC_RECV(xprt, &msg, &r->rq_addr, &args)) { enum auth_stat why; /* * Handle replays and authenticate before queuing the * request to be executed. */ SVC_ACQUIRE(xprt); r->rq_xprt = xprt; if (pool->sp_rcache) { struct rpc_msg repmsg; struct mbuf *repbody; enum replay_state rs; rs = replay_find(pool->sp_rcache, &msg, svc_getrpccaller(r), &repmsg, &repbody); switch (rs) { case RS_NEW: break; case RS_DONE: SVC_REPLY(xprt, &repmsg, r->rq_addr, repbody, &r->rq_reply_seq); if (r->rq_addr) { free(r->rq_addr, M_SONAME); r->rq_addr = NULL; } m_freem(args); goto call_done; default: m_freem(args); goto call_done; } } r->rq_xid = msg.rm_xid; r->rq_prog = msg.rm_call.cb_prog; r->rq_vers = msg.rm_call.cb_vers; r->rq_proc = msg.rm_call.cb_proc; r->rq_size = sizeof(*r) + m_length(args, NULL); r->rq_args = args; if ((why = _authenticate(r, &msg)) != AUTH_OK) { /* * RPCSEC_GSS uses this return code * for requests that form part of its * context establishment protocol and * should not be dispatched to the * application. */ if (why != RPCSEC_GSS_NODISPATCH) svcerr_auth(r, why); goto call_done; } if (!SVCAUTH_UNWRAP(&r->rq_auth, &r->rq_args)) { svcerr_decode(r); goto call_done; } /* * Defer enabling DDP until the first non-NULLPROC RPC * is received to allow STARTTLS authentication to * enable TLS offload first. */ if (xprt->xp_doneddp == 0 && r->rq_proc != NULLPROC && xprt->xp_socket != NULL && atomic_cmpset_int(&xprt->xp_doneddp, 0, 1)) { if (xprt->xp_socket->so_proto->pr_protocol == IPPROTO_TCP) { int optval = 1; (void)so_setsockopt(xprt->xp_socket, IPPROTO_TCP, TCP_USE_DDP, &optval, sizeof(optval)); } } /* * Everything checks out, return request to caller. */ *rqstp_ret = r; r = NULL; } call_done: if (r) { svc_freereq(r); r = NULL; } if ((stat = SVC_STAT(xprt)) == XPRT_DIED) { TAILQ_FOREACH(s, &pool->sp_lcallouts, slc_link) (*s->slc_dispatch)(xprt); xprt_unregister(xprt); } return (stat); } static void svc_executereq(struct svc_req *rqstp) { SVCXPRT *xprt = rqstp->rq_xprt; SVCPOOL *pool = xprt->xp_pool; int prog_found; rpcvers_t low_vers; rpcvers_t high_vers; struct svc_callout *s; /* now match message with a registered service*/ prog_found = FALSE; low_vers = (rpcvers_t) -1L; high_vers = (rpcvers_t) 0L; TAILQ_FOREACH(s, &pool->sp_callouts, sc_link) { if (s->sc_prog == rqstp->rq_prog) { if (s->sc_vers == rqstp->rq_vers) { /* * We hand ownership of r to the * dispatch method - they must call * svc_freereq. */ (*s->sc_dispatch)(rqstp, xprt); return; } /* found correct version */ prog_found = TRUE; if (s->sc_vers < low_vers) low_vers = s->sc_vers; if (s->sc_vers > high_vers) high_vers = s->sc_vers; } /* found correct program */ } /* * if we got here, the program or version * is not served ... */ if (prog_found) svcerr_progvers(rqstp, low_vers, high_vers); else svcerr_noprog(rqstp); svc_freereq(rqstp); } static void svc_checkidle(SVCGROUP *grp) { SVCXPRT *xprt, *nxprt; time_t timo; struct svcxprt_list cleanup; TAILQ_INIT(&cleanup); TAILQ_FOREACH_SAFE(xprt, &grp->sg_xlist, xp_link, nxprt) { /* * Only some transports have idle timers. Don't time * something out which is just waking up. */ if (!xprt->xp_idletimeout || xprt->xp_thread) continue; timo = xprt->xp_lastactive + xprt->xp_idletimeout; if (time_uptime > timo) { xprt_unregister_locked(xprt); TAILQ_INSERT_TAIL(&cleanup, xprt, xp_link); } } mtx_unlock(&grp->sg_lock); TAILQ_FOREACH_SAFE(xprt, &cleanup, xp_link, nxprt) { soshutdown(xprt->xp_socket, SHUT_WR); SVC_RELEASE(xprt); } mtx_lock(&grp->sg_lock); } static void svc_assign_waiting_sockets(SVCPOOL *pool) { SVCGROUP *grp; SVCXPRT *xprt; int g; for (g = 0; g < pool->sp_groupcount; g++) { grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); while ((xprt = TAILQ_FIRST(&grp->sg_active)) != NULL) { if (xprt_assignthread(xprt)) TAILQ_REMOVE(&grp->sg_active, xprt, xp_alink); else break; } mtx_unlock(&grp->sg_lock); } } static void svc_change_space_used(SVCPOOL *pool, long delta) { unsigned long value; value = atomic_fetchadd_long(&pool->sp_space_used, delta) + delta; if (delta > 0) { if (value >= pool->sp_space_high && !pool->sp_space_throttled) { pool->sp_space_throttled = TRUE; pool->sp_space_throttle_count++; } if (value > pool->sp_space_used_highest) pool->sp_space_used_highest = value; } else { if (value < pool->sp_space_low && pool->sp_space_throttled) { pool->sp_space_throttled = FALSE; svc_assign_waiting_sockets(pool); } } } static bool_t svc_request_space_available(SVCPOOL *pool) { if (pool->sp_space_throttled) return (FALSE); return (TRUE); } static void svc_run_internal(SVCGROUP *grp, bool_t ismaster) { SVCPOOL *pool = grp->sg_pool; SVCTHREAD *st, *stpref; SVCXPRT *xprt; enum xprt_stat stat; struct svc_req *rqstp; struct proc *p; long sz; int error; st = mem_alloc(sizeof(*st)); mtx_init(&st->st_lock, "st_lock", NULL, MTX_DEF); st->st_pool = pool; st->st_xprt = NULL; STAILQ_INIT(&st->st_reqs); cv_init(&st->st_cond, "rpcsvc"); mtx_lock(&grp->sg_lock); /* * If we are a new thread which was spawned to cope with * increased load, set the state back to SVCPOOL_ACTIVE. */ if (grp->sg_state == SVCPOOL_THREADSTARTING) grp->sg_state = SVCPOOL_ACTIVE; while (grp->sg_state != SVCPOOL_CLOSING) { /* * Create new thread if requested. */ if (grp->sg_state == SVCPOOL_THREADWANTED) { grp->sg_state = SVCPOOL_THREADSTARTING; grp->sg_lastcreatetime = time_uptime; mtx_unlock(&grp->sg_lock); svc_new_thread(grp); mtx_lock(&grp->sg_lock); continue; } /* * Check for idle transports once per second. */ if (time_uptime > grp->sg_lastidlecheck) { grp->sg_lastidlecheck = time_uptime; svc_checkidle(grp); } xprt = st->st_xprt; if (!xprt) { /* * Enforce maxthreads count. */ if (!ismaster && grp->sg_threadcount > grp->sg_maxthreads) break; /* * Before sleeping, see if we can find an * active transport which isn't being serviced * by a thread. */ if (svc_request_space_available(pool) && (xprt = TAILQ_FIRST(&grp->sg_active)) != NULL) { TAILQ_REMOVE(&grp->sg_active, xprt, xp_alink); SVC_ACQUIRE(xprt); xprt->xp_thread = st; st->st_xprt = xprt; continue; } LIST_INSERT_HEAD(&grp->sg_idlethreads, st, st_ilink); if (ismaster || (!ismaster && grp->sg_threadcount > grp->sg_minthreads)) error = cv_timedwait_sig(&st->st_cond, &grp->sg_lock, 5 * hz); else error = cv_wait_sig(&st->st_cond, &grp->sg_lock); if (st->st_xprt == NULL) LIST_REMOVE(st, st_ilink); /* * Reduce worker thread count when idle. */ if (error == EWOULDBLOCK) { if (!ismaster && (grp->sg_threadcount > grp->sg_minthreads) && !st->st_xprt) break; } else if (error != 0) { KASSERT(error == EINTR || error == ERESTART, ("non-signal error %d", error)); mtx_unlock(&grp->sg_lock); p = curproc; PROC_LOCK(p); if (P_SHOULDSTOP(p) || (p->p_flag & P_TOTAL_STOP) != 0) { thread_suspend_check(0); PROC_UNLOCK(p); mtx_lock(&grp->sg_lock); } else { PROC_UNLOCK(p); svc_exit(pool); mtx_lock(&grp->sg_lock); break; } } continue; } mtx_unlock(&grp->sg_lock); /* * Drain the transport socket and queue up any RPCs. */ xprt->xp_lastactive = time_uptime; do { if (!svc_request_space_available(pool)) break; rqstp = NULL; stat = svc_getreq(xprt, &rqstp); if (rqstp) { svc_change_space_used(pool, rqstp->rq_size); /* * See if the application has a preference * for some other thread. */ if (pool->sp_assign) { stpref = pool->sp_assign(st, rqstp); rqstp->rq_thread = stpref; STAILQ_INSERT_TAIL(&stpref->st_reqs, rqstp, rq_link); mtx_unlock(&stpref->st_lock); if (stpref != st) rqstp = NULL; } else { rqstp->rq_thread = st; STAILQ_INSERT_TAIL(&st->st_reqs, rqstp, rq_link); } } } while (rqstp == NULL && stat == XPRT_MOREREQS && grp->sg_state != SVCPOOL_CLOSING); /* * Move this transport to the end of the active list to * ensure fairness when multiple transports are active. * If this was the last queued request, svc_getreq will end * up calling xprt_inactive to remove from the active list. */ mtx_lock(&grp->sg_lock); xprt->xp_thread = NULL; st->st_xprt = NULL; if (xprt->xp_active) { if (!svc_request_space_available(pool) || !xprt_assignthread(xprt)) TAILQ_INSERT_TAIL(&grp->sg_active, xprt, xp_alink); } mtx_unlock(&grp->sg_lock); SVC_RELEASE(xprt); /* * Execute what we have queued. */ mtx_lock(&st->st_lock); while ((rqstp = STAILQ_FIRST(&st->st_reqs)) != NULL) { STAILQ_REMOVE_HEAD(&st->st_reqs, rq_link); mtx_unlock(&st->st_lock); sz = (long)rqstp->rq_size; svc_executereq(rqstp); svc_change_space_used(pool, -sz); mtx_lock(&st->st_lock); } mtx_unlock(&st->st_lock); mtx_lock(&grp->sg_lock); } if (st->st_xprt) { xprt = st->st_xprt; st->st_xprt = NULL; SVC_RELEASE(xprt); } KASSERT(STAILQ_EMPTY(&st->st_reqs), ("stray reqs on exit")); mtx_destroy(&st->st_lock); cv_destroy(&st->st_cond); mem_free(st, sizeof(*st)); grp->sg_threadcount--; if (!ismaster) wakeup(grp); mtx_unlock(&grp->sg_lock); } static void svc_thread_start(void *arg) { svc_run_internal((SVCGROUP *) arg, FALSE); kthread_exit(); } static void svc_new_thread(SVCGROUP *grp) { SVCPOOL *pool = grp->sg_pool; struct thread *td; mtx_lock(&grp->sg_lock); grp->sg_threadcount++; mtx_unlock(&grp->sg_lock); kthread_add(svc_thread_start, grp, pool->sp_proc, &td, 0, 0, "%s: service", pool->sp_name); } void svc_run(SVCPOOL *pool) { int g, i; struct proc *p; struct thread *td; SVCGROUP *grp; p = curproc; td = curthread; snprintf(td->td_name, sizeof(td->td_name), "%s: master", pool->sp_name); pool->sp_state = SVCPOOL_ACTIVE; pool->sp_proc = p; /* Choose group count based on number of threads and CPUs. */ pool->sp_groupcount = max(1, min(SVC_MAXGROUPS, min(pool->sp_maxthreads / 2, mp_ncpus) / 6)); for (g = 0; g < pool->sp_groupcount; g++) { grp = &pool->sp_groups[g]; grp->sg_minthreads = max(1, pool->sp_minthreads / pool->sp_groupcount); grp->sg_maxthreads = max(1, pool->sp_maxthreads / pool->sp_groupcount); grp->sg_lastcreatetime = time_uptime; } /* Starting threads */ pool->sp_groups[0].sg_threadcount++; for (g = 0; g < pool->sp_groupcount; g++) { grp = &pool->sp_groups[g]; for (i = ((g == 0) ? 1 : 0); i < grp->sg_minthreads; i++) svc_new_thread(grp); } svc_run_internal(&pool->sp_groups[0], TRUE); /* Waiting for threads to stop. */ for (g = 0; g < pool->sp_groupcount; g++) { grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); while (grp->sg_threadcount > 0) msleep(grp, &grp->sg_lock, 0, "svcexit", 0); mtx_unlock(&grp->sg_lock); } } void svc_exit(SVCPOOL *pool) { SVCGROUP *grp; SVCTHREAD *st; int g; pool->sp_state = SVCPOOL_CLOSING; for (g = 0; g < pool->sp_groupcount; g++) { grp = &pool->sp_groups[g]; mtx_lock(&grp->sg_lock); if (grp->sg_state != SVCPOOL_CLOSING) { grp->sg_state = SVCPOOL_CLOSING; LIST_FOREACH(st, &grp->sg_idlethreads, st_ilink) cv_signal(&st->st_cond); } mtx_unlock(&grp->sg_lock); } } bool_t svc_getargs(struct svc_req *rqstp, xdrproc_t xargs, void *args) { struct mbuf *m; XDR xdrs; bool_t stat; m = rqstp->rq_args; rqstp->rq_args = NULL; xdrmbuf_create(&xdrs, m, XDR_DECODE); stat = xargs(&xdrs, args); XDR_DESTROY(&xdrs); return (stat); } bool_t svc_freeargs(struct svc_req *rqstp, xdrproc_t xargs, void *args) { XDR xdrs; if (rqstp->rq_addr) { free(rqstp->rq_addr, M_SONAME); rqstp->rq_addr = NULL; } xdrs.x_op = XDR_FREE; return (xargs(&xdrs, args)); } void svc_freereq(struct svc_req *rqstp) { SVCTHREAD *st; SVCPOOL *pool; st = rqstp->rq_thread; if (st) { pool = st->st_pool; if (pool->sp_done) pool->sp_done(st, rqstp); } if (rqstp->rq_auth.svc_ah_ops) SVCAUTH_RELEASE(&rqstp->rq_auth); if (rqstp->rq_xprt) { SVC_RELEASE(rqstp->rq_xprt); } if (rqstp->rq_addr) free(rqstp->rq_addr, M_SONAME); if (rqstp->rq_args) m_freem(rqstp->rq_args); free(rqstp, M_RPC); }