/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 McAfee, Inc. * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG * All rights reserved. * * This software was developed for the FreeBSD Project by Jonathan Lemon * and McAfee Research, the Security Research Division of McAfee, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. [2001 McAfee, Inc.] * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include /* for proc0 declaration */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #ifdef TCP_BLACKBOX #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include #include VNET_DEFINE_STATIC(int, tcp_syncookies) = 1; #define V_tcp_syncookies VNET(tcp_syncookies) SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_syncookies), 0, "Use TCP SYN cookies if the syncache overflows"); VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0; #define V_tcp_syncookiesonly VNET(tcp_syncookiesonly) SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_syncookiesonly), 0, "Use only TCP SYN cookies"); #ifdef TCP_OFFLOAD #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL) #endif static void syncache_drop(struct syncache *, struct syncache_head *); static void syncache_free(struct syncache *); static void syncache_insert(struct syncache *, struct syncache_head *); static int syncache_respond(struct syncache *, const struct mbuf *, int); static struct socket *syncache_socket(struct syncache *, struct socket *, struct mbuf *m); static void syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout); static void syncache_timer(void *); static uint32_t syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t, uint8_t *, uintptr_t); static tcp_seq syncookie_generate(struct syncache_head *, struct syncache *); static struct syncache *syncookie_lookup(struct in_conninfo *, struct syncache_head *, struct syncache *, struct tcphdr *, struct tcpopt *, struct socket *, uint16_t); static void syncache_pause(struct in_conninfo *); static void syncache_unpause(void *); static void syncookie_reseed(void *); #ifdef INVARIANTS static int syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso, uint16_t port); #endif /* * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies. * 3 retransmits corresponds to a timeout with default values of * tcp_rexmit_initial * ( 1 + * tcp_backoff[1] + * tcp_backoff[2] + * tcp_backoff[3]) + 3 * tcp_rexmit_slop, * 1000 ms * (1 + 2 + 4 + 8) + 3 * 200 ms = 15600 ms, * the odds are that the user has given up attempting to connect by then. */ #define SYNCACHE_MAXREXMTS 3 /* Arbitrary values */ #define TCP_SYNCACHE_HASHSIZE 512 #define TCP_SYNCACHE_BUCKETLIMIT 30 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache); #define V_tcp_syncache VNET(tcp_syncache) static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "TCP SYN cache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.bucket_limit), 0, "Per-bucket hash limit for syncache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.cache_limit), 0, "Overall entry limit for syncache"); SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET, &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.hashsize), 0, "Size of TCP syncache hashtable"); SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0, "All syncache(4) entries are visible, ignoring UID/GID, jail(2) " "and mac(4) checks"); static int sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS) { int error; u_int new; new = V_tcp_syncache.rexmt_limit; error = sysctl_handle_int(oidp, &new, 0, req); if ((error == 0) && (req->newptr != NULL)) { if (new > TCP_MAXRXTSHIFT) error = EINVAL; else V_tcp_syncache.rexmt_limit = new; } return (error); } SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(tcp_syncache.rexmt_limit), 0, sysctl_net_inet_tcp_syncache_rexmtlimit_check, "IU", "Limit on SYN/ACK retransmissions"); VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1; SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0, "Send reset on socket allocation failure"); static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache"); #define SCH_LOCK(sch) mtx_lock(&(sch)->sch_mtx) #define SCH_UNLOCK(sch) mtx_unlock(&(sch)->sch_mtx) #define SCH_LOCK_ASSERT(sch) mtx_assert(&(sch)->sch_mtx, MA_OWNED) /* * Requires the syncache entry to be already removed from the bucket list. */ static void syncache_free(struct syncache *sc) { if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); if (sc->sc_cred) crfree(sc->sc_cred); #ifdef MAC mac_syncache_destroy(&sc->sc_label); #endif uma_zfree(V_tcp_syncache.zone, sc); } void syncache_init(void) { int i; V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT; V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS; V_tcp_syncache.hash_secret = arc4random(); TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize", &V_tcp_syncache.hashsize); TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit", &V_tcp_syncache.bucket_limit); if (!powerof2(V_tcp_syncache.hashsize) || V_tcp_syncache.hashsize == 0) { printf("WARNING: syncache hash size is not a power of 2.\n"); V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; } V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1; /* Set limits. */ V_tcp_syncache.cache_limit = V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit; TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit", &V_tcp_syncache.cache_limit); /* Allocate the hash table. */ V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize * sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO); #ifdef VIMAGE V_tcp_syncache.vnet = curvnet; #endif /* Initialize the hash buckets. */ for (i = 0; i < V_tcp_syncache.hashsize; i++) { TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket); mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head", NULL, MTX_DEF); callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer, &V_tcp_syncache.hashbase[i].sch_mtx, 0); V_tcp_syncache.hashbase[i].sch_length = 0; V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache; V_tcp_syncache.hashbase[i].sch_last_overflow = -(SYNCOOKIE_LIFETIME + 1); } /* Create the syncache entry zone. */ V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit); /* Start the SYN cookie reseeder callout. */ callout_init(&V_tcp_syncache.secret.reseed, 1); arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0); arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0); callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz, syncookie_reseed, &V_tcp_syncache); /* Initialize the pause machinery. */ mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF); callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx, 0); V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME; V_tcp_syncache.pause_backoff = 0; V_tcp_syncache.paused = false; } #ifdef VIMAGE void syncache_destroy(void) { struct syncache_head *sch; struct syncache *sc, *nsc; int i; /* * Stop the re-seed timer before freeing resources. No need to * possibly schedule it another time. */ callout_drain(&V_tcp_syncache.secret.reseed); /* Stop the SYN cache pause callout. */ mtx_lock(&V_tcp_syncache.pause_mtx); if (callout_stop(&V_tcp_syncache.pause_co) == 0) { mtx_unlock(&V_tcp_syncache.pause_mtx); callout_drain(&V_tcp_syncache.pause_co); } else mtx_unlock(&V_tcp_syncache.pause_mtx); /* Cleanup hash buckets: stop timers, free entries, destroy locks. */ for (i = 0; i < V_tcp_syncache.hashsize; i++) { sch = &V_tcp_syncache.hashbase[i]; callout_drain(&sch->sch_timer); SCH_LOCK(sch); TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) syncache_drop(sc, sch); SCH_UNLOCK(sch); KASSERT(TAILQ_EMPTY(&sch->sch_bucket), ("%s: sch->sch_bucket not empty", __func__)); KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0", __func__, sch->sch_length)); mtx_destroy(&sch->sch_mtx); } KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0, ("%s: cache_count not 0", __func__)); /* Free the allocated global resources. */ uma_zdestroy(V_tcp_syncache.zone); free(V_tcp_syncache.hashbase, M_SYNCACHE); mtx_destroy(&V_tcp_syncache.pause_mtx); } #endif /* * Inserts a syncache entry into the specified bucket row. * Locks and unlocks the syncache_head autonomously. */ static void syncache_insert(struct syncache *sc, struct syncache_head *sch) { struct syncache *sc2; SCH_LOCK(sch); /* * Make sure that we don't overflow the per-bucket limit. * If the bucket is full, toss the oldest element. */ if (sch->sch_length >= V_tcp_syncache.bucket_limit) { KASSERT(!TAILQ_EMPTY(&sch->sch_bucket), ("sch->sch_length incorrect")); syncache_pause(&sc->sc_inc); sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head); sch->sch_last_overflow = time_uptime; syncache_drop(sc2, sch); } /* Put it into the bucket. */ TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash); sch->sch_length++; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_added(tod, sc->sc_todctx); } #endif /* Reinitialize the bucket row's timer. */ if (sch->sch_length == 1) sch->sch_nextc = ticks + INT_MAX; syncache_timeout(sc, sch, 1); SCH_UNLOCK(sch); TCPSTATES_INC(TCPS_SYN_RECEIVED); TCPSTAT_INC(tcps_sc_added); } /* * Remove and free entry from syncache bucket row. * Expects locked syncache head. */ static void syncache_drop(struct syncache *sc, struct syncache_head *sch) { SCH_LOCK_ASSERT(sch); TCPSTATES_DEC(TCPS_SYN_RECEIVED); TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); sch->sch_length--; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_removed(tod, sc->sc_todctx); } #endif syncache_free(sc); } /* * Engage/reengage time on bucket row. */ static void syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout) { int rexmt; if (sc->sc_rxmits == 0) rexmt = tcp_rexmit_initial; else TCPT_RANGESET(rexmt, tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits], tcp_rexmit_min, TCPTV_REXMTMAX); sc->sc_rxttime = ticks + rexmt; sc->sc_rxmits++; if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) { sch->sch_nextc = sc->sc_rxttime; if (docallout) callout_reset(&sch->sch_timer, sch->sch_nextc - ticks, syncache_timer, (void *)sch); } } /* * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted. * If we have retransmitted an entry the maximum number of times, expire it. * One separate timer for each bucket row. */ static void syncache_timer(void *xsch) { struct syncache_head *sch = (struct syncache_head *)xsch; struct syncache *sc, *nsc; struct epoch_tracker et; int tick = ticks; char *s; bool paused; CURVNET_SET(sch->sch_sc->vnet); /* NB: syncache_head has already been locked by the callout. */ SCH_LOCK_ASSERT(sch); /* * In the following cycle we may remove some entries and/or * advance some timeouts, so re-initialize the bucket timer. */ sch->sch_nextc = tick + INT_MAX; /* * If we have paused processing, unconditionally remove * all syncache entries. */ mtx_lock(&V_tcp_syncache.pause_mtx); paused = V_tcp_syncache.paused; mtx_unlock(&V_tcp_syncache.pause_mtx); TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) { if (paused) { syncache_drop(sc, sch); continue; } /* * We do not check if the listen socket still exists * and accept the case where the listen socket may be * gone by the time we resend the SYN/ACK. We do * not expect this to happens often. If it does, * then the RST will be sent by the time the remote * host does the SYN/ACK->ACK. */ if (TSTMP_GT(sc->sc_rxttime, tick)) { if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) sch->sch_nextc = sc->sc_rxttime; continue; } if (sc->sc_rxmits > V_tcp_ecn_maxretries) { sc->sc_flags &= ~SCF_ECN_MASK; } if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) { if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Retransmits exhausted, " "giving up and removing syncache entry\n", s, __func__); free(s, M_TCPLOG); } syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_stale); continue; } if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Response timeout, " "retransmitting (%u) SYN|ACK\n", s, __func__, sc->sc_rxmits); free(s, M_TCPLOG); } NET_EPOCH_ENTER(et); if (syncache_respond(sc, NULL, TH_SYN|TH_ACK) == 0) { syncache_timeout(sc, sch, 0); TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); TCPSTAT_INC(tcps_sc_retransmitted); } else { syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_dropped); } NET_EPOCH_EXIT(et); } if (!TAILQ_EMPTY(&(sch)->sch_bucket)) callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick, syncache_timer, (void *)(sch)); CURVNET_RESTORE(); } /* * Returns true if the system is only using cookies at the moment. * This could be due to a sysadmin decision to only use cookies, or it * could be due to the system detecting an attack. */ static inline bool syncache_cookiesonly(void) { return (V_tcp_syncookies && (V_tcp_syncache.paused || V_tcp_syncookiesonly)); } /* * Find the hash bucket for the given connection. */ static struct syncache_head * syncache_hashbucket(struct in_conninfo *inc) { uint32_t hash; /* * The hash is built on foreign port + local port + foreign address. * We rely on the fact that struct in_conninfo starts with 16 bits * of foreign port, then 16 bits of local port then followed by 128 * bits of foreign address. In case of IPv4 address, the first 3 * 32-bit words of the address always are zeroes. */ hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5, V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask; return (&V_tcp_syncache.hashbase[hash]); } /* * Find an entry in the syncache. * Returns always with locked syncache_head plus a matching entry or NULL. */ static struct syncache * syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp) { struct syncache *sc; struct syncache_head *sch; *schp = sch = syncache_hashbucket(inc); SCH_LOCK(sch); /* Circle through bucket row to find matching entry. */ TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie, sizeof(struct in_endpoints)) == 0) break; return (sc); /* Always returns with locked sch. */ } /* * This function is called when we get a RST for a * non-existent connection, so that we can see if the * connection is in the syn cache. If it is, zap it. * If required send a challenge ACK. */ void syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m, uint16_t port) { struct syncache *sc; struct syncache_head *sch; char *s = NULL; if (syncache_cookiesonly()) return; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); /* * No corresponding connection was found in syncache. * If syncookies are enabled and possibly exclusively * used, or we are under memory pressure, a valid RST * may not find a syncache entry. In that case we're * done and no SYN|ACK retransmissions will happen. * Otherwise the RST was misdirected or spoofed. */ if (sc == NULL) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious RST without matching " "syncache entry (possibly syncookie only), " "segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badrst); goto done; } /* The remote UDP encaps port does not match. */ if (sc->sc_port != port) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious RST with matching " "syncache entry but non-matching UDP encaps port, " "segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badrst); goto done; } /* * If the RST bit is set, check the sequence number to see * if this is a valid reset segment. * * RFC 793 page 37: * In all states except SYN-SENT, all reset (RST) segments * are validated by checking their SEQ-fields. A reset is * valid if its sequence number is in the window. * * RFC 793 page 69: * There are four cases for the acceptability test for an incoming * segment: * * Segment Receive Test * Length Window * ------- ------- ------------------------------------------- * 0 0 SEG.SEQ = RCV.NXT * 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND * >0 0 not acceptable * >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND * or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND * * Note that when receiving a SYN segment in the LISTEN state, * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as * described in RFC 793, page 66. */ if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) && SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) || (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) { if (V_tcp_insecure_rst || th->th_seq == sc->sc_irs + 1) { syncache_drop(sc, sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, " "connection attempt aborted by remote " "endpoint\n", s, __func__); TCPSTAT_INC(tcps_sc_reset); } else { TCPSTAT_INC(tcps_badrst); /* Send challenge ACK. */ if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: RST with invalid " " SEQ %u != NXT %u (+WND %u), " "sending challenge ACK\n", s, __func__, th->th_seq, sc->sc_irs + 1, sc->sc_wnd); if (syncache_respond(sc, m, TH_ACK) == 0) { TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); } else { syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_dropped); } } } else { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != " "NXT %u (+WND %u), segment ignored\n", s, __func__, th->th_seq, sc->sc_irs + 1, sc->sc_wnd); TCPSTAT_INC(tcps_badrst); } done: if (s != NULL) free(s, M_TCPLOG); SCH_UNLOCK(sch); } void syncache_badack(struct in_conninfo *inc, uint16_t port) { struct syncache *sc; struct syncache_head *sch; if (syncache_cookiesonly()) return; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); if ((sc != NULL) && (sc->sc_port == port)) { syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_badack); } SCH_UNLOCK(sch); } void syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port) { struct syncache *sc; struct syncache_head *sch; if (syncache_cookiesonly()) return; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); if (sc == NULL) goto done; /* If the port != sc_port, then it's a bogus ICMP msg */ if (port != sc->sc_port) goto done; /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ if (ntohl(th_seq) != sc->sc_iss) goto done; /* * If we've rertransmitted 3 times and this is our second error, * we remove the entry. Otherwise, we allow it to continue on. * This prevents us from incorrectly nuking an entry during a * spurious network outage. * * See tcp_notify(). */ if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) { sc->sc_flags |= SCF_UNREACH; goto done; } syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_unreach); done: SCH_UNLOCK(sch); } /* * Build a new TCP socket structure from a syncache entry. * * On success return the newly created socket with its underlying inp locked. */ static struct socket * syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m) { struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; int error; char *s; NET_EPOCH_ASSERT(); /* * Ok, create the full blown connection, and set things up * as they would have been set up if we had created the * connection when the SYN arrived. */ if ((so = solisten_clone(lso)) == NULL) goto allocfail; #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif error = in_pcballoc(so, &V_tcbinfo); if (error) { sodealloc(so); goto allocfail; } inp = sotoinpcb(so); if ((tp = tcp_newtcpcb(inp, sototcpcb(lso))) == NULL) { in_pcbfree(inp); sodealloc(so); goto allocfail; } inp->inp_inc.inc_flags = sc->sc_inc.inc_flags; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; inp->in6p_laddr = sc->sc_inc.inc6_laddr; } else { inp->inp_vflag &= ~INP_IPV6; inp->inp_vflag |= INP_IPV4; #endif inp->inp_ip_ttl = sc->sc_ip_ttl; inp->inp_ip_tos = sc->sc_ip_tos; inp->inp_laddr = sc->sc_inc.inc_laddr; #ifdef INET6 } #endif /* * If there's an mbuf and it has a flowid, then let's initialise the * inp with that particular flowid. */ if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { inp->inp_flowid = m->m_pkthdr.flowid; inp->inp_flowtype = M_HASHTYPE_GET(m); #ifdef NUMA inp->inp_numa_domain = m->m_pkthdr.numa_domain; #endif } inp->inp_lport = sc->sc_inc.inc_lport; #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { struct inpcb *oinp = sotoinpcb(lso); /* * Inherit socket options from the listening socket. * Note that in6p_inputopts are not (and should not be) * copied, since it stores previously received options and is * used to detect if each new option is different than the * previous one and hence should be passed to a user. * If we copied in6p_inputopts, a user would not be able to * receive options just after calling the accept system call. */ inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS; if (oinp->in6p_outputopts) inp->in6p_outputopts = ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT); inp->in6p_hops = oinp->in6p_hops; } if (sc->sc_inc.inc_flags & INC_ISIPV6) { struct sockaddr_in6 sin6; sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(sin6); sin6.sin6_addr = sc->sc_inc.inc6_faddr; sin6.sin6_port = sc->sc_inc.inc_fport; sin6.sin6_flowinfo = sin6.sin6_scope_id = 0; INP_HASH_WLOCK(&V_tcbinfo); error = in6_pcbconnect(inp, &sin6, thread0.td_ucred, false); INP_HASH_WUNLOCK(&V_tcbinfo); if (error != 0) goto abort; /* Override flowlabel from in6_pcbconnect. */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= sc->sc_flowlabel; } #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET { struct sockaddr_in sin; inp->inp_options = (m) ? ip_srcroute(m) : NULL; if (inp->inp_options == NULL) { inp->inp_options = sc->sc_ipopts; sc->sc_ipopts = NULL; } sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_addr = sc->sc_inc.inc_faddr; sin.sin_port = sc->sc_inc.inc_fport; bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero)); INP_HASH_WLOCK(&V_tcbinfo); error = in_pcbconnect(inp, &sin, thread0.td_ucred, false); INP_HASH_WUNLOCK(&V_tcbinfo); if (error != 0) goto abort; } #endif /* INET */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Copy old policy into new socket's. */ if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0) printf("syncache_socket: could not copy policy\n"); #endif tp->t_state = TCPS_SYN_RECEIVED; tp->iss = sc->sc_iss; tp->irs = sc->sc_irs; tp->t_port = sc->sc_port; tcp_rcvseqinit(tp); tcp_sendseqinit(tp); tp->snd_wl1 = sc->sc_irs; tp->snd_max = tp->iss + 1; tp->snd_nxt = tp->iss + 1; tp->rcv_up = sc->sc_irs + 1; tp->rcv_wnd = sc->sc_wnd; tp->rcv_adv += tp->rcv_wnd; tp->last_ack_sent = tp->rcv_nxt; tp->t_flags = sototcpcb(lso)->t_flags & (TF_LRD|TF_NOPUSH|TF_NODELAY); if (sc->sc_flags & SCF_NOOPT) tp->t_flags |= TF_NOOPT; else { if (sc->sc_flags & SCF_WINSCALE) { tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE; tp->snd_scale = sc->sc_requested_s_scale; tp->request_r_scale = sc->sc_requested_r_scale; } if (sc->sc_flags & SCF_TIMESTAMP) { tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP; tp->ts_recent = sc->sc_tsreflect; tp->ts_recent_age = tcp_ts_getticks(); tp->ts_offset = sc->sc_tsoff; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) tp->t_flags |= TF_SIGNATURE; #endif if (sc->sc_flags & SCF_SACK) tp->t_flags |= TF_SACK_PERMIT; } tcp_ecn_syncache_socket(tp, sc); /* * Set up MSS and get cached values from tcp_hostcache. * This might overwrite some of the defaults we just set. */ tcp_mss(tp, sc->sc_peer_mss); /* * If the SYN,ACK was retransmitted, indicate that CWND to be * limited to one segment in cc_conn_init(). * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits. */ if (sc->sc_rxmits > 1) tp->snd_cwnd = 1; #ifdef TCP_OFFLOAD /* * Allow a TOE driver to install its hooks. Note that we hold the * pcbinfo lock too and that prevents tcp_usr_accept from accepting a * new connection before the TOE driver has done its thing. */ if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_offload_socket(tod, sc->sc_todctx, so); } #endif #ifdef TCP_BLACKBOX /* * Inherit the log state from the listening socket, if * - the log state of the listening socket is not off and * - the listening socket was not auto selected from all sessions and * - a log id is not set on the listening socket. * This avoids inheriting a log state which was automatically set. */ if ((tcp_get_bblog_state(sototcpcb(lso)) != TCP_LOG_STATE_OFF) && ((sototcpcb(lso)->t_flags2 & TF2_LOG_AUTO) == 0) && (sototcpcb(lso)->t_lib == NULL)) { tcp_log_state_change(tp, tcp_get_bblog_state(sototcpcb(lso))); } #endif /* * Copy and activate timers. */ tp->t_maxunacktime = sototcpcb(lso)->t_maxunacktime; tp->t_keepinit = sototcpcb(lso)->t_keepinit; tp->t_keepidle = sototcpcb(lso)->t_keepidle; tp->t_keepintvl = sototcpcb(lso)->t_keepintvl; tp->t_keepcnt = sototcpcb(lso)->t_keepcnt; tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); TCPSTAT_INC(tcps_accepts); TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, TCPS_LISTEN); if (!solisten_enqueue(so, SS_ISCONNECTED)) tp->t_flags |= TF_SONOTCONN; /* Can we inherit anything from the listener? */ if (tp->t_fb->tfb_inherit != NULL) { (*tp->t_fb->tfb_inherit)(tp, sotoinpcb(lso)); } return (so); allocfail: /* * Drop the connection; we will either send a RST or have the peer * retransmit its SYN again after its RTO and try again. */ if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Socket create failed " "due to limits or memory shortage\n", s, __func__); free(s, M_TCPLOG); } TCPSTAT_INC(tcps_listendrop); return (NULL); abort: tcp_discardcb(tp); in_pcbfree(inp); sodealloc(so); if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: in%s_pcbconnect failed with error %i\n", s, __func__, (sc->sc_inc.inc_flags & INC_ISIPV6) ? "6" : "", error); free(s, M_TCPLOG); } TCPSTAT_INC(tcps_listendrop); return (NULL); } /* * This function gets called when we receive an ACK for a * socket in the LISTEN state. We look up the connection * in the syncache, and if its there, we pull it out of * the cache and turn it into a full-blown connection in * the SYN-RECEIVED state. * * On syncache_socket() success the newly created socket * has its underlying inp locked. */ int syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct socket **lsop, struct mbuf *m, uint16_t port) { struct syncache *sc; struct syncache_head *sch; struct syncache scs; char *s; bool locked; NET_EPOCH_ASSERT(); KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK, ("%s: can handle only ACK", __func__)); if (syncache_cookiesonly()) { sc = NULL; sch = syncache_hashbucket(inc); locked = false; } else { sc = syncache_lookup(inc, &sch); /* returns locked sch */ locked = true; SCH_LOCK_ASSERT(sch); } #ifdef INVARIANTS /* * Test code for syncookies comparing the syncache stored * values with the reconstructed values from the cookie. */ if (sc != NULL) syncookie_cmp(inc, sch, sc, th, to, *lsop, port); #endif if (sc == NULL) { /* * There is no syncache entry, so see if this ACK is * a returning syncookie. To do this, first: * A. Check if syncookies are used in case of syncache * overflows * B. See if this socket has had a syncache entry dropped in * the recent past. We don't want to accept a bogus * syncookie if we've never received a SYN or accept it * twice. * C. check that the syncookie is valid. If it is, then * cobble up a fake syncache entry, and return. */ if (locked && !V_tcp_syncookies) { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious ACK, " "segment rejected (syncookies disabled)\n", s, __func__); goto failed; } if (locked && !V_tcp_syncookiesonly && sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious ACK, " "segment rejected (no syncache entry)\n", s, __func__); goto failed; } bzero(&scs, sizeof(scs)); sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port); if (locked) SCH_UNLOCK(sch); if (sc == NULL) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Segment failed " "SYNCOOKIE authentication, segment rejected " "(probably spoofed)\n", s, __func__); goto failed; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* If received ACK has MD5 signature, check it. */ if ((to->to_flags & TOF_SIGNATURE) != 0 && (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0)) { /* Drop the ACK. */ if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment rejected, " "MD5 signature doesn't match.\n", s, __func__); free(s, M_TCPLOG); } TCPSTAT_INC(tcps_sig_err_sigopt); return (-1); /* Do not send RST */ } #endif /* TCP_SIGNATURE */ TCPSTATES_INC(TCPS_SYN_RECEIVED); } else { if (sc->sc_port != port) { SCH_UNLOCK(sch); return (0); } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * If listening socket requested TCP digests, check that * received ACK has signature and it is correct. * If not, drop the ACK and leave sc entry in th cache, * because SYN was received with correct signature. */ if (sc->sc_flags & SCF_SIGNATURE) { if ((to->to_flags & TOF_SIGNATURE) == 0) { /* No signature */ TCPSTAT_INC(tcps_sig_err_nosigopt); SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment " "rejected, MD5 signature wasn't " "provided.\n", s, __func__); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0) { /* Doesn't match or no SA */ SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment " "rejected, MD5 signature doesn't " "match.\n", s, __func__); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } } #endif /* TCP_SIGNATURE */ /* * RFC 7323 PAWS: If we have a timestamp on this segment and * it's less than ts_recent, drop it. * XXXMT: RFC 7323 also requires to send an ACK. * In tcp_input.c this is only done for TCP segments * with user data, so be consistent here and just drop * the segment. */ if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS && TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: SEG.TSval %u < TS.Recent %u, " "segment dropped\n", s, __func__, to->to_tsval, sc->sc_tsreflect); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } /* * If timestamps were not negotiated during SYN/ACK and a * segment with a timestamp is received, ignore the * timestamp and process the packet normally. * See section 3.2 of RFC 7323. */ if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp not " "expected, segment processed normally\n", s, __func__); free(s, M_TCPLOG); s = NULL; } } /* * If timestamps were negotiated during SYN/ACK and a * segment without a timestamp is received, silently drop * the segment, unless the missing timestamps are tolerated. * See section 3.2 of RFC 7323. */ if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) { if (V_tcp_tolerate_missing_ts) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp missing, " "segment processed normally\n", s, __func__); free(s, M_TCPLOG); } } else { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp missing, " "segment silently dropped\n", s, __func__); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } } TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); sch->sch_length--; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_removed(tod, sc->sc_todctx); } #endif SCH_UNLOCK(sch); } /* * Segment validation: * ACK must match our initial sequence number + 1 (the SYN|ACK). */ if (th->th_ack != sc->sc_iss + 1) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment " "rejected\n", s, __func__, th->th_ack, sc->sc_iss); goto failed; } /* * The SEQ must fall in the window starting at the received * initial receive sequence number + 1 (the SYN). */ if (SEQ_LEQ(th->th_seq, sc->sc_irs) || SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment " "rejected\n", s, __func__, th->th_seq, sc->sc_irs); goto failed; } *lsop = syncache_socket(sc, *lsop, m); if (__predict_false(*lsop == NULL)) { TCPSTAT_INC(tcps_sc_aborted); TCPSTATES_DEC(TCPS_SYN_RECEIVED); } else TCPSTAT_INC(tcps_sc_completed); /* how do we find the inp for the new socket? */ if (sc != &scs) syncache_free(sc); return (1); failed: if (sc != NULL) { TCPSTATES_DEC(TCPS_SYN_RECEIVED); if (sc != &scs) syncache_free(sc); } if (s != NULL) free(s, M_TCPLOG); *lsop = NULL; return (0); } static struct socket * syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m, uint64_t response_cookie) { struct inpcb *inp; struct tcpcb *tp; unsigned int *pending_counter; struct socket *so; NET_EPOCH_ASSERT(); pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending; so = syncache_socket(sc, lso, m); if (so == NULL) { TCPSTAT_INC(tcps_sc_aborted); atomic_subtract_int(pending_counter, 1); } else { soisconnected(so); inp = sotoinpcb(so); tp = intotcpcb(inp); tp->t_flags |= TF_FASTOPEN; tp->t_tfo_cookie.server = response_cookie; tp->snd_max = tp->iss; tp->snd_nxt = tp->iss; tp->t_tfo_pending = pending_counter; TCPSTATES_INC(TCPS_SYN_RECEIVED); TCPSTAT_INC(tcps_sc_completed); } return (so); } /* * Given a LISTEN socket and an inbound SYN request, add * this to the syn cache, and send back a segment: * * to the source. * * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN. * Doing so would require that we hold onto the data and deliver it * to the application. However, if we are the target of a SYN-flood * DoS attack, an attacker could send data which would eventually * consume all available buffer space if it were ACKed. By not ACKing * the data, we avoid this DoS scenario. * * The exception to the above is when a SYN with a valid TCP Fast Open (TFO) * cookie is processed and a new socket is created. In this case, any data * accompanying the SYN will be queued to the socket by tcp_input() and will * be ACKed either when the application sends response data or the delayed * ACK timer expires, whichever comes first. */ struct socket * syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod, void *todctx, uint8_t iptos, uint16_t port) { struct tcpcb *tp; struct socket *rv = NULL; struct syncache *sc = NULL; struct syncache_head *sch; struct mbuf *ipopts = NULL; u_int ltflags; int win, ip_ttl, ip_tos; char *s; #ifdef INET6 int autoflowlabel = 0; #endif #ifdef MAC struct label *maclabel; #endif struct syncache scs; struct ucred *cred; uint64_t tfo_response_cookie; unsigned int *tfo_pending = NULL; int tfo_cookie_valid = 0; int tfo_response_cookie_valid = 0; bool locked; INP_RLOCK_ASSERT(inp); /* listen socket */ KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN, ("%s: unexpected tcp flags", __func__)); /* * Combine all so/tp operations very early to drop the INP lock as * soon as possible. */ KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so)); tp = sototcpcb(so); cred = V_tcp_syncache.see_other ? NULL : crhold(so->so_cred); #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { if (inp->inp_flags & IN6P_AUTOFLOWLABEL) { autoflowlabel = 1; } ip_ttl = in6_selecthlim(inp, NULL); if ((inp->in6p_outputopts == NULL) || (inp->in6p_outputopts->ip6po_tclass == -1)) { ip_tos = 0; } else { ip_tos = inp->in6p_outputopts->ip6po_tclass; } } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { ip_ttl = inp->inp_ip_ttl; ip_tos = inp->inp_ip_tos; } #endif win = so->sol_sbrcv_hiwat; ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE)); if (V_tcp_fastopen_server_enable && (tp->t_flags & TF_FASTOPEN) && (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) { /* * Limit the number of pending TFO connections to * approximately half of the queue limit. This prevents TFO * SYN floods from starving the service by filling the * listen queue with bogus TFO connections. */ if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <= (so->sol_qlimit / 2)) { int result; result = tcp_fastopen_check_cookie(inc, to->to_tfo_cookie, to->to_tfo_len, &tfo_response_cookie); tfo_cookie_valid = (result > 0); tfo_response_cookie_valid = (result >= 0); } /* * Remember the TFO pending counter as it will have to be * decremented below if we don't make it to syncache_tfo_expand(). */ tfo_pending = tp->t_tfo_pending; } #ifdef MAC if (mac_syncache_init(&maclabel) != 0) { INP_RUNLOCK(inp); goto done; } else mac_syncache_create(maclabel, inp); #endif if (!tfo_cookie_valid) INP_RUNLOCK(inp); /* * Remember the IP options, if any. */ #ifdef INET6 if (!(inc->inc_flags & INC_ISIPV6)) #endif #ifdef INET ipopts = (m) ? ip_srcroute(m) : NULL; #else ipopts = NULL; #endif #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * When the socket is TCP-MD5 enabled check that, * - a signed packet is valid * - a non-signed packet does not have a security association * * If a signed packet fails validation or a non-signed packet has a * security association, the packet will be dropped. */ if (ltflags & TF_SIGNATURE) { if (to->to_flags & TOF_SIGNATURE) { if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0) goto done; } else { if (TCPMD5_ENABLED() && TCPMD5_INPUT(m, NULL, NULL) != ENOENT) goto done; } } else if (to->to_flags & TOF_SIGNATURE) goto done; #endif /* TCP_SIGNATURE */ /* * See if we already have an entry for this connection. * If we do, resend the SYN,ACK, and reset the retransmit timer. * * XXX: should the syncache be re-initialized with the contents * of the new SYN here (which may have different options?) * * XXX: We do not check the sequence number to see if this is a * real retransmit or a new connection attempt. The question is * how to handle such a case; either ignore it as spoofed, or * drop the current entry and create a new one? */ if (syncache_cookiesonly()) { sc = NULL; sch = syncache_hashbucket(inc); locked = false; } else { sc = syncache_lookup(inc, &sch); /* returns locked sch */ locked = true; SCH_LOCK_ASSERT(sch); } if (sc != NULL) { if (tfo_cookie_valid) INP_RUNLOCK(inp); TCPSTAT_INC(tcps_sc_dupsyn); if (ipopts) { /* * If we were remembering a previous source route, * forget it and use the new one we've been given. */ if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); sc->sc_ipopts = ipopts; } /* * Update timestamp if present. */ if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) sc->sc_tsreflect = to->to_tsval; else sc->sc_flags &= ~SCF_TIMESTAMP; /* * Adjust ECN response if needed, e.g. different * IP ECN field, or a fallback by the remote host. */ if (sc->sc_flags & SCF_ECN_MASK) { sc->sc_flags &= ~SCF_ECN_MASK; sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos); } #ifdef MAC /* * Since we have already unconditionally allocated label * storage, free it up. The syncache entry will already * have an initialized label we can use. */ mac_syncache_destroy(&maclabel); #endif TCP_PROBE5(receive, NULL, NULL, m, NULL, th); /* Retransmit SYN|ACK and reset retransmit count. */ if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Received duplicate SYN, " "resetting timer and retransmitting SYN|ACK\n", s, __func__); free(s, M_TCPLOG); } if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) { sc->sc_rxmits = 0; syncache_timeout(sc, sch, 1); TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); } else { syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_dropped); } SCH_UNLOCK(sch); goto donenoprobe; } if (tfo_cookie_valid) { bzero(&scs, sizeof(scs)); sc = &scs; goto skip_alloc; } /* * Skip allocating a syncache entry if we are just going to discard * it later. */ if (!locked) { bzero(&scs, sizeof(scs)); sc = &scs; } else sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO); if (sc == NULL) { /* * The zone allocator couldn't provide more entries. * Treat this as if the cache was full; drop the oldest * entry and insert the new one. */ TCPSTAT_INC(tcps_sc_zonefail); if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) { sch->sch_last_overflow = time_uptime; syncache_drop(sc, sch); syncache_pause(inc); } sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO); if (sc == NULL) { if (V_tcp_syncookies) { bzero(&scs, sizeof(scs)); sc = &scs; } else { KASSERT(locked, ("%s: bucket unexpectedly unlocked", __func__)); SCH_UNLOCK(sch); if (ipopts) (void) m_free(ipopts); goto done; } } } skip_alloc: if (!tfo_cookie_valid && tfo_response_cookie_valid) sc->sc_tfo_cookie = &tfo_response_cookie; /* * Fill in the syncache values. */ #ifdef MAC sc->sc_label = maclabel; #endif sc->sc_cred = cred; sc->sc_port = port; cred = NULL; sc->sc_ipopts = ipopts; bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo)); sc->sc_ip_tos = ip_tos; sc->sc_ip_ttl = ip_ttl; #ifdef TCP_OFFLOAD sc->sc_tod = tod; sc->sc_todctx = todctx; #endif sc->sc_irs = th->th_seq; sc->sc_flags = 0; sc->sc_flowlabel = 0; /* * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN]. * win was derived from socket earlier in the function. */ win = imax(win, 0); win = imin(win, TCP_MAXWIN); sc->sc_wnd = win; if (V_tcp_do_rfc1323 && !(ltflags & TF_NOOPT)) { /* * A timestamp received in a SYN makes * it ok to send timestamp requests and replies. */ if ((to->to_flags & TOF_TS) && (V_tcp_do_rfc1323 != 2)) { sc->sc_tsreflect = to->to_tsval; sc->sc_flags |= SCF_TIMESTAMP; sc->sc_tsoff = tcp_new_ts_offset(inc); } if ((to->to_flags & TOF_SCALE) && (V_tcp_do_rfc1323 != 3)) { int wscale = 0; /* * Pick the smallest possible scaling factor that * will still allow us to scale up to sb_max, aka * kern.ipc.maxsockbuf. * * We do this because there are broken firewalls that * will corrupt the window scale option, leading to * the other endpoint believing that our advertised * window is unscaled. At scale factors larger than * 5 the unscaled window will drop below 1500 bytes, * leading to serious problems when traversing these * broken firewalls. * * With the default maxsockbuf of 256K, a scale factor * of 3 will be chosen by this algorithm. Those who * choose a larger maxsockbuf should watch out * for the compatibility problems mentioned above. * * RFC1323: The Window field in a SYN (i.e., a * or ) segment itself is never scaled. */ while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max) wscale++; sc->sc_requested_r_scale = wscale; sc->sc_requested_s_scale = to->to_wscale; sc->sc_flags |= SCF_WINSCALE; } } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * If incoming packet has an MD5 signature, flag this in the * syncache so that syncache_respond() will do the right thing * with the SYN+ACK. */ if (to->to_flags & TOF_SIGNATURE) sc->sc_flags |= SCF_SIGNATURE; #endif /* TCP_SIGNATURE */ if (to->to_flags & TOF_SACKPERM) sc->sc_flags |= SCF_SACK; if (to->to_flags & TOF_MSS) sc->sc_peer_mss = to->to_mss; /* peer mss may be zero */ if (ltflags & TF_NOOPT) sc->sc_flags |= SCF_NOOPT; /* ECN Handshake */ if (V_tcp_do_ecn && (tp->t_flags2 & TF2_CANNOT_DO_ECN) == 0) sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos); if (V_tcp_syncookies) sc->sc_iss = syncookie_generate(sch, sc); else sc->sc_iss = arc4random(); #ifdef INET6 if (autoflowlabel) { if (V_tcp_syncookies) sc->sc_flowlabel = sc->sc_iss; else sc->sc_flowlabel = ip6_randomflowlabel(); sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK; } #endif if (locked) SCH_UNLOCK(sch); if (tfo_cookie_valid) { rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie); /* INP_RUNLOCK(inp) will be performed by the caller */ goto tfo_expanded; } TCP_PROBE5(receive, NULL, NULL, m, NULL, th); /* * Do a standard 3-way handshake. */ if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) { if (sc != &scs) syncache_insert(sc, sch); /* locks and unlocks sch */ TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); } else { if (sc != &scs) syncache_free(sc); TCPSTAT_INC(tcps_sc_dropped); } goto donenoprobe; done: TCP_PROBE5(receive, NULL, NULL, m, NULL, th); donenoprobe: if (m) m_freem(m); /* * If tfo_pending is not NULL here, then a TFO SYN that did not * result in a new socket was processed and the associated pending * counter has not yet been decremented. All such TFO processing paths * transit this point. */ if (tfo_pending != NULL) tcp_fastopen_decrement_counter(tfo_pending); tfo_expanded: if (cred != NULL) crfree(cred); #ifdef MAC if (sc == &scs) mac_syncache_destroy(&maclabel); #endif return (rv); } /* * Send SYN|ACK or ACK to the peer. Either in response to a peer's segment, * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL. */ static int syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags) { struct ip *ip = NULL; struct mbuf *m; struct tcphdr *th = NULL; struct udphdr *udp = NULL; int optlen, error = 0; /* Make compiler happy */ u_int16_t hlen, tlen, mssopt, ulen; struct tcpopt to; #ifdef INET6 struct ip6_hdr *ip6 = NULL; #endif NET_EPOCH_ASSERT(); hlen = #ifdef INET6 (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) : #endif sizeof(struct ip); tlen = hlen + sizeof(struct tcphdr); if (sc->sc_port) { tlen += sizeof(struct udphdr); } /* Determine MSS we advertize to other end of connection. */ mssopt = tcp_mssopt(&sc->sc_inc); if (sc->sc_port) mssopt -= V_tcp_udp_tunneling_overhead; mssopt = max(mssopt, V_tcp_minmss); /* XXX: Assume that the entire packet will fit in a header mbuf. */ KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN, ("syncache: mbuf too small: hlen %u, sc_port %u, max_linkhdr %d + " "tlen %d + TCP_MAXOLEN %ju <= MHLEN %d", hlen, sc->sc_port, max_linkhdr, tlen, (uintmax_t)TCP_MAXOLEN, MHLEN)); /* Create the IP+TCP header from scratch. */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); #ifdef MAC mac_syncache_create_mbuf(sc->sc_label, m); #endif m->m_data += max_linkhdr; m->m_len = tlen; m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_src = sc->sc_inc.inc6_laddr; ip6->ip6_dst = sc->sc_inc.inc6_faddr; ip6->ip6_plen = htons(tlen - hlen); /* ip6_hlim is set after checksum */ /* Zero out traffic class and flow label. */ ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK; ip6->ip6_flow |= sc->sc_flowlabel; if (sc->sc_port != 0) { ip6->ip6_nxt = IPPROTO_UDP; udp = (struct udphdr *)(ip6 + 1); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = sc->sc_port; ulen = (tlen - sizeof(struct ip6_hdr)); th = (struct tcphdr *)(udp + 1); } else { ip6->ip6_nxt = IPPROTO_TCP; th = (struct tcphdr *)(ip6 + 1); } ip6->ip6_flow |= htonl(sc->sc_ip_tos << IPV6_FLOWLABEL_LEN); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { ip = mtod(m, struct ip *); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(struct ip) >> 2; ip->ip_len = htons(tlen); ip->ip_id = 0; ip->ip_off = 0; ip->ip_sum = 0; ip->ip_src = sc->sc_inc.inc_laddr; ip->ip_dst = sc->sc_inc.inc_faddr; ip->ip_ttl = sc->sc_ip_ttl; ip->ip_tos = sc->sc_ip_tos; /* * See if we should do MTU discovery. Route lookups are * expensive, so we will only unset the DF bit if: * * 1) path_mtu_discovery is disabled * 2) the SCF_UNREACH flag has been set */ if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0)) ip->ip_off |= htons(IP_DF); if (sc->sc_port == 0) { ip->ip_p = IPPROTO_TCP; th = (struct tcphdr *)(ip + 1); } else { ip->ip_p = IPPROTO_UDP; udp = (struct udphdr *)(ip + 1); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = sc->sc_port; ulen = (tlen - sizeof(struct ip)); th = (struct tcphdr *)(udp + 1); } } #endif /* INET */ th->th_sport = sc->sc_inc.inc_lport; th->th_dport = sc->sc_inc.inc_fport; if (flags & TH_SYN) th->th_seq = htonl(sc->sc_iss); else th->th_seq = htonl(sc->sc_iss + 1); th->th_ack = htonl(sc->sc_irs + 1); th->th_off = sizeof(struct tcphdr) >> 2; th->th_win = htons(sc->sc_wnd); th->th_urp = 0; flags = tcp_ecn_syncache_respond(flags, sc); tcp_set_flags(th, flags); /* Tack on the TCP options. */ if ((sc->sc_flags & SCF_NOOPT) == 0) { to.to_flags = 0; if (flags & TH_SYN) { to.to_mss = mssopt; to.to_flags = TOF_MSS; if (sc->sc_flags & SCF_WINSCALE) { to.to_wscale = sc->sc_requested_r_scale; to.to_flags |= TOF_SCALE; } if (sc->sc_flags & SCF_SACK) to.to_flags |= TOF_SACKPERM; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif if (sc->sc_tfo_cookie) { to.to_flags |= TOF_FASTOPEN; to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; to.to_tfo_cookie = sc->sc_tfo_cookie; /* don't send cookie again when retransmitting response */ sc->sc_tfo_cookie = NULL; } } if (sc->sc_flags & SCF_TIMESTAMP) { to.to_tsval = sc->sc_tsoff + tcp_ts_getticks(); to.to_tsecr = sc->sc_tsreflect; to.to_flags |= TOF_TS; } optlen = tcp_addoptions(&to, (u_char *)(th + 1)); /* Adjust headers by option size. */ th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; m->m_len += optlen; m->m_pkthdr.len += optlen; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen); else #endif ip->ip_len = htons(ntohs(ip->ip_len) + optlen); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) { KASSERT(to.to_flags & TOF_SIGNATURE, ("tcp_addoptions() didn't set tcp_signature")); /* NOTE: to.to_signature is inside of mbuf */ if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, to.to_signature) != 0) { m_freem(m); return (EACCES); } } #endif } else optlen = 0; if (udp) { ulen += optlen; udp->uh_ulen = htons(ulen); } M_SETFIB(m, sc->sc_inc.inc_fibnum); /* * If we have peer's SYN and it has a flowid, then let's assign it to * our SYN|ACK. ip6_output() and ip_output() will not assign flowid * to SYN|ACK due to lack of inp here. */ if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) { m->m_pkthdr.flowid = m0->m_pkthdr.flowid; M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0)); } #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { if (sc->sc_port) { m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); th->th_sum = htons(0); } else { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen, IPPROTO_TCP, 0); } ip6->ip6_hlim = sc->sc_ip_ttl; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; error = tod->tod_syncache_respond(tod, sc->sc_todctx, m); return (error); } #endif TCP_PROBE5(send, NULL, NULL, ip6, NULL, th); error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { if (sc->sc_port) { m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); th->th_sum = htons(0); } else { m->m_pkthdr.csum_flags = CSUM_TCP; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(tlen + optlen - hlen + IPPROTO_TCP)); } #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; error = tod->tod_syncache_respond(tod, sc->sc_todctx, m); return (error); } #endif TCP_PROBE5(send, NULL, NULL, ip, NULL, th); error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL); } #endif return (error); } /* * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks * that exceed the capacity of the syncache by avoiding the storage of any * of the SYNs we receive. Syncookies defend against blind SYN flooding * attacks where the attacker does not have access to our responses. * * Syncookies encode and include all necessary information about the * connection setup within the SYN|ACK that we send back. That way we * can avoid keeping any local state until the ACK to our SYN|ACK returns * (if ever). Normally the syncache and syncookies are running in parallel * with the latter taking over when the former is exhausted. When matching * syncache entry is found the syncookie is ignored. * * The only reliable information persisting the 3WHS is our initial sequence * number ISS of 32 bits. Syncookies embed a cryptographically sufficient * strong hash (MAC) value and a few bits of TCP SYN options in the ISS * of our SYN|ACK. The MAC can be recomputed when the ACK to our SYN|ACK * returns and signifies a legitimate connection if it matches the ACK. * * The available space of 32 bits to store the hash and to encode the SYN * option information is very tight and we should have at least 24 bits for * the MAC to keep the number of guesses by blind spoofing reasonably high. * * SYN option information we have to encode to fully restore a connection: * MSS: is imporant to chose an optimal segment size to avoid IP level * fragmentation along the path. The common MSS values can be encoded * in a 3-bit table. Uncommon values are captured by the next lower value * in the table leading to a slight increase in packetization overhead. * WSCALE: is necessary to allow large windows to be used for high delay- * bandwidth product links. Not scaling the window when it was initially * negotiated is bad for performance as lack of scaling further decreases * the apparent available send window. We only need to encode the WSCALE * we received from the remote end. Our end can be recalculated at any * time. The common WSCALE values can be encoded in a 3-bit table. * Uncommon values are captured by the next lower value in the table * making us under-estimate the available window size halving our * theoretically possible maximum throughput for that connection. * SACK: Greatly assists in packet loss recovery and requires 1 bit. * TIMESTAMP and SIGNATURE is not encoded because they are permanent options * that are included in all segments on a connection. We enable them when * the ACK has them. * * Security of syncookies and attack vectors: * * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod) * together with the gloabl secret to make it unique per connection attempt. * Thus any change of any of those parameters results in a different MAC output * in an unpredictable way unless a collision is encountered. 24 bits of the * MAC are embedded into the ISS. * * To prevent replay attacks two rotating global secrets are updated with a * new random value every 15 seconds. The life-time of a syncookie is thus * 15-30 seconds. * * Vector 1: Attacking the secret. This requires finding a weakness in the * MAC itself or the way it is used here. The attacker can do a chosen plain * text attack by varying and testing the all parameters under his control. * The strength depends on the size and randomness of the secret, and the * cryptographic security of the MAC function. Due to the constant updating * of the secret the attacker has at most 29.999 seconds to find the secret * and launch spoofed connections. After that he has to start all over again. * * Vector 2: Collision attack on the MAC of a single ACK. With a 24 bit MAC * size an average of 4,823 attempts are required for a 50% chance of success * to spoof a single syncookie (birthday collision paradox). However the * attacker is blind and doesn't know if one of his attempts succeeded unless * he has a side channel to interfere success from. A single connection setup * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets. * This many attempts are required for each one blind spoofed connection. For * every additional spoofed connection he has to launch another N attempts. * Thus for a sustained rate 100 spoofed connections per second approximately * 1,800,000 packets per second would have to be sent. * * NB: The MAC function should be fast so that it doesn't become a CPU * exhaustion attack vector itself. * * References: * RFC4987 TCP SYN Flooding Attacks and Common Mitigations * SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996 * http://cr.yp.to/syncookies.html (overview) * http://cr.yp.to/syncookies/archive (details) * * * Schematic construction of a syncookie enabled Initial Sequence Number: * 0 1 2 3 * 12345678901234567890123456789012 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP| * * x 24 MAC (truncated) * W 3 Send Window Scale index * M 3 MSS index * S 1 SACK permitted * P 1 Odd/even secret */ /* * Distribution and probability of certain MSS values. Those in between are * rounded down to the next lower one. * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011] * .2% .3% 5% 7% 7% 20% 15% 45% */ static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 }; /* * Distribution and probability of certain WSCALE values. We have to map the * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3 * bits based on prevalence of certain values. Where we don't have an exact * match for are rounded down to the next lower one letting us under-estimate * the true available window. At the moment this would happen only for the * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer * and window size). The absence of the WSCALE option (no scaling in either * direction) is encoded with index zero. * [WSCALE values histograms, Allman, 2012] * X 10 10 35 5 6 14 10% by host * X 11 4 5 5 18 49 3% by connections */ static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 }; /* * Compute the MAC for the SYN cookie. SIPHASH-2-4 is chosen for its speed * and good cryptographic properties. */ static uint32_t syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags, uint8_t *secbits, uintptr_t secmod) { SIPHASH_CTX ctx; uint32_t siphash[2]; SipHash24_Init(&ctx); SipHash_SetKey(&ctx, secbits); switch (inc->inc_flags & INC_ISIPV6) { #ifdef INET case 0: SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr)); SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr)); break; #endif #ifdef INET6 case INC_ISIPV6: SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr)); SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr)); break; #endif } SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport)); SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport)); SipHash_Update(&ctx, &irs, sizeof(irs)); SipHash_Update(&ctx, &flags, sizeof(flags)); SipHash_Update(&ctx, &secmod, sizeof(secmod)); SipHash_Final((u_int8_t *)&siphash, &ctx); return (siphash[0] ^ siphash[1]); } static tcp_seq syncookie_generate(struct syncache_head *sch, struct syncache *sc) { u_int i, secbit, wscale; uint32_t iss, hash; uint8_t *secbits; union syncookie cookie; cookie.cookie = 0; /* Map our computed MSS into the 3-bit index. */ for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0; i--) ; cookie.flags.mss_idx = i; /* * Map the send window scale into the 3-bit index but only if * the wscale option was received. */ if (sc->sc_flags & SCF_WINSCALE) { wscale = sc->sc_requested_s_scale; for (i = nitems(tcp_sc_wstab) - 1; tcp_sc_wstab[i] > wscale && i > 0; i--) ; cookie.flags.wscale_idx = i; } /* Can we do SACK? */ if (sc->sc_flags & SCF_SACK) cookie.flags.sack_ok = 1; /* Which of the two secrets to use. */ secbit = V_tcp_syncache.secret.oddeven & 0x1; cookie.flags.odd_even = secbit; secbits = V_tcp_syncache.secret.key[secbit]; hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits, (uintptr_t)sch); /* * Put the flags into the hash and XOR them to get better ISS number * variance. This doesn't enhance the cryptographic strength and is * done to prevent the 8 cookie bits from showing up directly on the * wire. */ iss = hash & ~0xff; iss |= cookie.cookie ^ (hash >> 24); TCPSTAT_INC(tcps_sc_sendcookie); return (iss); } static struct syncache * syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso, uint16_t port) { uint32_t hash; uint8_t *secbits; tcp_seq ack, seq; int wnd, wscale = 0; union syncookie cookie; /* * Pull information out of SYN-ACK/ACK and revert sequence number * advances. */ ack = th->th_ack - 1; seq = th->th_seq - 1; /* * Unpack the flags containing enough information to restore the * connection. */ cookie.cookie = (ack & 0xff) ^ (ack >> 24); /* Which of the two secrets to use. */ secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even]; hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch); /* The recomputed hash matches the ACK if this was a genuine cookie. */ if ((ack & ~0xff) != (hash & ~0xff)) return (NULL); /* Fill in the syncache values. */ sc->sc_flags = 0; bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo)); sc->sc_ipopts = NULL; sc->sc_irs = seq; sc->sc_iss = ack; switch (inc->inc_flags & INC_ISIPV6) { #ifdef INET case 0: sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl; sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos; break; #endif #ifdef INET6 case INC_ISIPV6: if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL) sc->sc_flowlabel = htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK; break; #endif } sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx]; /* We can simply recompute receive window scale we sent earlier. */ while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max) wscale++; /* Only use wscale if it was enabled in the orignal SYN. */ if (cookie.flags.wscale_idx > 0) { sc->sc_requested_r_scale = wscale; sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx]; sc->sc_flags |= SCF_WINSCALE; } wnd = lso->sol_sbrcv_hiwat; wnd = imax(wnd, 0); wnd = imin(wnd, TCP_MAXWIN); sc->sc_wnd = wnd; if (cookie.flags.sack_ok) sc->sc_flags |= SCF_SACK; if (to->to_flags & TOF_TS) { sc->sc_flags |= SCF_TIMESTAMP; sc->sc_tsreflect = to->to_tsval; sc->sc_tsoff = tcp_new_ts_offset(inc); } if (to->to_flags & TOF_SIGNATURE) sc->sc_flags |= SCF_SIGNATURE; sc->sc_rxmits = 0; sc->sc_port = port; TCPSTAT_INC(tcps_sc_recvcookie); return (sc); } #ifdef INVARIANTS static int syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso, uint16_t port) { struct syncache scs, *scx; char *s; bzero(&scs, sizeof(scs)); scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port); if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL) return (0); if (scx != NULL) { if (sc->sc_peer_mss != scx->sc_peer_mss) log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n", s, __func__, sc->sc_peer_mss, scx->sc_peer_mss); if (sc->sc_requested_r_scale != scx->sc_requested_r_scale) log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n", s, __func__, sc->sc_requested_r_scale, scx->sc_requested_r_scale); if (sc->sc_requested_s_scale != scx->sc_requested_s_scale) log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n", s, __func__, sc->sc_requested_s_scale, scx->sc_requested_s_scale); if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK)) log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__); } if (s != NULL) free(s, M_TCPLOG); return (0); } #endif /* INVARIANTS */ static void syncookie_reseed(void *arg) { struct tcp_syncache *sc = arg; uint8_t *secbits; int secbit; /* * Reseeding the secret doesn't have to be protected by a lock. * It only must be ensured that the new random values are visible * to all CPUs in a SMP environment. The atomic with release * semantics ensures that. */ secbit = (sc->secret.oddeven & 0x1) ? 0 : 1; secbits = sc->secret.key[secbit]; arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0); atomic_add_rel_int(&sc->secret.oddeven, 1); /* Reschedule ourself. */ callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz); } /* * We have overflowed a bucket. Let's pause dealing with the syncache. * This function will increment the bucketoverflow statistics appropriately * (once per pause when pausing is enabled; otherwise, once per overflow). */ static void syncache_pause(struct in_conninfo *inc) { time_t delta; const char *s; /* XXX: * 2. Add sysctl read here so we don't get the benefit of this * change without the new sysctl. */ /* * Try an unlocked read. If we already know that another thread * has activated the feature, there is no need to proceed. */ if (V_tcp_syncache.paused) return; /* Are cookied enabled? If not, we can't pause. */ if (!V_tcp_syncookies) { TCPSTAT_INC(tcps_sc_bucketoverflow); return; } /* * We may be the first thread to find an overflow. Get the lock * and evaluate if we need to take action. */ mtx_lock(&V_tcp_syncache.pause_mtx); if (V_tcp_syncache.paused) { mtx_unlock(&V_tcp_syncache.pause_mtx); return; } /* Activate protection. */ V_tcp_syncache.paused = true; TCPSTAT_INC(tcps_sc_bucketoverflow); /* * Determine the last backoff time. If we are seeing a re-newed * attack within that same time after last reactivating the syncache, * consider it an extension of the same attack. */ delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff; if (V_tcp_syncache.pause_until + delta - time_uptime > 0) { if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) { delta <<= 1; V_tcp_syncache.pause_backoff++; } } else { delta = TCP_SYNCACHE_PAUSE_TIME; V_tcp_syncache.pause_backoff = 0; } /* Log a warning, including IP addresses, if able. */ if (inc != NULL) s = tcp_log_addrs(inc, NULL, NULL, NULL); else s = (const char *)NULL; log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for " "the next %lld seconds%s%s%s\n", (long long)delta, (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "", (s != NULL) ? ")" : ""); free(__DECONST(void *, s), M_TCPLOG); /* Use the calculated delta to set a new pause time. */ V_tcp_syncache.pause_until = time_uptime + delta; callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause, &V_tcp_syncache); mtx_unlock(&V_tcp_syncache.pause_mtx); } /* Evaluate whether we need to unpause. */ static void syncache_unpause(void *arg) { struct tcp_syncache *sc; time_t delta; sc = arg; mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED); callout_deactivate(&sc->pause_co); /* * Check to make sure we are not running early. If the pause * time has expired, then deactivate the protection. */ if ((delta = sc->pause_until - time_uptime) > 0) callout_schedule(&sc->pause_co, delta * hz); else sc->paused = false; } /* * Exports the syncache entries to userland so that netstat can display * them alongside the other sockets. This function is intended to be * called only from tcp_pcblist. * * Due to concurrency on an active system, the number of pcbs exported * may have no relation to max_pcbs. max_pcbs merely indicates the * amount of space the caller allocated for this function to use. */ int syncache_pcblist(struct sysctl_req *req) { struct xtcpcb xt; struct syncache *sc; struct syncache_head *sch; int error, i; bzero(&xt, sizeof(xt)); xt.xt_len = sizeof(xt); xt.t_state = TCPS_SYN_RECEIVED; xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP; xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket); xt.xt_inp.xi_socket.so_type = SOCK_STREAM; xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING; for (i = 0; i < V_tcp_syncache.hashsize; i++) { sch = &V_tcp_syncache.hashbase[i]; SCH_LOCK(sch); TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) { if (sc->sc_cred != NULL && cr_cansee(req->td->td_ucred, sc->sc_cred) != 0) continue; if (sc->sc_inc.inc_flags & INC_ISIPV6) xt.xt_inp.inp_vflag = INP_IPV6; else xt.xt_inp.inp_vflag = INP_IPV4; xt.xt_encaps_port = sc->sc_port; bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo)); error = SYSCTL_OUT(req, &xt, sizeof xt); if (error) { SCH_UNLOCK(sch); return (0); } } SCH_UNLOCK(sch); } return (0); }