/* * Driver for the 27/284X series adaptec SCSI controllers written by * Justin T. Gibbs. Much of this driver was taken from Julian Elischer's * 1742 driver, so it bears his copyright. * * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * commenced: Sun Sep 27 18:14:01 PDT 1992 * * $Id: aic7770.c,v 1.5 1994/11/18 20:34:30 gibbs Exp $ */ /* * TODO: * Add support for dual and wide busses * Implement Target Mode * Implement Tagged Queuing * Add target reset capabilities * Test the check SCSI sense code * Write a message abort procedure for use in ahc_timeout * Add support for the 294X series cards * * This driver is very stable, and seems to offer performance * comprable to the 1742 FreeBSD driver. The only timeouts * I have ever experienced were due to critical driver bugs * where an abort wouldn't have helped me anyway. So I haven't * written code to actually search the QINFIFO and/or kill an * active command. Same goes for target reset. */ #define AHC_SCB_MAX 16 /* * Up to 16 SCBs on some types of aic7xxx based * boards. The aic7770 family only have 4 */ #include "ahc.h" /* for NAHC from config */ #include #include #include #include #include #include #include #include #include #include #include #include #define AHC_NSEG 256 /* number of dma segments supported */ #define PAGESIZ 4096 /* #define AHCDEBUG */ typedef unsigned long int physaddr; #include #define KVTOPHYS(x) vtophys(x) typedef enum { AHC_274, /* Single Channel */ AHC_274T, /* Twin Channel */ AHC_274W, /* Wide Channel */ AHC_284, /* VL Single Channel */ AHC_284T, /* VL Twin Channel */ AHC_284W, /* VL Wide Channel - Do these exist?? */ }ahc_type; int ahcprobe(); int ahcprobe1 __P((struct isa_device *dev, ahc_type type)); int ahc_attach(); int ahc_init __P((int unit)); void ahc_loadseq __P((int port)); int ahcintr(); int32 ahc_scsi_cmd(); timeout_t ahc_timeout; void ahc_done(); struct scb *ahc_get_scb __P((int unit, int flags)); void ahc_free_scb(); void ahcminphys(); struct scb *ahc_scb_phys_kv(); u_int32 ahc_adapter_info(); #define MAX_SLOTS 16 /* max slots on the EISA bus */ static ahc_slot = 0; /* slot last board was found in */ static ahc_unit = 0; /* Different debugging levels - only one so-far */ #define AHC_SHOWMISC 0x0001 int ahc_debug = AHC_SHOWMISC; /* * Standard EISA Host ID regs (Offset from slot base) */ #define HID0 0xC80 /* 0,1: msb of ID2, 2-7: ID1 */ #define HID1 0xC81 /* 0-4: ID3, 5-7: LSB ID2 */ #define HID2 0xC82 /* product, 0=174[20] 1 = 1744 */ #define HID3 0xC83 /* firmware revision */ /**** bit definitions for SCSIDEF ****/ #define HSCSIID 0x07 /* our SCSI ID */ typedef struct { ahc_type type; unsigned char id; /* The Last EISA Host ID reg */ } ahc_sig; #define CHAR1(B1,B2) (((B1>>2) & 0x1F) | '@') #define CHAR2(B1,B2) (((B1<<3) & 0x18) | ((B2>>5) & 0x7)|'@') #define CHAR3(B1,B2) ((B2 & 0x1F) | '@') struct isa_driver ahcdriver = {ahcprobe, ahc_attach, "ahc"}; struct scsi_adapter ahc_switch = { ahc_scsi_cmd, ahcminphys, 0, 0, ahc_adapter_info, "ahc", { 0, 0 } }; /* the below structure is so we have a default dev struct for our link struct */ struct scsi_device ahc_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ "ahc", 0, { 0, 0 } }; static struct kern_devconf kdc_ahc[NAHC] = { { 0, 0, 0, /* filled in by dev_attach */ "ahc", 0, { MDDT_ISA, 0, "bio" }, isa_generic_externalize, 0, 0, ISA_EXTERNALLEN, &kdc_isa0, /* parent */ 0, /* parentdata */ DC_BUSY, /* host adapters are always ``in use'' */ "Adaptec aic7770 based SCSI host adapter" } }; static inline void ahc_registerdev(struct isa_device *id) { if(id->id_unit) kdc_ahc[id->id_unit] = kdc_ahc[0]; kdc_ahc[id->id_unit].kdc_unit = id->id_unit; kdc_ahc[id->id_unit].kdc_parentdata = id; dev_attach(&kdc_ahc[id->id_unit]); } /* * All of these should be in a separate header file shared by the sequencer * code and the kernel level driver. The only catch is that we would need to * add an additional 0xc00 offset when using them in the kernel driver. The * aic7770 assembler must be modified to allow include files as well. All * page numbers refer to the Adaptec AIC-7770 Data Book availible from * Adaptec's Technical Documents Department 1-800-634-2766 */ /* -------------------- AIC-7770 offset definitions ----------------------- */ /* * SCSI Sequence Control (p. 3-11). * Each bit, when set starts a specific SCSI sequence on the bus */ #define SCSISEQ 0xc00 #define TEMODEO 0x80 #define ENSELO 0x40 #define ENSELI 0x20 #define ENRSELI 0x10 #define ENAUTOATNO 0x08 #define ENAUTOATNI 0x04 #define ENAUTOATNP 0x02 #define SCSIRSTO 0x01 /* * SCSI Control Signal Read Register (p. 3-15). * Reads the actual state of the SCSI bus pins */ #define SCSISIGI 0xc03 #define CDI 0x80 #define IOI 0x40 #define MSGI 0x20 #define ATNI 0x10 #define SELI 0x08 #define BSYI 0x04 #define REQI 0x02 #define ACKI 0x01 /* * SCSI Contol Signal Write Register (p. 3-16). * Writing to this register modifies the control signals on the bus. Only * those signals that are allowed in the current mode (Initiator/Target) are * asserted. */ #define SCSISIGO 0xc03 #define CDO 0x80 #define IOO 0x40 #define MSGO 0x20 #define ATNO 0x10 #define SELO 0x08 #define BSYO 0x04 #define REQO 0x02 #define ACKO 0x01 /* * SCSI ID (p. 3-18). * Contains the ID of the board and the current target on the * selected channel */ #define SCSIID 0xc05 #define TID 0xf0 /* Target ID mask */ #define OID 0x0f /* Our ID mask */ /* * SCSI Status 0 (p. 3-21) * Contains one set of SCSI Interrupt codes * These are most likely of interest to the sequencer */ #define SSTAT0 0xc0b #define TARGET 0x80 /* Board is a target */ #define SELDO 0x40 /* Selection Done */ #define SELDI 0x20 /* Board has been selected */ #define SELINGO 0x10 /* Selection In Progress */ #define SWRAP 0x08 /* 24bit counter wrap */ #define SDONE 0x04 /* STCNT = 0x000000 */ #define SPIORDY 0x02 /* SCSI PIO Ready */ #define DMADONE 0x01 /* DMA transfer completed */ /* * Clear SCSI Interrupt 1 (p. 3-23) * Writing a 1 to a bit clears the associated SCSI Interrupt in SSTAT1. */ #define CLRSINT1 0xc0c #define CLRSELTIMEO 0x80 #define CLRATNO 0x40 #define CLRSCSIRSTI 0x20 /* UNUSED 0x10 */ #define CLRBUSFREE 0x08 #define CLRSCSIPERR 0x04 #define CLRPHASECHG 0x02 #define CLRREQINIT 0x01 /* * SCSI Status 1 (p. 3-24) * These interrupt bits are of interest to the kernel driver */ #define SSTAT1 0xc0c #define SELTO 0x80 #define ATNTARG 0x40 #define SCSIRSTI 0x20 #define PHASEMIS 0x10 #define BUSFREE 0x08 #define SCSIPERR 0x04 #define PHASECHG 0x02 #define REQINIT 0x01 /* * Selection/Reselection ID (p. 3-31) * Upper four bits are the device id. The ONEBIT is set when the re/selecting * device did not set its own ID. */ #define SELID 0xc19 #define SELID_MASK 0xf0 #define ONEBIT 0x08 /* UNUSED 0x07 */ /* * SCSI Block Control (p. 3-32) * Controls Bus type and channel selection. In a twin channel configuration * addresses 0x00-0x1e are gated to the appropriate channel based on this * register. SELWIDE allows for the coexistence of 8bit and 16bit devices * on a wide bus. */ #define SBLKCTL 0xc1f /* UNUSED 0xc0 */ #define AUTOFLUSHDIS 0x20 /* UNUSED 0x10 */ #define SELBUSB 0x08 /* UNUSED 0x04 */ #define SELWIDE 0x02 /* UNUSED 0x01 */ /* * Sequencer Control (p. 3-33) * Error detection mode and speed configuration */ #define SEQCTL 0xc60 #define PERRORDIS 0x80 #define PAUSEDIS 0x40 #define FAILDIS 0x20 #define FASTMODE 0x10 #define BRKADRINTEN 0x08 #define STEP 0x04 #define SEQRESET 0x02 #define LOADRAM 0x01 /* * Sequencer RAM Data (p. 3-34) * Single byte window into the Scratch Ram area starting at the address * specified by SEQADDR0 and SEQADDR1. To write a full word, simply write * four bytes in sucessesion. The SEQADDRs will increment after the most * significant byte is written */ #define SEQRAM 0xc61 /* * Sequencer Address Registers (p. 3-35) * Only the first bit of SEQADDR1 holds addressing information */ #define SEQADDR0 0xc62 #define SEQADDR1 0xc63 #define SEQADDR1_MASK 0x01 /* * Accumulator * We cheat by passing arguments in the Accumulator up to the kernel driver */ #define ACCUM 0xc64 /* * Board Control (p. 3-43) */ #define BCTL 0xc84 /* RSVD 0xf0 */ #define ACE 0x08 /* Support for external processors */ /* RSVD 0x06 */ #define ENABLE 0x01 /* * Host Control (p. 3-47) R/W * Overal host control of the device. */ #define HCNTRL 0xc87 /* UNUSED 0x80 */ #define POWRDN 0x40 /* UNUSED 0x20 */ #define SWINT 0x10 #define IRQMS 0x08 #define PAUSE 0x04 #define INTEN 0x02 #define CHIPRST 0x01 #define REQ_PAUSE IRQMS | PAUSE | INTEN #define UNPAUSE_274X IRQMS | INTEN #define UNPAUSE_284X INTEN /* * SCB Pointer (p. 3-49) * Gate one of the four SCBs into the SCBARRAY window. */ #define SCBPTR 0xc90 /* * Interrupt Status (p. 3-50) * Status for system interrupts */ #define INTSTAT 0xc91 #define SEQINT_MASK 0xf0 /* SEQINT Status Codes */ #define BAD_PHASE 0x00 #define MSG_REJECT 0x10 #define NO_IDENT 0x20 #define NO_MATCH 0x30 #define TRANS_RATE 0x40 #define BAD_STATUS 0x50 #define BRKADRINT 0x08 #define SCSIINT 0x04 #define CMDCMPLT 0x02 #define SEQINT 0x01 #define INT_PEND SEQINT | SCSIINT | CMDCMPLT /* For polling */ /* * Hard Error (p. 3-53) * Reporting of catastrophic errors. You usually cannot recover from * these without a full board reset. */ #define ERROR 0xc92 /* UNUSED 0xf0 */ #define PARERR 0x08 #define ILLOPCODE 0x04 #define ILLSADDR 0x02 #define ILLHADDR 0x01 /* * Clear Interrupt Status (p. 3-52) */ #define CLRINT 0xc92 #define CLRBRKADRINT 0x08 #define CLRINTSTAT 0x04 /* UNDOCUMENTED - must be unpaused */ #define CLRCMDINT 0x02 #define CLRSEQINT 0x01 /* * SCB Auto Increment (p. 3-59) * Byte offset into the SCB Array and an optional bit to allow auto * incrementing of the address during download and upload operations */ #define SCBCNT 0xc9a #define SCBAUTO 0x80 #define SCBCNT_MASK 0x1f /* * Queue In FIFO (p. 3-60) * Input queue for queued SCBs (commands that the seqencer has yet to start) */ #define QINFIFO 0xc9b /* * Queue In Count (p. 3-60) * Number of queued SCBs */ #define QINCNT 0xc9c /* * Queue Out FIFO (p. 3-61) * Queue of SCBs that have completed and await the host */ #define QOUTFIFO 0xc9d /* * Queue Out Count (p. 3-61) * Number of queued SCBs in the Out FIFO */ #define QOUTCNT 0xc9e #define SCBARRAY 0xca0 /* ---------------- END AIC-7770 Register Definitions ----------------- */ /* ---------------------- Scratch RAM Offsets ------------------------- */ /* These offsets are either to values that are initialized by the board's * BIOS or are specified by the Linux sequencer code. If I can figure out * how to read the EISA configuration info at probe time, the cards could * be run without BIOS support installed */ /* * The sequencer will stick the frist byte of any rejected message here so * we can see what is getting thrown away. */ #define HA_REJBYTE 0xc31 /* * Pending message flag */ #define HA_MSG_FLAGS 0xc35 /* * Length of pending message */ #define HA_MSG_LEN 0xc36 /* * message body */ #define HA_MSG_START 0xc37 /* outgoing message body */ /* * These are offsets into the card's scratch ram. Some of the values are * specified in the AHA2742 technical reference manual and are initialized * by the BIOS at boot time. */ #define HA_ARG_1 0xc4c #define HA_ARG_2 0xc4d #define HA_RETURN_1 0xc4c #define HA_SIGSTATE 0xc4e #define HA_NEEDSDTR 0xc4f #define HA_SCSICONF 0xc5a #define INTDEF 0xc5c #define HA_HOSTCONF 0xc5d #define HA_SCBCOUNT 0xc56 #define ACTIVE_A 0xc57 #define MSG_ABORT 0x06 /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. * XXX Should add a timeout in here!! */ #define PAUSE_SEQUENCER(ahc) \ outb(HCNTRL + ahc->baseport, REQ_PAUSE); \ \ while ((inb(HCNTRL + ahc->baseport) & PAUSE) == 0) \ ; #define UNPAUSE_SEQUENCER(ahc) \ outb( HCNTRL + ahc->baseport, ahc->unpause ) /* * Restart the sequencer program from address zero */ #define RESTART_SEQUENCER(ahc) \ do { \ outb( SEQCTL + ahc->baseport, SEQRESET ); \ } while (inw(SEQADDR0 + ahc->baseport) != 0); \ \ UNPAUSE_SEQUENCER(ahc); struct ahc_dma_seg { physaddr addr; long len; }; /* * The driver keeps up to four scb structures per card in memory. Only the * first 26 bytes of the structure are valid for the hardware, the rest used * for driver level bookeeping. The "__attribute ((packed))" tags ensure that * gcc does not attempt to pad the long ints in the structure to word * boundaries since the first 26 bytes of this structure must have the correct * offsets for the hardware to find them. The driver should be further * optimized so that we only have to download the first 14 bytes since as long * as we always use S/G, the last fields should be zero anyway. Its mostly a * matter of looking through the sequencer code and ensuring that those fields * are cleared or loaded with a valid value before being read. */ struct scb { /* ------------ Begin hardware supported fields ---------------- */ /*1*/ u_char control; #define SCB_REJ_MDP 0x80 /* Reject MDP message */ #define SCB_DCE 0x40 /* Disconnect enable */ #define SCB_TE 0x20 /* Tag enable */ #define SCB_WAITING 0x06 #define SCB_DIS 0x04 #define SCB_TAG_TYPE 0x3 #define SIMPLE_QUEUE 0x0 #define HEAD_QUEUE 0x1 #define OR_QUEUE 0x2 /*2*/ u_char target_channel_lun; /* 4/1/3 bits */ /*3*/ u_char SG_segment_count; /*7*/ physaddr SG_list_pointer __attribute__ ((packed)); /*11*/ physaddr cmdpointer __attribute__ ((packed)); /*12*/ u_char cmdlen; /*14*/ u_char RESERVED[2]; /* must be zero */ /*15*/ u_char target_status; /*18*/ u_char residual_data_count[3]; /*19*/ u_char residual_SG_segment_count; /*23*/ physaddr data __attribute__ ((packed)); /*26*/ u_char datalen[3]; #define SCB_SIZE 26 /* amount to actually download */ #if 0 /* * No real point in transferring this to the * SCB registers. */ unsigned char RESERVED[6]; #endif /*-----------------end of hardware supported fields----------------*/ struct scb *next; /* in free list */ struct scsi_xfer *xs; /* the scsi_xfer for this cmd */ int flags; int position; /* Position in scbarray */ #define SCB_FREE 0 #define SCB_ACTIVE 1 #define SCB_ABORTED 2 #define SCB_IMMED 4 #define SCB_IMMED_FAIL 8 #define SCB_SENSE 16 struct ahc_dma_seg ahc_dma[AHC_NSEG] __attribute__ ((packed)); struct scsi_sense sense_cmd; /* SCSI command block */ }; struct ahc_data { ahc_type type; int flags; #define AHC_INIT 0x01; int baseport; struct scb *scbarray[AHC_SCB_MAX]; /* Mirror boards scbarray */ struct scb *free_scb; int our_id; /* our scsi id */ int vect; struct scb *immed_ecb; /* an outstanding immediete command */ struct scsi_link sc_link; int numscbs; u_char maxscbs; int unpause; } *ahcdata[NAHC]; #ifdef AHCDEBUG void ahc_print_scb(scb) struct scb *scb; { printf("scb:%x control:%x tcl:%x cmdlen:%d cmdpointer:%x\n" ,scb ,scb->control ,scb->target_channel_lun ,scb->cmdlen ,scb->cmdpointer ); printf(" datlen:%d data:%x res:%x segs:%x segp:%x\n" ,scb->datalen[2] << 16 | scb->datalen[1] << 8 | scb->datalen[0] ,scb->data ,scb->RESERVED[1] << 8 | scb->RESERVED[0] ,scb->SG_segment_count ,scb->SG_list_pointer); printf(" sg_addr:%x sg_len:%d\n" ,scb->ahc_dma[0].addr ,scb->ahc_dma[0].len); printf(" size:%d\n" ,(int)&(scb->next) - (int)scb); } void ahc_print_active_scb(ahc) struct ahc_data *ahc; { int cur_scb_offset; int port = ahc->baseport; PAUSE_SEQUENCER(ahc); cur_scb_offset = inb(SCBPTR + port); UNPAUSE_SEQUENCER(ahc); ahc_print_scb(ahc->scbarray[cur_scb_offset]); } #define PARERR 0x08 #define ILLOPCODE 0x04 #define ILLSADDR 0x02 #define ILLHADDR 0x01 #endif static struct { u_char errno; char *errmesg; } hard_error[] = { ILLHADDR, "Illegal Host Access", ILLSADDR, "Illegal Sequencer Address referrenced", ILLOPCODE, "Illegal Opcode in sequencer program", PARERR, "Sequencer Ram Parity Error", }; /* * Valid SCSIRATE values. (p. 3-17) * Provides a mapping of tranfer periods in ns to the proper value to * stick in the scsiscfr reg to use that transfer rate. */ static struct { short sxfr; short period; /* in ns */ char *rate; } ahc_syncrates[] = { 0x00, 100, "10.0", 0x10, 125, "8.0", 0x20, 150, "6.67", 0x30, 175, "5.7", 0x40, 200, "5.0", 0x50, 225, "4.4", 0x60, 250, "4.0", 0x70, 275, "3.6" }; static int ahc_num_syncrates = sizeof(ahc_syncrates) / sizeof(ahc_syncrates[0]); int ahcprobe(struct isa_device *dev) { int port; int i; u_char sig_id[4]; ahc_sig valid_ids[] = { /* Entries of other tested adaptors should be added here */ AHC_274, 0x71, /*274x, Card*/ AHC_274, 0x70, /*274x, Motherboard*/ AHC_284, 0x56, /*284x, BIOS enabled*/ AHC_284, 0x57, /*284x, BIOS disabled*/ }; ahc_slot++; while (ahc_slot <= MAX_SLOTS) { port = 0x1000 * ahc_slot; for( i = 0; i < sizeof(sig_id); i++ ) { /* * An outb is required to prime these registers on * VL cards */ outb( port + HID0, HID0 + i ); sig_id[i] = inb(port + HID0 + i); } if (sig_id[0] == 0xff) { ahc_slot++; continue; } /* Check manufacturer's ID. */ if ((CHAR1(sig_id[0], sig_id[1]) == 'A') && (CHAR2(sig_id[0], sig_id[1]) == 'D') && (CHAR3(sig_id[0], sig_id[1]) == 'P') && (sig_id[2] == 0x77)) { for( i = 0; i < sizeof(valid_ids)/sizeof(ahc_sig); i++) if ( sig_id[3] == valid_ids[i].id ) { dev->id_iobase = port; return ahcprobe1(dev, valid_ids[i].type); } } ahc_slot++; } return 0; } /* * Check if the device can be found at the port given * and if so, determine configuration and set it up for further work. * As an argument, takes the isa_device structure from * autoconf.c. */ int ahcprobe1(dev, type) struct isa_device *dev; ahc_type type; { /* * find unit and check we have that many defined */ int unit = dev->id_unit; struct ahc_data *ahc; if (unit >= NAHC) { printf("ahc: unit number (%d) too high\n", unit); return 0; } /* * Allocate a storage area for us */ if (ahcdata[unit]) { printf("ahc%d: memory already allocated\n", unit); return 0; } ahc = malloc(sizeof(struct ahc_data), M_TEMP, M_NOWAIT); if (!ahc) { printf("ahc%d: cannot malloc!\n", unit); return 0; } bzero(ahc, sizeof(struct ahc_data)); ahcdata[unit] = ahc; ahc->baseport = dev->id_iobase; ahc->type = type; /* * Try to initialize a unit at this location * reset the AIC-7770, read its registers, * and fill in the dev structure accordingly */ if (ahc_init(unit) != 0) { ahcdata[unit] = NULL; free(ahc, M_TEMP); return (0); } /* * If it's there, put in it's interrupt vectors */ dev->id_irq = (1 << ahc->vect); dev->id_drq = -1; /* use EISA dma */ ahc_unit++; return IO_EISASIZE; } /* * Look up the valid period to SCSIRATE conversion in our table. */ static void ahc_scsirate(scsirate, period, offset, unit, target ) u_char *scsirate; u_char period, offset; int unit, target; { int i; for (i = 0; i < ahc_num_syncrates; i++) { if ((ahc_syncrates[i].period - period) >= 0) { *scsirate = (ahc_syncrates[i].sxfr) | (offset & 0x0f); #ifdef AHCDEBUG printf("ahc%d: target %d synchronous at %sMb/s\n", unit, target, ahc_syncrates[i].rate ); #endif /* AHCDEBUG */ return; } } /* Default to asyncronous transfer */ *scsirate = 0; #ifdef AHCDEBUG printf("ahc%d: target %d using asyncronous transfers\n", unit, target ); #endif /* AHCDEBUG */ } /* * Attach all the sub-devices we can find */ int ahc_attach(dev) struct isa_device *dev; { int unit = dev->id_unit; struct ahc_data *ahc = ahcdata[unit]; /* * fill in the prototype scsi_link. */ ahc->sc_link.adapter_unit = unit; ahc->sc_link.adapter_targ = ahc->our_id; ahc->sc_link.adapter = &ahc_switch; ahc->sc_link.device = &ahc_dev; ahc->sc_link.flags = DEBUGLEVEL; /* * Here, we should really fill in up to two different sc_links, * making use of the extra fields in the sc_link structure so * we can know which channel any requests are for. Then its just * a matter of doing a scsi_attachdevs to both instead of the one. * This should be done when we get or write sequencer code that * supports more than one channel. XXX */ ahc_registerdev(dev); /* * ask the adapter what subunits are present */ scsi_attachdevs(&(ahc->sc_link)); return 1; } void ahc_send_scb( ahc, scb ) struct ahc_data *ahc; struct scb *scb; { int old_scbptr; int base = ahc->baseport; PAUSE_SEQUENCER(ahc); old_scbptr = inb(SCBPTR + base); outb(SCBPTR + base, scb->position); outb(SCBCNT + base, SCBAUTO); outsb(SCBARRAY + base, scb, SCB_SIZE); outb(SCBCNT + base, 0); outb(QINFIFO + base, scb->position); outb(SCBPTR + base, old_scbptr); UNPAUSE_SEQUENCER(ahc); } static void ahc_getscb(base, scb) int base; struct scb *scb; { outb(SCBCNT + base, 0x80); /* SCBAUTO */ insb(SCBARRAY + base, scb, SCB_SIZE); outb(SCBCNT + base, 0); } /* * Catch an interrupt from the adaptor */ int ahcintr(unit) int unit; { int intstat; u_char status; struct ahc_data *ahc = ahcdata[unit]; int port = ahc->baseport; struct scb *scb = NULL; struct scsi_xfer *xs = NULL; intstat = inb(INTSTAT + port); if (intstat & BRKADRINT) { /* We upset the sequencer :-( */ /* Lookup the error message */ int i, error = inb(ERROR + port); int num_errors = sizeof(hard_error)/sizeof(hard_error[0]); for(i = 0; error != 1 && i < num_errors; i++) error >>= 1; panic("ahc%d: brkadrint, %s at seqaddr = 0x%x\n", unit, hard_error[i].errmesg, inw(SEQADDR0 + port)); } if (intstat & SEQINT) { unsigned char transfer, offset, rate; switch (intstat & SEQINT_MASK) { case BAD_PHASE: panic("ahc%d: unknown scsi bus phase. " "Attempting to continue\n", unit); break; case MSG_REJECT: printf("ahc%d: Warning - " "message reject, message type: 0x%x\n", unit, inb(HA_REJBYTE + port)); break; case NO_IDENT: panic("ahc%d: No IDENTIFY message from reconnecting " "target %d\n", unit, (inb(SELID + port) >> 4) & 0xf); break; case NO_MATCH: { u_char active; int target = (inb(SELID + port) >> 4) & 0x4; printf("ahc%d: no active SCB for reconnecting " "target %d - issuing ABORT\n", unit, target); active = inb(HA_SCBCOUNT + port); DELAY(10000); active = inb(ACTIVE_A + port); active &= ~(0x01 << target); outb(ACTIVE_A + port, active); outb(CLRSINT1 + port, CLRSELTIMEO); RESTART_SEQUENCER(ahc); break; } case TRANS_RATE: /* * Help the sequencer to translate the negotiated * transfer rate. Transfer is 1/4 the period * in ns as is returned by the sync negotiation * message. So, we must multiply by four */ transfer = inb(HA_ARG_1 + port) << 2; /* The bottom half of SCSIXFER*/ offset = inb(HA_ARG_2 + port); ahc_scsirate(&rate, transfer, offset, unit, inb(SCSIID + port) >> 0x4); outb(HA_RETURN_1 + port, rate); break; case BAD_STATUS: { int scb_index, saved_scb_index; /* The sequencer will notify us when a command * has an error that would be of interest to * the kernel. This allows us to leave the sequencer * running in the common case of command completes * without error. */ scb_index = inb(SCBPTR + port); scb = ahc->scbarray[scb_index]; if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("ahc%d: ahcintr - referenced scb not " "valid during seqint 0x%x scb(%d)\n", unit, intstat, scb_index); goto clear; } xs = scb->xs; ahc_getscb(port, scb); #ifdef AHCDEBUG if(xs->sc_link->target == DEBUGTARG) ahc_print_scb(scb); #endif xs->status = scb->target_status; xs->resid = ((scb->residual_data_count[2] << 16) | (scb->residual_data_count[1] << 8) | scb->residual_data_count[0]); switch(scb->target_status){ case SCSI_OK: printf("ahc%d: Interrupted for staus of " "0???\n", unit); break; case SCSI_CHECK: #ifdef AHCDEBUG printf("ahc%d: SCSI Check requested\n", unit); #endif /*Priliminary code for requesting Sense */ /* Enable at your own risk */ #if STILL_NEEDS_TESTING if((xs->error == XS_NOERROR) && !(scb->flags & SCB_SENSE)) { struct ahc_dma_seg *sg = scb->ahc_dma; struct scsi_sense *sc = &(scb->sense_cmd); int scbsave[AHC_SCB_MAX], i; int queued = inb(QINCNT + port); #ifdef AHCDEBUG printf("SENDING SENSE.\n"); #endif bzero(scb, SCB_SIZE); scb->flags |= SCB_SENSE; xs->error = XS_SENSE; sc->op_code = REQUEST_SENSE; sc->byte2 = xs->sc_link->lun << 5; sc->length = sizeof(struct scsi_sense_data); scb->cmdlen = sizeof(*sc); scb->cmdpointer = KVTOPHYS(sc); scb->SG_segment_count = 1; scb->SG_list_pointer = KVTOPHYS(sg); sg->addr = KVTOPHYS(&xs->sense); sg->len = sizeof(struct scsi_sense_data); /* * Reinsert us at head of * queue */ outb(SCBCNT + port, 0x80); outsb(SCBARRAY + port, scb, SCB_SIZE); outb(SCBCNT + port, 0); for (i = 0; i < queued; i++) scbsave[i] = inb(QINFIFO + port); outb(QINFIFO + port, scb->position); for (i = 0; i < queued; i++) outb(QINFIFO + port, scbsave[i]); /* New lease on life */ untimeout(ahc_timeout, (caddr_t)scb); timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000); goto clear; } #endif xs->error = XS_DRIVER_STUFFUP; break; case SCSI_BUSY: xs->error = XS_BUSY; printf("ahc%d: Target Busy\n", unit); break; default: #ifdef AHCDEBUG if (ahc_debug & AHC_SHOWMISC) { printf("unexpected targ_status: %x\n", scb->target_status); } #endif /*AHCDEBUG */ xs->error = XS_DRIVER_STUFFUP; break; } untimeout(ahc_timeout, (caddr_t)scb); ahc_done(unit, scb); break; } default: printf("ahc: seqint, " "intstat = 0x%x, scsisigi = 0x%x\n", intstat, inb(SCSISIGI + port)); break; } /* * Clear the upper byte that holds SEQINT status * codes and clear the SEQINT bit. */ clear: outb(CLRINT + port, CLRSEQINT); /* * The sequencer is paused immediately on * a SEQINT, so we should restart it when * we leave this section. */ UNPAUSE_SEQUENCER(ahc); } if (intstat & SCSIINT) { int scb_index = inb(SCBPTR + port); status = inb(SSTAT1 + port); scb = ahc->scbarray[scb_index]; if (!scb || scb->flags != SCB_ACTIVE) { printf("ahc%d: ahcintr - referenced scb not " "valid during scsiint 0x%x scb(%d)\n", unit, status, scb_index); outb(CLRSINT1 + port, status); UNPAUSE_SEQUENCER(ahc); outb(CLRINT + port, CLRINTSTAT); scb = NULL; goto cmdcomplete; } xs = scb->xs; if (status & SELTO) { u_char active; outb(SCSISEQ + port, 0); xs->error = XS_TIMEOUT; /* * Clear any pending messages for the timed out * target, and mark the target as free */ outb(HA_MSG_FLAGS + port, 0); active = inb(ACTIVE_A + port); active &= ~(0x01 << xs->sc_link->target); outb(ACTIVE_A + port, active); outb(CLRSINT1 + port, CLRSELTIMEO); RESTART_SEQUENCER(ahc); outb(CLRINT + port, CLRINTSTAT); } if (status & SCSIPERR) { printf("ahc%d: parity error on channel A " "target %d, lun %d\n", unit, xs->sc_link->target, xs->sc_link->lun); xs->error = XS_DRIVER_STUFFUP; outb(CLRSINT1 + port, CLRSCSIPERR); UNPAUSE_SEQUENCER(ahc); outb(CLRINT + port, CLRINTSTAT); scb = NULL; } if (status & BUSFREE) { #if 0 /* * Has seen busfree since selection, i.e. * a "spurious" selection. Shouldn't happen. */ printf("ahc: unexpected busfree\n"); xs->error = XS_DRIVER_STUFFUP; outb(CLRSINT1 + port, BUSFREE); /* CLRBUSFREE */ #endif } else { printf("ahc%d: Unknown SCSIINT. Status = 0x%x\n", unit, status); outb(CLRSINT1 + port, status); UNPAUSE_SEQUENCER(ahc); outb(CLRINT + port, CLRINTSTAT); scb = NULL; } if(scb != NULL) { /* We want to process the command */ untimeout(ahc_timeout, (caddr_t)scb); ahc_done(unit, scb); } } cmdcomplete: if (intstat & CMDCMPLT) { int scb_index, saved_scb_index; do { scb_index = inb(QOUTFIFO + port); scb = ahc->scbarray[scb_index]; if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("ahc%d: WARNING " "no command for scb %d (cmdcmplt)\n", unit, scb_index); outb(CLRINT + port, CLRCMDINT); continue; } outb(CLRINT+ port, CLRCMDINT); untimeout(ahc_timeout, (caddr_t)scb); ahc_done(unit, scb); } while (inb(QOUTCNT + port)); } return 1; } /* * We have a scb which has been processed by the * adaptor, now we look to see how the operation * went. */ void ahc_done(unit, scb) int unit; struct scb *scb; { struct scsi_xfer *xs = scb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_done\n")); /* * Put the results of the operation * into the xfer and call whoever started it */ if ((xs->flags & SCSI_ERR_OK) && !(xs->error == XS_SENSE)) { /* All went correctly OR errors expected */ xs->error = 0; } xs->flags |= ITSDONE; ahc_free_scb(unit, scb, xs->flags); scsi_done(xs); } /* * Start the board, ready for normal operation */ int ahc_init(unit) int unit; { struct ahc_data *ahc = ahcdata[unit]; int port = ahc->baseport; int intdef; /* * Assume we have a board at this stage * Find out the configured interupt and the card type. */ #ifdef AHCDEBUG printf("ahc%d: scb %d bytes; SCB_SIZE %d bytes, ahc_dma %d bytes\n", unit, sizeof(struct scb), SCB_SIZE, sizeof(struct ahc_dma_seg)); #endif /* AHCDEBUG */ printf("ahc%d: reading board settings\n", unit); outb(HCNTRL + port, CHIPRST); switch( ahc->type ) { case AHC_274: printf("ahc%d: 274x", unit); ahc->unpause = UNPAUSE_274X; ahc->maxscbs = 0x4; break; case AHC_284: printf("ahc%d: 284x", unit); ahc->unpause = UNPAUSE_284X; ahc->maxscbs = 0x4; break; default: }; /* Determine channel configuration. */ switch ( inb(SBLKCTL + port) ) { case 0: printf(" Single Channel, "); break; case 2: printf(" Wide SCSI configuration - Unsupported\n"); ahc->type += 2; return(-1); break; case 8: printf(" Twin Channel - ignoring channel B, "); ahc->type += 1; break; default: printf(" Unsupported adapter type. Ignoring\n"); return(-1); } /* Number of SCBs that will be used. Supposedly some newer rev * aic7770s have more than four so maybe we can detect this in * the future. */ printf("%d SCBs, ", ahc->maxscbs); intdef = inb(INTDEF + port); switch (intdef & 0xf) { case 9: ahc->vect = 9; break; case 10: ahc->vect = 10; break; case 11: ahc->vect = 11; break; case 12: ahc->vect = 12; break; case 14: ahc->vect = 14; break; case 15: ahc->vect = 15; break; default: printf("illegal irq setting\n"); return (EIO); } printf("int=%d, ", ahc->vect); /* who are we on the scsi bus? */ ahc->our_id = (inb(HA_SCSICONF + port) & HSCSIID); printf("SCSI Id=%d\n", ahc->our_id); /* * Load the Sequencer program and Enable the adapter */ printf("ahc%d: Downloading Sequencer Program\n", unit); ahc_loadseq(port); outb(BCTL + port, ENABLE); /* Reset the SCSI bus. Is this necessary? */ outb(SCSISEQ + port, SCSIRSTO); DELAY(500); outb(SCSISEQ + port, 0); /* * Attempt syncronous negotiation for all targets. * Clear the pending messages flag */ outb( HA_NEEDSDTR + port, 0xff ); outb( HA_MSG_FLAGS + port, 0); outb(HA_SCBCOUNT + port, ahc->maxscbs); outb( ACTIVE_A + port, 0 ); UNPAUSE_SEQUENCER(ahc); /* * Note that we are going and return (to probe) */ ahc->flags |= AHC_INIT; return (0); } void ahcminphys(bp) struct buf *bp; { /* Even though the card can transfer up to 16megs per command * we are limited by the number of segments in the dma segment * list that we can hold. The worst case is that all pages are * discontinuous physically, hense the "page per segment" limit * enforced here. */ if (bp->b_bcount > ((AHC_NSEG - 1) * PAGESIZ)) { bp->b_bcount = ((AHC_NSEG - 1) * PAGESIZ); } } /* * start a scsi operation given the command and * the data address, target, and lun all of which * are stored in the scsi_xfer struct */ int32 ahc_scsi_cmd(xs) struct scsi_xfer *xs; { struct scb *scb = NULL; struct ahc_dma_seg *sg; int seg; /* scatter gather seg being worked on */ int thiskv; physaddr thisphys, nextphys; int unit = xs->sc_link->adapter_unit; int bytes_this_seg, bytes_this_page, datalen, flags; struct ahc_data *ahc = ahcdata[unit]; int s; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_scsi_cmd\n")); /* * get an scb to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if (xs->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */ if (flags & ITSDONE) { printf("ahc%d: Already done?", unit); xs->flags &= ~ITSDONE; } if (!(flags & INUSE)) { printf("ahc%d: Not in use?", unit); xs->flags |= INUSE; } if (!(scb = ahc_get_scb(unit, flags))) { xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%x)\n", scb)); scb->xs = xs; if (flags & SCSI_RESET) { /* AR: Needs Implementation */ printf("ahc0: SCSI_RESET called.\n"); } /* * Put all the arguments for the xfer in the scb */ /* Note, Linux sequencer code does not support extra channels */ scb->target_channel_lun = ((xs->sc_link->target << 4) & 0xF0) | xs->sc_link->lun & 0x7; scb->cmdlen = xs->cmdlen; scb->cmdpointer = KVTOPHYS(xs->cmd); if (xs->datalen) { /* should use S/G only if not zero length */ scb->SG_list_pointer = KVTOPHYS(scb->ahc_dma); sg = scb->ahc_dma; seg = 0; { /* * Set up the scatter gather block */ SC_DEBUG(xs->sc_link, SDEV_DB4, ("%d @0x%x:- ", xs->datalen, xs->data)); datalen = xs->datalen; thiskv = (int) xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < AHC_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->addr = thisphys; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%x", thisphys)); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) * with the the last, just extend the * length */ /* how far to the end of the page */ nextphys = (thisphys & (~(PAGESIZ - 1))) + PAGESIZ; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page ,datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & (~(PAGESIZ - 1))) + PAGESIZ; if (datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg */ SC_DEBUGN(xs->sc_link, SDEV_DB4, ("(0x%x)", bytes_this_seg)); sg->len = bytes_this_seg; sg++; seg++; } } /*end of iov/kv decision */ scb->SG_segment_count = seg; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n")); if (datalen) { /* there's still data, must have run out of segs! */ printf("ahc_scsi_cmd%d: more than %d DMA segs\n", unit, AHC_NSEG); xs->error = XS_DRIVER_STUFFUP; ahc_free_scb(unit, scb, flags); return (HAD_ERROR); } } /* else No data xfer, use non S/G values * the SG_segment_count and SG_list_pointer are pre-zeroed, so * we don't have to do anything */ /* * Usually return SUCCESSFULLY QUEUED */ #ifdef AHCDEBUG if(xs->sc_link->target == DEBUGTARG) ahc_print_scb(scb); #endif if (!(flags & SCSI_NOMASK)) { s = splbio(); ahc_send_scb(ahc, scb); timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000); splx(s); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n")); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll on completion */ ahc_send_scb(ahc, scb); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_wait\n")); do { if (ahc_poll(unit, xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); printf("cmd fail\n"); printf("Abort called. Someone implement me please!\n"); xs->error = XS_DRIVER_STUFFUP; return (HAD_ERROR); } } while (!(xs->flags & ITSDONE)); /* something (?) else finished */ if (xs->error) { return (HAD_ERROR); } return (COMPLETE); } /* * Return some information to the caller about * the adapter and it's capabilities. */ u_int32 ahc_adapter_info(unit) int unit; { return (2); /* 2 outstanding requests at a time per device */ } /* * A scb (and hence an scb entry on the board is put onto the * free list. */ void ahc_free_scb(unit, scb, flags) int unit, flags; struct scb *scb; { unsigned int opri = 0; struct ahc_data *ahc = ahcdata[unit]; if (!(flags & SCSI_NOMASK)) opri = splbio(); scb->next = ahc->free_scb; ahc->free_scb = scb; scb->flags = SCB_FREE; /* * If there were none, wake abybody waiting for * one to come free, starting with queued entries */ if (!scb->next) { wakeup((caddr_t)&ahc->free_scb); } if (!(flags & SCSI_NOMASK)) splx(opri); } /* * Get a free scb * If there are none, see if we can allocate a * new one. Otherwise either return an error or sleep */ struct scb * ahc_get_scb(unit, flags) int unit, flags; { struct ahc_data *ahc = ahcdata[unit]; unsigned opri = 0; struct scb *scbp; int position; if (!(flags & SCSI_NOMASK)) opri = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ while (!(scbp = ahc->free_scb)) { if (ahc->numscbs < ahc->maxscbs) { scbp = (struct scb *) malloc(sizeof(struct scb), M_TEMP, M_NOWAIT); if (scbp) { bzero(scbp, sizeof(struct scb)); scbp->position = ahc->numscbs; ahc->numscbs++; scbp->flags = SCB_ACTIVE; /* * Place in the scbarray * Never is removed. Position * in ahc->scbarray is the scbarray * position on the board we will * load it into. */ ahc->scbarray[scbp->position] = scbp; } else { printf("ahc%d: Can't malloc SCB\n", unit); } goto gottit; } else { if (!(flags & SCSI_NOSLEEP)) { tsleep((caddr_t)&ahc->free_scb, PRIBIO, "ahcscb", 0); } } } if (scbp) { /* Get SCB from from free list */ ahc->free_scb = scbp->next; /* preserve the position */ position = scbp->position; bzero(scbp, sizeof(struct scb)); scbp->flags = SCB_ACTIVE; scbp->position = position; } gottit: if (!(flags & SCSI_NOMASK)) splx(opri); return (scbp); } void ahc_loadseq(port) int port; { static unsigned char seqprog[] = { # include "../../sys/gnu/misc/aic7770/aic7770_seq.h" }; outb(SEQCTL + port, PERRORDIS|SEQRESET|LOADRAM); outsb(SEQRAM + port, seqprog, sizeof(seqprog)); outb(SEQCTL + port, 0); do { /* XXX Need a timer here? */ outb(SEQCTL + port, SEQRESET); } while (inw(SEQADDR0 + port) != 0); } /* * Function to poll for command completion when in poll mode */ int ahc_poll(int unit, int wait) { /* in msec */ struct ahc_data *ahc = ahcdata[unit]; int port = ahc->baseport; int stport = INTSTAT + port; retry: while (--wait) { if (inb(stport) & INT_PEND) break; DELAY(1000); } if (wait == 0) { printf("ahc%d: board not responding\n", unit); return (EIO); } ahcintr(unit); return (0); } void ahc_timeout(void *arg1) { struct scb *scb = (struct scb *)arg1; int unit, cur_scb_offset, port; struct ahc_data *ahc; int s = splbio(); unit = scb->xs->sc_link->adapter_unit; ahc = ahcdata[unit]; port = ahc->baseport; printf("ahc%d: target %d, lun %d (%s%d) timed out ", unit ,scb->xs->sc_link->target ,scb->xs->sc_link->lun ,scb->xs->sc_link->device->name ,scb->xs->sc_link->dev_unit); #if 0 #ifdef AHCDEBUG if (ahc_debug & AHC_SHOWMISC) ahc_print_active_scb(unit); #endif /*AHCDEBUG */ #endif /* * If it's immediate, don't try abort it */ if (scb->flags & SCB_IMMED) { scb->xs->retries = 0; /* I MEAN IT ! */ scb->flags |= SCB_IMMED_FAIL; ahc_done(unit, scb); splx(s); return; } /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if (scb->flags == SCB_ABORTED) { /* * abort timed out */ printf("AGAIN"); scb->xs->retries = 0; /* I MEAN IT ! */ ahc_done(unit, scb); } else { /* abort the operation that has timed out */ printf("Abort unsupported!!!\n"); } splx(s); }