/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_subs.c 8.3 (Berkeley) 1/4/94 * $Id: nfs_subs.c,v 1.9 1995/02/06 02:20:40 davidg Exp $ */ /* * These functions support the macros and help fiddle mbuf chains for * the nfs op functions. They do things like create the rpc header and * copy data between mbuf chains and uio lists. */ #include #include #include #include #include #include #include #include #include #include #ifdef VFS_LKM #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ISO #include #endif #define TRUE 1 #define FALSE 0 /* * Data items converted to xdr at startup, since they are constant * This is kinda hokey, but may save a little time doing byte swaps */ u_long nfs_procids[NFS_NPROCS]; u_long nfs_xdrneg1; u_long rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, rpc_rejectedcred, rpc_auth_kerb; u_long nfs_vers, nfs_prog, nfs_true, nfs_false; /* And other global data */ static u_long nfs_xid = 0; enum vtype ntov_type[7] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON }; extern struct proc *nfs_iodwant[NFS_MAXASYNCDAEMON]; extern int nqnfs_piggy[NFS_NPROCS]; extern struct nfsrtt nfsrtt; extern time_t nqnfsstarttime; extern u_long nqnfs_prog, nqnfs_vers; extern int nqsrv_clockskew; extern int nqsrv_writeslack; extern int nqsrv_maxlease; #ifdef VFS_LKM struct getfh_args; extern int getfh(struct proc *, struct getfh_args *, int *); struct nfssvc_args; extern int nfssvc(struct proc *, struct nfssvc_args *, int *); #endif LIST_HEAD(nfsnodehashhead, nfsnode); /* * Create the header for an rpc request packet * The hsiz is the size of the rest of the nfs request header. * (just used to decide if a cluster is a good idea) */ struct mbuf * nfsm_reqh(vp, procid, hsiz, bposp) struct vnode *vp; u_long procid; int hsiz; caddr_t *bposp; { register struct mbuf *mb; register u_long *tl; register caddr_t bpos; struct mbuf *mb2; struct nfsmount *nmp; int nqflag; MGET(mb, M_WAIT, MT_DATA); if (hsiz >= MINCLSIZE) MCLGET(mb, M_WAIT); mb->m_len = 0; bpos = mtod(mb, caddr_t); /* * For NQNFS, add lease request. */ if (vp) { nmp = VFSTONFS(vp->v_mount); if (nmp->nm_flag & NFSMNT_NQNFS) { nqflag = NQNFS_NEEDLEASE(vp, procid); if (nqflag) { nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED); *tl++ = txdr_unsigned(nqflag); *tl = txdr_unsigned(nmp->nm_leaseterm); } else { nfsm_build(tl, u_long *, NFSX_UNSIGNED); *tl = 0; } } } /* Finally, return values */ *bposp = bpos; return (mb); } /* * Build the RPC header and fill in the authorization info. * The authorization string argument is only used when the credentials * come from outside of the kernel. * Returns the head of the mbuf list. */ struct mbuf * nfsm_rpchead(cr, nqnfs, procid, auth_type, auth_len, auth_str, mrest, mrest_len, mbp, xidp) register struct ucred *cr; int nqnfs; int procid; int auth_type; int auth_len; char *auth_str; struct mbuf *mrest; int mrest_len; struct mbuf **mbp; u_long *xidp; { register struct mbuf *mb; register u_long *tl; register caddr_t bpos; register int i; struct mbuf *mreq, *mb2; int siz, grpsiz, authsiz; authsiz = nfsm_rndup(auth_len); if (auth_type == RPCAUTH_NQNFS) authsiz += 2 * NFSX_UNSIGNED; MGETHDR(mb, M_WAIT, MT_DATA); if ((authsiz + 10*NFSX_UNSIGNED) >= MINCLSIZE) { MCLGET(mb, M_WAIT); } else if ((authsiz + 10*NFSX_UNSIGNED) < MHLEN) { MH_ALIGN(mb, authsiz + 10*NFSX_UNSIGNED); } else { MH_ALIGN(mb, 8*NFSX_UNSIGNED); } mb->m_len = 0; mreq = mb; bpos = mtod(mb, caddr_t); /* * First the RPC header. */ nfsm_build(tl, u_long *, 8*NFSX_UNSIGNED); if (++nfs_xid == 0) nfs_xid++; *tl++ = *xidp = txdr_unsigned(nfs_xid); *tl++ = rpc_call; *tl++ = rpc_vers; if (nqnfs) { *tl++ = txdr_unsigned(NQNFS_PROG); *tl++ = txdr_unsigned(NQNFS_VER1); } else { *tl++ = txdr_unsigned(NFS_PROG); *tl++ = txdr_unsigned(NFS_VER2); } *tl++ = txdr_unsigned(procid); /* * And then the authorization cred. */ *tl++ = txdr_unsigned(auth_type); *tl = txdr_unsigned(authsiz); switch (auth_type) { case RPCAUTH_UNIX: nfsm_build(tl, u_long *, auth_len); *tl++ = 0; /* stamp ?? */ *tl++ = 0; /* NULL hostname */ *tl++ = txdr_unsigned(cr->cr_uid); *tl++ = txdr_unsigned(cr->cr_groups[0]); grpsiz = (auth_len >> 2) - 5; *tl++ = txdr_unsigned(grpsiz); for (i = 1; i <= grpsiz; i++) *tl++ = txdr_unsigned(cr->cr_groups[i]); break; case RPCAUTH_NQNFS: nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED); *tl++ = txdr_unsigned(cr->cr_uid); *tl = txdr_unsigned(auth_len); siz = auth_len; while (siz > 0) { if (M_TRAILINGSPACE(mb) == 0) { MGET(mb2, M_WAIT, MT_DATA); if (siz >= MINCLSIZE) MCLGET(mb2, M_WAIT); mb->m_next = mb2; mb = mb2; mb->m_len = 0; bpos = mtod(mb, caddr_t); } i = min(siz, M_TRAILINGSPACE(mb)); bcopy(auth_str, bpos, i); mb->m_len += i; auth_str += i; bpos += i; siz -= i; } if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { for (i = 0; i < siz; i++) *bpos++ = '\0'; mb->m_len += siz; } break; }; nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED); *tl++ = txdr_unsigned(RPCAUTH_NULL); *tl = 0; mb->m_next = mrest; mreq->m_pkthdr.len = authsiz + 10*NFSX_UNSIGNED + mrest_len; mreq->m_pkthdr.rcvif = (struct ifnet *)0; *mbp = mb; return (mreq); } /* * copies mbuf chain to the uio scatter/gather list */ int nfsm_mbuftouio(mrep, uiop, siz, dpos) struct mbuf **mrep; register struct uio *uiop; int siz; caddr_t *dpos; { register char *mbufcp, *uiocp; register int xfer, left, len; register struct mbuf *mp; long uiosiz, rem; int error = 0; mp = *mrep; mbufcp = *dpos; len = mtod(mp, caddr_t)+mp->m_len-mbufcp; rem = nfsm_rndup(siz)-siz; while (siz > 0) { if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) return (EFBIG); left = uiop->uio_iov->iov_len; uiocp = uiop->uio_iov->iov_base; if (left > siz) left = siz; uiosiz = left; while (left > 0) { while (len == 0) { mp = mp->m_next; if (mp == NULL) return (EBADRPC); mbufcp = mtod(mp, caddr_t); len = mp->m_len; } xfer = (left > len) ? len : left; #ifdef notdef /* Not Yet.. */ if (uiop->uio_iov->iov_op != NULL) (*(uiop->uio_iov->iov_op)) (mbufcp, uiocp, xfer); else #endif if (uiop->uio_segflg == UIO_SYSSPACE) bcopy(mbufcp, uiocp, xfer); else copyout(mbufcp, uiocp, xfer); left -= xfer; len -= xfer; mbufcp += xfer; uiocp += xfer; uiop->uio_offset += xfer; uiop->uio_resid -= xfer; } if (uiop->uio_iov->iov_len <= siz) { uiop->uio_iovcnt--; uiop->uio_iov++; } else { uiop->uio_iov->iov_base += uiosiz; uiop->uio_iov->iov_len -= uiosiz; } siz -= uiosiz; } *dpos = mbufcp; *mrep = mp; if (rem > 0) { if (len < rem) error = nfs_adv(mrep, dpos, rem, len); else *dpos += rem; } return (error); } /* * copies a uio scatter/gather list to an mbuf chain... */ int nfsm_uiotombuf(uiop, mq, siz, bpos) register struct uio *uiop; struct mbuf **mq; int siz; caddr_t *bpos; { register char *uiocp; register struct mbuf *mp, *mp2; register int xfer, left, mlen; int uiosiz, clflg, rem; char *cp; if (siz > MLEN) /* or should it >= MCLBYTES ?? */ clflg = 1; else clflg = 0; rem = nfsm_rndup(siz)-siz; mp = mp2 = *mq; while (siz > 0) { if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) return (EINVAL); left = uiop->uio_iov->iov_len; uiocp = uiop->uio_iov->iov_base; if (left > siz) left = siz; uiosiz = left; while (left > 0) { mlen = M_TRAILINGSPACE(mp); if (mlen == 0) { MGET(mp, M_WAIT, MT_DATA); if (clflg) MCLGET(mp, M_WAIT); mp->m_len = 0; mp2->m_next = mp; mp2 = mp; mlen = M_TRAILINGSPACE(mp); } xfer = (left > mlen) ? mlen : left; #ifdef notdef /* Not Yet.. */ if (uiop->uio_iov->iov_op != NULL) (*(uiop->uio_iov->iov_op)) (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); else #endif if (uiop->uio_segflg == UIO_SYSSPACE) bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); else copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); mp->m_len += xfer; left -= xfer; uiocp += xfer; uiop->uio_offset += xfer; uiop->uio_resid -= xfer; } if (uiop->uio_iov->iov_len <= siz) { uiop->uio_iovcnt--; uiop->uio_iov++; } else { uiop->uio_iov->iov_base += uiosiz; uiop->uio_iov->iov_len -= uiosiz; } siz -= uiosiz; } if (rem > 0) { if (rem > M_TRAILINGSPACE(mp)) { MGET(mp, M_WAIT, MT_DATA); mp->m_len = 0; mp2->m_next = mp; } cp = mtod(mp, caddr_t)+mp->m_len; for (left = 0; left < rem; left++) *cp++ = '\0'; mp->m_len += rem; *bpos = cp; } else *bpos = mtod(mp, caddr_t)+mp->m_len; *mq = mp; return (0); } /* * Help break down an mbuf chain by setting the first siz bytes contiguous * pointed to by returned val. * This is used by the macros nfsm_dissect and nfsm_dissecton for tough * cases. (The macros use the vars. dpos and dpos2) */ int nfsm_disct(mdp, dposp, siz, left, cp2) struct mbuf **mdp; caddr_t *dposp; int siz; int left; caddr_t *cp2; { register struct mbuf *mp, *mp2; register int siz2, xfer; register caddr_t p; mp = *mdp; while (left == 0) { *mdp = mp = mp->m_next; if (mp == NULL) return (EBADRPC); left = mp->m_len; *dposp = mtod(mp, caddr_t); } if (left >= siz) { *cp2 = *dposp; *dposp += siz; } else if (mp->m_next == NULL) { return (EBADRPC); } else if (siz > MHLEN) { panic("nfs S too big"); } else { MGET(mp2, M_WAIT, MT_DATA); mp2->m_next = mp->m_next; mp->m_next = mp2; mp->m_len -= left; mp = mp2; *cp2 = p = mtod(mp, caddr_t); bcopy(*dposp, p, left); /* Copy what was left */ siz2 = siz-left; p += left; mp2 = mp->m_next; /* Loop around copying up the siz2 bytes */ while (siz2 > 0) { if (mp2 == NULL) return (EBADRPC); xfer = (siz2 > mp2->m_len) ? mp2->m_len : siz2; if (xfer > 0) { bcopy(mtod(mp2, caddr_t), p, xfer); NFSMADV(mp2, xfer); mp2->m_len -= xfer; p += xfer; siz2 -= xfer; } if (siz2 > 0) mp2 = mp2->m_next; } mp->m_len = siz; *mdp = mp2; *dposp = mtod(mp2, caddr_t); } return (0); } /* * Advance the position in the mbuf chain. */ int nfs_adv(mdp, dposp, offs, left) struct mbuf **mdp; caddr_t *dposp; int offs; int left; { register struct mbuf *m; register int s; m = *mdp; s = left; while (s < offs) { offs -= s; m = m->m_next; if (m == NULL) return (EBADRPC); s = m->m_len; } *mdp = m; *dposp = mtod(m, caddr_t)+offs; return (0); } /* * Copy a string into mbufs for the hard cases... */ int nfsm_strtmbuf(mb, bpos, cp, siz) struct mbuf **mb; char **bpos; char *cp; long siz; { register struct mbuf *m1 = 0, *m2; long left, xfer, len, tlen; u_long *tl; int putsize; putsize = 1; m2 = *mb; left = M_TRAILINGSPACE(m2); if (left > 0) { tl = ((u_long *)(*bpos)); *tl++ = txdr_unsigned(siz); putsize = 0; left -= NFSX_UNSIGNED; m2->m_len += NFSX_UNSIGNED; if (left > 0) { bcopy(cp, (caddr_t) tl, left); siz -= left; cp += left; m2->m_len += left; left = 0; } } /* Loop around adding mbufs */ while (siz > 0) { MGET(m1, M_WAIT, MT_DATA); if (siz > MLEN) MCLGET(m1, M_WAIT); m1->m_len = NFSMSIZ(m1); m2->m_next = m1; m2 = m1; tl = mtod(m1, u_long *); tlen = 0; if (putsize) { *tl++ = txdr_unsigned(siz); m1->m_len -= NFSX_UNSIGNED; tlen = NFSX_UNSIGNED; putsize = 0; } if (siz < m1->m_len) { len = nfsm_rndup(siz); xfer = siz; if (xfer < len) *(tl+(xfer>>2)) = 0; } else { xfer = len = m1->m_len; } bcopy(cp, (caddr_t) tl, xfer); m1->m_len = len+tlen; siz -= xfer; cp += xfer; } *mb = m1; *bpos = mtod(m1, caddr_t)+m1->m_len; return (0); } /* * Called once to initialize data structures... */ int nfs_init() { register int i; nfsrtt.pos = 0; rpc_vers = txdr_unsigned(RPC_VER2); rpc_call = txdr_unsigned(RPC_CALL); rpc_reply = txdr_unsigned(RPC_REPLY); rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); rpc_mismatch = txdr_unsigned(RPC_MISMATCH); rpc_autherr = txdr_unsigned(RPC_AUTHERR); rpc_rejectedcred = txdr_unsigned(AUTH_REJECTCRED); rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); rpc_auth_kerb = txdr_unsigned(RPCAUTH_NQNFS); nfs_vers = txdr_unsigned(NFS_VER2); nfs_prog = txdr_unsigned(NFS_PROG); nfs_true = txdr_unsigned(TRUE); nfs_false = txdr_unsigned(FALSE); nfs_xdrneg1 = txdr_unsigned(-1); /* Loop thru nfs procids */ for (i = 0; i < NFS_NPROCS; i++) nfs_procids[i] = txdr_unsigned(i); /* Ensure async daemons disabled */ for (i = 0; i < NFS_MAXASYNCDAEMON; i++) nfs_iodwant[i] = (struct proc *)0; TAILQ_INIT(&nfs_bufq); nfs_nhinit(); /* Init the nfsnode table */ nfsrv_init(0); /* Init server data structures */ nfsrv_initcache(); /* Init the server request cache */ /* * Initialize the nqnfs server stuff. */ if (nqnfsstarttime == 0) { nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease + nqsrv_clockskew + nqsrv_writeslack; NQLOADNOVRAM(nqnfsstarttime); nqnfs_prog = txdr_unsigned(NQNFS_PROG); nqnfs_vers = txdr_unsigned(NQNFS_VER1); CIRCLEQ_INIT(&nqtimerhead); nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash); } /* * Initialize reply list and start timer */ TAILQ_INIT(&nfs_reqq); nfs_timer(0); /* * Set up lease_check and lease_updatetime so that other parts * of the system can call us, if we are loadable. */ lease_check = nfs_lease_check; lease_updatetime = nfs_lease_updatetime; vfsconf[MOUNT_NFS]->vfc_refcount++; /* make us non-unloadable */ #ifdef VFS_LKM sysent[SYS_nfssvc].sy_narg = 2; sysent[SYS_nfssvc].sy_call = nfssvc; sysent[SYS_getfh].sy_narg = 2; sysent[SYS_getfh].sy_call = getfh; #endif return (0); } /* * Attribute cache routines. * nfs_loadattrcache() - loads or updates the cache contents from attributes * that are on the mbuf list * nfs_getattrcache() - returns valid attributes if found in cache, returns * error otherwise */ /* * Load the attribute cache (that lives in the nfsnode entry) with * the values on the mbuf list and * Iff vap not NULL * copy the attributes to *vaper */ int nfs_loadattrcache(vpp, mdp, dposp, vaper) struct vnode **vpp; struct mbuf **mdp; caddr_t *dposp; struct vattr *vaper; { register struct vnode *vp = *vpp; register struct vattr *vap; register struct nfsv2_fattr *fp; extern int (**spec_nfsv2nodeop_p)(); register struct nfsnode *np; register struct nfsnodehashhead *nhpp; register long t1; caddr_t dpos, cp2; int error = 0, isnq; struct mbuf *md; enum vtype vtyp; u_short vmode; long rdev; struct timespec mtime; struct vnode *nvp; md = *mdp; dpos = *dposp; t1 = (mtod(md, caddr_t) + md->m_len) - dpos; isnq = (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS); error = nfsm_disct(&md, &dpos, NFSX_FATTR(isnq), t1, &cp2); if (error) return (error); fp = (struct nfsv2_fattr *)cp2; vtyp = nfstov_type(fp->fa_type); vmode = fxdr_unsigned(u_short, fp->fa_mode); if (vtyp == VNON || vtyp == VREG) vtyp = IFTOVT(vmode); if (isnq) { rdev = fxdr_unsigned(long, fp->fa_nqrdev); fxdr_nqtime(&fp->fa_nqmtime, &mtime); } else { rdev = fxdr_unsigned(long, fp->fa_nfsrdev); fxdr_nfstime(&fp->fa_nfsmtime, &mtime); } /* * If v_type == VNON it is a new node, so fill in the v_type, * n_mtime fields. Check to see if it represents a special * device, and if so, check for a possible alias. Once the * correct vnode has been obtained, fill in the rest of the * information. */ np = VTONFS(vp); if (vp->v_type == VNON) { if (vtyp == VCHR && rdev == 0xffffffff) vp->v_type = vtyp = VFIFO; else vp->v_type = vtyp; if (vp->v_type == VFIFO) { extern int (**fifo_nfsv2nodeop_p)(); vp->v_op = fifo_nfsv2nodeop_p; } if (vp->v_type == VCHR || vp->v_type == VBLK) { vp->v_op = spec_nfsv2nodeop_p; nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); if (nvp) { /* * Discard unneeded vnode, but save its nfsnode. */ LIST_REMOVE(np, n_hash); nvp->v_data = vp->v_data; vp->v_data = NULL; vp->v_op = spec_vnodeop_p; vrele(vp); vgone(vp); /* * Reinitialize aliased node. */ np->n_vnode = nvp; nhpp = nfs_hash(&np->n_fh); LIST_INSERT_HEAD(nhpp, np, n_hash); *vpp = vp = nvp; } } np->n_mtime = mtime.ts_sec; } vap = &np->n_vattr; vap->va_type = vtyp; vap->va_mode = (vmode & 07777); vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid); vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid); vap->va_rdev = (dev_t)rdev; vap->va_mtime = mtime; vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; if (isnq) { fxdr_hyper(&fp->fa_nqsize, &vap->va_size); vap->va_blocksize = fxdr_unsigned(long, fp->fa_nqblocksize); fxdr_hyper(&fp->fa_nqbytes, &vap->va_bytes); vap->va_fileid = fxdr_unsigned(long, fp->fa_nqfileid); fxdr_nqtime(&fp->fa_nqatime, &vap->va_atime); vap->va_flags = fxdr_unsigned(u_long, fp->fa_nqflags); fxdr_nqtime(&fp->fa_nqctime, &vap->va_ctime); vap->va_gen = fxdr_unsigned(u_long, fp->fa_nqgen); fxdr_hyper(&fp->fa_nqfilerev, &vap->va_filerev); } else { vap->va_size = fxdr_unsigned(u_long, fp->fa_nfssize); vap->va_blocksize = fxdr_unsigned(long, fp->fa_nfsblocksize); vap->va_bytes = fxdr_unsigned(long, fp->fa_nfsblocks) * NFS_FABLKSIZE; vap->va_fileid = fxdr_unsigned(long, fp->fa_nfsfileid); fxdr_nfstime(&fp->fa_nfsatime, &vap->va_atime); vap->va_flags = 0; fxdr_nfstime(&fp->fa_nfsctime, &vap->va_ctime); vap->va_gen = 0; vap->va_filerev = 0; } if (vap->va_size != np->n_size) { if (vap->va_type == VREG) { if (np->n_flag & NMODIFIED) { if (vap->va_size < np->n_size) vap->va_size = np->n_size; else np->n_size = vap->va_size; } else np->n_size = vap->va_size; vnode_pager_setsize(vp, (u_long)np->n_size); } else np->n_size = vap->va_size; } np->n_attrstamp = time.tv_sec; *dposp = dpos; *mdp = md; if (vaper != NULL) { bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); #ifdef notdef if ((np->n_flag & NMODIFIED) && np->n_size > vap->va_size) if (np->n_size > vap->va_size) vaper->va_size = np->n_size; #endif if (np->n_flag & NCHG) { if (np->n_flag & NACC) { vaper->va_atime.ts_sec = np->n_atim.tv_sec; vaper->va_atime.ts_nsec = np->n_atim.tv_usec * 1000; } if (np->n_flag & NUPD) { vaper->va_mtime.ts_sec = np->n_mtim.tv_sec; vaper->va_mtime.ts_nsec = np->n_mtim.tv_usec * 1000; } } } return (0); } /* * Check the time stamp * If the cache is valid, copy contents to *vap and return 0 * otherwise return an error */ int nfs_getattrcache(vp, vaper) register struct vnode *vp; struct vattr *vaper; { register struct nfsnode *np = VTONFS(vp); register struct vattr *vap; if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQLOOKLEASE) { if (!NQNFS_CKCACHABLE(vp, NQL_READ) || np->n_attrstamp == 0) { nfsstats.attrcache_misses++; return (ENOENT); } } else if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { nfsstats.attrcache_misses++; return (ENOENT); } nfsstats.attrcache_hits++; vap = &np->n_vattr; if (vap->va_size != np->n_size) { if (vap->va_type == VREG) { if (np->n_flag & NMODIFIED) { if (vap->va_size < np->n_size) vap->va_size = np->n_size; else np->n_size = vap->va_size; } else np->n_size = vap->va_size; vnode_pager_setsize(vp, (u_long)np->n_size); } else np->n_size = vap->va_size; } bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr)); #ifdef notdef if ((np->n_flag & NMODIFIED) == 0) { np->n_size = vaper->va_size; vnode_pager_setsize(vp, (u_long)np->n_size); } else if (np->n_size > vaper->va_size) if (np->n_size > vaper->va_size) vaper->va_size = np->n_size; #endif if (np->n_flag & NCHG) { if (np->n_flag & NACC) { vaper->va_atime.ts_sec = np->n_atim.tv_sec; vaper->va_atime.ts_nsec = np->n_atim.tv_usec * 1000; } if (np->n_flag & NUPD) { vaper->va_mtime.ts_sec = np->n_mtim.tv_sec; vaper->va_mtime.ts_nsec = np->n_mtim.tv_usec * 1000; } } return (0); } /* * Set up nameidata for a lookup() call and do it */ int nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, p) register struct nameidata *ndp; fhandle_t *fhp; int len; struct nfssvc_sock *slp; struct mbuf *nam; struct mbuf **mdp; caddr_t *dposp; struct proc *p; { register int i, rem; register struct mbuf *md; register char *fromcp, *tocp; struct vnode *dp; int error, rdonly; struct componentname *cnp = &ndp->ni_cnd; MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK); /* * Copy the name from the mbuf list to ndp->ni_pnbuf * and set the various ndp fields appropriately. */ fromcp = *dposp; tocp = cnp->cn_pnbuf; md = *mdp; rem = mtod(md, caddr_t) + md->m_len - fromcp; cnp->cn_hash = 0; for (i = 0; i < len; i++) { while (rem == 0) { md = md->m_next; if (md == NULL) { error = EBADRPC; goto out; } fromcp = mtod(md, caddr_t); rem = md->m_len; } if (*fromcp == '\0' || *fromcp == '/') { error = EINVAL; goto out; } cnp->cn_hash += (unsigned char)*fromcp; *tocp++ = *fromcp++; rem--; } *tocp = '\0'; *mdp = md; *dposp = fromcp; len = nfsm_rndup(len)-len; if (len > 0) { if (rem >= len) *dposp += len; else { error = nfs_adv(mdp, dposp, len, rem); if (error) goto out; } } ndp->ni_pathlen = tocp - cnp->cn_pnbuf; cnp->cn_nameptr = cnp->cn_pnbuf; /* * Extract and set starting directory. */ error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, nam, &rdonly); if (error) goto out; if (dp->v_type != VDIR) { nfsrv_vrele(dp); error = ENOTDIR; goto out; } ndp->ni_startdir = dp; if (rdonly) cnp->cn_flags |= (NOCROSSMOUNT | RDONLY); else cnp->cn_flags |= NOCROSSMOUNT; /* * And call lookup() to do the real work */ cnp->cn_proc = p; error = lookup(ndp); if (error) goto out; /* * Check for encountering a symbolic link */ if (cnp->cn_flags & ISSYMLINK) { if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1) vput(ndp->ni_dvp); else vrele(ndp->ni_dvp); vput(ndp->ni_vp); ndp->ni_vp = NULL; error = EINVAL; goto out; } /* * Check for saved name request */ if (cnp->cn_flags & (SAVENAME | SAVESTART)) { cnp->cn_flags |= HASBUF; nfsrv_vmio( ndp->ni_vp); return (0); } out: FREE(cnp->cn_pnbuf, M_NAMEI); return (error); } /* * A fiddled version of m_adj() that ensures null fill to a long * boundary and only trims off the back end */ void nfsm_adj(mp, len, nul) struct mbuf *mp; register int len; int nul; { register struct mbuf *m; register int count, i; register char *cp; /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ count = 0; m = mp; for (;;) { count += m->m_len; if (m->m_next == (struct mbuf *)0) break; m = m->m_next; } if (m->m_len > len) { m->m_len -= len; if (nul > 0) { cp = mtod(m, caddr_t)+m->m_len-nul; for (i = 0; i < nul; i++) *cp++ = '\0'; } return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ for (m = mp; m; m = m->m_next) { if (m->m_len >= count) { m->m_len = count; if (nul > 0) { cp = mtod(m, caddr_t)+m->m_len-nul; for (i = 0; i < nul; i++) *cp++ = '\0'; } break; } count -= m->m_len; } for (m = m->m_next;m;m = m->m_next) m->m_len = 0; } /* * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) * - look up fsid in mount list (if not found ret error) * - get vp and export rights by calling VFS_FHTOVP() * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon * - if not lockflag unlock it with VOP_UNLOCK() */ int nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp) fhandle_t *fhp; int lockflag; struct vnode **vpp; struct ucred *cred; struct nfssvc_sock *slp; struct mbuf *nam; int *rdonlyp; { register struct mount *mp; register struct nfsuid *uidp; register int i; struct ucred *credanon; int error, exflags; *vpp = (struct vnode *)0; mp = getvfs(&fhp->fh_fsid); if (!mp) return (ESTALE); error = VFS_FHTOVP(mp, &fhp->fh_fid, nam, vpp, &exflags, &credanon); if (error) return (error); /* * Check/setup credentials. */ if (exflags & MNT_EXKERB) { for (uidp = NUIDHASH(slp, cred->cr_uid)->lh_first; uidp != 0; uidp = uidp->nu_hash.le_next) { if (uidp->nu_uid == cred->cr_uid) break; } if (uidp == 0) { vput(*vpp); return (NQNFS_AUTHERR); } cred->cr_uid = uidp->nu_cr.cr_uid; for (i = 0; i < uidp->nu_cr.cr_ngroups; i++) cred->cr_groups[i] = uidp->nu_cr.cr_groups[i]; cred->cr_ngroups = i; } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { cred->cr_uid = credanon->cr_uid; for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) cred->cr_groups[i] = credanon->cr_groups[i]; cred->cr_ngroups = i; } if (exflags & MNT_EXRDONLY) *rdonlyp = 1; else *rdonlyp = 0; if (!lockflag) VOP_UNLOCK(*vpp); nfsrv_vmio(*vpp); return (0); } /* * This function compares two net addresses by family and returns TRUE * if they are the same host. * If there is any doubt, return FALSE. * The AF_INET family is handled as a special case so that address mbufs * don't need to be saved to store "struct in_addr", which is only 4 bytes. */ int netaddr_match(family, haddr, nam) int family; union nethostaddr *haddr; struct mbuf *nam; { register struct sockaddr_in *inetaddr; switch (family) { case AF_INET: inetaddr = mtod(nam, struct sockaddr_in *); if (inetaddr->sin_family == AF_INET && inetaddr->sin_addr.s_addr == haddr->had_inetaddr) return (1); break; #ifdef ISO case AF_ISO: { register struct sockaddr_iso *isoaddr1, *isoaddr2; isoaddr1 = mtod(nam, struct sockaddr_iso *); isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); if (isoaddr1->siso_family == AF_ISO && isoaddr1->siso_nlen > 0 && isoaddr1->siso_nlen == isoaddr2->siso_nlen && SAME_ISOADDR(isoaddr1, isoaddr2)) return (1); break; } #endif /* ISO */ default: break; }; return (0); } int nfsrv_vmio( struct vnode *vp) { int rtval; vm_object_t object; vm_pager_t pager; if( (vp == NULL) || (vp->v_type != VREG)) return 1; retry: if( (vp->v_flag & VVMIO) == 0) { pager = (vm_pager_t) vnode_pager_alloc(vp, 0, 0, 0); object = (vm_object_t) vp->v_vmdata; if( object->pager != pager) panic("nfsrv_vmio: pager/object mismatch"); (void) vm_object_lookup( pager); pager_cache( object, TRUE); vp->v_flag |= VVMIO; } else { if( (object = (vm_object_t)vp->v_vmdata) && (object->flags & OBJ_DEAD)) { tsleep( (caddr_t) object, PVM, "nfdead", 0); goto retry; } if( !object) panic("nfsrv_vmio: VMIO object missing"); pager = object->pager; if( !pager) panic("nfsrv_vmio: VMIO pager missing"); (void) vm_object_lookup( pager); } return 0; } int nfsrv_vput( struct vnode *vp) { if( (vp->v_flag & VVMIO) && vp->v_vmdata) { vput( vp); vm_object_deallocate( (vm_object_t) vp->v_vmdata); } else { vput( vp); } return 0; } int nfsrv_vrele( struct vnode *vp) { if( (vp->v_flag & VVMIO) && vp->v_vmdata) { vrele( vp); vm_object_deallocate( (vm_object_t) vp->v_vmdata); } else { vrele( vp); } return 0; }