mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-28 12:07:10 +01:00
fdafd315ad
Apply the following automated changes to try to eliminate no-longer-needed sys/cdefs.h includes as well as now-empty blank lines in a row. Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/ Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/ Remove /\n+#if.*\n#endif.*\n+/ Remove /^#if.*\n#endif.*\n/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/ Sponsored by: Netflix
5879 lines
147 KiB
C
5879 lines
147 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2003-2008 Joseph Koshy
|
|
* Copyright (c) 2007 The FreeBSD Foundation
|
|
* Copyright (c) 2018 Matthew Macy
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by A. Joseph Koshy under
|
|
* sponsorship from the FreeBSD Foundation and Google, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pmc.h>
|
|
#include <sys/pmckern.h>
|
|
#include <sys/pmclog.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/linker.h> /* needs to be after <sys/malloc.h> */
|
|
|
|
#include <machine/atomic.h>
|
|
#include <machine/md_var.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
#include "hwpmc_soft.h"
|
|
|
|
#define PMC_EPOCH_ENTER() \
|
|
struct epoch_tracker pmc_et; \
|
|
epoch_enter_preempt(global_epoch_preempt, &pmc_et)
|
|
|
|
#define PMC_EPOCH_EXIT() \
|
|
epoch_exit_preempt(global_epoch_preempt, &pmc_et)
|
|
|
|
/*
|
|
* Types
|
|
*/
|
|
|
|
enum pmc_flags {
|
|
PMC_FLAG_NONE = 0x00, /* do nothing */
|
|
PMC_FLAG_REMOVE = 0x01, /* atomically remove entry from hash */
|
|
PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
|
|
PMC_FLAG_NOWAIT = 0x04, /* do not wait for mallocs */
|
|
};
|
|
|
|
/*
|
|
* The offset in sysent where the syscall is allocated.
|
|
*/
|
|
static int pmc_syscall_num = NO_SYSCALL;
|
|
|
|
struct pmc_cpu **pmc_pcpu; /* per-cpu state */
|
|
pmc_value_t *pmc_pcpu_saved; /* saved PMC values: CSW handling */
|
|
|
|
#define PMC_PCPU_SAVED(C, R) pmc_pcpu_saved[(R) + md->pmd_npmc * (C)]
|
|
|
|
struct mtx_pool *pmc_mtxpool;
|
|
static int *pmc_pmcdisp; /* PMC row dispositions */
|
|
|
|
#define PMC_ROW_DISP_IS_FREE(R) (pmc_pmcdisp[(R)] == 0)
|
|
#define PMC_ROW_DISP_IS_THREAD(R) (pmc_pmcdisp[(R)] > 0)
|
|
#define PMC_ROW_DISP_IS_STANDALONE(R) (pmc_pmcdisp[(R)] < 0)
|
|
|
|
#define PMC_MARK_ROW_FREE(R) do { \
|
|
pmc_pmcdisp[(R)] = 0; \
|
|
} while (0)
|
|
|
|
#define PMC_MARK_ROW_STANDALONE(R) do { \
|
|
KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
|
|
__LINE__)); \
|
|
atomic_add_int(&pmc_pmcdisp[(R)], -1); \
|
|
KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()), \
|
|
("[pmc,%d] row disposition error", __LINE__)); \
|
|
} while (0)
|
|
|
|
#define PMC_UNMARK_ROW_STANDALONE(R) do { \
|
|
atomic_add_int(&pmc_pmcdisp[(R)], 1); \
|
|
KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
|
|
__LINE__)); \
|
|
} while (0)
|
|
|
|
#define PMC_MARK_ROW_THREAD(R) do { \
|
|
KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
|
|
__LINE__)); \
|
|
atomic_add_int(&pmc_pmcdisp[(R)], 1); \
|
|
} while (0)
|
|
|
|
#define PMC_UNMARK_ROW_THREAD(R) do { \
|
|
atomic_add_int(&pmc_pmcdisp[(R)], -1); \
|
|
KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
|
|
__LINE__)); \
|
|
} while (0)
|
|
|
|
/* various event handlers */
|
|
static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
|
|
pmc_kld_unload_tag;
|
|
|
|
/* Module statistics */
|
|
struct pmc_driverstats pmc_stats;
|
|
|
|
/* Machine/processor dependent operations */
|
|
static struct pmc_mdep *md;
|
|
|
|
/*
|
|
* Hash tables mapping owner processes and target threads to PMCs.
|
|
*/
|
|
struct mtx pmc_processhash_mtx; /* spin mutex */
|
|
static u_long pmc_processhashmask;
|
|
static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash;
|
|
|
|
/*
|
|
* Hash table of PMC owner descriptors. This table is protected by
|
|
* the shared PMC "sx" lock.
|
|
*/
|
|
static u_long pmc_ownerhashmask;
|
|
static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash;
|
|
|
|
/*
|
|
* List of PMC owners with system-wide sampling PMCs.
|
|
*/
|
|
static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners;
|
|
|
|
/*
|
|
* List of free thread entries. This is protected by the spin
|
|
* mutex.
|
|
*/
|
|
static struct mtx pmc_threadfreelist_mtx; /* spin mutex */
|
|
static LIST_HEAD(, pmc_thread) pmc_threadfreelist;
|
|
static int pmc_threadfreelist_entries = 0;
|
|
#define THREADENTRY_SIZE (sizeof(struct pmc_thread) + \
|
|
(md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
|
|
|
|
/*
|
|
* Task to free thread descriptors
|
|
*/
|
|
static struct task free_task;
|
|
|
|
/*
|
|
* A map of row indices to classdep structures.
|
|
*/
|
|
static struct pmc_classdep **pmc_rowindex_to_classdep;
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
|
|
static int pmc_debugflags_parse(char *newstr, char *fence);
|
|
#endif
|
|
|
|
static int load(struct module *module, int cmd, void *arg);
|
|
static int pmc_add_sample(ring_type_t ring, struct pmc *pm,
|
|
struct trapframe *tf);
|
|
static void pmc_add_thread_descriptors_from_proc(struct proc *p,
|
|
struct pmc_process *pp);
|
|
static int pmc_attach_process(struct proc *p, struct pmc *pm);
|
|
static struct pmc *pmc_allocate_pmc_descriptor(void);
|
|
static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
|
|
static int pmc_attach_one_process(struct proc *p, struct pmc *pm);
|
|
static bool pmc_can_allocate_row(int ri, enum pmc_mode mode);
|
|
static bool pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
|
|
int cpu);
|
|
static int pmc_can_attach(struct pmc *pm, struct proc *p);
|
|
static void pmc_capture_user_callchain(int cpu, int soft,
|
|
struct trapframe *tf);
|
|
static void pmc_cleanup(void);
|
|
static int pmc_detach_process(struct proc *p, struct pmc *pm);
|
|
static int pmc_detach_one_process(struct proc *p, struct pmc *pm,
|
|
int flags);
|
|
static void pmc_destroy_owner_descriptor(struct pmc_owner *po);
|
|
static void pmc_destroy_pmc_descriptor(struct pmc *pm);
|
|
static void pmc_destroy_process_descriptor(struct pmc_process *pp);
|
|
static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
|
|
static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
|
|
static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
|
|
pmc_id_t pmc);
|
|
static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
|
|
uint32_t mode);
|
|
static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
|
|
struct thread *td, uint32_t mode);
|
|
static void pmc_force_context_switch(void);
|
|
static void pmc_link_target_process(struct pmc *pm,
|
|
struct pmc_process *pp);
|
|
static void pmc_log_all_process_mappings(struct pmc_owner *po);
|
|
static void pmc_log_kernel_mappings(struct pmc *pm);
|
|
static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
|
|
static void pmc_maybe_remove_owner(struct pmc_owner *po);
|
|
static void pmc_post_callchain_callback(void);
|
|
static void pmc_process_allproc(struct pmc *pm);
|
|
static void pmc_process_csw_in(struct thread *td);
|
|
static void pmc_process_csw_out(struct thread *td);
|
|
static void pmc_process_exec(struct thread *td,
|
|
struct pmckern_procexec *pk);
|
|
static void pmc_process_exit(void *arg, struct proc *p);
|
|
static void pmc_process_fork(void *arg, struct proc *p1,
|
|
struct proc *p2, int n);
|
|
static void pmc_process_proccreate(struct proc *p);
|
|
static void pmc_process_samples(int cpu, ring_type_t soft);
|
|
static void pmc_process_threadcreate(struct thread *td);
|
|
static void pmc_process_threadexit(struct thread *td);
|
|
static void pmc_process_thread_add(struct thread *td);
|
|
static void pmc_process_thread_delete(struct thread *td);
|
|
static void pmc_process_thread_userret(struct thread *td);
|
|
static void pmc_release_pmc_descriptor(struct pmc *pmc);
|
|
static void pmc_remove_owner(struct pmc_owner *po);
|
|
static void pmc_remove_process_descriptor(struct pmc_process *pp);
|
|
static int pmc_start(struct pmc *pm);
|
|
static int pmc_stop(struct pmc *pm);
|
|
static int pmc_syscall_handler(struct thread *td, void *syscall_args);
|
|
static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
|
|
static void pmc_thread_descriptor_pool_drain(void);
|
|
static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
|
|
static void pmc_unlink_target_process(struct pmc *pmc,
|
|
struct pmc_process *pp);
|
|
|
|
static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
|
|
static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
|
|
static struct pmc_mdep *pmc_generic_cpu_initialize(void);
|
|
static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
|
|
|
|
/*
|
|
* Kernel tunables and sysctl(8) interface.
|
|
*/
|
|
|
|
SYSCTL_DECL(_kern_hwpmc);
|
|
SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"HWPMC stats");
|
|
|
|
/* Stats. */
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
|
|
&pmc_stats.pm_intr_ignored,
|
|
"# of interrupts ignored");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
|
|
&pmc_stats.pm_intr_processed,
|
|
"# of interrupts processed");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
|
|
&pmc_stats.pm_intr_bufferfull,
|
|
"# of interrupts where buffer was full");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
|
|
&pmc_stats.pm_syscalls,
|
|
"# of syscalls");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
|
|
&pmc_stats.pm_syscall_errors,
|
|
"# of syscall_errors");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
|
|
&pmc_stats.pm_buffer_requests,
|
|
"# of buffer requests");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed,
|
|
CTLFLAG_RW, &pmc_stats.pm_buffer_requests_failed,
|
|
"# of buffer requests which failed");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
|
|
&pmc_stats.pm_log_sweeps,
|
|
"# of times samples were processed");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
|
|
&pmc_stats.pm_merges,
|
|
"# of times kernel stack was found for user trace");
|
|
SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
|
|
&pmc_stats.pm_overwrites,
|
|
"# of times a sample was overwritten before being logged");
|
|
|
|
static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
|
|
&pmc_callchaindepth, 0,
|
|
"depth of call chain records");
|
|
|
|
char pmc_cpuid[PMC_CPUID_LEN];
|
|
SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
|
|
pmc_cpuid, 0,
|
|
"cpu version string");
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
|
|
char pmc_debugstr[PMC_DEBUG_STRSIZE];
|
|
TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
|
|
sizeof(pmc_debugstr));
|
|
SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
|
|
CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
|
|
0, 0, pmc_debugflags_sysctl_handler, "A",
|
|
"debug flags");
|
|
#endif
|
|
|
|
/*
|
|
* kern.hwpmc.hashsize -- determines the number of rows in the
|
|
* of the hash table used to look up threads
|
|
*/
|
|
static int pmc_hashsize = PMC_HASH_SIZE;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
|
|
&pmc_hashsize, 0,
|
|
"rows in hash tables");
|
|
|
|
/*
|
|
* kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
|
|
*/
|
|
static int pmc_nsamples = PMC_NSAMPLES;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
|
|
&pmc_nsamples, 0,
|
|
"number of PC samples per CPU");
|
|
|
|
static uint64_t pmc_sample_mask = PMC_NSAMPLES - 1;
|
|
|
|
/*
|
|
* kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
|
|
*/
|
|
static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
|
|
&pmc_mtxpool_size, 0,
|
|
"size of spin mutex pool");
|
|
|
|
/*
|
|
* kern.hwpmc.threadfreelist_entries -- number of free entries
|
|
*/
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
|
|
&pmc_threadfreelist_entries, 0,
|
|
"number of available thread entries");
|
|
|
|
/*
|
|
* kern.hwpmc.threadfreelist_max -- maximum number of free entries
|
|
*/
|
|
static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
|
|
&pmc_threadfreelist_max, 0,
|
|
"maximum number of available thread entries before freeing some");
|
|
|
|
/*
|
|
* kern.hwpmc.mincount -- minimum sample count
|
|
*/
|
|
static u_int pmc_mincount = 1000;
|
|
SYSCTL_INT(_kern_hwpmc, OID_AUTO, mincount, CTLFLAG_RWTUN,
|
|
&pmc_mincount, 0,
|
|
"minimum count for sampling counters");
|
|
|
|
/*
|
|
* security.bsd.unprivileged_syspmcs -- allow non-root processes to
|
|
* allocate system-wide PMCs.
|
|
*
|
|
* Allowing unprivileged processes to allocate system PMCs is convenient
|
|
* if system-wide measurements need to be taken concurrently with other
|
|
* per-process measurements. This feature is turned off by default.
|
|
*/
|
|
static int pmc_unprivileged_syspmcs = 0;
|
|
SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
|
|
&pmc_unprivileged_syspmcs, 0,
|
|
"allow unprivileged process to allocate system PMCs");
|
|
|
|
/*
|
|
* Hash function. Discard the lower 2 bits of the pointer since
|
|
* these are always zero for our uses. The hash multiplier is
|
|
* round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
|
|
*/
|
|
#if LONG_BIT == 64
|
|
#define _PMC_HM 11400714819323198486u
|
|
#elif LONG_BIT == 32
|
|
#define _PMC_HM 2654435769u
|
|
#else
|
|
#error Must know the size of 'long' to compile
|
|
#endif
|
|
|
|
#define PMC_HASH_PTR(P,M) ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
|
|
|
|
/*
|
|
* Syscall structures
|
|
*/
|
|
|
|
/* The `sysent' for the new syscall */
|
|
static struct sysent pmc_sysent = {
|
|
.sy_narg = 2,
|
|
.sy_call = pmc_syscall_handler,
|
|
};
|
|
|
|
static struct syscall_module_data pmc_syscall_mod = {
|
|
.chainevh = load,
|
|
.chainarg = NULL,
|
|
.offset = &pmc_syscall_num,
|
|
.new_sysent = &pmc_sysent,
|
|
.old_sysent = { .sy_narg = 0, .sy_call = NULL },
|
|
.flags = SY_THR_STATIC_KLD,
|
|
};
|
|
|
|
static moduledata_t pmc_mod = {
|
|
.name = PMC_MODULE_NAME,
|
|
.evhand = syscall_module_handler,
|
|
.priv = &pmc_syscall_mod,
|
|
};
|
|
|
|
#ifdef EARLY_AP_STARTUP
|
|
DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
|
|
#else
|
|
DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
|
|
#endif
|
|
MODULE_VERSION(pmc, PMC_VERSION);
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
enum pmc_dbgparse_state {
|
|
PMCDS_WS, /* in whitespace */
|
|
PMCDS_MAJOR, /* seen a major keyword */
|
|
PMCDS_MINOR
|
|
};
|
|
|
|
static int
|
|
pmc_debugflags_parse(char *newstr, char *fence)
|
|
{
|
|
struct pmc_debugflags *tmpflags;
|
|
size_t kwlen;
|
|
char c, *p, *q;
|
|
int error, *newbits, tmp;
|
|
int found;
|
|
|
|
tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK | M_ZERO);
|
|
|
|
error = 0;
|
|
for (p = newstr; p < fence && (c = *p); p++) {
|
|
/* skip white space */
|
|
if (c == ' ' || c == '\t')
|
|
continue;
|
|
|
|
/* look for a keyword followed by "=" */
|
|
for (q = p; p < fence && (c = *p) && c != '='; p++)
|
|
;
|
|
if (c != '=') {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
kwlen = p - q;
|
|
newbits = NULL;
|
|
|
|
/* lookup flag group name */
|
|
#define DBG_SET_FLAG_MAJ(S,F) \
|
|
if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
|
|
newbits = &tmpflags->pdb_ ## F;
|
|
|
|
DBG_SET_FLAG_MAJ("cpu", CPU);
|
|
DBG_SET_FLAG_MAJ("csw", CSW);
|
|
DBG_SET_FLAG_MAJ("logging", LOG);
|
|
DBG_SET_FLAG_MAJ("module", MOD);
|
|
DBG_SET_FLAG_MAJ("md", MDP);
|
|
DBG_SET_FLAG_MAJ("owner", OWN);
|
|
DBG_SET_FLAG_MAJ("pmc", PMC);
|
|
DBG_SET_FLAG_MAJ("process", PRC);
|
|
DBG_SET_FLAG_MAJ("sampling", SAM);
|
|
#undef DBG_SET_FLAG_MAJ
|
|
|
|
if (newbits == NULL) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
p++; /* skip the '=' */
|
|
|
|
/* Now parse the individual flags */
|
|
tmp = 0;
|
|
newflag:
|
|
for (q = p; p < fence && (c = *p); p++)
|
|
if (c == ' ' || c == '\t' || c == ',')
|
|
break;
|
|
|
|
/* p == fence or c == ws or c == "," or c == 0 */
|
|
|
|
if ((kwlen = p - q) == 0) {
|
|
*newbits = tmp;
|
|
continue;
|
|
}
|
|
|
|
found = 0;
|
|
#define DBG_SET_FLAG_MIN(S,F) \
|
|
if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
|
|
tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
|
|
|
|
/* a '*' denotes all possible flags in the group */
|
|
if (kwlen == 1 && *q == '*')
|
|
tmp = found = ~0;
|
|
/* look for individual flag names */
|
|
DBG_SET_FLAG_MIN("allocaterow", ALR);
|
|
DBG_SET_FLAG_MIN("allocate", ALL);
|
|
DBG_SET_FLAG_MIN("attach", ATT);
|
|
DBG_SET_FLAG_MIN("bind", BND);
|
|
DBG_SET_FLAG_MIN("config", CFG);
|
|
DBG_SET_FLAG_MIN("exec", EXC);
|
|
DBG_SET_FLAG_MIN("exit", EXT);
|
|
DBG_SET_FLAG_MIN("find", FND);
|
|
DBG_SET_FLAG_MIN("flush", FLS);
|
|
DBG_SET_FLAG_MIN("fork", FRK);
|
|
DBG_SET_FLAG_MIN("getbuf", GTB);
|
|
DBG_SET_FLAG_MIN("hook", PMH);
|
|
DBG_SET_FLAG_MIN("init", INI);
|
|
DBG_SET_FLAG_MIN("intr", INT);
|
|
DBG_SET_FLAG_MIN("linktarget", TLK);
|
|
DBG_SET_FLAG_MIN("mayberemove", OMR);
|
|
DBG_SET_FLAG_MIN("ops", OPS);
|
|
DBG_SET_FLAG_MIN("read", REA);
|
|
DBG_SET_FLAG_MIN("register", REG);
|
|
DBG_SET_FLAG_MIN("release", REL);
|
|
DBG_SET_FLAG_MIN("remove", ORM);
|
|
DBG_SET_FLAG_MIN("sample", SAM);
|
|
DBG_SET_FLAG_MIN("scheduleio", SIO);
|
|
DBG_SET_FLAG_MIN("select", SEL);
|
|
DBG_SET_FLAG_MIN("signal", SIG);
|
|
DBG_SET_FLAG_MIN("swi", SWI);
|
|
DBG_SET_FLAG_MIN("swo", SWO);
|
|
DBG_SET_FLAG_MIN("start", STA);
|
|
DBG_SET_FLAG_MIN("stop", STO);
|
|
DBG_SET_FLAG_MIN("syscall", PMS);
|
|
DBG_SET_FLAG_MIN("unlinktarget", TUL);
|
|
DBG_SET_FLAG_MIN("write", WRI);
|
|
#undef DBG_SET_FLAG_MIN
|
|
if (found == 0) {
|
|
/* unrecognized flag name */
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (c == 0 || c == ' ' || c == '\t') { /* end of flag group */
|
|
*newbits = tmp;
|
|
continue;
|
|
}
|
|
|
|
p++;
|
|
goto newflag;
|
|
}
|
|
|
|
/* save the new flag set */
|
|
bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
|
|
done:
|
|
free(tmpflags, M_PMC);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char *fence, *newstr;
|
|
int error;
|
|
u_int n;
|
|
|
|
n = sizeof(pmc_debugstr);
|
|
newstr = malloc(n, M_PMC, M_WAITOK | M_ZERO);
|
|
strlcpy(newstr, pmc_debugstr, n);
|
|
|
|
error = sysctl_handle_string(oidp, newstr, n, req);
|
|
|
|
/* if there is a new string, parse and copy it */
|
|
if (error == 0 && req->newptr != NULL) {
|
|
fence = newstr + (n < req->newlen ? n : req->newlen + 1);
|
|
error = pmc_debugflags_parse(newstr, fence);
|
|
if (error == 0)
|
|
strlcpy(pmc_debugstr, newstr, sizeof(pmc_debugstr));
|
|
}
|
|
free(newstr, M_PMC);
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Map a row index to a classdep structure and return the adjusted row
|
|
* index for the PMC class index.
|
|
*/
|
|
static struct pmc_classdep *
|
|
pmc_ri_to_classdep(struct pmc_mdep *md __unused, int ri, int *adjri)
|
|
{
|
|
struct pmc_classdep *pcd;
|
|
|
|
KASSERT(ri >= 0 && ri < md->pmd_npmc,
|
|
("[pmc,%d] illegal row-index %d", __LINE__, ri));
|
|
|
|
pcd = pmc_rowindex_to_classdep[ri];
|
|
KASSERT(pcd != NULL,
|
|
("[pmc,%d] ri %d null pcd", __LINE__, ri));
|
|
|
|
*adjri = ri - pcd->pcd_ri;
|
|
KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
|
|
("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
|
|
|
|
return (pcd);
|
|
}
|
|
|
|
/*
|
|
* Concurrency Control
|
|
*
|
|
* The driver manages the following data structures:
|
|
*
|
|
* - target process descriptors, one per target process
|
|
* - owner process descriptors (and attached lists), one per owner process
|
|
* - lookup hash tables for owner and target processes
|
|
* - PMC descriptors (and attached lists)
|
|
* - per-cpu hardware state
|
|
* - the 'hook' variable through which the kernel calls into
|
|
* this module
|
|
* - the machine hardware state (managed by the MD layer)
|
|
*
|
|
* These data structures are accessed from:
|
|
*
|
|
* - thread context-switch code
|
|
* - interrupt handlers (possibly on multiple cpus)
|
|
* - kernel threads on multiple cpus running on behalf of user
|
|
* processes doing system calls
|
|
* - this driver's private kernel threads
|
|
*
|
|
* = Locks and Locking strategy =
|
|
*
|
|
* The driver uses four locking strategies for its operation:
|
|
*
|
|
* - The global SX lock "pmc_sx" is used to protect internal
|
|
* data structures.
|
|
*
|
|
* Calls into the module by syscall() start with this lock being
|
|
* held in exclusive mode. Depending on the requested operation,
|
|
* the lock may be downgraded to 'shared' mode to allow more
|
|
* concurrent readers into the module. Calls into the module from
|
|
* other parts of the kernel acquire the lock in shared mode.
|
|
*
|
|
* This SX lock is held in exclusive mode for any operations that
|
|
* modify the linkages between the driver's internal data structures.
|
|
*
|
|
* The 'pmc_hook' function pointer is also protected by this lock.
|
|
* It is only examined with the sx lock held in exclusive mode. The
|
|
* kernel module is allowed to be unloaded only with the sx lock held
|
|
* in exclusive mode. In normal syscall handling, after acquiring the
|
|
* pmc_sx lock we first check that 'pmc_hook' is non-null before
|
|
* proceeding. This prevents races between the thread unloading the module
|
|
* and other threads seeking to use the module.
|
|
*
|
|
* - Lookups of target process structures and owner process structures
|
|
* cannot use the global "pmc_sx" SX lock because these lookups need
|
|
* to happen during context switches and in other critical sections
|
|
* where sleeping is not allowed. We protect these lookup tables
|
|
* with their own private spin-mutexes, "pmc_processhash_mtx" and
|
|
* "pmc_ownerhash_mtx".
|
|
*
|
|
* - Interrupt handlers work in a lock free manner. At interrupt
|
|
* time, handlers look at the PMC pointer (phw->phw_pmc) configured
|
|
* when the PMC was started. If this pointer is NULL, the interrupt
|
|
* is ignored after updating driver statistics. We ensure that this
|
|
* pointer is set (using an atomic operation if necessary) before the
|
|
* PMC hardware is started. Conversely, this pointer is unset atomically
|
|
* only after the PMC hardware is stopped.
|
|
*
|
|
* We ensure that everything needed for the operation of an
|
|
* interrupt handler is available without it needing to acquire any
|
|
* locks. We also ensure that a PMC's software state is destroyed only
|
|
* after the PMC is taken off hardware (on all CPUs).
|
|
*
|
|
* - Context-switch handling with process-private PMCs needs more
|
|
* care.
|
|
*
|
|
* A given process may be the target of multiple PMCs. For example,
|
|
* PMCATTACH and PMCDETACH may be requested by a process on one CPU
|
|
* while the target process is running on another. A PMC could also
|
|
* be getting released because its owner is exiting. We tackle
|
|
* these situations in the following manner:
|
|
*
|
|
* - each target process structure 'pmc_process' has an array
|
|
* of 'struct pmc *' pointers, one for each hardware PMC.
|
|
*
|
|
* - At context switch IN time, each "target" PMC in RUNNING state
|
|
* gets started on hardware and a pointer to each PMC is copied into
|
|
* the per-cpu phw array. The 'runcount' for the PMC is
|
|
* incremented.
|
|
*
|
|
* - At context switch OUT time, all process-virtual PMCs are stopped
|
|
* on hardware. The saved value is added to the PMCs value field
|
|
* only if the PMC is in a non-deleted state (the PMCs state could
|
|
* have changed during the current time slice).
|
|
*
|
|
* Note that since in-between a switch IN on a processor and a switch
|
|
* OUT, the PMC could have been released on another CPU. Therefore
|
|
* context switch OUT always looks at the hardware state to turn
|
|
* OFF PMCs and will update a PMC's saved value only if reachable
|
|
* from the target process record.
|
|
*
|
|
* - OP PMCRELEASE could be called on a PMC at any time (the PMC could
|
|
* be attached to many processes at the time of the call and could
|
|
* be active on multiple CPUs).
|
|
*
|
|
* We prevent further scheduling of the PMC by marking it as in
|
|
* state 'DELETED'. If the runcount of the PMC is non-zero then
|
|
* this PMC is currently running on a CPU somewhere. The thread
|
|
* doing the PMCRELEASE operation waits by repeatedly doing a
|
|
* pause() till the runcount comes to zero.
|
|
*
|
|
* The contents of a PMC descriptor (struct pmc) are protected using
|
|
* a spin-mutex. In order to save space, we use a mutex pool.
|
|
*
|
|
* In terms of lock types used by witness(4), we use:
|
|
* - Type "pmc-sx", used by the global SX lock.
|
|
* - Type "pmc-sleep", for sleep mutexes used by logger threads.
|
|
* - Type "pmc-per-proc", for protecting PMC owner descriptors.
|
|
* - Type "pmc-leaf", used for all other spin mutexes.
|
|
*/
|
|
|
|
/*
|
|
* Save the CPU binding of the current kthread.
|
|
*/
|
|
void
|
|
pmc_save_cpu_binding(struct pmc_binding *pb)
|
|
{
|
|
PMCDBG0(CPU,BND,2, "save-cpu");
|
|
thread_lock(curthread);
|
|
pb->pb_bound = sched_is_bound(curthread);
|
|
pb->pb_cpu = curthread->td_oncpu;
|
|
pb->pb_priority = curthread->td_priority;
|
|
thread_unlock(curthread);
|
|
PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
|
|
}
|
|
|
|
/*
|
|
* Restore the CPU binding of the current thread.
|
|
*/
|
|
void
|
|
pmc_restore_cpu_binding(struct pmc_binding *pb)
|
|
{
|
|
PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
|
|
curthread->td_oncpu, pb->pb_cpu);
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, pb->pb_cpu);
|
|
if (!pb->pb_bound)
|
|
sched_unbind(curthread);
|
|
sched_prio(curthread, pb->pb_priority);
|
|
thread_unlock(curthread);
|
|
PMCDBG0(CPU,BND,2, "restore-cpu done");
|
|
}
|
|
|
|
/*
|
|
* Move execution over to the specified CPU and bind it there.
|
|
*/
|
|
void
|
|
pmc_select_cpu(int cpu)
|
|
{
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[pmc,%d] bad cpu number %d", __LINE__, cpu));
|
|
|
|
/* Never move to an inactive CPU. */
|
|
KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
|
|
"CPU %d", __LINE__, cpu));
|
|
|
|
PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
|
|
thread_lock(curthread);
|
|
sched_prio(curthread, PRI_MIN);
|
|
sched_bind(curthread, cpu);
|
|
thread_unlock(curthread);
|
|
|
|
KASSERT(curthread->td_oncpu == cpu,
|
|
("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
|
|
cpu, curthread->td_oncpu));
|
|
|
|
PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
|
|
}
|
|
|
|
/*
|
|
* Force a context switch.
|
|
*
|
|
* We do this by pause'ing for 1 tick -- invoking mi_switch() is not
|
|
* guaranteed to force a context switch.
|
|
*/
|
|
static void
|
|
pmc_force_context_switch(void)
|
|
{
|
|
|
|
pause("pmcctx", 1);
|
|
}
|
|
|
|
uint64_t
|
|
pmc_rdtsc(void)
|
|
{
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
if (__predict_true(amd_feature & AMDID_RDTSCP))
|
|
return (rdtscp());
|
|
else
|
|
return (rdtsc());
|
|
#else
|
|
return (get_cyclecount());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Get the file name for an executable. This is a simple wrapper
|
|
* around vn_fullpath(9).
|
|
*/
|
|
static void
|
|
pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
|
|
{
|
|
|
|
*fullpath = "unknown";
|
|
*freepath = NULL;
|
|
vn_fullpath(v, fullpath, freepath);
|
|
}
|
|
|
|
/*
|
|
* Remove a process owning PMCs.
|
|
*/
|
|
void
|
|
pmc_remove_owner(struct pmc_owner *po)
|
|
{
|
|
struct pmc *pm, *tmp;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
|
|
|
|
/* Remove descriptor from the owner hash table */
|
|
LIST_REMOVE(po, po_next);
|
|
|
|
/* release all owned PMC descriptors */
|
|
LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
|
|
PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
|
|
KASSERT(pm->pm_owner == po,
|
|
("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
|
|
|
|
pmc_release_pmc_descriptor(pm); /* will unlink from the list */
|
|
pmc_destroy_pmc_descriptor(pm);
|
|
}
|
|
|
|
KASSERT(po->po_sscount == 0,
|
|
("[pmc,%d] SS count not zero", __LINE__));
|
|
KASSERT(LIST_EMPTY(&po->po_pmcs),
|
|
("[pmc,%d] PMC list not empty", __LINE__));
|
|
|
|
/* de-configure the log file if present */
|
|
if (po->po_flags & PMC_PO_OWNS_LOGFILE)
|
|
pmclog_deconfigure_log(po);
|
|
}
|
|
|
|
/*
|
|
* Remove an owner process record if all conditions are met.
|
|
*/
|
|
static void
|
|
pmc_maybe_remove_owner(struct pmc_owner *po)
|
|
{
|
|
|
|
PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
|
|
|
|
/*
|
|
* Remove owner record if
|
|
* - this process does not own any PMCs
|
|
* - this process has not allocated a system-wide sampling buffer
|
|
*/
|
|
if (LIST_EMPTY(&po->po_pmcs) &&
|
|
((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
|
|
pmc_remove_owner(po);
|
|
pmc_destroy_owner_descriptor(po);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add an association between a target process and a PMC.
|
|
*/
|
|
static void
|
|
pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
|
|
{
|
|
struct pmc_target *pt;
|
|
struct pmc_thread *pt_td __diagused;
|
|
int ri;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
KASSERT(pm != NULL && pp != NULL,
|
|
("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
|
|
KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
|
|
("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
|
|
__LINE__, pm, pp->pp_proc->p_pid));
|
|
KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
|
|
("[pmc,%d] Illegal reference count %d for process record %p",
|
|
__LINE__, pp->pp_refcnt, (void *) pp));
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
|
|
PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
|
|
pm, ri, pp);
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
LIST_FOREACH(pt, &pm->pm_targets, pt_next) {
|
|
if (pt->pt_process == pp)
|
|
KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
|
|
__LINE__, pp, pm));
|
|
}
|
|
#endif
|
|
pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK | M_ZERO);
|
|
pt->pt_process = pp;
|
|
|
|
LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
|
|
|
|
atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
|
|
(uintptr_t)pm);
|
|
|
|
if (pm->pm_owner->po_owner == pp->pp_proc)
|
|
pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
|
|
|
|
/*
|
|
* Initialize the per-process values at this row index.
|
|
*/
|
|
pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
|
|
pm->pm_sc.pm_reloadcount : 0;
|
|
pp->pp_refcnt++;
|
|
|
|
#ifdef INVARIANTS
|
|
/* Confirm that the per-thread values at this row index are cleared. */
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
|
|
mtx_lock_spin(pp->pp_tdslock);
|
|
LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
|
|
KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
|
|
("[pmc,%d] pt_pmcval not cleared for pid=%d at "
|
|
"ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
|
|
}
|
|
mtx_unlock_spin(pp->pp_tdslock);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Removes the association between a target process and a PMC.
|
|
*/
|
|
static void
|
|
pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
|
|
{
|
|
int ri;
|
|
struct proc *p;
|
|
struct pmc_target *ptgt;
|
|
struct pmc_thread *pt;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
KASSERT(pm != NULL && pp != NULL,
|
|
("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
|
|
|
|
KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
|
|
("[pmc,%d] Illegal ref count %d on process record %p",
|
|
__LINE__, pp->pp_refcnt, (void *) pp));
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
|
|
PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
|
|
pm, ri, pp);
|
|
|
|
KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
|
|
("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
|
|
ri, pm, pp->pp_pmcs[ri].pp_pmc));
|
|
|
|
pp->pp_pmcs[ri].pp_pmc = NULL;
|
|
pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t)0;
|
|
|
|
/* Clear the per-thread values at this row index. */
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
|
|
mtx_lock_spin(pp->pp_tdslock);
|
|
LIST_FOREACH(pt, &pp->pp_tds, pt_next)
|
|
pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t)0;
|
|
mtx_unlock_spin(pp->pp_tdslock);
|
|
}
|
|
|
|
/* Remove owner-specific flags */
|
|
if (pm->pm_owner->po_owner == pp->pp_proc) {
|
|
pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
|
|
pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
|
|
}
|
|
|
|
pp->pp_refcnt--;
|
|
|
|
/* Remove the target process from the PMC structure */
|
|
LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
|
|
if (ptgt->pt_process == pp)
|
|
break;
|
|
|
|
KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
|
|
"in pmc %p", __LINE__, pp->pp_proc, pp, pm));
|
|
|
|
LIST_REMOVE(ptgt, pt_next);
|
|
free(ptgt, M_PMC);
|
|
|
|
/* if the PMC now lacks targets, send the owner a SIGIO */
|
|
if (LIST_EMPTY(&pm->pm_targets)) {
|
|
p = pm->pm_owner->po_owner;
|
|
PROC_LOCK(p);
|
|
kern_psignal(p, SIGIO);
|
|
PROC_UNLOCK(p);
|
|
|
|
PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p, SIGIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if PMC 'pm' may be attached to target process 't'.
|
|
*/
|
|
|
|
static int
|
|
pmc_can_attach(struct pmc *pm, struct proc *t)
|
|
{
|
|
struct proc *o; /* pmc owner */
|
|
struct ucred *oc, *tc; /* owner, target credentials */
|
|
int decline_attach, i;
|
|
|
|
/*
|
|
* A PMC's owner can always attach that PMC to itself.
|
|
*/
|
|
|
|
if ((o = pm->pm_owner->po_owner) == t)
|
|
return 0;
|
|
|
|
PROC_LOCK(o);
|
|
oc = o->p_ucred;
|
|
crhold(oc);
|
|
PROC_UNLOCK(o);
|
|
|
|
PROC_LOCK(t);
|
|
tc = t->p_ucred;
|
|
crhold(tc);
|
|
PROC_UNLOCK(t);
|
|
|
|
/*
|
|
* The effective uid of the PMC owner should match at least one
|
|
* of the {effective,real,saved} uids of the target process.
|
|
*/
|
|
|
|
decline_attach = oc->cr_uid != tc->cr_uid &&
|
|
oc->cr_uid != tc->cr_svuid &&
|
|
oc->cr_uid != tc->cr_ruid;
|
|
|
|
/*
|
|
* Every one of the target's group ids, must be in the owner's
|
|
* group list.
|
|
*/
|
|
for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
|
|
decline_attach = !groupmember(tc->cr_groups[i], oc);
|
|
|
|
/* check the read and saved gids too */
|
|
if (decline_attach == 0)
|
|
decline_attach = !groupmember(tc->cr_rgid, oc) ||
|
|
!groupmember(tc->cr_svgid, oc);
|
|
|
|
crfree(tc);
|
|
crfree(oc);
|
|
|
|
return !decline_attach;
|
|
}
|
|
|
|
/*
|
|
* Attach a process to a PMC.
|
|
*/
|
|
static int
|
|
pmc_attach_one_process(struct proc *p, struct pmc *pm)
|
|
{
|
|
int ri, error;
|
|
char *fullpath, *freepath;
|
|
struct pmc_process *pp;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
|
|
PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
|
|
|
|
/*
|
|
* Locate the process descriptor corresponding to process 'p',
|
|
* allocating space as needed.
|
|
*
|
|
* Verify that rowindex 'pm_rowindex' is free in the process
|
|
* descriptor.
|
|
*
|
|
* If not, allocate space for a descriptor and link the
|
|
* process descriptor and PMC.
|
|
*/
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
|
|
/* mark process as using HWPMCs */
|
|
PROC_LOCK(p);
|
|
p->p_flag |= P_HWPMC;
|
|
PROC_UNLOCK(p);
|
|
|
|
if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
|
|
error = EEXIST;
|
|
goto fail;
|
|
}
|
|
|
|
if (pp->pp_pmcs[ri].pp_pmc != NULL) {
|
|
error = EBUSY;
|
|
goto fail;
|
|
}
|
|
|
|
pmc_link_target_process(pm, pp);
|
|
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
|
|
(pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
|
|
pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
|
|
|
|
pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
|
|
|
|
/* issue an attach event to a configured log file */
|
|
if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
|
|
if (p->p_flag & P_KPROC) {
|
|
fullpath = kernelname;
|
|
freepath = NULL;
|
|
} else {
|
|
pmc_getfilename(p->p_textvp, &fullpath, &freepath);
|
|
pmclog_process_pmcattach(pm, p->p_pid, fullpath);
|
|
}
|
|
free(freepath, M_TEMP);
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
|
|
pmc_log_process_mappings(pm->pm_owner, p);
|
|
}
|
|
|
|
return (0);
|
|
fail:
|
|
PROC_LOCK(p);
|
|
p->p_flag &= ~P_HWPMC;
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Attach a process and optionally its children
|
|
*/
|
|
static int
|
|
pmc_attach_process(struct proc *p, struct pmc *pm)
|
|
{
|
|
int error;
|
|
struct proc *top;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
|
|
PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
|
|
|
|
/*
|
|
* If this PMC successfully allowed a GETMSR operation
|
|
* in the past, disallow further ATTACHes.
|
|
*/
|
|
if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
|
|
return (EPERM);
|
|
|
|
if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
|
|
return (pmc_attach_one_process(p, pm));
|
|
|
|
/*
|
|
* Traverse all child processes, attaching them to
|
|
* this PMC.
|
|
*/
|
|
sx_slock(&proctree_lock);
|
|
|
|
top = p;
|
|
for (;;) {
|
|
if ((error = pmc_attach_one_process(p, pm)) != 0)
|
|
break;
|
|
if (!LIST_EMPTY(&p->p_children))
|
|
p = LIST_FIRST(&p->p_children);
|
|
else for (;;) {
|
|
if (p == top)
|
|
goto done;
|
|
if (LIST_NEXT(p, p_sibling)) {
|
|
p = LIST_NEXT(p, p_sibling);
|
|
break;
|
|
}
|
|
p = p->p_pptr;
|
|
}
|
|
}
|
|
|
|
if (error != 0)
|
|
(void)pmc_detach_process(top, pm);
|
|
|
|
done:
|
|
sx_sunlock(&proctree_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Detach a process from a PMC. If there are no other PMCs tracking
|
|
* this process, remove the process structure from its hash table. If
|
|
* 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
|
|
*/
|
|
static int
|
|
pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
|
|
{
|
|
int ri;
|
|
struct pmc_process *pp;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
KASSERT(pm != NULL,
|
|
("[pmc,%d] null pm pointer", __LINE__));
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
|
|
PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
|
|
pm, ri, p, p->p_pid, p->p_comm, flags);
|
|
|
|
if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
|
|
return (ESRCH);
|
|
|
|
if (pp->pp_pmcs[ri].pp_pmc != pm)
|
|
return (EINVAL);
|
|
|
|
pmc_unlink_target_process(pm, pp);
|
|
|
|
/* Issue a detach entry if a log file is configured */
|
|
if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
|
|
pmclog_process_pmcdetach(pm, p->p_pid);
|
|
|
|
/*
|
|
* If there are no PMCs targeting this process, we remove its
|
|
* descriptor from the target hash table and unset the P_HWPMC
|
|
* flag in the struct proc.
|
|
*/
|
|
KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
|
|
("[pmc,%d] Illegal refcnt %d for process struct %p",
|
|
__LINE__, pp->pp_refcnt, pp));
|
|
|
|
if (pp->pp_refcnt != 0) /* still a target of some PMC */
|
|
return (0);
|
|
|
|
pmc_remove_process_descriptor(pp);
|
|
|
|
if (flags & PMC_FLAG_REMOVE)
|
|
pmc_destroy_process_descriptor(pp);
|
|
|
|
PROC_LOCK(p);
|
|
p->p_flag &= ~P_HWPMC;
|
|
PROC_UNLOCK(p);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a process and optionally its descendants from a PMC.
|
|
*/
|
|
static int
|
|
pmc_detach_process(struct proc *p, struct pmc *pm)
|
|
{
|
|
struct proc *top;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
|
|
PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
|
|
|
|
if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
|
|
return (pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE));
|
|
|
|
/*
|
|
* Traverse all children, detaching them from this PMC. We
|
|
* ignore errors since we could be detaching a PMC from a
|
|
* partially attached proc tree.
|
|
*/
|
|
sx_slock(&proctree_lock);
|
|
|
|
top = p;
|
|
for (;;) {
|
|
(void)pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
|
|
|
|
if (!LIST_EMPTY(&p->p_children)) {
|
|
p = LIST_FIRST(&p->p_children);
|
|
} else {
|
|
for (;;) {
|
|
if (p == top)
|
|
goto done;
|
|
if (LIST_NEXT(p, p_sibling)) {
|
|
p = LIST_NEXT(p, p_sibling);
|
|
break;
|
|
}
|
|
p = p->p_pptr;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
sx_sunlock(&proctree_lock);
|
|
if (LIST_EMPTY(&pm->pm_targets))
|
|
pm->pm_flags &= ~PMC_F_ATTACH_DONE;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle events after an exec() for a process:
|
|
* - Inform log owners of the new exec() event
|
|
* - Release any PMCs owned by the process before the exec()
|
|
* - Detach PMCs from the target if required
|
|
*/
|
|
static void
|
|
pmc_process_exec(struct thread *td, struct pmckern_procexec *pk)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *pp;
|
|
struct proc *p;
|
|
char *fullpath, *freepath;
|
|
u_int ri;
|
|
bool is_using_hwpmcs;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
p = td->td_proc;
|
|
pmc_getfilename(p->p_textvp, &fullpath, &freepath);
|
|
|
|
PMC_EPOCH_ENTER();
|
|
/* Inform owners of SS mode PMCs of the exec event. */
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
|
|
pmclog_process_procexec(po, PMC_ID_INVALID, p->p_pid,
|
|
pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
|
|
}
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
PROC_LOCK(p);
|
|
is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
|
|
PROC_UNLOCK(p);
|
|
|
|
if (!is_using_hwpmcs) {
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* PMCs are not inherited across an exec(): remove any PMCs that this
|
|
* process is the owner of.
|
|
*/
|
|
if ((po = pmc_find_owner_descriptor(p)) != NULL) {
|
|
pmc_remove_owner(po);
|
|
pmc_destroy_owner_descriptor(po);
|
|
}
|
|
|
|
/*
|
|
* If the process being exec'ed is not the target of any PMC, we are
|
|
* done.
|
|
*/
|
|
if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Log the exec event to all monitoring owners. Skip owners who have
|
|
* already received the event because they had system sampling PMCs
|
|
* active.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
|
|
continue;
|
|
|
|
po = pm->pm_owner;
|
|
if (po->po_sscount == 0 &&
|
|
(po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
|
|
pmclog_process_procexec(po, pm->pm_id, p->p_pid,
|
|
pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
|
|
}
|
|
}
|
|
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
|
|
PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
|
|
p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
|
|
|
|
if (pk->pm_credentialschanged == 0) /* no change */
|
|
return;
|
|
|
|
/*
|
|
* If the newly exec()'ed process has a different credential
|
|
* than before, allow it to be the target of a PMC only if
|
|
* the PMC's owner has sufficient privilege.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
|
|
if (pmc_can_attach(pm, td->td_proc) != 0) {
|
|
pmc_detach_one_process(td->td_proc, pm,
|
|
PMC_FLAG_NONE);
|
|
}
|
|
}
|
|
}
|
|
|
|
KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= md->pmd_npmc,
|
|
("[pmc,%d] Illegal ref count %u on pp %p", __LINE__,
|
|
pp->pp_refcnt, pp));
|
|
|
|
/*
|
|
* If this process is no longer the target of any
|
|
* PMCs, we can remove the process entry and free
|
|
* up space.
|
|
*/
|
|
if (pp->pp_refcnt == 0) {
|
|
pmc_remove_process_descriptor(pp);
|
|
pmc_destroy_process_descriptor(pp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Thread context switch IN.
|
|
*/
|
|
static void
|
|
pmc_process_csw_in(struct thread *td)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_cpu *pc;
|
|
struct pmc_hw *phw __diagused;
|
|
struct pmc_process *pp;
|
|
struct pmc_thread *pt;
|
|
struct proc *p;
|
|
pmc_value_t newvalue;
|
|
int cpu;
|
|
u_int adjri, ri;
|
|
|
|
p = td->td_proc;
|
|
pt = NULL;
|
|
if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
|
|
return;
|
|
|
|
KASSERT(pp->pp_proc == td->td_proc,
|
|
("[pmc,%d] not my thread state", __LINE__));
|
|
|
|
critical_enter(); /* no preemption from this point */
|
|
|
|
cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
|
|
|
|
PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
|
|
p->p_pid, p->p_comm, pp);
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[pmc,%d] weird CPU id %d", __LINE__, cpu));
|
|
|
|
pc = pmc_pcpu[cpu];
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
|
|
continue;
|
|
|
|
KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
|
|
("[pmc,%d] Target PMC in non-virtual mode (%d)",
|
|
__LINE__, PMC_TO_MODE(pm)));
|
|
KASSERT(PMC_TO_ROWINDEX(pm) == ri,
|
|
("[pmc,%d] Row index mismatch pmc %d != ri %d",
|
|
__LINE__, PMC_TO_ROWINDEX(pm), ri));
|
|
|
|
/*
|
|
* Only PMCs that are marked as 'RUNNING' need
|
|
* be placed on hardware.
|
|
*/
|
|
if (pm->pm_state != PMC_STATE_RUNNING)
|
|
continue;
|
|
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
|
|
("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
/* increment PMC runcount */
|
|
counter_u64_add(pm->pm_runcount, 1);
|
|
|
|
/* configure the HWPMC we are going to use. */
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
(void)pcd->pcd_config_pmc(cpu, adjri, pm);
|
|
|
|
phw = pc->pc_hwpmcs[ri];
|
|
|
|
KASSERT(phw != NULL,
|
|
("[pmc,%d] null hw pointer", __LINE__));
|
|
|
|
KASSERT(phw->phw_pmc == pm,
|
|
("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
|
|
phw->phw_pmc, pm));
|
|
|
|
/*
|
|
* Write out saved value and start the PMC.
|
|
*
|
|
* Sampling PMCs use a per-thread value, while
|
|
* counting mode PMCs use a per-pmc value that is
|
|
* inherited across descendants.
|
|
*/
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
|
|
if (pt == NULL)
|
|
pt = pmc_find_thread_descriptor(pp, td,
|
|
PMC_FLAG_NONE);
|
|
|
|
KASSERT(pt != NULL,
|
|
("[pmc,%d] No thread found for td=%p", __LINE__,
|
|
td));
|
|
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
|
|
/*
|
|
* If we have a thread descriptor, use the per-thread
|
|
* counter in the descriptor. If not, we will use
|
|
* a per-process counter.
|
|
*
|
|
* TODO: Remove the per-process "safety net" once
|
|
* we have thoroughly tested that we don't hit the
|
|
* above assert.
|
|
*/
|
|
if (pt != NULL) {
|
|
if (pt->pt_pmcs[ri].pt_pmcval > 0)
|
|
newvalue = pt->pt_pmcs[ri].pt_pmcval;
|
|
else
|
|
newvalue = pm->pm_sc.pm_reloadcount;
|
|
} else {
|
|
/*
|
|
* Use the saved value calculated after the most
|
|
* recent time a thread using the shared counter
|
|
* switched out. Reset the saved count in case
|
|
* another thread from this process switches in
|
|
* before any threads switch out.
|
|
*/
|
|
newvalue = pp->pp_pmcs[ri].pp_pmcval;
|
|
pp->pp_pmcs[ri].pp_pmcval =
|
|
pm->pm_sc.pm_reloadcount;
|
|
}
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
KASSERT(newvalue > 0 && newvalue <=
|
|
pm->pm_sc.pm_reloadcount,
|
|
("[pmc,%d] pmcval outside of expected range cpu=%d "
|
|
"ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
|
|
cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
|
|
} else {
|
|
KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
|
|
("[pmc,%d] illegal mode=%d", __LINE__,
|
|
PMC_TO_MODE(pm)));
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
newvalue = PMC_PCPU_SAVED(cpu, ri) =
|
|
pm->pm_gv.pm_savedvalue;
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
}
|
|
|
|
PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
|
|
|
|
(void)pcd->pcd_write_pmc(cpu, adjri, pm, newvalue);
|
|
|
|
/* If a sampling mode PMC, reset stalled state. */
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_TS)
|
|
pm->pm_pcpu_state[cpu].pps_stalled = 0;
|
|
|
|
/* Indicate that we desire this to run. */
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 1;
|
|
|
|
/* Start the PMC. */
|
|
(void)pcd->pcd_start_pmc(cpu, adjri, pm);
|
|
}
|
|
|
|
/*
|
|
* Perform any other architecture/cpu dependent thread
|
|
* switch-in actions.
|
|
*/
|
|
(void)(*md->pmd_switch_in)(pc, pp);
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* Thread context switch OUT.
|
|
*/
|
|
static void
|
|
pmc_process_csw_out(struct thread *td)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_cpu *pc;
|
|
struct pmc_process *pp;
|
|
struct pmc_thread *pt = NULL;
|
|
struct proc *p;
|
|
pmc_value_t newvalue;
|
|
int64_t tmp;
|
|
enum pmc_mode mode;
|
|
int cpu;
|
|
u_int adjri, ri;
|
|
|
|
/*
|
|
* Locate our process descriptor; this may be NULL if
|
|
* this process is exiting and we have already removed
|
|
* the process from the target process table.
|
|
*
|
|
* Note that due to kernel preemption, multiple
|
|
* context switches may happen while the process is
|
|
* exiting.
|
|
*
|
|
* Note also that if the target process cannot be
|
|
* found we still need to deconfigure any PMCs that
|
|
* are currently running on hardware.
|
|
*/
|
|
p = td->td_proc;
|
|
pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
|
|
|
|
critical_enter();
|
|
|
|
cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
|
|
|
|
PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
|
|
p->p_pid, p->p_comm, pp);
|
|
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[pmc,%d weird CPU id %d", __LINE__, cpu));
|
|
|
|
pc = pmc_pcpu[cpu];
|
|
|
|
/*
|
|
* When a PMC gets unlinked from a target PMC, it will
|
|
* be removed from the target's pp_pmc[] array.
|
|
*
|
|
* However, on a MP system, the target could have been
|
|
* executing on another CPU at the time of the unlink.
|
|
* So, at context switch OUT time, we need to look at
|
|
* the hardware to determine if a PMC is scheduled on
|
|
* it.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
pm = NULL;
|
|
(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
|
|
|
|
if (pm == NULL) /* nothing at this row index */
|
|
continue;
|
|
|
|
mode = PMC_TO_MODE(pm);
|
|
if (!PMC_IS_VIRTUAL_MODE(mode))
|
|
continue; /* not a process virtual PMC */
|
|
|
|
KASSERT(PMC_TO_ROWINDEX(pm) == ri,
|
|
("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
|
|
__LINE__, PMC_TO_ROWINDEX(pm), ri));
|
|
|
|
/*
|
|
* Change desired state, and then stop if not stalled.
|
|
* This two-step dance should avoid race conditions where
|
|
* an interrupt re-enables the PMC after this code has
|
|
* already checked the pm_stalled flag.
|
|
*/
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 0;
|
|
if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
|
|
(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
|
|
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
/* reduce this PMC's runcount */
|
|
counter_u64_add(pm->pm_runcount, -1);
|
|
|
|
/*
|
|
* If this PMC is associated with this process,
|
|
* save the reading.
|
|
*/
|
|
if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
|
|
pp->pp_pmcs[ri].pp_pmc != NULL) {
|
|
KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
|
|
("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
|
|
pm, ri, pp->pp_pmcs[ri].pp_pmc));
|
|
KASSERT(pp->pp_refcnt > 0,
|
|
("[pmc,%d] pp refcnt = %d", __LINE__,
|
|
pp->pp_refcnt));
|
|
|
|
(void)pcd->pcd_read_pmc(cpu, adjri, pm, &newvalue);
|
|
|
|
if (mode == PMC_MODE_TS) {
|
|
PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
|
|
cpu, ri, newvalue);
|
|
|
|
if (pt == NULL)
|
|
pt = pmc_find_thread_descriptor(pp, td,
|
|
PMC_FLAG_NONE);
|
|
|
|
KASSERT(pt != NULL,
|
|
("[pmc,%d] No thread found for td=%p",
|
|
__LINE__, td));
|
|
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
|
|
/*
|
|
* If we have a thread descriptor, save the
|
|
* per-thread counter in the descriptor. If not,
|
|
* we will update the per-process counter.
|
|
*
|
|
* TODO: Remove the per-process "safety net"
|
|
* once we have thoroughly tested that we
|
|
* don't hit the above assert.
|
|
*/
|
|
if (pt != NULL) {
|
|
pt->pt_pmcs[ri].pt_pmcval = newvalue;
|
|
} else {
|
|
/*
|
|
* For sampling process-virtual PMCs,
|
|
* newvalue is the number of events to
|
|
* be seen until the next sampling
|
|
* interrupt. We can just add the events
|
|
* left from this invocation to the
|
|
* counter, then adjust in case we
|
|
* overflow our range.
|
|
*
|
|
* (Recall that we reload the counter
|
|
* every time we use it.)
|
|
*/
|
|
pp->pp_pmcs[ri].pp_pmcval += newvalue;
|
|
if (pp->pp_pmcs[ri].pp_pmcval >
|
|
pm->pm_sc.pm_reloadcount) {
|
|
pp->pp_pmcs[ri].pp_pmcval -=
|
|
pm->pm_sc.pm_reloadcount;
|
|
}
|
|
}
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
} else {
|
|
tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
|
|
|
|
PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
|
|
cpu, ri, tmp);
|
|
|
|
/*
|
|
* For counting process-virtual PMCs,
|
|
* we expect the count to be
|
|
* increasing monotonically, modulo a 64
|
|
* bit wraparound.
|
|
*/
|
|
KASSERT(tmp >= 0,
|
|
("[pmc,%d] negative increment cpu=%d "
|
|
"ri=%d newvalue=%jx saved=%jx "
|
|
"incr=%jx", __LINE__, cpu, ri,
|
|
newvalue, PMC_PCPU_SAVED(cpu, ri), tmp));
|
|
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
pm->pm_gv.pm_savedvalue += tmp;
|
|
pp->pp_pmcs[ri].pp_pmcval += tmp;
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
|
|
if (pm->pm_flags & PMC_F_LOG_PROCCSW)
|
|
pmclog_process_proccsw(pm, pp, tmp, td);
|
|
}
|
|
}
|
|
|
|
/* Mark hardware as free. */
|
|
(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
|
|
}
|
|
|
|
/*
|
|
* Perform any other architecture/cpu dependent thread
|
|
* switch out functions.
|
|
*/
|
|
(void)(*md->pmd_switch_out)(pc, pp);
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* A new thread for a process.
|
|
*/
|
|
static void
|
|
pmc_process_thread_add(struct thread *td)
|
|
{
|
|
struct pmc_process *pmc;
|
|
|
|
pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
|
|
if (pmc != NULL)
|
|
pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
|
|
}
|
|
|
|
/*
|
|
* A thread delete for a process.
|
|
*/
|
|
static void
|
|
pmc_process_thread_delete(struct thread *td)
|
|
{
|
|
struct pmc_process *pmc;
|
|
|
|
pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
|
|
if (pmc != NULL)
|
|
pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
|
|
td, PMC_FLAG_REMOVE));
|
|
}
|
|
|
|
/*
|
|
* A userret() call for a thread.
|
|
*/
|
|
static void
|
|
pmc_process_thread_userret(struct thread *td)
|
|
{
|
|
sched_pin();
|
|
pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
|
|
sched_unpin();
|
|
}
|
|
|
|
/*
|
|
* A mapping change for a process.
|
|
*/
|
|
static void
|
|
pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
|
|
{
|
|
const struct pmc *pm;
|
|
const struct pmc_process *pp;
|
|
struct pmc_owner *po;
|
|
char *fullpath, *freepath;
|
|
pid_t pid;
|
|
int ri;
|
|
|
|
MPASS(!in_epoch(global_epoch_preempt));
|
|
|
|
freepath = fullpath = NULL;
|
|
pmc_getfilename((struct vnode *)pkm->pm_file, &fullpath, &freepath);
|
|
|
|
pid = td->td_proc->p_pid;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
/* Inform owners of all system-wide sampling PMCs. */
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if (po->po_flags & PMC_PO_OWNS_LOGFILE)
|
|
pmclog_process_map_in(po, pid, pkm->pm_address,
|
|
fullpath);
|
|
}
|
|
|
|
if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
|
|
goto done;
|
|
|
|
/*
|
|
* Inform sampling PMC owners tracking this process.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
|
|
PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
|
|
pmclog_process_map_in(pm->pm_owner,
|
|
pid, pkm->pm_address, fullpath);
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
PMC_EPOCH_EXIT();
|
|
}
|
|
|
|
/*
|
|
* Log an munmap request.
|
|
*/
|
|
static void
|
|
pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
|
|
{
|
|
const struct pmc *pm;
|
|
const struct pmc_process *pp;
|
|
struct pmc_owner *po;
|
|
pid_t pid;
|
|
int ri;
|
|
|
|
pid = td->td_proc->p_pid;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if (po->po_flags & PMC_PO_OWNS_LOGFILE)
|
|
pmclog_process_map_out(po, pid, pkm->pm_address,
|
|
pkm->pm_address + pkm->pm_size);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
|
|
return;
|
|
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
pm = pp->pp_pmcs[ri].pp_pmc;
|
|
if (pm != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
|
|
pmclog_process_map_out(pm->pm_owner, pid,
|
|
pkm->pm_address, pkm->pm_address + pkm->pm_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Log mapping information about the kernel.
|
|
*/
|
|
static void
|
|
pmc_log_kernel_mappings(struct pmc *pm)
|
|
{
|
|
struct pmc_owner *po;
|
|
struct pmckern_map_in *km, *kmbase;
|
|
|
|
MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
|
|
KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
|
|
("[pmc,%d] non-sampling PMC (%p) desires mapping information",
|
|
__LINE__, (void *) pm));
|
|
|
|
po = pm->pm_owner;
|
|
if ((po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE) != 0)
|
|
return;
|
|
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_SS)
|
|
pmc_process_allproc(pm);
|
|
|
|
/*
|
|
* Log the current set of kernel modules.
|
|
*/
|
|
kmbase = linker_hwpmc_list_objects();
|
|
for (km = kmbase; km->pm_file != NULL; km++) {
|
|
PMCDBG2(LOG,REG,1,"%s %p", (char *)km->pm_file,
|
|
(void *)km->pm_address);
|
|
pmclog_process_map_in(po, (pid_t)-1, km->pm_address,
|
|
km->pm_file);
|
|
}
|
|
free(kmbase, M_LINKER);
|
|
|
|
po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
|
|
}
|
|
|
|
/*
|
|
* Log the mappings for a single process.
|
|
*/
|
|
static void
|
|
pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
|
|
{
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
vm_object_t obj, lobj, tobj;
|
|
vm_offset_t last_end;
|
|
vm_offset_t start_addr;
|
|
struct vnode *vp, *last_vp;
|
|
struct vmspace *vm;
|
|
char *fullpath, *freepath;
|
|
u_int last_timestamp;
|
|
|
|
last_vp = NULL;
|
|
last_end = (vm_offset_t)0;
|
|
fullpath = freepath = NULL;
|
|
|
|
if ((vm = vmspace_acquire_ref(p)) == NULL)
|
|
return;
|
|
|
|
map = &vm->vm_map;
|
|
vm_map_lock_read(map);
|
|
VM_MAP_ENTRY_FOREACH(entry, map) {
|
|
if (entry == NULL) {
|
|
PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
|
|
"NULL! pid=%d vm_map=%p\n", p->p_pid, map);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We only care about executable map entries.
|
|
*/
|
|
if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
|
|
(entry->protection & VM_PROT_EXECUTE) == 0 ||
|
|
entry->object.vm_object == NULL) {
|
|
continue;
|
|
}
|
|
|
|
obj = entry->object.vm_object;
|
|
VM_OBJECT_RLOCK(obj);
|
|
|
|
/*
|
|
* Walk the backing_object list to find the base (non-shadowed)
|
|
* vm_object.
|
|
*/
|
|
for (lobj = tobj = obj; tobj != NULL;
|
|
tobj = tobj->backing_object) {
|
|
if (tobj != obj)
|
|
VM_OBJECT_RLOCK(tobj);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
lobj = tobj;
|
|
}
|
|
|
|
/*
|
|
* At this point lobj is the base vm_object and it is locked.
|
|
*/
|
|
if (lobj == NULL) {
|
|
PMCDBG3(LOG,OPS,2,
|
|
"hwpmc: lobj unexpectedly NULL! pid=%d "
|
|
"vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
continue;
|
|
}
|
|
|
|
vp = vm_object_vnode(lobj);
|
|
if (vp == NULL) {
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Skip contiguous regions that point to the same vnode, so we
|
|
* don't emit redundant MAP-IN directives.
|
|
*/
|
|
if (entry->start == last_end && vp == last_vp) {
|
|
last_end = entry->end;
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We don't want to keep the proc's vm_map or this vm_object
|
|
* locked while we walk the pathname, since vn_fullpath() can
|
|
* sleep. However, if we drop the lock, it's possible for
|
|
* concurrent activity to modify the vm_map list. To protect
|
|
* against this, we save the vm_map timestamp before we release
|
|
* the lock, and check it after we reacquire the lock below.
|
|
*/
|
|
start_addr = entry->start;
|
|
last_end = entry->end;
|
|
last_timestamp = map->timestamp;
|
|
vm_map_unlock_read(map);
|
|
|
|
vref(vp);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
|
|
freepath = NULL;
|
|
pmc_getfilename(vp, &fullpath, &freepath);
|
|
last_vp = vp;
|
|
|
|
vrele(vp);
|
|
|
|
vp = NULL;
|
|
pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
|
|
vm_map_lock_read(map);
|
|
|
|
/*
|
|
* If our saved timestamp doesn't match, this means
|
|
* that the vm_map was modified out from under us and
|
|
* we can't trust our current "entry" pointer. Do a
|
|
* new lookup for this entry. If there is no entry
|
|
* for this address range, vm_map_lookup_entry() will
|
|
* return the previous one, so we always want to go to
|
|
* the next entry on the next loop iteration.
|
|
*
|
|
* There is an edge condition here that can occur if
|
|
* there is no entry at or before this address. In
|
|
* this situation, vm_map_lookup_entry returns
|
|
* &map->header, which would cause our loop to abort
|
|
* without processing the rest of the map. However,
|
|
* in practice this will never happen for process
|
|
* vm_map. This is because the executable's text
|
|
* segment is the first mapping in the proc's address
|
|
* space, and this mapping is never removed until the
|
|
* process exits, so there will always be a non-header
|
|
* entry at or before the requested address for
|
|
* vm_map_lookup_entry to return.
|
|
*/
|
|
if (map->timestamp != last_timestamp)
|
|
vm_map_lookup_entry(map, last_end - 1, &entry);
|
|
}
|
|
|
|
vm_map_unlock_read(map);
|
|
vmspace_free(vm);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Log mappings for all processes in the system.
|
|
*/
|
|
static void
|
|
pmc_log_all_process_mappings(struct pmc_owner *po)
|
|
{
|
|
struct proc *p, *top;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if ((p = pfind(1)) == NULL)
|
|
panic("[pmc,%d] Cannot find init", __LINE__);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
sx_slock(&proctree_lock);
|
|
|
|
top = p;
|
|
for (;;) {
|
|
pmc_log_process_mappings(po, p);
|
|
if (!LIST_EMPTY(&p->p_children))
|
|
p = LIST_FIRST(&p->p_children);
|
|
else for (;;) {
|
|
if (p == top)
|
|
goto done;
|
|
if (LIST_NEXT(p, p_sibling)) {
|
|
p = LIST_NEXT(p, p_sibling);
|
|
break;
|
|
}
|
|
p = p->p_pptr;
|
|
}
|
|
}
|
|
done:
|
|
sx_sunlock(&proctree_lock);
|
|
}
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
const char *pmc_hooknames[] = {
|
|
/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
|
|
"",
|
|
"EXEC",
|
|
"CSW-IN",
|
|
"CSW-OUT",
|
|
"SAMPLE",
|
|
"UNUSED1",
|
|
"UNUSED2",
|
|
"MMAP",
|
|
"MUNMAP",
|
|
"CALLCHAIN-NMI",
|
|
"CALLCHAIN-SOFT",
|
|
"SOFTSAMPLING",
|
|
"THR-CREATE",
|
|
"THR-EXIT",
|
|
"THR-USERRET",
|
|
"THR-CREATE-LOG",
|
|
"THR-EXIT-LOG",
|
|
"PROC-CREATE-LOG"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* The 'hook' invoked from the kernel proper
|
|
*/
|
|
static int
|
|
pmc_hook_handler(struct thread *td, int function, void *arg)
|
|
{
|
|
int cpu;
|
|
|
|
PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
|
|
pmc_hooknames[function], arg);
|
|
|
|
switch (function) {
|
|
case PMC_FN_PROCESS_EXEC:
|
|
pmc_process_exec(td, (struct pmckern_procexec *)arg);
|
|
break;
|
|
|
|
case PMC_FN_CSW_IN:
|
|
pmc_process_csw_in(td);
|
|
break;
|
|
|
|
case PMC_FN_CSW_OUT:
|
|
pmc_process_csw_out(td);
|
|
break;
|
|
|
|
/*
|
|
* Process accumulated PC samples.
|
|
*
|
|
* This function is expected to be called by hardclock() for
|
|
* each CPU that has accumulated PC samples.
|
|
*
|
|
* This function is to be executed on the CPU whose samples
|
|
* are being processed.
|
|
*/
|
|
case PMC_FN_DO_SAMPLES:
|
|
/*
|
|
* Clear the cpu specific bit in the CPU mask before
|
|
* do the rest of the processing. If the NMI handler
|
|
* gets invoked after the "atomic_clear_int()" call
|
|
* below but before "pmc_process_samples()" gets
|
|
* around to processing the interrupt, then we will
|
|
* come back here at the next hardclock() tick (and
|
|
* may find nothing to do if "pmc_process_samples()"
|
|
* had already processed the interrupt). We don't
|
|
* lose the interrupt sample.
|
|
*/
|
|
DPCPU_SET(pmc_sampled, 0);
|
|
cpu = PCPU_GET(cpuid);
|
|
pmc_process_samples(cpu, PMC_HR);
|
|
pmc_process_samples(cpu, PMC_SR);
|
|
pmc_process_samples(cpu, PMC_UR);
|
|
break;
|
|
|
|
case PMC_FN_MMAP:
|
|
pmc_process_mmap(td, (struct pmckern_map_in *)arg);
|
|
break;
|
|
|
|
case PMC_FN_MUNMAP:
|
|
MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
|
|
pmc_process_munmap(td, (struct pmckern_map_out *)arg);
|
|
break;
|
|
|
|
case PMC_FN_PROC_CREATE_LOG:
|
|
pmc_process_proccreate((struct proc *)arg);
|
|
break;
|
|
|
|
case PMC_FN_USER_CALLCHAIN:
|
|
/*
|
|
* Record a call chain.
|
|
*/
|
|
KASSERT(td == curthread, ("[pmc,%d] td != curthread",
|
|
__LINE__));
|
|
|
|
pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
|
|
(struct trapframe *)arg);
|
|
|
|
KASSERT(td->td_pinned == 1,
|
|
("[pmc,%d] invalid td_pinned value", __LINE__));
|
|
sched_unpin(); /* Can migrate safely now. */
|
|
|
|
td->td_pflags &= ~TDP_CALLCHAIN;
|
|
break;
|
|
|
|
case PMC_FN_USER_CALLCHAIN_SOFT:
|
|
/*
|
|
* Record a call chain.
|
|
*/
|
|
KASSERT(td == curthread, ("[pmc,%d] td != curthread",
|
|
__LINE__));
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
pmc_capture_user_callchain(cpu, PMC_SR,
|
|
(struct trapframe *) arg);
|
|
|
|
KASSERT(td->td_pinned == 1,
|
|
("[pmc,%d] invalid td_pinned value", __LINE__));
|
|
|
|
sched_unpin(); /* Can migrate safely now. */
|
|
|
|
td->td_pflags &= ~TDP_CALLCHAIN;
|
|
break;
|
|
|
|
case PMC_FN_SOFT_SAMPLING:
|
|
/*
|
|
* Call soft PMC sampling intr.
|
|
*/
|
|
pmc_soft_intr((struct pmckern_soft *)arg);
|
|
break;
|
|
|
|
case PMC_FN_THR_CREATE:
|
|
pmc_process_thread_add(td);
|
|
pmc_process_threadcreate(td);
|
|
break;
|
|
|
|
case PMC_FN_THR_CREATE_LOG:
|
|
pmc_process_threadcreate(td);
|
|
break;
|
|
|
|
case PMC_FN_THR_EXIT:
|
|
KASSERT(td == curthread, ("[pmc,%d] td != curthread",
|
|
__LINE__));
|
|
pmc_process_thread_delete(td);
|
|
pmc_process_threadexit(td);
|
|
break;
|
|
case PMC_FN_THR_EXIT_LOG:
|
|
pmc_process_threadexit(td);
|
|
break;
|
|
case PMC_FN_THR_USERRET:
|
|
KASSERT(td == curthread, ("[pmc,%d] td != curthread",
|
|
__LINE__));
|
|
pmc_process_thread_userret(td);
|
|
break;
|
|
default:
|
|
#ifdef HWPMC_DEBUG
|
|
KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a 'struct pmc_owner' descriptor in the owner hash table.
|
|
*/
|
|
static struct pmc_owner *
|
|
pmc_allocate_owner_descriptor(struct proc *p)
|
|
{
|
|
struct pmc_owner *po;
|
|
struct pmc_ownerhash *poh;
|
|
uint32_t hindex;
|
|
|
|
hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
|
|
poh = &pmc_ownerhash[hindex];
|
|
|
|
/* Allocate space for N pointers and one descriptor struct. */
|
|
po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK | M_ZERO);
|
|
po->po_owner = p;
|
|
LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
|
|
|
|
TAILQ_INIT(&po->po_logbuffers);
|
|
mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
|
|
|
|
PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
|
|
p, p->p_pid, p->p_comm, po);
|
|
|
|
return (po);
|
|
}
|
|
|
|
static void
|
|
pmc_destroy_owner_descriptor(struct pmc_owner *po)
|
|
{
|
|
|
|
PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
|
|
po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
|
|
|
|
mtx_destroy(&po->po_mtx);
|
|
free(po, M_PMC);
|
|
}
|
|
|
|
/*
|
|
* Allocate a thread descriptor from the free pool.
|
|
*
|
|
* NOTE: This *can* return NULL.
|
|
*/
|
|
static struct pmc_thread *
|
|
pmc_thread_descriptor_pool_alloc(void)
|
|
{
|
|
struct pmc_thread *pt;
|
|
|
|
mtx_lock_spin(&pmc_threadfreelist_mtx);
|
|
if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
|
|
LIST_REMOVE(pt, pt_next);
|
|
pmc_threadfreelist_entries--;
|
|
}
|
|
mtx_unlock_spin(&pmc_threadfreelist_mtx);
|
|
|
|
return (pt);
|
|
}
|
|
|
|
/*
|
|
* Add a thread descriptor to the free pool. We use this instead of free()
|
|
* to maintain a cache of free entries. Additionally, we can safely call
|
|
* this function when we cannot call free(), such as in a critical section.
|
|
*/
|
|
static void
|
|
pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
|
|
{
|
|
|
|
if (pt == NULL)
|
|
return;
|
|
|
|
memset(pt, 0, THREADENTRY_SIZE);
|
|
mtx_lock_spin(&pmc_threadfreelist_mtx);
|
|
LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
|
|
pmc_threadfreelist_entries++;
|
|
if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
|
|
taskqueue_enqueue(taskqueue_fast, &free_task);
|
|
mtx_unlock_spin(&pmc_threadfreelist_mtx);
|
|
}
|
|
|
|
/*
|
|
* An asynchronous task to manage the free list.
|
|
*/
|
|
static void
|
|
pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
|
|
{
|
|
struct pmc_thread *pt;
|
|
LIST_HEAD(, pmc_thread) tmplist;
|
|
int delta;
|
|
|
|
LIST_INIT(&tmplist);
|
|
|
|
/* Determine what changes, if any, we need to make. */
|
|
mtx_lock_spin(&pmc_threadfreelist_mtx);
|
|
delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
|
|
while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
|
|
delta--;
|
|
pmc_threadfreelist_entries--;
|
|
LIST_REMOVE(pt, pt_next);
|
|
LIST_INSERT_HEAD(&tmplist, pt, pt_next);
|
|
}
|
|
mtx_unlock_spin(&pmc_threadfreelist_mtx);
|
|
|
|
/* If there are entries to free, free them. */
|
|
while (!LIST_EMPTY(&tmplist)) {
|
|
pt = LIST_FIRST(&tmplist);
|
|
LIST_REMOVE(pt, pt_next);
|
|
free(pt, M_PMC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain the thread free pool, freeing all allocations.
|
|
*/
|
|
static void
|
|
pmc_thread_descriptor_pool_drain(void)
|
|
{
|
|
struct pmc_thread *pt, *next;
|
|
|
|
LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
|
|
LIST_REMOVE(pt, pt_next);
|
|
free(pt, M_PMC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find the descriptor corresponding to thread 'td', adding or removing it
|
|
* as specified by 'mode'.
|
|
*
|
|
* Note that this supports additional mode flags in addition to those
|
|
* supported by pmc_find_process_descriptor():
|
|
* PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
|
|
* This makes it safe to call while holding certain other locks.
|
|
*/
|
|
static struct pmc_thread *
|
|
pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
|
|
uint32_t mode)
|
|
{
|
|
struct pmc_thread *pt = NULL, *ptnew = NULL;
|
|
int wait_flag;
|
|
|
|
KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
|
|
|
|
/*
|
|
* Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
|
|
* acquiring the lock.
|
|
*/
|
|
if ((mode & PMC_FLAG_ALLOCATE) != 0) {
|
|
if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
|
|
wait_flag = M_WAITOK;
|
|
if ((mode & PMC_FLAG_NOWAIT) != 0 ||
|
|
in_epoch(global_epoch_preempt))
|
|
wait_flag = M_NOWAIT;
|
|
|
|
ptnew = malloc(THREADENTRY_SIZE, M_PMC,
|
|
wait_flag | M_ZERO);
|
|
}
|
|
}
|
|
|
|
mtx_lock_spin(pp->pp_tdslock);
|
|
LIST_FOREACH(pt, &pp->pp_tds, pt_next) {
|
|
if (pt->pt_td == td)
|
|
break;
|
|
}
|
|
|
|
if ((mode & PMC_FLAG_REMOVE) != 0 && pt != NULL)
|
|
LIST_REMOVE(pt, pt_next);
|
|
|
|
if ((mode & PMC_FLAG_ALLOCATE) != 0 && pt == NULL && ptnew != NULL) {
|
|
pt = ptnew;
|
|
ptnew = NULL;
|
|
pt->pt_td = td;
|
|
LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
|
|
}
|
|
|
|
mtx_unlock_spin(pp->pp_tdslock);
|
|
|
|
if (ptnew != NULL) {
|
|
free(ptnew, M_PMC);
|
|
}
|
|
|
|
return (pt);
|
|
}
|
|
|
|
/*
|
|
* Try to add thread descriptors for each thread in a process.
|
|
*/
|
|
static void
|
|
pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
|
|
{
|
|
struct pmc_thread **tdlist;
|
|
struct thread *curtd;
|
|
int i, tdcnt, tdlistsz;
|
|
|
|
KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
|
|
__LINE__));
|
|
tdcnt = 32;
|
|
restart:
|
|
tdlistsz = roundup2(tdcnt, 32);
|
|
|
|
tdcnt = 0;
|
|
tdlist = malloc(sizeof(struct pmc_thread *) * tdlistsz, M_TEMP,
|
|
M_WAITOK);
|
|
|
|
PROC_LOCK(p);
|
|
FOREACH_THREAD_IN_PROC(p, curtd)
|
|
tdcnt++;
|
|
if (tdcnt >= tdlistsz) {
|
|
PROC_UNLOCK(p);
|
|
free(tdlist, M_TEMP);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* Try to add each thread to the list without sleeping. If unable,
|
|
* add to a queue to retry after dropping the process lock.
|
|
*/
|
|
tdcnt = 0;
|
|
FOREACH_THREAD_IN_PROC(p, curtd) {
|
|
tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
|
|
PMC_FLAG_ALLOCATE | PMC_FLAG_NOWAIT);
|
|
if (tdlist[tdcnt] == NULL) {
|
|
PROC_UNLOCK(p);
|
|
for (i = 0; i <= tdcnt; i++)
|
|
pmc_thread_descriptor_pool_free(tdlist[i]);
|
|
free(tdlist, M_TEMP);
|
|
goto restart;
|
|
}
|
|
tdcnt++;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
free(tdlist, M_TEMP);
|
|
}
|
|
|
|
/*
|
|
* Find the descriptor corresponding to process 'p', adding or removing it
|
|
* as specified by 'mode'.
|
|
*/
|
|
static struct pmc_process *
|
|
pmc_find_process_descriptor(struct proc *p, uint32_t mode)
|
|
{
|
|
struct pmc_process *pp, *ppnew;
|
|
struct pmc_processhash *pph;
|
|
uint32_t hindex;
|
|
|
|
hindex = PMC_HASH_PTR(p, pmc_processhashmask);
|
|
pph = &pmc_processhash[hindex];
|
|
|
|
ppnew = NULL;
|
|
|
|
/*
|
|
* Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
|
|
* cannot call malloc(9) once we hold a spin lock.
|
|
*/
|
|
if ((mode & PMC_FLAG_ALLOCATE) != 0)
|
|
ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
|
|
sizeof(struct pmc_targetstate), M_PMC, M_WAITOK | M_ZERO);
|
|
|
|
mtx_lock_spin(&pmc_processhash_mtx);
|
|
LIST_FOREACH(pp, pph, pp_next) {
|
|
if (pp->pp_proc == p)
|
|
break;
|
|
}
|
|
|
|
if ((mode & PMC_FLAG_REMOVE) != 0 && pp != NULL)
|
|
LIST_REMOVE(pp, pp_next);
|
|
|
|
if ((mode & PMC_FLAG_ALLOCATE) != 0 && pp == NULL && ppnew != NULL) {
|
|
ppnew->pp_proc = p;
|
|
LIST_INIT(&ppnew->pp_tds);
|
|
ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
|
|
LIST_INSERT_HEAD(pph, ppnew, pp_next);
|
|
mtx_unlock_spin(&pmc_processhash_mtx);
|
|
pp = ppnew;
|
|
ppnew = NULL;
|
|
|
|
/* Add thread descriptors for this process' current threads. */
|
|
pmc_add_thread_descriptors_from_proc(p, pp);
|
|
} else
|
|
mtx_unlock_spin(&pmc_processhash_mtx);
|
|
|
|
if (ppnew != NULL)
|
|
free(ppnew, M_PMC);
|
|
return (pp);
|
|
}
|
|
|
|
/*
|
|
* Remove a process descriptor from the process hash table.
|
|
*/
|
|
static void
|
|
pmc_remove_process_descriptor(struct pmc_process *pp)
|
|
{
|
|
KASSERT(pp->pp_refcnt == 0,
|
|
("[pmc,%d] Removing process descriptor %p with count %d",
|
|
__LINE__, pp, pp->pp_refcnt));
|
|
|
|
mtx_lock_spin(&pmc_processhash_mtx);
|
|
LIST_REMOVE(pp, pp_next);
|
|
mtx_unlock_spin(&pmc_processhash_mtx);
|
|
}
|
|
|
|
/*
|
|
* Destroy a process descriptor.
|
|
*/
|
|
static void
|
|
pmc_destroy_process_descriptor(struct pmc_process *pp)
|
|
{
|
|
struct pmc_thread *pmc_td;
|
|
|
|
while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
|
|
LIST_REMOVE(pmc_td, pt_next);
|
|
pmc_thread_descriptor_pool_free(pmc_td);
|
|
}
|
|
free(pp, M_PMC);
|
|
}
|
|
|
|
/*
|
|
* Find an owner descriptor corresponding to proc 'p'.
|
|
*/
|
|
static struct pmc_owner *
|
|
pmc_find_owner_descriptor(struct proc *p)
|
|
{
|
|
struct pmc_owner *po;
|
|
struct pmc_ownerhash *poh;
|
|
uint32_t hindex;
|
|
|
|
hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
|
|
poh = &pmc_ownerhash[hindex];
|
|
|
|
po = NULL;
|
|
LIST_FOREACH(po, poh, po_next) {
|
|
if (po->po_owner == p)
|
|
break;
|
|
}
|
|
|
|
PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
|
|
"pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
|
|
|
|
return (po);
|
|
}
|
|
|
|
/*
|
|
* Allocate a pmc descriptor and initialize its fields.
|
|
*/
|
|
static struct pmc *
|
|
pmc_allocate_pmc_descriptor(void)
|
|
{
|
|
struct pmc *pmc;
|
|
|
|
pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK | M_ZERO);
|
|
pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
|
|
pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state) * mp_ncpus,
|
|
M_PMC, M_WAITOK | M_ZERO);
|
|
PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
|
|
|
|
return (pmc);
|
|
}
|
|
|
|
/*
|
|
* Destroy a pmc descriptor.
|
|
*/
|
|
static void
|
|
pmc_destroy_pmc_descriptor(struct pmc *pm)
|
|
{
|
|
|
|
KASSERT(pm->pm_state == PMC_STATE_DELETED ||
|
|
pm->pm_state == PMC_STATE_FREE,
|
|
("[pmc,%d] destroying non-deleted PMC", __LINE__));
|
|
KASSERT(LIST_EMPTY(&pm->pm_targets),
|
|
("[pmc,%d] destroying pmc with targets", __LINE__));
|
|
KASSERT(pm->pm_owner == NULL,
|
|
("[pmc,%d] destroying pmc attached to an owner", __LINE__));
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
|
|
("[pmc,%d] pmc has non-zero run count %ju", __LINE__,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
counter_u64_free(pm->pm_runcount);
|
|
free(pm->pm_pcpu_state, M_PMC);
|
|
free(pm, M_PMC);
|
|
}
|
|
|
|
static void
|
|
pmc_wait_for_pmc_idle(struct pmc *pm)
|
|
{
|
|
#ifdef INVARIANTS
|
|
volatile int maxloop;
|
|
|
|
maxloop = 100 * pmc_cpu_max();
|
|
#endif
|
|
/*
|
|
* Loop (with a forced context switch) till the PMC's runcount
|
|
* comes down to zero.
|
|
*/
|
|
pmclog_flush(pm->pm_owner, 1);
|
|
while (counter_u64_fetch(pm->pm_runcount) > 0) {
|
|
pmclog_flush(pm->pm_owner, 1);
|
|
#ifdef INVARIANTS
|
|
maxloop--;
|
|
KASSERT(maxloop > 0,
|
|
("[pmc,%d] (ri%d, rc%ju) waiting too long for "
|
|
"pmc to be free", __LINE__, PMC_TO_ROWINDEX(pm),
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
#endif
|
|
pmc_force_context_switch();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function does the following things:
|
|
*
|
|
* - detaches the PMC from hardware
|
|
* - unlinks all target threads that were attached to it
|
|
* - removes the PMC from its owner's list
|
|
* - destroys the PMC private mutex
|
|
*
|
|
* Once this function completes, the given pmc pointer can be freed by
|
|
* calling pmc_destroy_pmc_descriptor().
|
|
*/
|
|
static void
|
|
pmc_release_pmc_descriptor(struct pmc *pm)
|
|
{
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_hw *phw __diagused;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *pp;
|
|
struct pmc_target *ptgt, *tmp;
|
|
enum pmc_mode mode;
|
|
u_int adjri, ri, cpu;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
mode = PMC_TO_MODE(pm);
|
|
|
|
PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
|
|
mode);
|
|
|
|
/*
|
|
* First, we take the PMC off hardware.
|
|
*/
|
|
cpu = 0;
|
|
if (PMC_IS_SYSTEM_MODE(mode)) {
|
|
/*
|
|
* A system mode PMC runs on a specific CPU. Switch
|
|
* to this CPU and turn hardware off.
|
|
*/
|
|
pmc_save_cpu_binding(&pb);
|
|
cpu = PMC_TO_CPU(pm);
|
|
pmc_select_cpu(cpu);
|
|
|
|
/* switch off non-stalled CPUs */
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 0;
|
|
if (pm->pm_state == PMC_STATE_RUNNING &&
|
|
pm->pm_pcpu_state[cpu].pps_stalled == 0) {
|
|
|
|
phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
|
|
|
|
KASSERT(phw->phw_pmc == pm,
|
|
("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
|
|
__LINE__, ri, phw->phw_pmc, pm));
|
|
PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
|
|
|
|
critical_enter();
|
|
(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
|
|
critical_exit();
|
|
}
|
|
|
|
PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
|
|
|
|
critical_enter();
|
|
(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
|
|
critical_exit();
|
|
|
|
/* adjust the global and process count of SS mode PMCs */
|
|
if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
|
|
po = pm->pm_owner;
|
|
po->po_sscount--;
|
|
if (po->po_sscount == 0) {
|
|
atomic_subtract_rel_int(&pmc_ss_count, 1);
|
|
CK_LIST_REMOVE(po, po_ssnext);
|
|
epoch_wait_preempt(global_epoch_preempt);
|
|
}
|
|
}
|
|
pm->pm_state = PMC_STATE_DELETED;
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
|
|
/*
|
|
* We could have references to this PMC structure in the
|
|
* per-cpu sample queues. Wait for the queue to drain.
|
|
*/
|
|
pmc_wait_for_pmc_idle(pm);
|
|
|
|
} else if (PMC_IS_VIRTUAL_MODE(mode)) {
|
|
/*
|
|
* A virtual PMC could be running on multiple CPUs at a given
|
|
* instant.
|
|
*
|
|
* By marking its state as DELETED, we ensure that this PMC is
|
|
* never further scheduled on hardware.
|
|
*
|
|
* Then we wait till all CPUs are done with this PMC.
|
|
*/
|
|
pm->pm_state = PMC_STATE_DELETED;
|
|
|
|
/* Wait for the PMCs runcount to come to zero. */
|
|
pmc_wait_for_pmc_idle(pm);
|
|
|
|
/*
|
|
* At this point the PMC is off all CPUs and cannot be freshly
|
|
* scheduled onto a CPU. It is now safe to unlink all targets
|
|
* from this PMC. If a process-record's refcount falls to zero,
|
|
* we remove it from the hash table. The module-wide SX lock
|
|
* protects us from races.
|
|
*/
|
|
LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
|
|
pp = ptgt->pt_process;
|
|
pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
|
|
|
|
PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
|
|
|
|
/*
|
|
* If the target process record shows that no PMCs are
|
|
* attached to it, reclaim its space.
|
|
*/
|
|
if (pp->pp_refcnt == 0) {
|
|
pmc_remove_process_descriptor(pp);
|
|
pmc_destroy_process_descriptor(pp);
|
|
}
|
|
}
|
|
|
|
cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
|
|
}
|
|
|
|
/*
|
|
* Release any MD resources.
|
|
*/
|
|
(void)pcd->pcd_release_pmc(cpu, adjri, pm);
|
|
|
|
/*
|
|
* Update row disposition.
|
|
*/
|
|
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
|
|
PMC_UNMARK_ROW_STANDALONE(ri);
|
|
else
|
|
PMC_UNMARK_ROW_THREAD(ri);
|
|
|
|
/* Unlink from the owner's list. */
|
|
if (pm->pm_owner != NULL) {
|
|
LIST_REMOVE(pm, pm_next);
|
|
pm->pm_owner = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register an owner and a pmc.
|
|
*/
|
|
static int
|
|
pmc_register_owner(struct proc *p, struct pmc *pmc)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if ((po = pmc_find_owner_descriptor(p)) == NULL) {
|
|
if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
|
|
KASSERT(pmc->pm_owner == NULL,
|
|
("[pmc,%d] attempting to own an initialized PMC", __LINE__));
|
|
pmc->pm_owner = po;
|
|
|
|
LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
|
|
|
|
PROC_LOCK(p);
|
|
p->p_flag |= P_HWPMC;
|
|
PROC_UNLOCK(p);
|
|
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_process_pmcallocate(pmc);
|
|
|
|
PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
|
|
po, pmc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the current row disposition:
|
|
* == 0 => FREE
|
|
* > 0 => PROCESS MODE
|
|
* < 0 => SYSTEM MODE
|
|
*/
|
|
int
|
|
pmc_getrowdisp(int ri)
|
|
{
|
|
return (pmc_pmcdisp[ri]);
|
|
}
|
|
|
|
/*
|
|
* Check if a PMC at row index 'ri' can be allocated to the current
|
|
* process.
|
|
*
|
|
* Allocation can fail if:
|
|
* - the current process is already being profiled by a PMC at index 'ri',
|
|
* attached to it via OP_PMCATTACH.
|
|
* - the current process has already allocated a PMC at index 'ri'
|
|
* via OP_ALLOCATE.
|
|
*/
|
|
static bool
|
|
pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *pp;
|
|
enum pmc_mode mode;
|
|
|
|
PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
|
|
"cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
|
|
|
|
/*
|
|
* We shouldn't have already allocated a process-mode PMC at
|
|
* row index 'ri'.
|
|
*
|
|
* We shouldn't have allocated a system-wide PMC on the same
|
|
* CPU and same RI.
|
|
*/
|
|
if ((po = pmc_find_owner_descriptor(p)) != NULL) {
|
|
LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
|
|
if (PMC_TO_ROWINDEX(pm) == ri) {
|
|
mode = PMC_TO_MODE(pm);
|
|
if (PMC_IS_VIRTUAL_MODE(mode))
|
|
return (false);
|
|
if (PMC_IS_SYSTEM_MODE(mode) &&
|
|
PMC_TO_CPU(pm) == cpu)
|
|
return (false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We also shouldn't be the target of any PMC at this index
|
|
* since otherwise a PMC_ATTACH to ourselves will fail.
|
|
*/
|
|
if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
|
|
if (pp->pp_pmcs[ri].pp_pmc != NULL)
|
|
return (false);
|
|
|
|
PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
|
|
p, p->p_pid, p->p_comm, ri);
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Check if a given PMC at row index 'ri' can be currently used in
|
|
* mode 'mode'.
|
|
*/
|
|
static bool
|
|
pmc_can_allocate_row(int ri, enum pmc_mode mode)
|
|
{
|
|
enum pmc_disp disp;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
|
|
|
|
if (PMC_IS_SYSTEM_MODE(mode))
|
|
disp = PMC_DISP_STANDALONE;
|
|
else
|
|
disp = PMC_DISP_THREAD;
|
|
|
|
/*
|
|
* check disposition for PMC row 'ri':
|
|
*
|
|
* Expected disposition Row-disposition Result
|
|
*
|
|
* STANDALONE STANDALONE or FREE proceed
|
|
* STANDALONE THREAD fail
|
|
* THREAD THREAD or FREE proceed
|
|
* THREAD STANDALONE fail
|
|
*/
|
|
if (!PMC_ROW_DISP_IS_FREE(ri) &&
|
|
!(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
|
|
!(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
|
|
return (false);
|
|
|
|
/*
|
|
* All OK
|
|
*/
|
|
PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
|
|
*/
|
|
static struct pmc *
|
|
pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
|
|
{
|
|
struct pmc *pm;
|
|
|
|
KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
|
|
("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
|
|
PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
|
|
|
|
LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
|
|
if (pm->pm_id == pmcid)
|
|
return (pm);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
|
|
{
|
|
struct pmc *pm, *opm;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *pp;
|
|
|
|
PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
|
|
if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
|
|
return (EINVAL);
|
|
|
|
if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
|
|
/*
|
|
* In case of PMC_F_DESCENDANTS child processes we will not find
|
|
* the current process in the owners hash list. Find the owner
|
|
* process first and from there lookup the po.
|
|
*/
|
|
pp = pmc_find_process_descriptor(curthread->td_proc,
|
|
PMC_FLAG_NONE);
|
|
if (pp == NULL)
|
|
return (ESRCH);
|
|
opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
|
|
if (opm == NULL)
|
|
return (ESRCH);
|
|
if ((opm->pm_flags &
|
|
(PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS)) !=
|
|
(PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS))
|
|
return (ESRCH);
|
|
|
|
po = opm->pm_owner;
|
|
}
|
|
|
|
if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
|
|
return (EINVAL);
|
|
|
|
PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
|
|
|
|
*pmc = pm;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Start a PMC.
|
|
*/
|
|
static int
|
|
pmc_start(struct pmc *pm)
|
|
{
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_owner *po;
|
|
pmc_value_t v;
|
|
enum pmc_mode mode;
|
|
int adjri, error, cpu, ri;
|
|
|
|
KASSERT(pm != NULL,
|
|
("[pmc,%d] null pm", __LINE__));
|
|
|
|
mode = PMC_TO_MODE(pm);
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
error = 0;
|
|
po = pm->pm_owner;
|
|
|
|
PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
|
|
|
|
po = pm->pm_owner;
|
|
|
|
/*
|
|
* Disallow PMCSTART if a logfile is required but has not been
|
|
* configured yet.
|
|
*/
|
|
if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
|
|
(po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
|
|
return (EDOOFUS); /* programming error */
|
|
|
|
/*
|
|
* If this is a sampling mode PMC, log mapping information for
|
|
* the kernel modules that are currently loaded.
|
|
*/
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
|
|
pmc_log_kernel_mappings(pm);
|
|
|
|
if (PMC_IS_VIRTUAL_MODE(mode)) {
|
|
/*
|
|
* If a PMCATTACH has never been done on this PMC,
|
|
* attach it to its owner process.
|
|
*/
|
|
if (LIST_EMPTY(&pm->pm_targets)) {
|
|
error = (pm->pm_flags & PMC_F_ATTACH_DONE) != 0 ?
|
|
ESRCH : pmc_attach_process(po->po_owner, pm);
|
|
}
|
|
|
|
/*
|
|
* If the PMC is attached to its owner, then force a context
|
|
* switch to ensure that the MD state gets set correctly.
|
|
*/
|
|
if (error == 0) {
|
|
pm->pm_state = PMC_STATE_RUNNING;
|
|
if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) != 0)
|
|
pmc_force_context_switch();
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* A system-wide PMC.
|
|
*
|
|
* Add the owner to the global list if this is a system-wide
|
|
* sampling PMC.
|
|
*/
|
|
if (mode == PMC_MODE_SS) {
|
|
/*
|
|
* Log mapping information for all existing processes in the
|
|
* system. Subsequent mappings are logged as they happen;
|
|
* see pmc_process_mmap().
|
|
*/
|
|
if (po->po_logprocmaps == 0) {
|
|
pmc_log_all_process_mappings(po);
|
|
po->po_logprocmaps = 1;
|
|
}
|
|
po->po_sscount++;
|
|
if (po->po_sscount == 1) {
|
|
atomic_add_rel_int(&pmc_ss_count, 1);
|
|
CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
|
|
PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move to the CPU associated with this
|
|
* PMC, and start the hardware.
|
|
*/
|
|
pmc_save_cpu_binding(&pb);
|
|
cpu = PMC_TO_CPU(pm);
|
|
if (!pmc_cpu_is_active(cpu))
|
|
return (ENXIO);
|
|
pmc_select_cpu(cpu);
|
|
|
|
/*
|
|
* global PMCs are configured at allocation time
|
|
* so write out the initial value and start the PMC.
|
|
*/
|
|
pm->pm_state = PMC_STATE_RUNNING;
|
|
|
|
critical_enter();
|
|
v = PMC_IS_SAMPLING_MODE(mode) ? pm->pm_sc.pm_reloadcount :
|
|
pm->pm_sc.pm_initial;
|
|
if ((error = pcd->pcd_write_pmc(cpu, adjri, pm, v)) == 0) {
|
|
/* If a sampling mode PMC, reset stalled state. */
|
|
if (PMC_IS_SAMPLING_MODE(mode))
|
|
pm->pm_pcpu_state[cpu].pps_stalled = 0;
|
|
|
|
/* Indicate that we desire this to run. Start it. */
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 1;
|
|
error = pcd->pcd_start_pmc(cpu, adjri, pm);
|
|
}
|
|
critical_exit();
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Stop a PMC.
|
|
*/
|
|
static int
|
|
pmc_stop(struct pmc *pm)
|
|
{
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_owner *po;
|
|
int adjri, cpu, error, ri;
|
|
|
|
KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
|
|
|
|
PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, PMC_TO_MODE(pm),
|
|
PMC_TO_ROWINDEX(pm));
|
|
|
|
pm->pm_state = PMC_STATE_STOPPED;
|
|
|
|
/*
|
|
* If the PMC is a virtual mode one, changing the state to non-RUNNING
|
|
* is enough to ensure that the PMC never gets scheduled.
|
|
*
|
|
* If this PMC is current running on a CPU, then it will handled
|
|
* correctly at the time its target process is context switched out.
|
|
*/
|
|
if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
|
|
return (0);
|
|
|
|
/*
|
|
* A system-mode PMC. Move to the CPU associated with this PMC, and
|
|
* stop the hardware. We update the 'initial count' so that a
|
|
* subsequent PMCSTART will resume counting from the current hardware
|
|
* count.
|
|
*/
|
|
pmc_save_cpu_binding(&pb);
|
|
|
|
cpu = PMC_TO_CPU(pm);
|
|
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
|
|
("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
|
|
if (!pmc_cpu_is_active(cpu))
|
|
return (ENXIO);
|
|
|
|
pmc_select_cpu(cpu);
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 0;
|
|
critical_enter();
|
|
if ((error = pcd->pcd_stop_pmc(cpu, adjri, pm)) == 0) {
|
|
error = pcd->pcd_read_pmc(cpu, adjri, pm,
|
|
&pm->pm_sc.pm_initial);
|
|
}
|
|
critical_exit();
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
|
|
/* Remove this owner from the global list of SS PMC owners. */
|
|
po = pm->pm_owner;
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
|
|
po->po_sscount--;
|
|
if (po->po_sscount == 0) {
|
|
atomic_subtract_rel_int(&pmc_ss_count, 1);
|
|
CK_LIST_REMOVE(po, po_ssnext);
|
|
epoch_wait_preempt(global_epoch_preempt);
|
|
PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static struct pmc_classdep *
|
|
pmc_class_to_classdep(enum pmc_class class)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < md->pmd_nclass; n++) {
|
|
if (md->pmd_classdep[n].pcd_class == class)
|
|
return (&md->pmd_classdep[n]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
#if defined(HWPMC_DEBUG) && defined(KTR)
|
|
static const char *pmc_op_to_name[] = {
|
|
#undef __PMC_OP
|
|
#define __PMC_OP(N, D) #N ,
|
|
__PMC_OPS()
|
|
NULL
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* The syscall interface
|
|
*/
|
|
|
|
#define PMC_GET_SX_XLOCK(...) do { \
|
|
sx_xlock(&pmc_sx); \
|
|
if (pmc_hook == NULL) { \
|
|
sx_xunlock(&pmc_sx); \
|
|
return __VA_ARGS__; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define PMC_DOWNGRADE_SX() do { \
|
|
sx_downgrade(&pmc_sx); \
|
|
is_sx_downgraded = true; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Main body of PMC_OP_PMCALLOCATE.
|
|
*/
|
|
static int
|
|
pmc_do_op_pmcallocate(struct thread *td, struct pmc_op_pmcallocate *pa)
|
|
{
|
|
struct proc *p;
|
|
struct pmc *pmc;
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_hw *phw;
|
|
enum pmc_mode mode;
|
|
enum pmc_class class;
|
|
uint32_t caps, flags;
|
|
u_int cpu;
|
|
int adjri, n;
|
|
int error;
|
|
|
|
class = pa->pm_class;
|
|
caps = pa->pm_caps;
|
|
flags = pa->pm_flags;
|
|
mode = pa->pm_mode;
|
|
cpu = pa->pm_cpu;
|
|
|
|
p = td->td_proc;
|
|
|
|
/* Requested mode must exist. */
|
|
if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC &&
|
|
mode != PMC_MODE_TS && mode != PMC_MODE_TC))
|
|
return (EINVAL);
|
|
|
|
/* Requested CPU must be valid. */
|
|
if (cpu != PMC_CPU_ANY && cpu >= pmc_cpu_max())
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Virtual PMCs should only ask for a default CPU.
|
|
* System mode PMCs need to specify a non-default CPU.
|
|
*/
|
|
if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != PMC_CPU_ANY) ||
|
|
(PMC_IS_SYSTEM_MODE(mode) && cpu == PMC_CPU_ANY))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Check that an inactive CPU is not being asked for.
|
|
*/
|
|
if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Refuse an allocation for a system-wide PMC if this process has been
|
|
* jailed, or if this process lacks super-user credentials and the
|
|
* sysctl tunable 'security.bsd.unprivileged_syspmcs' is zero.
|
|
*/
|
|
if (PMC_IS_SYSTEM_MODE(mode)) {
|
|
if (jailed(td->td_ucred))
|
|
return (EPERM);
|
|
if (!pmc_unprivileged_syspmcs) {
|
|
error = priv_check(td, PRIV_PMC_SYSTEM);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for valid values for 'pm_flags'.
|
|
*/
|
|
if ((flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
|
|
PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN |
|
|
PMC_F_EV_PMU)) != 0)
|
|
return (EINVAL);
|
|
|
|
/* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN. */
|
|
if ((flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
|
|
PMC_F_USERCALLCHAIN)
|
|
return (EINVAL);
|
|
|
|
/* PMC_F_USERCALLCHAIN is only valid for sampling mode. */
|
|
if ((flags & PMC_F_USERCALLCHAIN) != 0 && mode != PMC_MODE_TS &&
|
|
mode != PMC_MODE_SS)
|
|
return (EINVAL);
|
|
|
|
/* Process logging options are not allowed for system PMCs. */
|
|
if (PMC_IS_SYSTEM_MODE(mode) &&
|
|
(flags & (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT)) != 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* All sampling mode PMCs need to be able to interrupt the CPU.
|
|
*/
|
|
if (PMC_IS_SAMPLING_MODE(mode))
|
|
caps |= PMC_CAP_INTERRUPT;
|
|
|
|
/* A valid class specifier should have been passed in. */
|
|
pcd = pmc_class_to_classdep(class);
|
|
if (pcd == NULL)
|
|
return (EINVAL);
|
|
|
|
/* The requested PMC capabilities should be feasible. */
|
|
if ((pcd->pcd_caps & caps) != caps)
|
|
return (EOPNOTSUPP);
|
|
|
|
PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d", pa->pm_ev,
|
|
caps, mode, cpu);
|
|
|
|
pmc = pmc_allocate_pmc_descriptor();
|
|
pmc->pm_id = PMC_ID_MAKE_ID(cpu, pa->pm_mode, class, PMC_ID_INVALID);
|
|
pmc->pm_event = pa->pm_ev;
|
|
pmc->pm_state = PMC_STATE_FREE;
|
|
pmc->pm_caps = caps;
|
|
pmc->pm_flags = flags;
|
|
|
|
/* XXX set lower bound on sampling for process counters */
|
|
if (PMC_IS_SAMPLING_MODE(mode)) {
|
|
/*
|
|
* Don't permit requested sample rate to be less than
|
|
* pmc_mincount.
|
|
*/
|
|
if (pa->pm_count < MAX(1, pmc_mincount))
|
|
log(LOG_WARNING, "pmcallocate: passed sample "
|
|
"rate %ju - setting to %u\n",
|
|
(uintmax_t)pa->pm_count,
|
|
MAX(1, pmc_mincount));
|
|
pmc->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
|
|
pa->pm_count);
|
|
} else
|
|
pmc->pm_sc.pm_initial = pa->pm_count;
|
|
|
|
/* switch thread to CPU 'cpu' */
|
|
pmc_save_cpu_binding(&pb);
|
|
|
|
#define PMC_IS_SHAREABLE_PMC(cpu, n) \
|
|
(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state & \
|
|
PMC_PHW_FLAG_IS_SHAREABLE)
|
|
#define PMC_IS_UNALLOCATED(cpu, n) \
|
|
(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
|
|
|
|
if (PMC_IS_SYSTEM_MODE(mode)) {
|
|
pmc_select_cpu(cpu);
|
|
for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
|
|
pcd = pmc_ri_to_classdep(md, n, &adjri);
|
|
|
|
if (!pmc_can_allocate_row(n, mode) ||
|
|
!pmc_can_allocate_rowindex(p, n, cpu))
|
|
continue;
|
|
if (!PMC_IS_UNALLOCATED(cpu, n) &&
|
|
!PMC_IS_SHAREABLE_PMC(cpu, n))
|
|
continue;
|
|
|
|
if (pcd->pcd_allocate_pmc(cpu, adjri, pmc, pa) == 0) {
|
|
/* Success. */
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* Process virtual mode */
|
|
for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
|
|
pcd = pmc_ri_to_classdep(md, n, &adjri);
|
|
|
|
if (!pmc_can_allocate_row(n, mode) ||
|
|
!pmc_can_allocate_rowindex(p, n, PMC_CPU_ANY))
|
|
continue;
|
|
|
|
if (pcd->pcd_allocate_pmc(td->td_oncpu, adjri, pmc,
|
|
pa) == 0) {
|
|
/* Success. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef PMC_IS_UNALLOCATED
|
|
#undef PMC_IS_SHAREABLE_PMC
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
|
|
if (n == md->pmd_npmc) {
|
|
pmc_destroy_pmc_descriptor(pmc);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Fill in the correct value in the ID field. */
|
|
pmc->pm_id = PMC_ID_MAKE_ID(cpu, mode, class, n);
|
|
|
|
PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
|
|
pmc->pm_event, class, mode, n, pmc->pm_id);
|
|
|
|
/* Process mode PMCs with logging enabled need log files. */
|
|
if ((pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW)) != 0)
|
|
pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
|
|
|
|
/* All system mode sampling PMCs require a log file. */
|
|
if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
|
|
pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
|
|
|
|
/*
|
|
* Configure global pmc's immediately.
|
|
*/
|
|
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
|
|
pmc_save_cpu_binding(&pb);
|
|
pmc_select_cpu(cpu);
|
|
|
|
phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
|
|
pcd = pmc_ri_to_classdep(md, n, &adjri);
|
|
|
|
if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
|
|
(error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
|
|
(void)pcd->pcd_release_pmc(cpu, adjri, pmc);
|
|
pmc_destroy_pmc_descriptor(pmc);
|
|
pmc_restore_cpu_binding(&pb);
|
|
return (EPERM);
|
|
}
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
}
|
|
|
|
pmc->pm_state = PMC_STATE_ALLOCATED;
|
|
pmc->pm_class = class;
|
|
|
|
/*
|
|
* Mark row disposition.
|
|
*/
|
|
if (PMC_IS_SYSTEM_MODE(mode))
|
|
PMC_MARK_ROW_STANDALONE(n);
|
|
else
|
|
PMC_MARK_ROW_THREAD(n);
|
|
|
|
/*
|
|
* Register this PMC with the current thread as its owner.
|
|
*/
|
|
error = pmc_register_owner(p, pmc);
|
|
if (error != 0) {
|
|
pmc_release_pmc_descriptor(pmc);
|
|
pmc_destroy_pmc_descriptor(pmc);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return the allocated index.
|
|
*/
|
|
pa->pm_pmcid = pmc->pm_id;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main body of PMC_OP_PMCATTACH.
|
|
*/
|
|
static int
|
|
pmc_do_op_pmcattach(struct thread *td, struct pmc_op_pmcattach a)
|
|
{
|
|
struct pmc *pm;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if (a.pm_pid < 0) {
|
|
return (EINVAL);
|
|
} else if (a.pm_pid == 0) {
|
|
a.pm_pid = td->td_proc->p_pid;
|
|
}
|
|
|
|
error = pmc_find_pmc(a.pm_pmc, &pm);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
|
|
return (EINVAL);
|
|
|
|
/* PMCs may be (re)attached only when allocated or stopped */
|
|
if (pm->pm_state == PMC_STATE_RUNNING) {
|
|
return (EBUSY);
|
|
} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
|
|
pm->pm_state != PMC_STATE_STOPPED) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* lookup pid */
|
|
if ((p = pfind(a.pm_pid)) == NULL)
|
|
return (ESRCH);
|
|
|
|
/*
|
|
* Ignore processes that are working on exiting.
|
|
*/
|
|
if ((p->p_flag & P_WEXIT) != 0) {
|
|
PROC_UNLOCK(p); /* pfind() returns a locked process */
|
|
return (ESRCH);
|
|
}
|
|
|
|
/*
|
|
* We are allowed to attach a PMC to a process if we can debug it.
|
|
*/
|
|
error = p_candebug(curthread, p);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
if (error == 0)
|
|
error = pmc_attach_process(p, pm);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Main body of PMC_OP_PMCDETACH.
|
|
*/
|
|
static int
|
|
pmc_do_op_pmcdetach(struct thread *td, struct pmc_op_pmcattach a)
|
|
{
|
|
struct pmc *pm;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (a.pm_pid < 0) {
|
|
return (EINVAL);
|
|
} else if (a.pm_pid == 0)
|
|
a.pm_pid = td->td_proc->p_pid;
|
|
|
|
error = pmc_find_pmc(a.pm_pmc, &pm);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((p = pfind(a.pm_pid)) == NULL)
|
|
return (ESRCH);
|
|
|
|
/*
|
|
* Treat processes that are in the process of exiting as if they were
|
|
* not present.
|
|
*/
|
|
if ((p->p_flag & P_WEXIT) != 0) {
|
|
PROC_UNLOCK(p);
|
|
return (ESRCH);
|
|
}
|
|
|
|
PROC_UNLOCK(p); /* pfind() returns a locked process */
|
|
|
|
if (error == 0)
|
|
error = pmc_detach_process(p, pm);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Main body of PMC_OP_PMCRELEASE.
|
|
*/
|
|
static int
|
|
pmc_do_op_pmcrelease(pmc_id_t pmcid)
|
|
{
|
|
struct pmc_owner *po;
|
|
struct pmc *pm;
|
|
int error;
|
|
|
|
/*
|
|
* Find PMC pointer for the named PMC.
|
|
*
|
|
* Use pmc_release_pmc_descriptor() to switch off the
|
|
* PMC, remove all its target threads, and remove the
|
|
* PMC from its owner's list.
|
|
*
|
|
* Remove the owner record if this is the last PMC
|
|
* owned.
|
|
*
|
|
* Free up space.
|
|
*/
|
|
error = pmc_find_pmc(pmcid, &pm);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
po = pm->pm_owner;
|
|
pmc_release_pmc_descriptor(pm);
|
|
pmc_maybe_remove_owner(po);
|
|
pmc_destroy_pmc_descriptor(pm);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Main body of PMC_OP_PMCRW.
|
|
*/
|
|
static int
|
|
pmc_do_op_pmcrw(const struct pmc_op_pmcrw *prw, pmc_value_t *valp)
|
|
{
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc *pm;
|
|
u_int cpu, ri, adjri;
|
|
int error;
|
|
|
|
PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw->pm_pmcid, prw->pm_flags);
|
|
|
|
/* Must have at least one flag set. */
|
|
if ((prw->pm_flags & (PMC_F_OLDVALUE | PMC_F_NEWVALUE)) == 0)
|
|
return (EINVAL);
|
|
|
|
/* Locate PMC descriptor. */
|
|
error = pmc_find_pmc(prw->pm_pmcid, &pm);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Can't read a PMC that hasn't been started. */
|
|
if (pm->pm_state != PMC_STATE_ALLOCATED &&
|
|
pm->pm_state != PMC_STATE_STOPPED &&
|
|
pm->pm_state != PMC_STATE_RUNNING)
|
|
return (EINVAL);
|
|
|
|
/* Writing a new value is allowed only for 'STOPPED' PMCs. */
|
|
if (pm->pm_state == PMC_STATE_RUNNING &&
|
|
(prw->pm_flags & PMC_F_NEWVALUE) != 0)
|
|
return (EBUSY);
|
|
|
|
if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
|
|
/*
|
|
* If this PMC is attached to its owner (i.e., the process
|
|
* requesting this operation) and is running, then attempt to
|
|
* get an upto-date reading from hardware for a READ. Writes
|
|
* are only allowed when the PMC is stopped, so only update the
|
|
* saved value field.
|
|
*
|
|
* If the PMC is not running, or is not attached to its owner,
|
|
* read/write to the savedvalue field.
|
|
*/
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
cpu = curthread->td_oncpu;
|
|
|
|
if ((prw->pm_flags & PMC_F_OLDVALUE) != 0) {
|
|
if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
|
|
(pm->pm_state == PMC_STATE_RUNNING)) {
|
|
error = (*pcd->pcd_read_pmc)(cpu, adjri, pm,
|
|
valp);
|
|
} else {
|
|
*valp = pm->pm_gv.pm_savedvalue;
|
|
}
|
|
}
|
|
|
|
if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
|
|
pm->pm_gv.pm_savedvalue = prw->pm_value;
|
|
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
} else { /* System mode PMCs */
|
|
cpu = PMC_TO_CPU(pm);
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
if (!pmc_cpu_is_active(cpu))
|
|
return (ENXIO);
|
|
|
|
/* Move this thread to CPU 'cpu'. */
|
|
pmc_save_cpu_binding(&pb);
|
|
pmc_select_cpu(cpu);
|
|
critical_enter();
|
|
|
|
/* Save old value. */
|
|
if ((prw->pm_flags & PMC_F_OLDVALUE) != 0)
|
|
error = (*pcd->pcd_read_pmc)(cpu, adjri, pm, valp);
|
|
|
|
/* Write out new value. */
|
|
if (error == 0 && (prw->pm_flags & PMC_F_NEWVALUE) != 0)
|
|
error = (*pcd->pcd_write_pmc)(cpu, adjri, pm,
|
|
prw->pm_value);
|
|
|
|
critical_exit();
|
|
pmc_restore_cpu_binding(&pb);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
|
|
PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
|
|
ri, prw->pm_value, *valp);
|
|
else
|
|
PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, *valp);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
pmc_syscall_handler(struct thread *td, void *syscall_args)
|
|
{
|
|
struct pmc_syscall_args *c;
|
|
void *pmclog_proc_handle;
|
|
void *arg;
|
|
int error, op;
|
|
bool is_sx_downgraded;
|
|
|
|
c = (struct pmc_syscall_args *)syscall_args;
|
|
op = c->pmop_code;
|
|
arg = c->pmop_data;
|
|
|
|
/* PMC isn't set up yet */
|
|
if (pmc_hook == NULL)
|
|
return (EINVAL);
|
|
|
|
if (op == PMC_OP_CONFIGURELOG) {
|
|
/*
|
|
* We cannot create the logging process inside
|
|
* pmclog_configure_log() because there is a LOR
|
|
* between pmc_sx and process structure locks.
|
|
* Instead, pre-create the process and ignite the loop
|
|
* if everything is fine, otherwise direct the process
|
|
* to exit.
|
|
*/
|
|
error = pmclog_proc_create(td, &pmclog_proc_handle);
|
|
if (error != 0)
|
|
goto done_syscall;
|
|
}
|
|
|
|
PMC_GET_SX_XLOCK(ENOSYS);
|
|
is_sx_downgraded = false;
|
|
PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
|
|
pmc_op_to_name[op], arg);
|
|
|
|
error = 0;
|
|
counter_u64_add(pmc_stats.pm_syscalls, 1);
|
|
|
|
switch (op) {
|
|
|
|
|
|
/*
|
|
* Configure a log file.
|
|
*
|
|
* XXX This OP will be reworked.
|
|
*/
|
|
|
|
case PMC_OP_CONFIGURELOG:
|
|
{
|
|
struct proc *p;
|
|
struct pmc *pm;
|
|
struct pmc_owner *po;
|
|
struct pmc_op_configurelog cl;
|
|
|
|
if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
|
|
pmclog_proc_ignite(pmclog_proc_handle, NULL);
|
|
break;
|
|
}
|
|
|
|
/* No flags currently implemented */
|
|
if (cl.pm_flags != 0) {
|
|
pmclog_proc_ignite(pmclog_proc_handle, NULL);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* mark this process as owning a log file */
|
|
p = td->td_proc;
|
|
if ((po = pmc_find_owner_descriptor(p)) == NULL)
|
|
if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
|
|
pmclog_proc_ignite(pmclog_proc_handle, NULL);
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If a valid fd was passed in, try to configure that,
|
|
* otherwise if 'fd' was less than zero and there was
|
|
* a log file configured, flush its buffers and
|
|
* de-configure it.
|
|
*/
|
|
if (cl.pm_logfd >= 0) {
|
|
error = pmclog_configure_log(md, po, cl.pm_logfd);
|
|
pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
|
|
po : NULL);
|
|
} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
|
|
pmclog_proc_ignite(pmclog_proc_handle, NULL);
|
|
error = pmclog_close(po);
|
|
if (error == 0) {
|
|
LIST_FOREACH(pm, &po->po_pmcs, pm_next)
|
|
if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
|
|
pm->pm_state == PMC_STATE_RUNNING)
|
|
pmc_stop(pm);
|
|
error = pmclog_deconfigure_log(po);
|
|
}
|
|
} else {
|
|
pmclog_proc_ignite(pmclog_proc_handle, NULL);
|
|
error = EINVAL;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Flush a log file.
|
|
*/
|
|
|
|
case PMC_OP_FLUSHLOG:
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = pmclog_flush(po, 0);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Close a log file.
|
|
*/
|
|
|
|
case PMC_OP_CLOSELOG:
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = pmclog_close(po);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Retrieve hardware configuration.
|
|
*/
|
|
|
|
case PMC_OP_GETCPUINFO: /* CPU information */
|
|
{
|
|
struct pmc_op_getcpuinfo gci;
|
|
struct pmc_classinfo *pci;
|
|
struct pmc_classdep *pcd;
|
|
int cl;
|
|
|
|
memset(&gci, 0, sizeof(gci));
|
|
gci.pm_cputype = md->pmd_cputype;
|
|
gci.pm_ncpu = pmc_cpu_max();
|
|
gci.pm_npmc = md->pmd_npmc;
|
|
gci.pm_nclass = md->pmd_nclass;
|
|
pci = gci.pm_classes;
|
|
pcd = md->pmd_classdep;
|
|
for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
|
|
pci->pm_caps = pcd->pcd_caps;
|
|
pci->pm_class = pcd->pcd_class;
|
|
pci->pm_width = pcd->pcd_width;
|
|
pci->pm_num = pcd->pcd_num;
|
|
}
|
|
error = copyout(&gci, arg, sizeof(gci));
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Retrieve soft events list.
|
|
*/
|
|
case PMC_OP_GETDYNEVENTINFO:
|
|
{
|
|
enum pmc_class cl;
|
|
enum pmc_event ev;
|
|
struct pmc_op_getdyneventinfo *gei;
|
|
struct pmc_dyn_event_descr dev;
|
|
struct pmc_soft *ps;
|
|
uint32_t nevent;
|
|
|
|
sx_assert(&pmc_sx, SX_LOCKED);
|
|
|
|
gei = (struct pmc_op_getdyneventinfo *) arg;
|
|
|
|
if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
|
|
break;
|
|
|
|
/* Only SOFT class is dynamic. */
|
|
if (cl != PMC_CLASS_SOFT) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
nevent = 0;
|
|
for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
|
|
ps = pmc_soft_ev_acquire(ev);
|
|
if (ps == NULL)
|
|
continue;
|
|
bcopy(&ps->ps_ev, &dev, sizeof(dev));
|
|
pmc_soft_ev_release(ps);
|
|
|
|
error = copyout(&dev,
|
|
&gei->pm_events[nevent],
|
|
sizeof(struct pmc_dyn_event_descr));
|
|
if (error != 0)
|
|
break;
|
|
nevent++;
|
|
}
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = copyout(&nevent, &gei->pm_nevent,
|
|
sizeof(nevent));
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Get module statistics
|
|
*/
|
|
|
|
case PMC_OP_GETDRIVERSTATS:
|
|
{
|
|
struct pmc_op_getdriverstats gms;
|
|
#define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
|
|
CFETCH(gms, pmc_stats, pm_intr_ignored);
|
|
CFETCH(gms, pmc_stats, pm_intr_processed);
|
|
CFETCH(gms, pmc_stats, pm_intr_bufferfull);
|
|
CFETCH(gms, pmc_stats, pm_syscalls);
|
|
CFETCH(gms, pmc_stats, pm_syscall_errors);
|
|
CFETCH(gms, pmc_stats, pm_buffer_requests);
|
|
CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
|
|
CFETCH(gms, pmc_stats, pm_log_sweeps);
|
|
#undef CFETCH
|
|
error = copyout(&gms, arg, sizeof(gms));
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Retrieve module version number
|
|
*/
|
|
|
|
case PMC_OP_GETMODULEVERSION:
|
|
{
|
|
uint32_t cv, modv;
|
|
|
|
/* retrieve the client's idea of the ABI version */
|
|
if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
|
|
break;
|
|
/* don't service clients newer than our driver */
|
|
modv = PMC_VERSION;
|
|
if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
|
|
error = EPROGMISMATCH;
|
|
break;
|
|
}
|
|
error = copyout(&modv, arg, sizeof(int));
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Retrieve the state of all the PMCs on a given
|
|
* CPU.
|
|
*/
|
|
|
|
case PMC_OP_GETPMCINFO:
|
|
{
|
|
int ari;
|
|
struct pmc *pm;
|
|
size_t pmcinfo_size;
|
|
uint32_t cpu, n, npmc;
|
|
struct pmc_owner *po;
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_info *p, *pmcinfo;
|
|
struct pmc_op_getpmcinfo *gpi;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
gpi = (struct pmc_op_getpmcinfo *) arg;
|
|
|
|
if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
|
|
break;
|
|
|
|
if (cpu >= pmc_cpu_max()) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!pmc_cpu_is_active(cpu)) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
/* switch to CPU 'cpu' */
|
|
pmc_save_cpu_binding(&pb);
|
|
pmc_select_cpu(cpu);
|
|
|
|
npmc = md->pmd_npmc;
|
|
|
|
pmcinfo_size = npmc * sizeof(struct pmc_info);
|
|
pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
|
|
|
|
p = pmcinfo;
|
|
|
|
for (n = 0; n < md->pmd_npmc; n++, p++) {
|
|
|
|
pcd = pmc_ri_to_classdep(md, n, &ari);
|
|
|
|
KASSERT(pcd != NULL,
|
|
("[pmc,%d] null pcd ri=%d", __LINE__, n));
|
|
|
|
if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
|
|
break;
|
|
|
|
if (PMC_ROW_DISP_IS_STANDALONE(n))
|
|
p->pm_rowdisp = PMC_DISP_STANDALONE;
|
|
else if (PMC_ROW_DISP_IS_THREAD(n))
|
|
p->pm_rowdisp = PMC_DISP_THREAD;
|
|
else
|
|
p->pm_rowdisp = PMC_DISP_FREE;
|
|
|
|
p->pm_ownerpid = -1;
|
|
|
|
if (pm == NULL) /* no PMC associated */
|
|
continue;
|
|
|
|
po = pm->pm_owner;
|
|
|
|
KASSERT(po->po_owner != NULL,
|
|
("[pmc,%d] pmc_owner had a null proc pointer",
|
|
__LINE__));
|
|
|
|
p->pm_ownerpid = po->po_owner->p_pid;
|
|
p->pm_mode = PMC_TO_MODE(pm);
|
|
p->pm_event = pm->pm_event;
|
|
p->pm_flags = pm->pm_flags;
|
|
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
|
|
p->pm_reloadcount =
|
|
pm->pm_sc.pm_reloadcount;
|
|
}
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
|
|
/* now copy out the PMC info collected */
|
|
if (error == 0)
|
|
error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
|
|
|
|
free(pmcinfo, M_PMC);
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Set the administrative state of a PMC. I.e. whether
|
|
* the PMC is to be used or not.
|
|
*/
|
|
|
|
case PMC_OP_PMCADMIN:
|
|
{
|
|
int cpu, ri;
|
|
enum pmc_state request;
|
|
struct pmc_cpu *pc;
|
|
struct pmc_hw *phw;
|
|
struct pmc_op_pmcadmin pma;
|
|
struct pmc_binding pb;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
KASSERT(td == curthread,
|
|
("[pmc,%d] td != curthread", __LINE__));
|
|
|
|
error = priv_check(td, PRIV_PMC_MANAGE);
|
|
if (error)
|
|
break;
|
|
|
|
if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
|
|
break;
|
|
|
|
cpu = pma.pm_cpu;
|
|
|
|
if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!pmc_cpu_is_active(cpu)) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
request = pma.pm_state;
|
|
|
|
if (request != PMC_STATE_DISABLED &&
|
|
request != PMC_STATE_FREE) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ri = pma.pm_pmc; /* pmc id == row index */
|
|
if (ri < 0 || ri >= (int) md->pmd_npmc) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We can't disable a PMC with a row-index allocated
|
|
* for process virtual PMCs.
|
|
*/
|
|
|
|
if (PMC_ROW_DISP_IS_THREAD(ri) &&
|
|
request == PMC_STATE_DISABLED) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* otherwise, this PMC on this CPU is either free or
|
|
* in system-wide mode.
|
|
*/
|
|
|
|
pmc_save_cpu_binding(&pb);
|
|
pmc_select_cpu(cpu);
|
|
|
|
pc = pmc_pcpu[cpu];
|
|
phw = pc->pc_hwpmcs[ri];
|
|
|
|
/*
|
|
* XXX do we need some kind of 'forced' disable?
|
|
*/
|
|
|
|
if (phw->phw_pmc == NULL) {
|
|
if (request == PMC_STATE_DISABLED &&
|
|
(phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
|
|
phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
|
|
PMC_MARK_ROW_STANDALONE(ri);
|
|
} else if (request == PMC_STATE_FREE &&
|
|
(phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
|
|
phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
|
|
PMC_UNMARK_ROW_STANDALONE(ri);
|
|
}
|
|
/* other cases are a no-op */
|
|
} else
|
|
error = EBUSY;
|
|
|
|
pmc_restore_cpu_binding(&pb);
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Allocate a PMC.
|
|
*/
|
|
case PMC_OP_PMCALLOCATE:
|
|
{
|
|
struct pmc_op_pmcallocate pa;
|
|
|
|
error = copyin(arg, &pa, sizeof(pa));
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = pmc_do_op_pmcallocate(td, &pa);
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = copyout(&pa, arg, sizeof(pa));
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Attach a PMC to a process.
|
|
*/
|
|
case PMC_OP_PMCATTACH:
|
|
{
|
|
struct pmc_op_pmcattach a;
|
|
|
|
error = copyin(arg, &a, sizeof(a));
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = pmc_do_op_pmcattach(td, a);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Detach an attached PMC from a process.
|
|
*/
|
|
case PMC_OP_PMCDETACH:
|
|
{
|
|
struct pmc_op_pmcattach a;
|
|
|
|
error = copyin(arg, &a, sizeof(a));
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = pmc_do_op_pmcdetach(td, a);
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Retrieve the MSR number associated with the counter
|
|
* 'pmc_id'. This allows processes to directly use RDPMC
|
|
* instructions to read their PMCs, without the overhead of a
|
|
* system call.
|
|
*/
|
|
|
|
case PMC_OP_PMCGETMSR:
|
|
{
|
|
int adjri, ri;
|
|
struct pmc *pm;
|
|
struct pmc_target *pt;
|
|
struct pmc_op_getmsr gm;
|
|
struct pmc_classdep *pcd;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
|
|
break;
|
|
|
|
if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
|
|
break;
|
|
|
|
/*
|
|
* The allocated PMC has to be a process virtual PMC,
|
|
* i.e., of type MODE_T[CS]. Global PMCs can only be
|
|
* read using the PMCREAD operation since they may be
|
|
* allocated on a different CPU than the one we could
|
|
* be running on at the time of the RDPMC instruction.
|
|
*
|
|
* The GETMSR operation is not allowed for PMCs that
|
|
* are inherited across processes.
|
|
*/
|
|
|
|
if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
|
|
(pm->pm_flags & PMC_F_DESCENDANTS)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* It only makes sense to use a RDPMC (or its
|
|
* equivalent instruction on non-x86 architectures) on
|
|
* a process that has allocated and attached a PMC to
|
|
* itself. Conversely the PMC is only allowed to have
|
|
* one process attached to it -- its owner.
|
|
*/
|
|
|
|
if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
|
|
LIST_NEXT(pt, pt_next) != NULL ||
|
|
pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ri = PMC_TO_ROWINDEX(pm);
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
/* PMC class has no 'GETMSR' support */
|
|
if (pcd->pcd_get_msr == NULL) {
|
|
error = ENOSYS;
|
|
break;
|
|
}
|
|
|
|
if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
|
|
break;
|
|
|
|
if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
|
|
break;
|
|
|
|
/*
|
|
* Mark our process as using MSRs. Update machine
|
|
* state using a forced context switch.
|
|
*/
|
|
|
|
pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
|
|
pmc_force_context_switch();
|
|
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Release an allocated PMC.
|
|
*/
|
|
case PMC_OP_PMCRELEASE:
|
|
{
|
|
struct pmc_op_simple sp;
|
|
|
|
error = copyin(arg, &sp, sizeof(sp));
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = pmc_do_op_pmcrelease(sp.pm_pmcid);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Read and/or write a PMC.
|
|
*/
|
|
case PMC_OP_PMCRW:
|
|
{
|
|
struct pmc_op_pmcrw prw;
|
|
struct pmc_op_pmcrw *pprw;
|
|
pmc_value_t oldvalue;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
error = copyin(arg, &prw, sizeof(prw));
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = pmc_do_op_pmcrw(&prw, &oldvalue);
|
|
if (error != 0)
|
|
break;
|
|
|
|
/* Return old value if requested. */
|
|
if ((prw.pm_flags & PMC_F_OLDVALUE) != 0) {
|
|
pprw = arg;
|
|
error = copyout(&oldvalue, &pprw->pm_value,
|
|
sizeof(prw.pm_value));
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Set the sampling rate for a sampling mode PMC and the
|
|
* initial count for a counting mode PMC.
|
|
*/
|
|
|
|
case PMC_OP_PMCSETCOUNT:
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_op_pmcsetcount sc;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
|
|
break;
|
|
|
|
if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
|
|
break;
|
|
|
|
if (pm->pm_state == PMC_STATE_RUNNING) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
|
|
/*
|
|
* Don't permit requested sample rate to be
|
|
* less than pmc_mincount.
|
|
*/
|
|
if (sc.pm_count < MAX(1, pmc_mincount))
|
|
log(LOG_WARNING, "pmcsetcount: passed sample "
|
|
"rate %ju - setting to %u\n",
|
|
(uintmax_t)sc.pm_count,
|
|
MAX(1, pmc_mincount));
|
|
pm->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
|
|
sc.pm_count);
|
|
} else
|
|
pm->pm_sc.pm_initial = sc.pm_count;
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Start a PMC.
|
|
*/
|
|
|
|
case PMC_OP_PMCSTART:
|
|
{
|
|
pmc_id_t pmcid;
|
|
struct pmc *pm;
|
|
struct pmc_op_simple sp;
|
|
|
|
sx_assert(&pmc_sx, SX_XLOCKED);
|
|
|
|
if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
|
|
break;
|
|
|
|
pmcid = sp.pm_pmcid;
|
|
|
|
if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
|
|
break;
|
|
|
|
KASSERT(pmcid == pm->pm_id,
|
|
("[pmc,%d] pmcid %x != id %x", __LINE__,
|
|
pm->pm_id, pmcid));
|
|
|
|
if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
|
|
break;
|
|
else if (pm->pm_state != PMC_STATE_STOPPED &&
|
|
pm->pm_state != PMC_STATE_ALLOCATED) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = pmc_start(pm);
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Stop a PMC.
|
|
*/
|
|
|
|
case PMC_OP_PMCSTOP:
|
|
{
|
|
pmc_id_t pmcid;
|
|
struct pmc *pm;
|
|
struct pmc_op_simple sp;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
|
|
break;
|
|
|
|
pmcid = sp.pm_pmcid;
|
|
|
|
/*
|
|
* Mark the PMC as inactive and invoke the MD stop
|
|
* routines if needed.
|
|
*/
|
|
|
|
if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
|
|
break;
|
|
|
|
KASSERT(pmcid == pm->pm_id,
|
|
("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
|
|
pm->pm_id, pmcid));
|
|
|
|
if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
|
|
break;
|
|
else if (pm->pm_state != PMC_STATE_RUNNING) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = pmc_stop(pm);
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Write a user supplied value to the log file.
|
|
*/
|
|
|
|
case PMC_OP_WRITELOG:
|
|
{
|
|
struct pmc_op_writelog wl;
|
|
struct pmc_owner *po;
|
|
|
|
PMC_DOWNGRADE_SX();
|
|
|
|
if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
|
|
break;
|
|
|
|
if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = pmclog_process_userlog(po, &wl);
|
|
}
|
|
break;
|
|
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (is_sx_downgraded)
|
|
sx_sunlock(&pmc_sx);
|
|
else
|
|
sx_xunlock(&pmc_sx);
|
|
done_syscall:
|
|
if (error)
|
|
counter_u64_add(pmc_stats.pm_syscall_errors, 1);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Helper functions
|
|
*/
|
|
|
|
/*
|
|
* Mark the thread as needing callchain capture and post an AST. The
|
|
* actual callchain capture will be done in a context where it is safe
|
|
* to take page faults.
|
|
*/
|
|
static void
|
|
pmc_post_callchain_callback(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
|
|
/*
|
|
* If there is multiple PMCs for the same interrupt ignore new post
|
|
*/
|
|
if ((td->td_pflags & TDP_CALLCHAIN) != 0)
|
|
return;
|
|
|
|
/*
|
|
* Mark this thread as needing callchain capture.
|
|
* `td->td_pflags' will be safe to touch because this thread
|
|
* was in user space when it was interrupted.
|
|
*/
|
|
td->td_pflags |= TDP_CALLCHAIN;
|
|
|
|
/*
|
|
* Don't let this thread migrate between CPUs until callchain
|
|
* capture completes.
|
|
*/
|
|
sched_pin();
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find a free slot in the per-cpu array of samples and capture the
|
|
* current callchain there. If a sample was successfully added, a bit
|
|
* is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
|
|
* needs to be invoked from the clock handler.
|
|
*
|
|
* This function is meant to be called from an NMI handler. It cannot
|
|
* use any of the locking primitives supplied by the OS.
|
|
*/
|
|
static int
|
|
pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
|
|
{
|
|
struct pmc_sample *ps;
|
|
struct pmc_samplebuffer *psb;
|
|
struct thread *td;
|
|
int error, cpu, callchaindepth;
|
|
bool inuserspace;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* Allocate space for a sample buffer.
|
|
*/
|
|
cpu = curcpu;
|
|
psb = pmc_pcpu[cpu]->pc_sb[ring];
|
|
inuserspace = TRAPF_USERMODE(tf);
|
|
ps = PMC_PROD_SAMPLE(psb);
|
|
if (psb->ps_considx != psb->ps_prodidx &&
|
|
ps->ps_nsamples) { /* in use, reader hasn't caught up */
|
|
pm->pm_pcpu_state[cpu].pps_stalled = 1;
|
|
counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
|
|
PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
|
|
cpu, pm, tf, inuserspace,
|
|
(int)(psb->ps_prodidx & pmc_sample_mask),
|
|
(int)(psb->ps_considx & pmc_sample_mask));
|
|
callchaindepth = 1;
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/* Fill in entry. */
|
|
PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, tf,
|
|
inuserspace, (int)(psb->ps_prodidx & pmc_sample_mask),
|
|
(int)(psb->ps_considx & pmc_sample_mask));
|
|
|
|
td = curthread;
|
|
ps->ps_pmc = pm;
|
|
ps->ps_td = td;
|
|
ps->ps_pid = td->td_proc->p_pid;
|
|
ps->ps_tid = td->td_tid;
|
|
ps->ps_tsc = pmc_rdtsc();
|
|
ps->ps_ticks = ticks;
|
|
ps->ps_cpu = cpu;
|
|
ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
|
|
|
|
callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
|
|
pmc_callchaindepth : 1;
|
|
|
|
MPASS(ps->ps_pc != NULL);
|
|
if (callchaindepth == 1) {
|
|
ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
|
|
} else {
|
|
/*
|
|
* Kernel stack traversals can be done immediately, while we
|
|
* defer to an AST for user space traversals.
|
|
*/
|
|
if (!inuserspace) {
|
|
callchaindepth = pmc_save_kernel_callchain(ps->ps_pc,
|
|
callchaindepth, tf);
|
|
} else {
|
|
pmc_post_callchain_callback();
|
|
callchaindepth = PMC_USER_CALLCHAIN_PENDING;
|
|
}
|
|
}
|
|
|
|
ps->ps_nsamples = callchaindepth; /* mark entry as in-use */
|
|
if (ring == PMC_UR) {
|
|
ps->ps_nsamples_actual = callchaindepth;
|
|
ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
|
|
}
|
|
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
|
|
("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
counter_u64_add(pm->pm_runcount, 1); /* hold onto PMC */
|
|
/* increment write pointer */
|
|
psb->ps_prodidx++;
|
|
done:
|
|
/* mark CPU as needing processing */
|
|
if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
|
|
DPCPU_SET(pmc_sampled, 1);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Interrupt processing.
|
|
*
|
|
* This function may be called from an NMI handler. It cannot use any of the
|
|
* locking primitives supplied by the OS.
|
|
*/
|
|
int
|
|
pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
|
|
(td->td_proc->p_flag & P_KPROC) == 0 && !TRAPF_USERMODE(tf)) {
|
|
atomic_add_int(&td->td_pmcpend, 1);
|
|
return (pmc_add_sample(PMC_UR, pm, tf));
|
|
}
|
|
return (pmc_add_sample(ring, pm, tf));
|
|
}
|
|
|
|
/*
|
|
* Capture a user call chain. This function will be called from ast()
|
|
* before control returns to userland and before the process gets
|
|
* rescheduled.
|
|
*/
|
|
static void
|
|
pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_sample *ps;
|
|
struct pmc_samplebuffer *psb;
|
|
struct thread *td;
|
|
uint64_t considx, prodidx;
|
|
int nsamples, nrecords, pass, iter;
|
|
int start_ticks __diagused;
|
|
|
|
psb = pmc_pcpu[cpu]->pc_sb[ring];
|
|
td = curthread;
|
|
nrecords = INT_MAX;
|
|
pass = 0;
|
|
start_ticks = ticks;
|
|
|
|
KASSERT(td->td_pflags & TDP_CALLCHAIN,
|
|
("[pmc,%d] Retrieving callchain for thread that doesn't want it",
|
|
__LINE__));
|
|
restart:
|
|
if (ring == PMC_UR)
|
|
nrecords = atomic_readandclear_32(&td->td_pmcpend);
|
|
|
|
for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
|
|
considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
|
|
ps = PMC_CONS_SAMPLE_OFF(psb, considx);
|
|
|
|
/*
|
|
* Iterate through all deferred callchain requests. Walk from
|
|
* the current read pointer to the current write pointer.
|
|
*/
|
|
#ifdef INVARIANTS
|
|
if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
|
|
continue;
|
|
}
|
|
#endif
|
|
if (ps->ps_td != td ||
|
|
ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
|
|
ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
|
|
continue;
|
|
|
|
KASSERT(ps->ps_cpu == cpu,
|
|
("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
|
|
ps->ps_cpu, PCPU_GET(cpuid)));
|
|
|
|
pm = ps->ps_pmc;
|
|
KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
|
|
("[pmc,%d] Retrieving callchain for PMC that doesn't "
|
|
"want it", __LINE__));
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] runcount %ju", __LINE__,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
if (ring == PMC_UR) {
|
|
nsamples = ps->ps_nsamples_actual;
|
|
counter_u64_add(pmc_stats.pm_merges, 1);
|
|
} else
|
|
nsamples = 0;
|
|
|
|
/*
|
|
* Retrieve the callchain and mark the sample buffer
|
|
* as 'processable' by the timer tick sweep code.
|
|
*/
|
|
if (__predict_true(nsamples < pmc_callchaindepth - 1))
|
|
nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
|
|
pmc_callchaindepth - nsamples - 1, tf);
|
|
|
|
/*
|
|
* We have to prevent hardclock from potentially overwriting
|
|
* this sample between when we read the value and when we set
|
|
* it.
|
|
*/
|
|
spinlock_enter();
|
|
|
|
/*
|
|
* Verify that the sample hasn't been dropped in the meantime.
|
|
*/
|
|
if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
|
|
ps->ps_nsamples = nsamples;
|
|
/*
|
|
* If we couldn't get a sample, simply drop the
|
|
* reference.
|
|
*/
|
|
if (nsamples == 0)
|
|
counter_u64_add(pm->pm_runcount, -1);
|
|
}
|
|
spinlock_exit();
|
|
if (nrecords-- == 1)
|
|
break;
|
|
}
|
|
if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
|
|
if (pass == 0) {
|
|
pass = 1;
|
|
goto restart;
|
|
}
|
|
/* only collect samples for this part once */
|
|
td->td_pmcpend = 0;
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
if ((ticks - start_ticks) > hz)
|
|
log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
|
|
#endif
|
|
/* mark CPU as needing processing */
|
|
DPCPU_SET(pmc_sampled, 1);
|
|
}
|
|
|
|
/*
|
|
* Process saved PC samples.
|
|
*/
|
|
static void
|
|
pmc_process_samples(int cpu, ring_type_t ring)
|
|
{
|
|
struct pmc *pm;
|
|
struct thread *td;
|
|
struct pmc_owner *po;
|
|
struct pmc_sample *ps;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_samplebuffer *psb;
|
|
uint64_t delta __diagused;
|
|
int adjri, n;
|
|
|
|
KASSERT(PCPU_GET(cpuid) == cpu,
|
|
("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
|
|
PCPU_GET(cpuid), cpu));
|
|
|
|
psb = pmc_pcpu[cpu]->pc_sb[ring];
|
|
delta = psb->ps_prodidx - psb->ps_considx;
|
|
MPASS(delta <= pmc_nsamples);
|
|
MPASS(psb->ps_considx <= psb->ps_prodidx);
|
|
for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
|
|
ps = PMC_CONS_SAMPLE(psb);
|
|
|
|
if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
|
|
continue;
|
|
|
|
/* skip non-running samples */
|
|
pm = ps->ps_pmc;
|
|
if (pm->pm_state != PMC_STATE_RUNNING)
|
|
goto entrydone;
|
|
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
|
|
("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
|
|
pm, PMC_TO_MODE(pm)));
|
|
|
|
po = pm->pm_owner;
|
|
|
|
/* If there is a pending AST wait for completion */
|
|
if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
|
|
/*
|
|
* If we've been waiting more than 1 tick to
|
|
* collect a callchain for this record then
|
|
* drop it and move on.
|
|
*/
|
|
if (ticks - ps->ps_ticks > 1) {
|
|
/*
|
|
* Track how often we hit this as it will
|
|
* preferentially lose user samples
|
|
* for long running system calls.
|
|
*/
|
|
counter_u64_add(pmc_stats.pm_overwrites, 1);
|
|
goto entrydone;
|
|
}
|
|
/* Need a rescan at a later time. */
|
|
DPCPU_SET(pmc_sampled, 1);
|
|
break;
|
|
}
|
|
|
|
PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
|
|
pm, ps->ps_nsamples, ps->ps_flags,
|
|
(int)(psb->ps_prodidx & pmc_sample_mask),
|
|
(int)(psb->ps_considx & pmc_sample_mask));
|
|
|
|
/*
|
|
* If this is a process-mode PMC that is attached to
|
|
* its owner, and if the PC is in user mode, update
|
|
* profiling statistics like timer-based profiling
|
|
* would have done.
|
|
*
|
|
* Otherwise, this is either a sampling-mode PMC that
|
|
* is attached to a different process than its owner,
|
|
* or a system-wide sampling PMC. Dispatch a log
|
|
* entry to the PMC's owner process.
|
|
*/
|
|
if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
|
|
if (ps->ps_flags & PMC_CC_F_USERSPACE) {
|
|
td = FIRST_THREAD_IN_PROC(po->po_owner);
|
|
addupc_intr(td, ps->ps_pc[0], 1);
|
|
}
|
|
} else
|
|
pmclog_process_callchain(pm, ps);
|
|
|
|
entrydone:
|
|
ps->ps_nsamples = 0; /* mark entry as free */
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
counter_u64_add(pm->pm_runcount, -1);
|
|
}
|
|
|
|
counter_u64_add(pmc_stats.pm_log_sweeps, 1);
|
|
|
|
/* Do not re-enable stalled PMCs if we failed to process any samples */
|
|
if (n == 0)
|
|
return;
|
|
|
|
/*
|
|
* Restart any stalled sampling PMCs on this CPU.
|
|
*
|
|
* If the NMI handler sets the pm_stalled field of a PMC after
|
|
* the check below, we'll end up processing the stalled PMC at
|
|
* the next hardclock tick.
|
|
*/
|
|
for (n = 0; n < md->pmd_npmc; n++) {
|
|
pcd = pmc_ri_to_classdep(md, n, &adjri);
|
|
KASSERT(pcd != NULL,
|
|
("[pmc,%d] null pcd ri=%d", __LINE__, n));
|
|
(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
|
|
|
|
if (pm == NULL || /* !cfg'ed */
|
|
pm->pm_state != PMC_STATE_RUNNING || /* !active */
|
|
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
|
|
!pm->pm_pcpu_state[cpu].pps_cpustate || /* !desired */
|
|
!pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
|
|
continue;
|
|
|
|
pm->pm_pcpu_state[cpu].pps_stalled = 0;
|
|
(void)(*pcd->pcd_start_pmc)(cpu, adjri, pm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Event handlers.
|
|
*/
|
|
|
|
/*
|
|
* Handle a process exit.
|
|
*
|
|
* Remove this process from all hash tables. If this process
|
|
* owned any PMCs, turn off those PMCs and deallocate them,
|
|
* removing any associations with target processes.
|
|
*
|
|
* This function will be called by the last 'thread' of a
|
|
* process.
|
|
*
|
|
* XXX This eventhandler gets called early in the exit process.
|
|
* Consider using a 'hook' invocation from thread_exit() or equivalent
|
|
* spot. Another negative is that kse_exit doesn't seem to call
|
|
* exit1() [??].
|
|
*/
|
|
static void
|
|
pmc_process_exit(void *arg __unused, struct proc *p)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *pp;
|
|
struct pmc_classdep *pcd;
|
|
pmc_value_t newvalue, tmp;
|
|
int ri, adjri, cpu;
|
|
bool is_using_hwpmcs;
|
|
|
|
PROC_LOCK(p);
|
|
is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Log a sysexit event to all SS PMC owners.
|
|
*/
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_process_sysexit(po, p->p_pid);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
PMC_GET_SX_XLOCK();
|
|
PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
|
|
if (!is_using_hwpmcs)
|
|
goto out;
|
|
|
|
/*
|
|
* Since this code is invoked by the last thread in an exiting process,
|
|
* we would have context switched IN at some prior point. However, with
|
|
* PREEMPTION, kernel mode context switches may happen any time, so we
|
|
* want to disable a context switch OUT till we get any PMCs targeting
|
|
* this process off the hardware.
|
|
*
|
|
* We also need to atomically remove this process' entry from our
|
|
* target process hash table, using PMC_FLAG_REMOVE.
|
|
*/
|
|
PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
|
|
critical_enter(); /* no preemption */
|
|
|
|
cpu = curthread->td_oncpu;
|
|
|
|
pp = pmc_find_process_descriptor(p, PMC_FLAG_REMOVE);
|
|
if (pp == NULL) {
|
|
critical_exit();
|
|
goto out;
|
|
}
|
|
|
|
PMCDBG2(PRC,EXT,2, "process-exit proc=%p pmc-process=%p", p, pp);
|
|
|
|
/*
|
|
* The exiting process could be the target of some PMCs which will be
|
|
* running on currently executing CPU.
|
|
*
|
|
* We need to turn these PMCs off like we would do at context switch
|
|
* OUT time.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
/*
|
|
* Pick up the pmc pointer from hardware state similar to the
|
|
* CSW_OUT code.
|
|
*/
|
|
pm = NULL;
|
|
pcd = pmc_ri_to_classdep(md, ri, &adjri);
|
|
|
|
(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
|
|
|
|
PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
|
|
|
|
if (pm == NULL || !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
|
|
continue;
|
|
|
|
PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p state=%d", ri,
|
|
pp->pp_pmcs[ri].pp_pmc, pm, pm->pm_state);
|
|
|
|
KASSERT(PMC_TO_ROWINDEX(pm) == ri,
|
|
("[pmc,%d] ri mismatch pmc(%d) ri(%d)", __LINE__,
|
|
PMC_TO_ROWINDEX(pm), ri));
|
|
KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
|
|
("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__, pm, ri,
|
|
pp->pp_pmcs[ri].pp_pmc));
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] bad runcount ri %d rc %ju", __LINE__, ri,
|
|
(uintmax_t)counter_u64_fetch(pm->pm_runcount)));
|
|
|
|
/*
|
|
* Change desired state, and then stop if not stalled. This
|
|
* two-step dance should avoid race conditions where an
|
|
* interrupt re-enables the PMC after this code has already
|
|
* checked the pm_stalled flag.
|
|
*/
|
|
if (pm->pm_pcpu_state[cpu].pps_cpustate) {
|
|
pm->pm_pcpu_state[cpu].pps_cpustate = 0;
|
|
if (!pm->pm_pcpu_state[cpu].pps_stalled) {
|
|
(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
|
|
|
|
if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
|
|
pcd->pcd_read_pmc(cpu, adjri, pm,
|
|
&newvalue);
|
|
tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
|
|
|
|
mtx_pool_lock_spin(pmc_mtxpool, pm);
|
|
pm->pm_gv.pm_savedvalue += tmp;
|
|
pp->pp_pmcs[ri].pp_pmcval += tmp;
|
|
mtx_pool_unlock_spin(pmc_mtxpool, pm);
|
|
}
|
|
}
|
|
}
|
|
|
|
KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
|
|
("[pmc,%d] runcount is %d", __LINE__, ri));
|
|
|
|
counter_u64_add(pm->pm_runcount, -1);
|
|
(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
|
|
}
|
|
|
|
/*
|
|
* Inform the MD layer of this pseudo "context switch out".
|
|
*/
|
|
(void)md->pmd_switch_out(pmc_pcpu[cpu], pp);
|
|
|
|
critical_exit(); /* ok to be pre-empted now */
|
|
|
|
/*
|
|
* Unlink this process from the PMCs that are targeting it. This will
|
|
* send a signal to all PMC owner's whose PMCs are orphaned.
|
|
*
|
|
* Log PMC value at exit time if requested.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
|
|
if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
|
|
PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
|
|
pmclog_process_procexit(pm, pp);
|
|
}
|
|
pmc_unlink_target_process(pm, pp);
|
|
}
|
|
}
|
|
free(pp, M_PMC);
|
|
|
|
out:
|
|
/*
|
|
* If the process owned PMCs, free them up and free up memory.
|
|
*/
|
|
if ((po = pmc_find_owner_descriptor(p)) != NULL) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_close(po);
|
|
pmc_remove_owner(po);
|
|
pmc_destroy_owner_descriptor(po);
|
|
}
|
|
|
|
sx_xunlock(&pmc_sx);
|
|
}
|
|
|
|
/*
|
|
* Handle a process fork.
|
|
*
|
|
* If the parent process 'p1' is under HWPMC monitoring, then copy
|
|
* over any attached PMCs that have 'do_descendants' semantics.
|
|
*/
|
|
static void
|
|
pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
|
|
int flags __unused)
|
|
{
|
|
struct pmc *pm;
|
|
struct pmc_owner *po;
|
|
struct pmc_process *ppnew, *ppold;
|
|
unsigned int ri;
|
|
bool is_using_hwpmcs, do_descendants;
|
|
|
|
PROC_LOCK(p1);
|
|
is_using_hwpmcs = (p1->p_flag & P_HWPMC) != 0;
|
|
PROC_UNLOCK(p1);
|
|
|
|
/*
|
|
* If there are system-wide sampling PMCs active, we need to
|
|
* log all fork events to their owner's logs.
|
|
*/
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
|
|
pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
|
|
pmclog_process_proccreate(po, newproc, 1);
|
|
}
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
if (!is_using_hwpmcs)
|
|
return;
|
|
|
|
PMC_GET_SX_XLOCK();
|
|
PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
|
|
p1->p_pid, p1->p_comm, newproc);
|
|
|
|
/*
|
|
* If the parent process (curthread->td_proc) is a
|
|
* target of any PMCs, look for PMCs that are to be
|
|
* inherited, and link these into the new process
|
|
* descriptor.
|
|
*/
|
|
ppold = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE);
|
|
if (ppold == NULL)
|
|
goto done; /* nothing to do */
|
|
|
|
do_descendants = false;
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
|
|
(pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
|
|
do_descendants = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!do_descendants) /* nothing to do */
|
|
goto done;
|
|
|
|
/*
|
|
* Now mark the new process as being tracked by this driver.
|
|
*/
|
|
PROC_LOCK(newproc);
|
|
newproc->p_flag |= P_HWPMC;
|
|
PROC_UNLOCK(newproc);
|
|
|
|
/* Allocate a descriptor for the new process. */
|
|
ppnew = pmc_find_process_descriptor(newproc, PMC_FLAG_ALLOCATE);
|
|
if (ppnew == NULL)
|
|
goto done;
|
|
|
|
/*
|
|
* Run through all PMCs that were targeting the old process
|
|
* and which specified F_DESCENDANTS and attach them to the
|
|
* new process.
|
|
*
|
|
* Log the fork event to all owners of PMCs attached to this
|
|
* process, if not already logged.
|
|
*/
|
|
for (ri = 0; ri < md->pmd_npmc; ri++) {
|
|
if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
|
|
(pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
|
|
pmc_link_target_process(pm, ppnew);
|
|
po = pm->pm_owner;
|
|
if (po->po_sscount == 0 &&
|
|
(po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
|
|
pmclog_process_procfork(po, p1->p_pid,
|
|
newproc->p_pid);
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
sx_xunlock(&pmc_sx);
|
|
}
|
|
|
|
static void
|
|
pmc_process_threadcreate(struct thread *td)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_process_threadcreate(po, td, 1);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
}
|
|
|
|
static void
|
|
pmc_process_threadexit(struct thread *td)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_process_threadexit(po, td);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
}
|
|
|
|
static void
|
|
pmc_process_proccreate(struct proc *p)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
|
|
pmclog_process_proccreate(po, p, 1 /* sync */);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
}
|
|
|
|
static void
|
|
pmc_process_allproc(struct pmc *pm)
|
|
{
|
|
struct pmc_owner *po;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
po = pm->pm_owner;
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
|
|
return;
|
|
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
pmclog_process_proccreate(po, p, 0 /* sync */);
|
|
PROC_LOCK(p);
|
|
FOREACH_THREAD_IN_PROC(p, td)
|
|
pmclog_process_threadcreate(po, td, 0 /* sync */);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
pmclog_flush(po, 0);
|
|
}
|
|
|
|
static void
|
|
pmc_kld_load(void *arg __unused, linker_file_t lf)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
/*
|
|
* Notify owners of system sampling PMCs about KLD operations.
|
|
*/
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if (po->po_flags & PMC_PO_OWNS_LOGFILE)
|
|
pmclog_process_map_in(po, (pid_t) -1,
|
|
(uintfptr_t) lf->address, lf->pathname);
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
/*
|
|
* TODO: Notify owners of (all) process-sampling PMCs too.
|
|
*/
|
|
}
|
|
|
|
static void
|
|
pmc_kld_unload(void *arg __unused, const char *filename __unused,
|
|
caddr_t address, size_t size)
|
|
{
|
|
struct pmc_owner *po;
|
|
|
|
PMC_EPOCH_ENTER();
|
|
CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
|
|
if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
|
|
pmclog_process_map_out(po, (pid_t)-1,
|
|
(uintfptr_t)address, (uintfptr_t)address + size);
|
|
}
|
|
}
|
|
PMC_EPOCH_EXIT();
|
|
|
|
/*
|
|
* TODO: Notify owners of process-sampling PMCs.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* initialization
|
|
*/
|
|
static const char *
|
|
pmc_name_of_pmcclass(enum pmc_class class)
|
|
{
|
|
|
|
switch (class) {
|
|
#undef __PMC_CLASS
|
|
#define __PMC_CLASS(S,V,D) \
|
|
case PMC_CLASS_##S: \
|
|
return #S;
|
|
__PMC_CLASSES();
|
|
default:
|
|
return ("<unknown>");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Base class initializer: allocate structure and set default classes.
|
|
*/
|
|
struct pmc_mdep *
|
|
pmc_mdep_alloc(int nclasses)
|
|
{
|
|
struct pmc_mdep *md;
|
|
int n;
|
|
|
|
/* SOFT + md classes */
|
|
n = 1 + nclasses;
|
|
md = malloc(sizeof(struct pmc_mdep) + n * sizeof(struct pmc_classdep),
|
|
M_PMC, M_WAITOK | M_ZERO);
|
|
md->pmd_nclass = n;
|
|
|
|
/* Default methods */
|
|
md->pmd_switch_in = generic_switch_in;
|
|
md->pmd_switch_out = generic_switch_out;
|
|
|
|
/* Add base class. */
|
|
pmc_soft_initialize(md);
|
|
return (md);
|
|
}
|
|
|
|
void
|
|
pmc_mdep_free(struct pmc_mdep *md)
|
|
{
|
|
pmc_soft_finalize(md);
|
|
free(md, M_PMC);
|
|
}
|
|
|
|
static int
|
|
generic_switch_in(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
generic_switch_out(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct pmc_mdep *
|
|
pmc_generic_cpu_initialize(void)
|
|
{
|
|
struct pmc_mdep *md;
|
|
|
|
md = pmc_mdep_alloc(0);
|
|
|
|
md->pmd_cputype = PMC_CPU_GENERIC;
|
|
|
|
return (md);
|
|
}
|
|
|
|
static void
|
|
pmc_generic_cpu_finalize(struct pmc_mdep *md __unused)
|
|
{
|
|
|
|
}
|
|
|
|
static int
|
|
pmc_initialize(void)
|
|
{
|
|
struct pcpu *pc;
|
|
struct pmc_binding pb;
|
|
struct pmc_classdep *pcd;
|
|
struct pmc_sample *ps;
|
|
struct pmc_samplebuffer *sb;
|
|
int c, cpu, error, n, ri;
|
|
u_int maxcpu, domain;
|
|
|
|
md = NULL;
|
|
error = 0;
|
|
|
|
pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
|
|
pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
|
|
|
|
#ifdef HWPMC_DEBUG
|
|
/* parse debug flags first */
|
|
if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
|
|
pmc_debugstr, sizeof(pmc_debugstr))) {
|
|
pmc_debugflags_parse(pmc_debugstr, pmc_debugstr +
|
|
strlen(pmc_debugstr));
|
|
}
|
|
#endif
|
|
|
|
PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
|
|
|
|
/* check kernel version */
|
|
if (pmc_kernel_version != PMC_VERSION) {
|
|
if (pmc_kernel_version == 0)
|
|
printf("hwpmc: this kernel has not been compiled with "
|
|
"'options HWPMC_HOOKS'.\n");
|
|
else
|
|
printf("hwpmc: kernel version (0x%x) does not match "
|
|
"module version (0x%x).\n", pmc_kernel_version,
|
|
PMC_VERSION);
|
|
return (EPROGMISMATCH);
|
|
}
|
|
|
|
/*
|
|
* check sysctl parameters
|
|
*/
|
|
if (pmc_hashsize <= 0) {
|
|
printf("hwpmc: tunable \"hashsize\"=%d must be "
|
|
"greater than zero.\n", pmc_hashsize);
|
|
pmc_hashsize = PMC_HASH_SIZE;
|
|
}
|
|
|
|
if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
|
|
printf("hwpmc: tunable \"nsamples\"=%d out of "
|
|
"range.\n", pmc_nsamples);
|
|
pmc_nsamples = PMC_NSAMPLES;
|
|
}
|
|
pmc_sample_mask = pmc_nsamples - 1;
|
|
|
|
if (pmc_callchaindepth <= 0 ||
|
|
pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
|
|
printf("hwpmc: tunable \"callchaindepth\"=%d out of "
|
|
"range - using %d.\n", pmc_callchaindepth,
|
|
PMC_CALLCHAIN_DEPTH_MAX);
|
|
pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
|
|
}
|
|
|
|
md = pmc_md_initialize();
|
|
if (md == NULL) {
|
|
/* Default to generic CPU. */
|
|
md = pmc_generic_cpu_initialize();
|
|
if (md == NULL)
|
|
return (ENOSYS);
|
|
}
|
|
|
|
/*
|
|
* Refresh classes base ri. Optional classes may come in different
|
|
* order.
|
|
*/
|
|
for (ri = c = 0; c < md->pmd_nclass; c++) {
|
|
pcd = &md->pmd_classdep[c];
|
|
pcd->pcd_ri = ri;
|
|
ri += pcd->pcd_num;
|
|
}
|
|
|
|
KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
|
|
("[pmc,%d] no classes or pmcs", __LINE__));
|
|
|
|
/* Compute the map from row-indices to classdep pointers. */
|
|
pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
|
|
md->pmd_npmc, M_PMC, M_WAITOK | M_ZERO);
|
|
|
|
for (n = 0; n < md->pmd_npmc; n++)
|
|
pmc_rowindex_to_classdep[n] = NULL;
|
|
|
|
for (ri = c = 0; c < md->pmd_nclass; c++) {
|
|
pcd = &md->pmd_classdep[c];
|
|
for (n = 0; n < pcd->pcd_num; n++, ri++)
|
|
pmc_rowindex_to_classdep[ri] = pcd;
|
|
}
|
|
|
|
KASSERT(ri == md->pmd_npmc,
|
|
("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
|
|
ri, md->pmd_npmc));
|
|
|
|
maxcpu = pmc_cpu_max();
|
|
|
|
/* allocate space for the per-cpu array */
|
|
pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
/* per-cpu 'saved values' for managing process-mode PMCs */
|
|
pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
|
|
M_PMC, M_WAITOK);
|
|
|
|
/* Perform CPU-dependent initialization. */
|
|
pmc_save_cpu_binding(&pb);
|
|
error = 0;
|
|
for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
|
|
if (!pmc_cpu_is_active(cpu))
|
|
continue;
|
|
pmc_select_cpu(cpu);
|
|
pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
|
|
md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
|
|
M_WAITOK | M_ZERO);
|
|
for (n = 0; error == 0 && n < md->pmd_nclass; n++)
|
|
if (md->pmd_classdep[n].pcd_num > 0)
|
|
error = md->pmd_classdep[n].pcd_pcpu_init(md,
|
|
cpu);
|
|
}
|
|
pmc_restore_cpu_binding(&pb);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* allocate space for the sample array */
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
if (!pmc_cpu_is_active(cpu))
|
|
continue;
|
|
pc = pcpu_find(cpu);
|
|
domain = pc->pc_domain;
|
|
sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
|
|
pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
|
|
KASSERT(pmc_pcpu[cpu] != NULL,
|
|
("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
|
|
|
|
sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
|
|
pmc_nsamples * sizeof(uintptr_t), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
|
|
for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
|
|
ps->ps_pc = sb->ps_callchains +
|
|
(n * pmc_callchaindepth);
|
|
|
|
pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
|
|
|
|
sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
|
|
pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
|
|
sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
|
|
pmc_nsamples * sizeof(uintptr_t), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
|
|
ps->ps_pc = sb->ps_callchains +
|
|
(n * pmc_callchaindepth);
|
|
|
|
pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
|
|
|
|
sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
|
|
pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
|
|
pmc_nsamples * sizeof(uintptr_t), M_PMC,
|
|
DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
|
|
for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
|
|
ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
|
|
|
|
pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
|
|
}
|
|
|
|
/* allocate space for the row disposition array */
|
|
pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
|
|
M_PMC, M_WAITOK | M_ZERO);
|
|
|
|
/* mark all PMCs as available */
|
|
for (n = 0; n < md->pmd_npmc; n++)
|
|
PMC_MARK_ROW_FREE(n);
|
|
|
|
/* allocate thread hash tables */
|
|
pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
|
|
&pmc_ownerhashmask);
|
|
|
|
pmc_processhash = hashinit(pmc_hashsize, M_PMC,
|
|
&pmc_processhashmask);
|
|
mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
|
|
MTX_SPIN);
|
|
|
|
CK_LIST_INIT(&pmc_ss_owners);
|
|
pmc_ss_count = 0;
|
|
|
|
/* allocate a pool of spin mutexes */
|
|
pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
|
|
MTX_SPIN);
|
|
|
|
PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
|
|
"targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
|
|
pmc_processhash, pmc_processhashmask);
|
|
|
|
/* Initialize a spin mutex for the thread free list. */
|
|
mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
|
|
MTX_SPIN);
|
|
|
|
/* Initialize the task to prune the thread free list. */
|
|
TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
|
|
|
|
/* register process {exit,fork,exec} handlers */
|
|
pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
|
|
pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
|
|
pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
|
|
pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
|
|
|
|
/* register kld event handlers */
|
|
pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
|
|
/* initialize logging */
|
|
pmclog_initialize();
|
|
|
|
/* set hook functions */
|
|
pmc_intr = md->pmd_intr;
|
|
wmb();
|
|
pmc_hook = pmc_hook_handler;
|
|
|
|
if (error == 0) {
|
|
printf(PMC_MODULE_NAME ":");
|
|
for (n = 0; n < md->pmd_nclass; n++) {
|
|
if (md->pmd_classdep[n].pcd_num == 0)
|
|
continue;
|
|
pcd = &md->pmd_classdep[n];
|
|
printf(" %s/%d/%d/0x%b",
|
|
pmc_name_of_pmcclass(pcd->pcd_class),
|
|
pcd->pcd_num,
|
|
pcd->pcd_width,
|
|
pcd->pcd_caps,
|
|
"\20"
|
|
"\1INT\2USR\3SYS\4EDG\5THR"
|
|
"\6REA\7WRI\10INV\11QUA\12PRC"
|
|
"\13TAG\14CSC");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* prepare to be unloaded */
|
|
static void
|
|
pmc_cleanup(void)
|
|
{
|
|
struct pmc_binding pb;
|
|
struct pmc_owner *po, *tmp;
|
|
struct pmc_ownerhash *ph;
|
|
struct pmc_processhash *prh __pmcdbg_used;
|
|
u_int maxcpu;
|
|
int cpu, c;
|
|
|
|
PMCDBG0(MOD,INI,0, "cleanup");
|
|
|
|
/* switch off sampling */
|
|
CPU_FOREACH(cpu)
|
|
DPCPU_ID_SET(cpu, pmc_sampled, 0);
|
|
pmc_intr = NULL;
|
|
|
|
sx_xlock(&pmc_sx);
|
|
if (pmc_hook == NULL) { /* being unloaded already */
|
|
sx_xunlock(&pmc_sx);
|
|
return;
|
|
}
|
|
|
|
pmc_hook = NULL; /* prevent new threads from entering module */
|
|
|
|
/* deregister event handlers */
|
|
EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
|
|
EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
|
|
EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
|
|
EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
|
|
|
|
/* send SIGBUS to all owner threads, free up allocations */
|
|
if (pmc_ownerhash != NULL) {
|
|
for (ph = pmc_ownerhash;
|
|
ph <= &pmc_ownerhash[pmc_ownerhashmask];
|
|
ph++) {
|
|
LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
|
|
pmc_remove_owner(po);
|
|
|
|
PMCDBG3(MOD,INI,2,
|
|
"cleanup signal proc=%p (%d, %s)",
|
|
po->po_owner, po->po_owner->p_pid,
|
|
po->po_owner->p_comm);
|
|
|
|
PROC_LOCK(po->po_owner);
|
|
kern_psignal(po->po_owner, SIGBUS);
|
|
PROC_UNLOCK(po->po_owner);
|
|
|
|
pmc_destroy_owner_descriptor(po);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reclaim allocated data structures */
|
|
taskqueue_drain(taskqueue_fast, &free_task);
|
|
mtx_destroy(&pmc_threadfreelist_mtx);
|
|
pmc_thread_descriptor_pool_drain();
|
|
|
|
if (pmc_mtxpool != NULL)
|
|
mtx_pool_destroy(&pmc_mtxpool);
|
|
|
|
mtx_destroy(&pmc_processhash_mtx);
|
|
if (pmc_processhash != NULL) {
|
|
#ifdef HWPMC_DEBUG
|
|
struct pmc_process *pp;
|
|
|
|
PMCDBG0(MOD,INI,3, "destroy process hash");
|
|
for (prh = pmc_processhash;
|
|
prh <= &pmc_processhash[pmc_processhashmask];
|
|
prh++)
|
|
LIST_FOREACH(pp, prh, pp_next)
|
|
PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
|
|
#endif
|
|
|
|
hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
|
|
pmc_processhash = NULL;
|
|
}
|
|
|
|
if (pmc_ownerhash != NULL) {
|
|
PMCDBG0(MOD,INI,3, "destroy owner hash");
|
|
hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
|
|
pmc_ownerhash = NULL;
|
|
}
|
|
|
|
KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
|
|
("[pmc,%d] Global SS owner list not empty", __LINE__));
|
|
KASSERT(pmc_ss_count == 0,
|
|
("[pmc,%d] Global SS count not empty", __LINE__));
|
|
|
|
/* do processor and pmc-class dependent cleanup */
|
|
maxcpu = pmc_cpu_max();
|
|
|
|
PMCDBG0(MOD,INI,3, "md cleanup");
|
|
if (md) {
|
|
pmc_save_cpu_binding(&pb);
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
|
|
cpu, pmc_pcpu[cpu]);
|
|
if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
|
|
continue;
|
|
|
|
pmc_select_cpu(cpu);
|
|
for (c = 0; c < md->pmd_nclass; c++) {
|
|
if (md->pmd_classdep[c].pcd_num > 0) {
|
|
md->pmd_classdep[c].pcd_pcpu_fini(md,
|
|
cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (md->pmd_cputype == PMC_CPU_GENERIC)
|
|
pmc_generic_cpu_finalize(md);
|
|
else
|
|
pmc_md_finalize(md);
|
|
|
|
pmc_mdep_free(md);
|
|
md = NULL;
|
|
pmc_restore_cpu_binding(&pb);
|
|
}
|
|
|
|
/* Free per-cpu descriptors. */
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
if (!pmc_cpu_is_active(cpu))
|
|
continue;
|
|
KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
|
|
("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
|
|
cpu));
|
|
KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
|
|
("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
|
|
cpu));
|
|
KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
|
|
("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
|
|
cpu));
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
|
|
free(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
|
|
free(pmc_pcpu[cpu], M_PMC);
|
|
}
|
|
|
|
free(pmc_pcpu, M_PMC);
|
|
pmc_pcpu = NULL;
|
|
|
|
free(pmc_pcpu_saved, M_PMC);
|
|
pmc_pcpu_saved = NULL;
|
|
|
|
if (pmc_pmcdisp != NULL) {
|
|
free(pmc_pmcdisp, M_PMC);
|
|
pmc_pmcdisp = NULL;
|
|
}
|
|
|
|
if (pmc_rowindex_to_classdep != NULL) {
|
|
free(pmc_rowindex_to_classdep, M_PMC);
|
|
pmc_rowindex_to_classdep = NULL;
|
|
}
|
|
|
|
pmclog_shutdown();
|
|
counter_u64_free(pmc_stats.pm_intr_ignored);
|
|
counter_u64_free(pmc_stats.pm_intr_processed);
|
|
counter_u64_free(pmc_stats.pm_intr_bufferfull);
|
|
counter_u64_free(pmc_stats.pm_syscalls);
|
|
counter_u64_free(pmc_stats.pm_syscall_errors);
|
|
counter_u64_free(pmc_stats.pm_buffer_requests);
|
|
counter_u64_free(pmc_stats.pm_buffer_requests_failed);
|
|
counter_u64_free(pmc_stats.pm_log_sweeps);
|
|
counter_u64_free(pmc_stats.pm_merges);
|
|
counter_u64_free(pmc_stats.pm_overwrites);
|
|
sx_xunlock(&pmc_sx); /* we are done */
|
|
}
|
|
|
|
/*
|
|
* The function called at load/unload.
|
|
*/
|
|
static int
|
|
load(struct module *module __unused, int cmd, void *arg __unused)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
switch (cmd) {
|
|
case MOD_LOAD:
|
|
/* initialize the subsystem */
|
|
error = pmc_initialize();
|
|
if (error != 0)
|
|
break;
|
|
PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d", pmc_syscall_num,
|
|
pmc_cpu_max());
|
|
break;
|
|
case MOD_UNLOAD:
|
|
case MOD_SHUTDOWN:
|
|
pmc_cleanup();
|
|
PMCDBG0(MOD,INI,1, "unloaded");
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|