HardenedBSD/sys/dev/iommu/iommu_gas.c
Konstantin Belousov f713ed6694 iommu: extend iommu_map_entry to store the list of associated freed page table pages
The pages are inserted into the added slist if the entry parameter is
passed to iommu_pgfree().  For now it is nop.

Sponsored by:	Advanced Micro Devices (AMD)
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2024-09-27 20:34:23 +03:00

1115 lines
31 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define RB_AUGMENT_CHECK(entry) iommu_gas_augment_entry(entry)
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/uma.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/iommu/iommu.h>
#include <dev/iommu/iommu_gas.h>
#include <dev/iommu/iommu_msi.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/iommu.h>
#include <dev/iommu/busdma_iommu.h>
/*
* Guest Address Space management.
*/
static uma_zone_t iommu_map_entry_zone;
#ifdef INVARIANTS
static int iommu_check_free;
#endif
static void
intel_gas_init(void)
{
iommu_map_entry_zone = uma_zcreate("IOMMU_MAP_ENTRY",
sizeof(struct iommu_map_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NODUMP);
}
SYSINIT(intel_gas, SI_SUB_DRIVERS, SI_ORDER_FIRST, intel_gas_init, NULL);
struct iommu_map_entry *
iommu_gas_alloc_entry(struct iommu_domain *domain, u_int flags)
{
struct iommu_map_entry *res;
KASSERT((flags & ~(IOMMU_PGF_WAITOK)) == 0,
("unsupported flags %x", flags));
res = uma_zalloc(iommu_map_entry_zone, ((flags & IOMMU_PGF_WAITOK) !=
0 ? M_WAITOK : M_NOWAIT) | M_ZERO);
if (res != NULL) {
SLIST_INIT(&res->pgtbl_free);
if (domain != NULL) {
res->domain = domain;
atomic_add_int(&domain->entries_cnt, 1);
}
}
return (res);
}
void
iommu_gas_free_entry(struct iommu_map_entry *entry)
{
struct iommu_domain *domain;
int n __unused;
n = vm_page_free_pages_toq(&entry->pgtbl_free, false);
#if defined(__i386__) || defined(__amd64__)
atomic_subtract_int(&iommu_tbl_pagecnt, n);
#endif
domain = entry->domain;
if (domain != NULL)
atomic_subtract_int(&domain->entries_cnt, 1);
uma_zfree(iommu_map_entry_zone, entry);
}
static int
iommu_gas_cmp_entries(struct iommu_map_entry *a, struct iommu_map_entry *b)
{
/* First and last entries have zero size, so <= */
KASSERT(a->start <= a->end, ("inverted entry %p (%jx, %jx)",
a, (uintmax_t)a->start, (uintmax_t)a->end));
KASSERT(b->start <= b->end, ("inverted entry %p (%jx, %jx)",
b, (uintmax_t)b->start, (uintmax_t)b->end));
KASSERT(((a->flags | b->flags) & IOMMU_MAP_ENTRY_FAKE) != 0 ||
a->end <= b->start || b->end <= a->start ||
a->end == a->start || b->end == b->start,
("overlapping entries %p (%jx, %jx) f %#x %p (%jx, %jx) f %#x"
" domain %p %p",
a, (uintmax_t)a->start, (uintmax_t)a->end, a->flags,
b, (uintmax_t)b->start, (uintmax_t)b->end, b->flags,
a->domain, b->domain));
if (a->end < b->end)
return (-1);
else if (b->end < a->end)
return (1);
return (0);
}
/*
* Update augmentation data based on data from children.
* Return true if and only if the update changes the augmentation data.
*/
static bool
iommu_gas_augment_entry(struct iommu_map_entry *entry)
{
struct iommu_map_entry *child;
iommu_gaddr_t bound, delta, free_down;
free_down = 0;
bound = entry->start;
if ((child = RB_LEFT(entry, rb_entry)) != NULL) {
free_down = MAX(child->free_down, bound - child->last);
bound = child->first;
}
delta = bound - entry->first;
entry->first = bound;
bound = entry->end;
if ((child = RB_RIGHT(entry, rb_entry)) != NULL) {
free_down = MAX(free_down, child->free_down);
free_down = MAX(free_down, child->first - bound);
bound = child->last;
}
delta += entry->last - bound;
if (delta == 0)
delta = entry->free_down - free_down;
entry->last = bound;
entry->free_down = free_down;
/*
* Return true either if the value of last-first changed,
* or if free_down changed.
*/
return (delta != 0);
}
RB_GENERATE(iommu_gas_entries_tree, iommu_map_entry, rb_entry,
iommu_gas_cmp_entries);
#ifdef INVARIANTS
static void
iommu_gas_check_free(struct iommu_domain *domain)
{
struct iommu_map_entry *entry, *l, *r;
iommu_gaddr_t v;
RB_FOREACH(entry, iommu_gas_entries_tree, &domain->rb_root) {
KASSERT(domain == entry->domain,
("mismatched free domain %p entry %p entry->domain %p",
domain, entry, entry->domain));
l = RB_LEFT(entry, rb_entry);
r = RB_RIGHT(entry, rb_entry);
v = 0;
if (l != NULL) {
v = MAX(v, l->free_down);
v = MAX(v, entry->start - l->last);
}
if (r != NULL) {
v = MAX(v, r->free_down);
v = MAX(v, r->first - entry->end);
}
MPASS(entry->free_down == v);
}
}
#endif
static void
iommu_gas_rb_remove(struct iommu_domain *domain, struct iommu_map_entry *entry)
{
struct iommu_map_entry *nbr;
/* Removing entry may open a new free gap before domain->start_gap. */
if (entry->end <= domain->start_gap->end) {
if (RB_RIGHT(entry, rb_entry) != NULL)
nbr = iommu_gas_entries_tree_RB_NEXT(entry);
else if (RB_LEFT(entry, rb_entry) != NULL)
nbr = RB_LEFT(entry, rb_entry);
else
nbr = RB_PARENT(entry, rb_entry);
domain->start_gap = nbr;
}
RB_REMOVE(iommu_gas_entries_tree, &domain->rb_root, entry);
}
struct iommu_domain *
iommu_get_ctx_domain(struct iommu_ctx *ctx)
{
return (ctx->domain);
}
void
iommu_gas_init_domain(struct iommu_domain *domain)
{
struct iommu_map_entry *begin, *end;
begin = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK);
end = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK);
IOMMU_DOMAIN_LOCK(domain);
KASSERT(domain->entries_cnt == 2, ("dirty domain %p", domain));
KASSERT(RB_EMPTY(&domain->rb_root),
("non-empty entries %p", domain));
end->start = domain->end;
end->end = domain->end;
end->flags = IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED;
RB_INSERT(iommu_gas_entries_tree, &domain->rb_root, end);
begin->start = 0;
begin->end = 0;
begin->flags = IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED;
RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, end, begin);
iommu_gas_augment_entry(end);
iommu_gas_augment_entry(begin);
domain->start_gap = begin;
domain->first_place = begin;
domain->last_place = end;
domain->flags |= IOMMU_DOMAIN_GAS_INITED;
IOMMU_DOMAIN_UNLOCK(domain);
}
void
iommu_gas_fini_domain(struct iommu_domain *domain)
{
struct iommu_map_entry *entry;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
KASSERT(domain->entries_cnt == 2,
("domain still in use %p", domain));
entry = RB_MIN(iommu_gas_entries_tree, &domain->rb_root);
KASSERT(entry->start == 0, ("start entry start %p", domain));
KASSERT(entry->end == IOMMU_PAGE_SIZE, ("start entry end %p", domain));
KASSERT(entry->flags ==
(IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED),
("start entry flags %p", domain));
iommu_gas_rb_remove(domain, entry);
iommu_gas_free_entry(entry);
entry = RB_MAX(iommu_gas_entries_tree, &domain->rb_root);
KASSERT(entry->start == domain->end, ("end entry start %p", domain));
KASSERT(entry->end == domain->end, ("end entry end %p", domain));
KASSERT(entry->flags ==
(IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED),
("end entry flags %p", domain));
iommu_gas_rb_remove(domain, entry);
iommu_gas_free_entry(entry);
}
struct iommu_gas_match_args {
iommu_gaddr_t size;
int offset;
const struct bus_dma_tag_common *common;
u_int gas_flags;
struct iommu_map_entry *entry;
};
/*
* The interval [beg, end) is a free interval between two iommu_map_entries.
* Addresses can be allocated only in the range [lbound, ubound]. Try to
* allocate space in the free interval, subject to the conditions expressed by
* a, and return 'true' if and only if the allocation attempt succeeds.
*/
static bool
iommu_gas_match_one(struct iommu_gas_match_args *a, iommu_gaddr_t beg,
iommu_gaddr_t end, iommu_gaddr_t lbound, iommu_gaddr_t ubound)
{
struct iommu_map_entry *entry;
iommu_gaddr_t first, size, start;
int offset;
/*
* The prev->end is always aligned on the page size, which
* causes page alignment for the entry->start too.
*
* Create IOMMU_PAGE_SIZE gaps before, after new entry
* to ensure that out-of-bounds accesses fault.
*/
beg = MAX(beg + IOMMU_PAGE_SIZE, lbound);
start = roundup2(beg, a->common->alignment);
if (start < beg)
return (false);
if (end < IOMMU_PAGE_SIZE + 1)
return (false);
end = MIN(end - IOMMU_PAGE_SIZE - 1, ubound);
offset = a->offset;
size = a->size;
if (start + offset + size - 1 > end)
return (false);
/* Check for and try to skip past boundary crossing. */
if (!vm_addr_bound_ok(start + offset, size, a->common->boundary)) {
/*
* The start + offset to start + offset + size region crosses
* the boundary. Check if there is enough space after the next
* boundary after the beg.
*/
first = start;
beg = roundup2(start + offset + 1, a->common->boundary);
start = roundup2(beg, a->common->alignment);
if (start + offset + size - 1 > end ||
!vm_addr_bound_ok(start + offset, size,
a->common->boundary)) {
/*
* Not enough space to align at the requested boundary,
* or boundary is smaller than the size, but allowed to
* split. We already checked that start + size does not
* overlap ubound.
*
* XXXKIB. It is possible that beg is exactly at the
* start of the next entry, then we do not have gap.
* Ignore for now.
*/
if ((a->gas_flags & IOMMU_MF_CANSPLIT) == 0)
return (false);
size = beg - first - offset;
start = first;
}
}
entry = a->entry;
entry->start = start;
entry->end = start + roundup2(size + offset, IOMMU_PAGE_SIZE);
entry->flags = IOMMU_MAP_ENTRY_MAP;
return (true);
}
/* Find the next entry that might abut a big-enough range. */
static struct iommu_map_entry *
iommu_gas_next(struct iommu_map_entry *curr, iommu_gaddr_t min_free)
{
struct iommu_map_entry *next;
if ((next = RB_RIGHT(curr, rb_entry)) != NULL &&
next->free_down >= min_free) {
/* Find next entry in right subtree. */
do
curr = next;
while ((next = RB_LEFT(curr, rb_entry)) != NULL &&
next->free_down >= min_free);
} else {
/* Find next entry in a left-parent ancestor. */
while ((next = RB_PARENT(curr, rb_entry)) != NULL &&
curr == RB_RIGHT(next, rb_entry))
curr = next;
curr = next;
}
return (curr);
}
/*
* Address-ordered first-fit search of 'domain' for free space satisfying the
* conditions of 'a'. The space allocated is at least one page big, and is
* bounded by guard pages to the left and right. The allocated space for
* 'domain' is described by an rb-tree of map entries at domain->rb_root, and
* domain->start_gap points to a map entry less than or adjacent to the first
* free-space of size at least 3 pages.
*/
static int
iommu_gas_find_space(struct iommu_domain *domain,
struct iommu_gas_match_args *a)
{
struct iommu_map_entry *curr, *first;
iommu_gaddr_t addr, min_free;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
KASSERT(a->entry->flags == 0,
("dirty entry %p %p", domain, a->entry));
/*
* start_gap may point to an entry adjacent to gaps too small for any
* new allocation. In that case, advance start_gap to the first free
* space big enough for a minimum allocation plus two guard pages.
*/
min_free = 3 * IOMMU_PAGE_SIZE;
first = domain->start_gap;
while (first != NULL && first->free_down < min_free)
first = RB_PARENT(first, rb_entry);
for (curr = first; curr != NULL;
curr = iommu_gas_next(curr, min_free)) {
if ((first = RB_LEFT(curr, rb_entry)) != NULL &&
first->last + min_free <= curr->start)
break;
if ((first = RB_RIGHT(curr, rb_entry)) != NULL &&
curr->end + min_free <= first->first)
break;
}
domain->start_gap = curr;
/*
* If the subtree doesn't have free space for the requested allocation
* plus two guard pages, skip it.
*/
min_free = 2 * IOMMU_PAGE_SIZE +
roundup2(a->size + a->offset, IOMMU_PAGE_SIZE);
/* Climb to find a node in the subtree of big-enough ranges. */
first = curr;
while (first != NULL && first->free_down < min_free)
first = RB_PARENT(first, rb_entry);
/*
* Walk the big-enough ranges tree until one satisfies alignment
* requirements, or violates lowaddr address requirement.
*/
addr = a->common->lowaddr;
for (curr = first; curr != NULL;
curr = iommu_gas_next(curr, min_free)) {
if ((first = RB_LEFT(curr, rb_entry)) != NULL &&
iommu_gas_match_one(a, first->last, curr->start,
0, addr)) {
RB_INSERT_PREV(iommu_gas_entries_tree,
&domain->rb_root, curr, a->entry);
return (0);
}
if (curr->end >= addr) {
/* All remaining ranges > addr */
break;
}
if ((first = RB_RIGHT(curr, rb_entry)) != NULL &&
iommu_gas_match_one(a, curr->end, first->first,
0, addr)) {
RB_INSERT_NEXT(iommu_gas_entries_tree,
&domain->rb_root, curr, a->entry);
return (0);
}
}
/*
* To resume the search at the start of the upper region, first climb to
* the nearest ancestor that spans highaddr. Then find the last entry
* before highaddr that could abut a big-enough range.
*/
addr = a->common->highaddr;
while (curr != NULL && curr->last < addr)
curr = RB_PARENT(curr, rb_entry);
first = NULL;
while (curr != NULL && curr->free_down >= min_free) {
if (addr < curr->end)
curr = RB_LEFT(curr, rb_entry);
else {
first = curr;
curr = RB_RIGHT(curr, rb_entry);
}
}
/*
* Walk the remaining big-enough ranges until one satisfies alignment
* requirements.
*/
for (curr = first; curr != NULL;
curr = iommu_gas_next(curr, min_free)) {
if ((first = RB_LEFT(curr, rb_entry)) != NULL &&
iommu_gas_match_one(a, first->last, curr->start,
addr + 1, domain->end - 1)) {
RB_INSERT_PREV(iommu_gas_entries_tree,
&domain->rb_root, curr, a->entry);
return (0);
}
if ((first = RB_RIGHT(curr, rb_entry)) != NULL &&
iommu_gas_match_one(a, curr->end, first->first,
addr + 1, domain->end - 1)) {
RB_INSERT_NEXT(iommu_gas_entries_tree,
&domain->rb_root, curr, a->entry);
return (0);
}
}
return (ENOMEM);
}
static int
iommu_gas_alloc_region(struct iommu_domain *domain, struct iommu_map_entry *entry,
u_int flags)
{
struct iommu_map_entry *next, *prev;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
if ((entry->start & IOMMU_PAGE_MASK) != 0 ||
(entry->end & IOMMU_PAGE_MASK) != 0)
return (EINVAL);
if (entry->start >= entry->end)
return (EINVAL);
if (entry->end >= domain->end)
return (EINVAL);
entry->flags |= IOMMU_MAP_ENTRY_FAKE;
next = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, entry);
KASSERT(next != NULL, ("next must be non-null %p %jx", domain,
(uintmax_t)entry->start));
prev = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, next);
/* prev could be NULL */
entry->flags &= ~IOMMU_MAP_ENTRY_FAKE;
/*
* Adapt to broken BIOSes which specify overlapping RMRR
* entries.
*
* XXXKIB: this does not handle a case when prev or next
* entries are completely covered by the current one, which
* extends both ways.
*/
if (prev != NULL && prev->end > entry->start &&
(prev->flags & IOMMU_MAP_ENTRY_PLACE) == 0) {
if ((flags & IOMMU_MF_RMRR) == 0 ||
(prev->flags & IOMMU_MAP_ENTRY_RMRR) == 0)
return (EBUSY);
entry->start = prev->end;
}
if (next->start < entry->end &&
(next->flags & IOMMU_MAP_ENTRY_PLACE) == 0) {
if ((flags & IOMMU_MF_RMRR) == 0 ||
(next->flags & IOMMU_MAP_ENTRY_RMRR) == 0)
return (EBUSY);
entry->end = next->start;
}
if (entry->end == entry->start)
return (0);
if (prev != NULL && prev->end > entry->start) {
/* This assumes that prev is the placeholder entry. */
iommu_gas_rb_remove(domain, prev);
prev = NULL;
}
RB_INSERT_PREV(iommu_gas_entries_tree,
&domain->rb_root, next, entry);
if (next->start < entry->end) {
iommu_gas_rb_remove(domain, next);
next = NULL;
}
if ((flags & IOMMU_MF_RMRR) != 0)
entry->flags = IOMMU_MAP_ENTRY_RMRR;
#ifdef INVARIANTS
struct iommu_map_entry *ip, *in;
ip = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, entry);
in = RB_NEXT(iommu_gas_entries_tree, &domain->rb_root, entry);
KASSERT(prev == NULL || ip == prev,
("RMRR %p (%jx %jx) prev %p (%jx %jx) ins prev %p (%jx %jx)",
entry, entry->start, entry->end, prev,
prev == NULL ? 0 : prev->start, prev == NULL ? 0 : prev->end,
ip, ip == NULL ? 0 : ip->start, ip == NULL ? 0 : ip->end));
KASSERT(next == NULL || in == next,
("RMRR %p (%jx %jx) next %p (%jx %jx) ins next %p (%jx %jx)",
entry, entry->start, entry->end, next,
next == NULL ? 0 : next->start, next == NULL ? 0 : next->end,
in, in == NULL ? 0 : in->start, in == NULL ? 0 : in->end));
#endif
return (0);
}
void
iommu_gas_free_space(struct iommu_map_entry *entry)
{
struct iommu_domain *domain;
domain = entry->domain;
KASSERT((entry->flags & (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_RMRR |
IOMMU_MAP_ENTRY_MAP)) == IOMMU_MAP_ENTRY_MAP,
("permanent entry %p %p", domain, entry));
IOMMU_DOMAIN_LOCK(domain);
iommu_gas_rb_remove(domain, entry);
entry->flags &= ~IOMMU_MAP_ENTRY_MAP;
#ifdef INVARIANTS
if (iommu_check_free)
iommu_gas_check_free(domain);
#endif
IOMMU_DOMAIN_UNLOCK(domain);
}
void
iommu_gas_free_region(struct iommu_map_entry *entry)
{
struct iommu_domain *domain;
domain = entry->domain;
KASSERT((entry->flags & (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_RMRR |
IOMMU_MAP_ENTRY_MAP)) == IOMMU_MAP_ENTRY_RMRR,
("non-RMRR entry %p %p", domain, entry));
IOMMU_DOMAIN_LOCK(domain);
if (entry != domain->first_place &&
entry != domain->last_place)
iommu_gas_rb_remove(domain, entry);
entry->flags &= ~IOMMU_MAP_ENTRY_RMRR;
IOMMU_DOMAIN_UNLOCK(domain);
}
static struct iommu_map_entry *
iommu_gas_remove_clip_left(struct iommu_domain *domain, iommu_gaddr_t start,
iommu_gaddr_t end, struct iommu_map_entry **r)
{
struct iommu_map_entry *entry, *res, fentry;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
MPASS(start <= end);
MPASS(end <= domain->end);
/*
* Find an entry which contains the supplied guest's address
* start, or the first entry after the start. Since we
* asserted that start is below domain end, entry should
* exist. Then clip it if needed.
*/
bzero(&fentry, sizeof(fentry));
fentry.start = start + 1;
fentry.end = start + 1;
fentry.flags = IOMMU_MAP_ENTRY_FAKE;
entry = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, &fentry);
if (entry->start >= start ||
(entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0)
return (entry);
res = *r;
*r = NULL;
*res = *entry;
res->start = entry->end = start;
RB_UPDATE_AUGMENT(entry, rb_entry);
RB_INSERT_NEXT(iommu_gas_entries_tree,
&domain->rb_root, entry, res);
return (res);
}
static bool
iommu_gas_remove_clip_right(struct iommu_domain *domain,
iommu_gaddr_t end, struct iommu_map_entry *entry,
struct iommu_map_entry *r)
{
if (entry->start >= end || (entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0)
return (false);
*r = *entry;
r->end = entry->start = end;
RB_UPDATE_AUGMENT(entry, rb_entry);
RB_INSERT_PREV(iommu_gas_entries_tree,
&domain->rb_root, entry, r);
return (true);
}
static void
iommu_gas_remove_unmap(struct iommu_domain *domain,
struct iommu_map_entry *entry, struct iommu_map_entries_tailq *gcp)
{
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
if ((entry->flags & (IOMMU_MAP_ENTRY_UNMAPPED |
IOMMU_MAP_ENTRY_RMRR |
IOMMU_MAP_ENTRY_REMOVING)) != 0)
return;
MPASS((entry->flags & IOMMU_MAP_ENTRY_PLACE) == 0);
entry->flags |= IOMMU_MAP_ENTRY_REMOVING;
TAILQ_INSERT_TAIL(gcp, entry, dmamap_link);
}
static void
iommu_gas_remove_locked(struct iommu_domain *domain,
iommu_gaddr_t start, iommu_gaddr_t size,
struct iommu_map_entries_tailq *gc,
struct iommu_map_entry **r1, struct iommu_map_entry **r2)
{
struct iommu_map_entry *entry, *nentry;
iommu_gaddr_t end;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
end = start + size;
nentry = iommu_gas_remove_clip_left(domain, start, end, r1);
RB_FOREACH_FROM(entry, iommu_gas_entries_tree, nentry) {
if (entry->start >= end)
break;
KASSERT(start <= entry->start,
("iommu_gas_remove entry (%#jx, %#jx) start %#jx",
entry->start, entry->end, start));
iommu_gas_remove_unmap(domain, entry, gc);
}
if (iommu_gas_remove_clip_right(domain, end, entry, *r2)) {
iommu_gas_remove_unmap(domain, *r2, gc);
*r2 = NULL;
}
#ifdef INVARIANTS
RB_FOREACH(entry, iommu_gas_entries_tree, &domain->rb_root) {
if ((entry->flags & (IOMMU_MAP_ENTRY_RMRR |
IOMMU_MAP_ENTRY_PLACE)) != 0)
continue;
KASSERT(entry->end <= start || entry->start >= end,
("iommu_gas_remove leftover entry (%#jx, %#jx) range "
"(%#jx, %#jx)",
entry->start, entry->end, start, end));
}
#endif
}
static void
iommu_gas_remove_init(struct iommu_domain *domain,
struct iommu_map_entries_tailq *gc, struct iommu_map_entry **r1,
struct iommu_map_entry **r2)
{
TAILQ_INIT(gc);
*r1 = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK);
*r2 = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK);
}
static void
iommu_gas_remove_cleanup(struct iommu_domain *domain,
struct iommu_map_entries_tailq *gc, struct iommu_map_entry **r1,
struct iommu_map_entry **r2)
{
if (*r1 != NULL) {
iommu_gas_free_entry(*r1);
*r1 = NULL;
}
if (*r2 != NULL) {
iommu_gas_free_entry(*r2);
*r2 = NULL;
}
iommu_domain_unload(domain, gc, true);
}
/*
* Remove specified range from the GAS of the domain. Note that the
* removal is not guaranteed to occur upon the function return, it
* might be finalized some time after, when hardware reports that
* (queued) IOTLB invalidation was performed.
*/
void
iommu_gas_remove(struct iommu_domain *domain, iommu_gaddr_t start,
iommu_gaddr_t size)
{
struct iommu_map_entry *r1, *r2;
struct iommu_map_entries_tailq gc;
iommu_gas_remove_init(domain, &gc, &r1, &r2);
IOMMU_DOMAIN_LOCK(domain);
iommu_gas_remove_locked(domain, start, size, &gc, &r1, &r2);
IOMMU_DOMAIN_UNLOCK(domain);
iommu_gas_remove_cleanup(domain, &gc, &r1, &r2);
}
int
iommu_gas_map(struct iommu_domain *domain,
const struct bus_dma_tag_common *common, iommu_gaddr_t size, int offset,
u_int eflags, u_int flags, vm_page_t *ma, struct iommu_map_entry **res)
{
struct iommu_gas_match_args a;
struct iommu_map_entry *entry;
int error;
KASSERT((flags & ~(IOMMU_MF_CANWAIT | IOMMU_MF_CANSPLIT)) == 0,
("invalid flags 0x%x", flags));
a.size = size;
a.offset = offset;
a.common = common;
a.gas_flags = flags;
entry = iommu_gas_alloc_entry(domain,
(flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0);
if (entry == NULL)
return (ENOMEM);
a.entry = entry;
IOMMU_DOMAIN_LOCK(domain);
error = iommu_gas_find_space(domain, &a);
if (error == ENOMEM) {
IOMMU_DOMAIN_UNLOCK(domain);
iommu_gas_free_entry(entry);
return (error);
}
#ifdef INVARIANTS
if (iommu_check_free)
iommu_gas_check_free(domain);
#endif
KASSERT(error == 0,
("unexpected error %d from iommu_gas_find_entry", error));
KASSERT(entry->end < domain->end, ("allocated GPA %jx, max GPA %jx",
(uintmax_t)entry->end, (uintmax_t)domain->end));
entry->flags |= eflags;
IOMMU_DOMAIN_UNLOCK(domain);
error = domain->ops->map(domain, entry, ma, eflags,
((flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0));
if (error == ENOMEM) {
iommu_domain_unload_entry(entry, true,
(flags & IOMMU_MF_CANWAIT) != 0);
return (error);
}
KASSERT(error == 0,
("unexpected error %d from domain_map_buf", error));
*res = entry;
return (0);
}
int
iommu_gas_map_region(struct iommu_domain *domain, struct iommu_map_entry *entry,
u_int eflags, u_int flags, vm_page_t *ma)
{
iommu_gaddr_t start;
int error;
KASSERT(entry->domain == domain,
("mismatched domain %p entry %p entry->domain %p", domain,
entry, entry->domain));
KASSERT(entry->flags == 0, ("used RMRR entry %p %p %x", domain,
entry, entry->flags));
KASSERT((flags & ~(IOMMU_MF_CANWAIT | IOMMU_MF_RMRR)) == 0,
("invalid flags 0x%x", flags));
start = entry->start;
IOMMU_DOMAIN_LOCK(domain);
error = iommu_gas_alloc_region(domain, entry, flags);
if (error != 0) {
IOMMU_DOMAIN_UNLOCK(domain);
return (error);
}
entry->flags |= eflags;
IOMMU_DOMAIN_UNLOCK(domain);
if (entry->end == entry->start)
return (0);
error = domain->ops->map(domain, entry,
ma + OFF_TO_IDX(start - entry->start), eflags,
((flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0));
if (error == ENOMEM) {
iommu_domain_unload_entry(entry, false,
(flags & IOMMU_MF_CANWAIT) != 0);
return (error);
}
KASSERT(error == 0,
("unexpected error %d from domain_map_buf", error));
return (0);
}
static int
iommu_gas_reserve_region_locked(struct iommu_domain *domain,
iommu_gaddr_t start, iommu_gaddr_t end, struct iommu_map_entry *entry)
{
int error;
IOMMU_DOMAIN_ASSERT_LOCKED(domain);
entry->start = start;
entry->end = end;
error = iommu_gas_alloc_region(domain, entry, IOMMU_MF_CANWAIT);
if (error == 0)
entry->flags |= IOMMU_MAP_ENTRY_UNMAPPED;
return (error);
}
int
iommu_gas_reserve_region(struct iommu_domain *domain, iommu_gaddr_t start,
iommu_gaddr_t end, struct iommu_map_entry **entry0)
{
struct iommu_map_entry *entry;
int error;
entry = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK);
IOMMU_DOMAIN_LOCK(domain);
error = iommu_gas_reserve_region_locked(domain, start, end, entry);
IOMMU_DOMAIN_UNLOCK(domain);
if (error != 0)
iommu_gas_free_entry(entry);
else if (entry0 != NULL)
*entry0 = entry;
return (error);
}
/*
* As in iommu_gas_reserve_region, reserve [start, end), but allow for existing
* entries.
*/
int
iommu_gas_reserve_region_extend(struct iommu_domain *domain,
iommu_gaddr_t start, iommu_gaddr_t end)
{
struct iommu_map_entry *entry, *next, *prev, key = {};
iommu_gaddr_t entry_start, entry_end;
int error;
error = 0;
entry = NULL;
end = ummin(end, domain->end);
while (start < end) {
/* Preallocate an entry. */
if (entry == NULL)
entry = iommu_gas_alloc_entry(domain,
IOMMU_PGF_WAITOK);
/* Calculate the free region from here to the next entry. */
key.start = key.end = start;
IOMMU_DOMAIN_LOCK(domain);
next = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, &key);
KASSERT(next != NULL, ("domain %p with end %#jx has no entry "
"after %#jx", domain, (uintmax_t)domain->end,
(uintmax_t)start));
entry_end = ummin(end, next->start);
prev = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, next);
if (prev != NULL)
entry_start = ummax(start, prev->end);
else
entry_start = start;
start = next->end;
/* Reserve the region if non-empty. */
if (entry_start != entry_end) {
error = iommu_gas_reserve_region_locked(domain,
entry_start, entry_end, entry);
if (error != 0) {
IOMMU_DOMAIN_UNLOCK(domain);
break;
}
entry = NULL;
}
IOMMU_DOMAIN_UNLOCK(domain);
}
/* Release a preallocated entry if it was not used. */
if (entry != NULL)
iommu_gas_free_entry(entry);
return (error);
}
void
iommu_unmap_msi(struct iommu_ctx *ctx)
{
struct iommu_map_entry *entry;
struct iommu_domain *domain;
domain = ctx->domain;
entry = domain->msi_entry;
if (entry == NULL)
return;
domain->ops->unmap(domain, entry, IOMMU_PGF_WAITOK);
iommu_gas_free_space(entry);
iommu_gas_free_entry(entry);
domain->msi_entry = NULL;
domain->msi_base = 0;
domain->msi_phys = 0;
}
int
iommu_map_msi(struct iommu_ctx *ctx, iommu_gaddr_t size, int offset,
u_int eflags, u_int flags, vm_page_t *ma)
{
struct iommu_domain *domain;
struct iommu_map_entry *entry;
int error;
error = 0;
domain = ctx->domain;
/* Check if there is already an MSI page allocated */
IOMMU_DOMAIN_LOCK(domain);
entry = domain->msi_entry;
IOMMU_DOMAIN_UNLOCK(domain);
if (entry == NULL) {
error = iommu_gas_map(domain, &ctx->tag->common, size, offset,
eflags, flags, ma, &entry);
IOMMU_DOMAIN_LOCK(domain);
if (error == 0) {
if (domain->msi_entry == NULL) {
MPASS(domain->msi_base == 0);
MPASS(domain->msi_phys == 0);
domain->msi_entry = entry;
domain->msi_base = entry->start;
domain->msi_phys = VM_PAGE_TO_PHYS(ma[0]);
} else {
/*
* We lost the race and already have an
* MSI page allocated. Free the unneeded entry.
*/
iommu_gas_free_entry(entry);
}
} else if (domain->msi_entry != NULL) {
/*
* The allocation failed, but another succeeded.
* Return success as there is a valid MSI page.
*/
error = 0;
}
IOMMU_DOMAIN_UNLOCK(domain);
}
return (error);
}
void
iommu_translate_msi(struct iommu_domain *domain, uint64_t *addr)
{
*addr = (*addr - domain->msi_phys) + domain->msi_base;
KASSERT(*addr >= domain->msi_entry->start,
("%s: Address is below the MSI entry start address (%jx < %jx)",
__func__, (uintmax_t)*addr, (uintmax_t)domain->msi_entry->start));
KASSERT(*addr + sizeof(*addr) <= domain->msi_entry->end,
("%s: Address is above the MSI entry end address (%jx < %jx)",
__func__, (uintmax_t)*addr, (uintmax_t)domain->msi_entry->end));
}
SYSCTL_NODE(_hw, OID_AUTO, iommu, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, "");
#ifdef INVARIANTS
SYSCTL_INT(_hw_iommu, OID_AUTO, check_free, CTLFLAG_RWTUN,
&iommu_check_free, 0,
"Check the GPA RBtree for free_down and free_after validity");
#endif
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
static void
iommu_debug_dump_gas(struct iommu_domain *domain)
{
struct iommu_map_entry *entry;
db_printf("iommu_domain %p tree %p iommu %p fl %#x\n", domain,
&domain->rb_root, domain->iommu, domain->flags);
db_printf("iommu_domain %p tree %p\n", domain, &domain->rb_root);
RB_FOREACH(entry, iommu_gas_entries_tree, &domain->rb_root) {
db_printf(
" e %p [%#jx %#jx] fl %#x first %#jx last %#jx free_down %#jx",
entry, (uintmax_t)entry->start, (uintmax_t)entry->end,
entry->flags,
(uintmax_t)entry->first, (uintmax_t)entry->last,
(uintmax_t)entry->free_down);
if (entry == domain->start_gap)
db_printf(" start_gap");
if (entry == domain->first_place)
db_printf(" first_place");
if (entry == domain->last_place)
db_printf(" last_place");
db_printf("\n");
}
}
DB_SHOW_COMMAND(iommu_domain, iommu_domain_show)
{
struct iommu_domain *domain;
if (!have_addr) {
db_printf("show iommu_domain addr\n");
return;
}
domain = (void *)addr;
iommu_debug_dump_gas(domain);
}
#endif