HardenedBSD/sys/kern/kern_event.c
Konstantin Belousov f28526e946 kcmp(2): implement for generic file types
Reviewed by:	brooks, markj
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D43518
2024-01-24 07:11:26 +02:00

2832 lines
65 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
* Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
* Copyright (c) 2009 Apple, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_ktrace.h"
#include "opt_kqueue.h"
#ifdef COMPAT_FREEBSD11
#define _WANT_FREEBSD11_KEVENT
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capsicum.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/unistd.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/filio.h>
#include <sys/fcntl.h>
#include <sys/kthread.h>
#include <sys/selinfo.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/poll.h>
#include <sys/protosw.h>
#include <sys/resourcevar.h>
#include <sys/sigio.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/syscallsubr.h>
#include <sys/taskqueue.h>
#include <sys/uio.h>
#include <sys/user.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <machine/atomic.h>
#include <vm/uma.h>
static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
/*
* This lock is used if multiple kq locks are required. This possibly
* should be made into a per proc lock.
*/
static struct mtx kq_global;
MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
#define KQ_GLOBAL_LOCK(lck, haslck) do { \
if (!haslck) \
mtx_lock(lck); \
haslck = 1; \
} while (0)
#define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
if (haslck) \
mtx_unlock(lck); \
haslck = 0; \
} while (0)
TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
static int kevent_copyout(void *arg, struct kevent *kevp, int count);
static int kevent_copyin(void *arg, struct kevent *kevp, int count);
static int kqueue_register(struct kqueue *kq, struct kevent *kev,
struct thread *td, int mflag);
static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
static void kqueue_release(struct kqueue *kq, int locked);
static void kqueue_destroy(struct kqueue *kq);
static void kqueue_drain(struct kqueue *kq, struct thread *td);
static int kqueue_expand(struct kqueue *kq, const struct filterops *fops,
uintptr_t ident, int mflag);
static void kqueue_task(void *arg, int pending);
static int kqueue_scan(struct kqueue *kq, int maxevents,
struct kevent_copyops *k_ops,
const struct timespec *timeout,
struct kevent *keva, struct thread *td);
static void kqueue_wakeup(struct kqueue *kq);
static const struct filterops *kqueue_fo_find(int filt);
static void kqueue_fo_release(int filt);
struct g_kevent_args;
static int kern_kevent_generic(struct thread *td,
struct g_kevent_args *uap,
struct kevent_copyops *k_ops, const char *struct_name);
static fo_ioctl_t kqueue_ioctl;
static fo_poll_t kqueue_poll;
static fo_kqfilter_t kqueue_kqfilter;
static fo_stat_t kqueue_stat;
static fo_close_t kqueue_close;
static fo_fill_kinfo_t kqueue_fill_kinfo;
static struct fileops kqueueops = {
.fo_read = invfo_rdwr,
.fo_write = invfo_rdwr,
.fo_truncate = invfo_truncate,
.fo_ioctl = kqueue_ioctl,
.fo_poll = kqueue_poll,
.fo_kqfilter = kqueue_kqfilter,
.fo_stat = kqueue_stat,
.fo_close = kqueue_close,
.fo_chmod = invfo_chmod,
.fo_chown = invfo_chown,
.fo_sendfile = invfo_sendfile,
.fo_cmp = file_kcmp_generic,
.fo_fill_kinfo = kqueue_fill_kinfo,
};
static int knote_attach(struct knote *kn, struct kqueue *kq);
static void knote_drop(struct knote *kn, struct thread *td);
static void knote_drop_detached(struct knote *kn, struct thread *td);
static void knote_enqueue(struct knote *kn);
static void knote_dequeue(struct knote *kn);
static void knote_init(void);
static struct knote *knote_alloc(int mflag);
static void knote_free(struct knote *kn);
static void filt_kqdetach(struct knote *kn);
static int filt_kqueue(struct knote *kn, long hint);
static int filt_procattach(struct knote *kn);
static void filt_procdetach(struct knote *kn);
static int filt_proc(struct knote *kn, long hint);
static int filt_fileattach(struct knote *kn);
static void filt_timerexpire(void *knx);
static void filt_timerexpire_l(struct knote *kn, bool proc_locked);
static int filt_timerattach(struct knote *kn);
static void filt_timerdetach(struct knote *kn);
static void filt_timerstart(struct knote *kn, sbintime_t to);
static void filt_timertouch(struct knote *kn, struct kevent *kev,
u_long type);
static int filt_timervalidate(struct knote *kn, sbintime_t *to);
static int filt_timer(struct knote *kn, long hint);
static int filt_userattach(struct knote *kn);
static void filt_userdetach(struct knote *kn);
static int filt_user(struct knote *kn, long hint);
static void filt_usertouch(struct knote *kn, struct kevent *kev,
u_long type);
static struct filterops file_filtops = {
.f_isfd = 1,
.f_attach = filt_fileattach,
};
static struct filterops kqread_filtops = {
.f_isfd = 1,
.f_detach = filt_kqdetach,
.f_event = filt_kqueue,
};
/* XXX - move to kern_proc.c? */
static struct filterops proc_filtops = {
.f_isfd = 0,
.f_attach = filt_procattach,
.f_detach = filt_procdetach,
.f_event = filt_proc,
};
static struct filterops timer_filtops = {
.f_isfd = 0,
.f_attach = filt_timerattach,
.f_detach = filt_timerdetach,
.f_event = filt_timer,
.f_touch = filt_timertouch,
};
static struct filterops user_filtops = {
.f_attach = filt_userattach,
.f_detach = filt_userdetach,
.f_event = filt_user,
.f_touch = filt_usertouch,
};
static uma_zone_t knote_zone;
static unsigned int __exclusive_cache_line kq_ncallouts;
static unsigned int kq_calloutmax = 4 * 1024;
SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
&kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
/* XXX - ensure not influx ? */
#define KNOTE_ACTIVATE(kn, islock) do { \
if ((islock)) \
mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \
else \
KQ_LOCK((kn)->kn_kq); \
(kn)->kn_status |= KN_ACTIVE; \
if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
knote_enqueue((kn)); \
if (!(islock)) \
KQ_UNLOCK((kn)->kn_kq); \
} while (0)
#define KQ_LOCK(kq) do { \
mtx_lock(&(kq)->kq_lock); \
} while (0)
#define KQ_FLUX_WAKEUP(kq) do { \
if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \
(kq)->kq_state &= ~KQ_FLUXWAIT; \
wakeup((kq)); \
} \
} while (0)
#define KQ_UNLOCK_FLUX(kq) do { \
KQ_FLUX_WAKEUP(kq); \
mtx_unlock(&(kq)->kq_lock); \
} while (0)
#define KQ_UNLOCK(kq) do { \
mtx_unlock(&(kq)->kq_lock); \
} while (0)
#define KQ_OWNED(kq) do { \
mtx_assert(&(kq)->kq_lock, MA_OWNED); \
} while (0)
#define KQ_NOTOWNED(kq) do { \
mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
} while (0)
static struct knlist *
kn_list_lock(struct knote *kn)
{
struct knlist *knl;
knl = kn->kn_knlist;
if (knl != NULL)
knl->kl_lock(knl->kl_lockarg);
return (knl);
}
static void
kn_list_unlock(struct knlist *knl)
{
bool do_free;
if (knl == NULL)
return;
do_free = knl->kl_autodestroy && knlist_empty(knl);
knl->kl_unlock(knl->kl_lockarg);
if (do_free) {
knlist_destroy(knl);
free(knl, M_KQUEUE);
}
}
static bool
kn_in_flux(struct knote *kn)
{
return (kn->kn_influx > 0);
}
static void
kn_enter_flux(struct knote *kn)
{
KQ_OWNED(kn->kn_kq);
MPASS(kn->kn_influx < INT_MAX);
kn->kn_influx++;
}
static bool
kn_leave_flux(struct knote *kn)
{
KQ_OWNED(kn->kn_kq);
MPASS(kn->kn_influx > 0);
kn->kn_influx--;
return (kn->kn_influx == 0);
}
#define KNL_ASSERT_LOCK(knl, islocked) do { \
if (islocked) \
KNL_ASSERT_LOCKED(knl); \
else \
KNL_ASSERT_UNLOCKED(knl); \
} while (0)
#ifdef INVARIANTS
#define KNL_ASSERT_LOCKED(knl) do { \
knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED); \
} while (0)
#define KNL_ASSERT_UNLOCKED(knl) do { \
knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED); \
} while (0)
#else /* !INVARIANTS */
#define KNL_ASSERT_LOCKED(knl) do {} while (0)
#define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
#endif /* INVARIANTS */
#ifndef KN_HASHSIZE
#define KN_HASHSIZE 64 /* XXX should be tunable */
#endif
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
static int
filt_nullattach(struct knote *kn)
{
return (ENXIO);
};
struct filterops null_filtops = {
.f_isfd = 0,
.f_attach = filt_nullattach,
};
/* XXX - make SYSINIT to add these, and move into respective modules. */
extern struct filterops sig_filtops;
extern struct filterops fs_filtops;
/*
* Table for all system-defined filters.
*/
static struct mtx filterops_lock;
MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", MTX_DEF);
static struct {
const struct filterops *for_fop;
int for_nolock;
int for_refcnt;
} sysfilt_ops[EVFILT_SYSCOUNT] = {
{ &file_filtops, 1 }, /* EVFILT_READ */
{ &file_filtops, 1 }, /* EVFILT_WRITE */
{ &null_filtops }, /* EVFILT_AIO */
{ &file_filtops, 1 }, /* EVFILT_VNODE */
{ &proc_filtops, 1 }, /* EVFILT_PROC */
{ &sig_filtops, 1 }, /* EVFILT_SIGNAL */
{ &timer_filtops, 1 }, /* EVFILT_TIMER */
{ &file_filtops, 1 }, /* EVFILT_PROCDESC */
{ &fs_filtops, 1 }, /* EVFILT_FS */
{ &null_filtops }, /* EVFILT_LIO */
{ &user_filtops, 1 }, /* EVFILT_USER */
{ &null_filtops }, /* EVFILT_SENDFILE */
{ &file_filtops, 1 }, /* EVFILT_EMPTY */
};
/*
* Simple redirection for all cdevsw style objects to call their fo_kqfilter
* method.
*/
static int
filt_fileattach(struct knote *kn)
{
return (fo_kqfilter(kn->kn_fp, kn));
}
/*ARGSUSED*/
static int
kqueue_kqfilter(struct file *fp, struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
if (kn->kn_filter != EVFILT_READ)
return (EINVAL);
kn->kn_status |= KN_KQUEUE;
kn->kn_fop = &kqread_filtops;
knlist_add(&kq->kq_sel.si_note, kn, 0);
return (0);
}
static void
filt_kqdetach(struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
knlist_remove(&kq->kq_sel.si_note, kn, 0);
}
/*ARGSUSED*/
static int
filt_kqueue(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_fp->f_data;
kn->kn_data = kq->kq_count;
return (kn->kn_data > 0);
}
/* XXX - move to kern_proc.c? */
static int
filt_procattach(struct knote *kn)
{
struct proc *p;
int error;
bool exiting, immediate;
exiting = immediate = false;
if (kn->kn_sfflags & NOTE_EXIT)
p = pfind_any(kn->kn_id);
else
p = pfind(kn->kn_id);
if (p == NULL)
return (ESRCH);
if (p->p_flag & P_WEXIT)
exiting = true;
if ((error = p_cansee(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
kn->kn_ptr.p_proc = p;
kn->kn_flags |= EV_CLEAR; /* automatically set */
/*
* Internal flag indicating registration done by kernel for the
* purposes of getting a NOTE_CHILD notification.
*/
if (kn->kn_flags & EV_FLAG2) {
kn->kn_flags &= ~EV_FLAG2;
kn->kn_data = kn->kn_sdata; /* ppid */
kn->kn_fflags = NOTE_CHILD;
kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
immediate = true; /* Force immediate activation of child note. */
}
/*
* Internal flag indicating registration done by kernel (for other than
* NOTE_CHILD).
*/
if (kn->kn_flags & EV_FLAG1) {
kn->kn_flags &= ~EV_FLAG1;
}
knlist_add(p->p_klist, kn, 1);
/*
* Immediately activate any child notes or, in the case of a zombie
* target process, exit notes. The latter is necessary to handle the
* case where the target process, e.g. a child, dies before the kevent
* is registered.
*/
if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
KNOTE_ACTIVATE(kn, 0);
PROC_UNLOCK(p);
return (0);
}
/*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. So when the process
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
* it will be deleted when read out. However, as part of the knote deletion,
* this routine is called, so a check is needed to avoid actually performing
* a detach, because the original process does not exist any more.
*/
/* XXX - move to kern_proc.c? */
static void
filt_procdetach(struct knote *kn)
{
knlist_remove(kn->kn_knlist, kn, 0);
kn->kn_ptr.p_proc = NULL;
}
/* XXX - move to kern_proc.c? */
static int
filt_proc(struct knote *kn, long hint)
{
struct proc *p;
u_int event;
p = kn->kn_ptr.p_proc;
if (p == NULL) /* already activated, from attach filter */
return (0);
/* Mask off extra data. */
event = (u_int)hint & NOTE_PCTRLMASK;
/* If the user is interested in this event, record it. */
if (kn->kn_sfflags & event)
kn->kn_fflags |= event;
/* Process is gone, so flag the event as finished. */
if (event == NOTE_EXIT) {
kn->kn_flags |= EV_EOF | EV_ONESHOT;
kn->kn_ptr.p_proc = NULL;
if (kn->kn_fflags & NOTE_EXIT)
kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
if (kn->kn_fflags == 0)
kn->kn_flags |= EV_DROP;
return (1);
}
return (kn->kn_fflags != 0);
}
/*
* Called when the process forked. It mostly does the same as the
* knote(), activating all knotes registered to be activated when the
* process forked. Additionally, for each knote attached to the
* parent, check whether user wants to track the new process. If so
* attach a new knote to it, and immediately report an event with the
* child's pid.
*/
void
knote_fork(struct knlist *list, int pid)
{
struct kqueue *kq;
struct knote *kn;
struct kevent kev;
int error;
MPASS(list != NULL);
KNL_ASSERT_LOCKED(list);
if (SLIST_EMPTY(&list->kl_list))
return;
memset(&kev, 0, sizeof(kev));
SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
kq = kn->kn_kq;
KQ_LOCK(kq);
if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
KQ_UNLOCK(kq);
continue;
}
/*
* The same as knote(), activate the event.
*/
if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
if (kn->kn_fop->f_event(kn, NOTE_FORK))
KNOTE_ACTIVATE(kn, 1);
KQ_UNLOCK(kq);
continue;
}
/*
* The NOTE_TRACK case. In addition to the activation
* of the event, we need to register new events to
* track the child. Drop the locks in preparation for
* the call to kqueue_register().
*/
kn_enter_flux(kn);
KQ_UNLOCK(kq);
list->kl_unlock(list->kl_lockarg);
/*
* Activate existing knote and register tracking knotes with
* new process.
*
* First register a knote to get just the child notice. This
* must be a separate note from a potential NOTE_EXIT
* notification since both NOTE_CHILD and NOTE_EXIT are defined
* to use the data field (in conflicting ways).
*/
kev.ident = pid;
kev.filter = kn->kn_filter;
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
EV_FLAG2;
kev.fflags = kn->kn_sfflags;
kev.data = kn->kn_id; /* parent */
kev.udata = kn->kn_kevent.udata;/* preserve udata */
error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
if (error)
kn->kn_fflags |= NOTE_TRACKERR;
/*
* Then register another knote to track other potential events
* from the new process.
*/
kev.ident = pid;
kev.filter = kn->kn_filter;
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
kev.fflags = kn->kn_sfflags;
kev.data = kn->kn_id; /* parent */
kev.udata = kn->kn_kevent.udata;/* preserve udata */
error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
if (error)
kn->kn_fflags |= NOTE_TRACKERR;
if (kn->kn_fop->f_event(kn, NOTE_FORK))
KNOTE_ACTIVATE(kn, 0);
list->kl_lock(list->kl_lockarg);
KQ_LOCK(kq);
kn_leave_flux(kn);
KQ_UNLOCK_FLUX(kq);
}
}
/*
* XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
* interval timer support code.
*/
#define NOTE_TIMER_PRECMASK \
(NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
static sbintime_t
timer2sbintime(int64_t data, int flags)
{
int64_t secs;
/*
* Macros for converting to the fractional second portion of an
* sbintime_t using 64bit multiplication to improve precision.
*/
#define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
#define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
#define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
switch (flags & NOTE_TIMER_PRECMASK) {
case NOTE_SECONDS:
#ifdef __LP64__
if (data > (SBT_MAX / SBT_1S))
return (SBT_MAX);
#endif
return ((sbintime_t)data << 32);
case NOTE_MSECONDS: /* FALLTHROUGH */
case 0:
if (data >= 1000) {
secs = data / 1000;
#ifdef __LP64__
if (secs > (SBT_MAX / SBT_1S))
return (SBT_MAX);
#endif
return (secs << 32 | MS_TO_SBT(data % 1000));
}
return (MS_TO_SBT(data));
case NOTE_USECONDS:
if (data >= 1000000) {
secs = data / 1000000;
#ifdef __LP64__
if (secs > (SBT_MAX / SBT_1S))
return (SBT_MAX);
#endif
return (secs << 32 | US_TO_SBT(data % 1000000));
}
return (US_TO_SBT(data));
case NOTE_NSECONDS:
if (data >= 1000000000) {
secs = data / 1000000000;
#ifdef __LP64__
if (secs > (SBT_MAX / SBT_1S))
return (SBT_MAX);
#endif
return (secs << 32 | NS_TO_SBT(data % 1000000000));
}
return (NS_TO_SBT(data));
default:
break;
}
return (-1);
}
struct kq_timer_cb_data {
struct callout c;
struct proc *p;
struct knote *kn;
int cpuid;
int flags;
TAILQ_ENTRY(kq_timer_cb_data) link;
sbintime_t next; /* next timer event fires at */
sbintime_t to; /* precalculated timer period, 0 for abs */
};
#define KQ_TIMER_CB_ENQUEUED 0x01
static void
kqtimer_sched_callout(struct kq_timer_cb_data *kc)
{
callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
kc->cpuid, C_ABSOLUTE);
}
void
kqtimer_proc_continue(struct proc *p)
{
struct kq_timer_cb_data *kc, *kc1;
struct bintime bt;
sbintime_t now;
PROC_LOCK_ASSERT(p, MA_OWNED);
getboottimebin(&bt);
now = bttosbt(bt);
TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
if (kc->next <= now)
filt_timerexpire_l(kc->kn, true);
else
kqtimer_sched_callout(kc);
}
}
static void
filt_timerexpire_l(struct knote *kn, bool proc_locked)
{
struct kq_timer_cb_data *kc;
struct proc *p;
uint64_t delta;
sbintime_t now;
kc = kn->kn_ptr.p_v;
if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
kn->kn_data++;
KNOTE_ACTIVATE(kn, 0);
return;
}
now = sbinuptime();
if (now >= kc->next) {
delta = (now - kc->next) / kc->to;
if (delta == 0)
delta = 1;
kn->kn_data += delta;
kc->next += delta * kc->to;
if (now >= kc->next) /* overflow */
kc->next = now + kc->to;
KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */
}
/*
* Initial check for stopped kc->p is racy. It is fine to
* miss the set of the stop flags, at worst we would schedule
* one more callout. On the other hand, it is not fine to not
* schedule when we we missed clearing of the flags, we
* recheck them under the lock and observe consistent state.
*/
p = kc->p;
if (P_SHOULDSTOP(p) || P_KILLED(p)) {
if (!proc_locked)
PROC_LOCK(p);
if (P_SHOULDSTOP(p) || P_KILLED(p)) {
if ((kc->flags & KQ_TIMER_CB_ENQUEUED) == 0) {
kc->flags |= KQ_TIMER_CB_ENQUEUED;
TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
}
if (!proc_locked)
PROC_UNLOCK(p);
return;
}
if (!proc_locked)
PROC_UNLOCK(p);
}
kqtimer_sched_callout(kc);
}
static void
filt_timerexpire(void *knx)
{
filt_timerexpire_l(knx, false);
}
/*
* data contains amount of time to sleep
*/
static int
filt_timervalidate(struct knote *kn, sbintime_t *to)
{
struct bintime bt;
sbintime_t sbt;
if (kn->kn_sdata < 0)
return (EINVAL);
if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
kn->kn_sdata = 1;
/*
* The only fflags values supported are the timer unit
* (precision) and the absolute time indicator.
*/
if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
return (EINVAL);
*to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
if (*to < 0)
return (EINVAL);
if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
getboottimebin(&bt);
sbt = bttosbt(bt);
*to = MAX(0, *to - sbt);
}
return (0);
}
static int
filt_timerattach(struct knote *kn)
{
struct kq_timer_cb_data *kc;
sbintime_t to;
int error;
to = -1;
error = filt_timervalidate(kn, &to);
if (error != 0)
return (error);
KASSERT(to > 0 || (kn->kn_flags & EV_ONESHOT) != 0 ||
(kn->kn_sfflags & NOTE_ABSTIME) != 0,
("%s: periodic timer has a calculated zero timeout", __func__));
KASSERT(to >= 0,
("%s: timer has a calculated negative timeout", __func__));
if (atomic_fetchadd_int(&kq_ncallouts, 1) + 1 > kq_calloutmax) {
atomic_subtract_int(&kq_ncallouts, 1);
return (ENOMEM);
}
if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
kn->kn_flags |= EV_CLEAR; /* automatically set */
kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */
kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
kc->kn = kn;
kc->p = curproc;
kc->cpuid = PCPU_GET(cpuid);
kc->flags = 0;
callout_init(&kc->c, 1);
filt_timerstart(kn, to);
return (0);
}
static void
filt_timerstart(struct knote *kn, sbintime_t to)
{
struct kq_timer_cb_data *kc;
kc = kn->kn_ptr.p_v;
if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
kc->next = to;
kc->to = 0;
} else {
kc->next = to + sbinuptime();
kc->to = to;
}
kqtimer_sched_callout(kc);
}
static void
filt_timerdetach(struct knote *kn)
{
struct kq_timer_cb_data *kc;
unsigned int old __unused;
bool pending;
kc = kn->kn_ptr.p_v;
do {
callout_drain(&kc->c);
/*
* kqtimer_proc_continue() might have rescheduled this callout.
* Double-check, using the process mutex as an interlock.
*/
PROC_LOCK(kc->p);
if ((kc->flags & KQ_TIMER_CB_ENQUEUED) != 0) {
kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
TAILQ_REMOVE(&kc->p->p_kqtim_stop, kc, link);
}
pending = callout_pending(&kc->c);
PROC_UNLOCK(kc->p);
} while (pending);
free(kc, M_KQUEUE);
old = atomic_fetchadd_int(&kq_ncallouts, -1);
KASSERT(old > 0, ("Number of callouts cannot become negative"));
kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */
}
static void
filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
{
struct kq_timer_cb_data *kc;
struct kqueue *kq;
sbintime_t to;
int error;
switch (type) {
case EVENT_REGISTER:
/* Handle re-added timers that update data/fflags */
if (kev->flags & EV_ADD) {
kc = kn->kn_ptr.p_v;
/* Drain any existing callout. */
callout_drain(&kc->c);
/* Throw away any existing undelivered record
* of the timer expiration. This is done under
* the presumption that if a process is
* re-adding this timer with new parameters,
* it is no longer interested in what may have
* happened under the old parameters. If it is
* interested, it can wait for the expiration,
* delete the old timer definition, and then
* add the new one.
*
* This has to be done while the kq is locked:
* - if enqueued, dequeue
* - make it no longer active
* - clear the count of expiration events
*/
kq = kn->kn_kq;
KQ_LOCK(kq);
if (kn->kn_status & KN_QUEUED)
knote_dequeue(kn);
kn->kn_status &= ~KN_ACTIVE;
kn->kn_data = 0;
KQ_UNLOCK(kq);
/* Reschedule timer based on new data/fflags */
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
error = filt_timervalidate(kn, &to);
if (error != 0) {
kn->kn_flags |= EV_ERROR;
kn->kn_data = error;
} else
filt_timerstart(kn, to);
}
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
default:
panic("filt_timertouch() - invalid type (%ld)", type);
break;
}
}
static int
filt_timer(struct knote *kn, long hint)
{
return (kn->kn_data != 0);
}
static int
filt_userattach(struct knote *kn)
{
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
kn->kn_hook = NULL;
if (kn->kn_fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
else
kn->kn_hookid = 0;
return (0);
}
static void
filt_userdetach(__unused struct knote *kn)
{
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
}
static int
filt_user(struct knote *kn, __unused long hint)
{
return (kn->kn_hookid);
}
static void
filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
{
u_int ffctrl;
switch (type) {
case EVENT_REGISTER:
if (kev->fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
ffctrl = kev->fflags & NOTE_FFCTRLMASK;
kev->fflags &= NOTE_FFLAGSMASK;
switch (ffctrl) {
case NOTE_FFNOP:
break;
case NOTE_FFAND:
kn->kn_sfflags &= kev->fflags;
break;
case NOTE_FFOR:
kn->kn_sfflags |= kev->fflags;
break;
case NOTE_FFCOPY:
kn->kn_sfflags = kev->fflags;
break;
default:
/* XXX Return error? */
break;
}
kn->kn_sdata = kev->data;
if (kev->flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
kev->fflags = kn->kn_sfflags;
kev->data = kn->kn_sdata;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
default:
panic("filt_usertouch() - invalid type (%ld)", type);
break;
}
}
int
sys_kqueue(struct thread *td, struct kqueue_args *uap)
{
return (kern_kqueue(td, 0, NULL));
}
int
sys_kqueuex(struct thread *td, struct kqueuex_args *uap)
{
int flags;
if ((uap->flags & ~(KQUEUE_CLOEXEC)) != 0)
return (EINVAL);
flags = 0;
if ((uap->flags & KQUEUE_CLOEXEC) != 0)
flags |= O_CLOEXEC;
return (kern_kqueue(td, flags, NULL));
}
static void
kqueue_init(struct kqueue *kq)
{
mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
TAILQ_INIT(&kq->kq_head);
knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
}
int
kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
{
struct filedesc *fdp;
struct kqueue *kq;
struct file *fp;
struct ucred *cred;
int fd, error;
fdp = td->td_proc->p_fd;
cred = td->td_ucred;
if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
return (ENOMEM);
error = falloc_caps(td, &fp, &fd, flags, fcaps);
if (error != 0) {
chgkqcnt(cred->cr_ruidinfo, -1, 0);
return (error);
}
/* An extra reference on `fp' has been held for us by falloc(). */
kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
kqueue_init(kq);
kq->kq_fdp = fdp;
kq->kq_cred = crhold(cred);
FILEDESC_XLOCK(fdp);
TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
FILEDESC_XUNLOCK(fdp);
finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
fdrop(fp, td);
td->td_retval[0] = fd;
return (0);
}
struct g_kevent_args {
int fd;
const void *changelist;
int nchanges;
void *eventlist;
int nevents;
const struct timespec *timeout;
};
int
sys_kevent(struct thread *td, struct kevent_args *uap)
{
struct kevent_copyops k_ops = {
.arg = uap,
.k_copyout = kevent_copyout,
.k_copyin = kevent_copyin,
.kevent_size = sizeof(struct kevent),
};
struct g_kevent_args gk_args = {
.fd = uap->fd,
.changelist = uap->changelist,
.nchanges = uap->nchanges,
.eventlist = uap->eventlist,
.nevents = uap->nevents,
.timeout = uap->timeout,
};
return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
}
static int
kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
struct kevent_copyops *k_ops, const char *struct_name)
{
struct timespec ts, *tsp;
#ifdef KTRACE
struct kevent *eventlist = uap->eventlist;
#endif
int error;
if (uap->timeout != NULL) {
error = copyin(uap->timeout, &ts, sizeof(ts));
if (error)
return (error);
tsp = &ts;
} else
tsp = NULL;
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT_ARRAY))
ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
uap->nchanges, k_ops->kevent_size);
#endif
error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
k_ops, tsp);
#ifdef KTRACE
if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
td->td_retval[0], k_ops->kevent_size);
#endif
return (error);
}
/*
* Copy 'count' items into the destination list pointed to by uap->eventlist.
*/
static int
kevent_copyout(void *arg, struct kevent *kevp, int count)
{
struct kevent_args *uap;
int error;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct kevent_args *)arg;
error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
if (error == 0)
uap->eventlist += count;
return (error);
}
/*
* Copy 'count' items from the list pointed to by uap->changelist.
*/
static int
kevent_copyin(void *arg, struct kevent *kevp, int count)
{
struct kevent_args *uap;
int error;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct kevent_args *)arg;
error = copyin(uap->changelist, kevp, count * sizeof *kevp);
if (error == 0)
uap->changelist += count;
return (error);
}
#ifdef COMPAT_FREEBSD11
static int
kevent11_copyout(void *arg, struct kevent *kevp, int count)
{
struct freebsd11_kevent_args *uap;
struct freebsd11_kevent kev11;
int error, i;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct freebsd11_kevent_args *)arg;
for (i = 0; i < count; i++) {
kev11.ident = kevp->ident;
kev11.filter = kevp->filter;
kev11.flags = kevp->flags;
kev11.fflags = kevp->fflags;
kev11.data = kevp->data;
kev11.udata = kevp->udata;
error = copyout(&kev11, uap->eventlist, sizeof(kev11));
if (error != 0)
break;
uap->eventlist++;
kevp++;
}
return (error);
}
/*
* Copy 'count' items from the list pointed to by uap->changelist.
*/
static int
kevent11_copyin(void *arg, struct kevent *kevp, int count)
{
struct freebsd11_kevent_args *uap;
struct freebsd11_kevent kev11;
int error, i;
KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
uap = (struct freebsd11_kevent_args *)arg;
for (i = 0; i < count; i++) {
error = copyin(uap->changelist, &kev11, sizeof(kev11));
if (error != 0)
break;
kevp->ident = kev11.ident;
kevp->filter = kev11.filter;
kevp->flags = kev11.flags;
kevp->fflags = kev11.fflags;
kevp->data = (uintptr_t)kev11.data;
kevp->udata = kev11.udata;
bzero(&kevp->ext, sizeof(kevp->ext));
uap->changelist++;
kevp++;
}
return (error);
}
int
freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
{
struct kevent_copyops k_ops = {
.arg = uap,
.k_copyout = kevent11_copyout,
.k_copyin = kevent11_copyin,
.kevent_size = sizeof(struct freebsd11_kevent),
};
struct g_kevent_args gk_args = {
.fd = uap->fd,
.changelist = uap->changelist,
.nchanges = uap->nchanges,
.eventlist = uap->eventlist,
.nevents = uap->nevents,
.timeout = uap->timeout,
};
return (kern_kevent_generic(td, &gk_args, &k_ops, "freebsd11_kevent"));
}
#endif
int
kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
struct kevent_copyops *k_ops, const struct timespec *timeout)
{
cap_rights_t rights;
struct file *fp;
int error;
cap_rights_init_zero(&rights);
if (nchanges > 0)
cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
if (nevents > 0)
cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
error = fget(td, fd, &rights, &fp);
if (error != 0)
return (error);
error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
fdrop(fp, td);
return (error);
}
static int
kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
struct kevent_copyops *k_ops, const struct timespec *timeout)
{
struct kevent keva[KQ_NEVENTS];
struct kevent *kevp, *changes;
int i, n, nerrors, error;
if (nchanges < 0)
return (EINVAL);
nerrors = 0;
while (nchanges > 0) {
n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
error = k_ops->k_copyin(k_ops->arg, keva, n);
if (error)
return (error);
changes = keva;
for (i = 0; i < n; i++) {
kevp = &changes[i];
if (!kevp->filter)
continue;
kevp->flags &= ~EV_SYSFLAGS;
error = kqueue_register(kq, kevp, td, M_WAITOK);
if (error || (kevp->flags & EV_RECEIPT)) {
if (nevents == 0)
return (error);
kevp->flags = EV_ERROR;
kevp->data = error;
(void)k_ops->k_copyout(k_ops->arg, kevp, 1);
nevents--;
nerrors++;
}
}
nchanges -= n;
}
if (nerrors) {
td->td_retval[0] = nerrors;
return (0);
}
return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
}
int
kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
struct kevent_copyops *k_ops, const struct timespec *timeout)
{
struct kqueue *kq;
int error;
error = kqueue_acquire(fp, &kq);
if (error != 0)
return (error);
error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
kqueue_release(kq, 0);
return (error);
}
/*
* Performs a kevent() call on a temporarily created kqueue. This can be
* used to perform one-shot polling, similar to poll() and select().
*/
int
kern_kevent_anonymous(struct thread *td, int nevents,
struct kevent_copyops *k_ops)
{
struct kqueue kq = {};
int error;
kqueue_init(&kq);
kq.kq_refcnt = 1;
error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
kqueue_drain(&kq, td);
kqueue_destroy(&kq);
return (error);
}
int
kqueue_add_filteropts(int filt, const struct filterops *filtops)
{
int error;
error = 0;
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
printf(
"trying to add a filterop that is out of range: %d is beyond %d\n",
~filt, EVFILT_SYSCOUNT);
return EINVAL;
}
mtx_lock(&filterops_lock);
if (sysfilt_ops[~filt].for_fop != &null_filtops &&
sysfilt_ops[~filt].for_fop != NULL)
error = EEXIST;
else {
sysfilt_ops[~filt].for_fop = filtops;
sysfilt_ops[~filt].for_refcnt = 0;
}
mtx_unlock(&filterops_lock);
return (error);
}
int
kqueue_del_filteropts(int filt)
{
int error;
error = 0;
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return EINVAL;
mtx_lock(&filterops_lock);
if (sysfilt_ops[~filt].for_fop == &null_filtops ||
sysfilt_ops[~filt].for_fop == NULL)
error = EINVAL;
else if (sysfilt_ops[~filt].for_refcnt != 0)
error = EBUSY;
else {
sysfilt_ops[~filt].for_fop = &null_filtops;
sysfilt_ops[~filt].for_refcnt = 0;
}
mtx_unlock(&filterops_lock);
return error;
}
static const struct filterops *
kqueue_fo_find(int filt)
{
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return NULL;
if (sysfilt_ops[~filt].for_nolock)
return sysfilt_ops[~filt].for_fop;
mtx_lock(&filterops_lock);
sysfilt_ops[~filt].for_refcnt++;
if (sysfilt_ops[~filt].for_fop == NULL)
sysfilt_ops[~filt].for_fop = &null_filtops;
mtx_unlock(&filterops_lock);
return sysfilt_ops[~filt].for_fop;
}
static void
kqueue_fo_release(int filt)
{
if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
return;
if (sysfilt_ops[~filt].for_nolock)
return;
mtx_lock(&filterops_lock);
KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
("filter object refcount not valid on release"));
sysfilt_ops[~filt].for_refcnt--;
mtx_unlock(&filterops_lock);
}
/*
* A ref to kq (obtained via kqueue_acquire) must be held.
*/
static int
kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
int mflag)
{
const struct filterops *fops;
struct file *fp;
struct knote *kn, *tkn;
struct knlist *knl;
int error, filt, event;
int haskqglobal, filedesc_unlock;
if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
return (EINVAL);
fp = NULL;
kn = NULL;
knl = NULL;
error = 0;
haskqglobal = 0;
filedesc_unlock = 0;
filt = kev->filter;
fops = kqueue_fo_find(filt);
if (fops == NULL)
return EINVAL;
if (kev->flags & EV_ADD) {
/* Reject an invalid flag pair early */
if (kev->flags & EV_KEEPUDATA) {
tkn = NULL;
error = EINVAL;
goto done;
}
/*
* Prevent waiting with locks. Non-sleepable
* allocation failures are handled in the loop, only
* if the spare knote appears to be actually required.
*/
tkn = knote_alloc(mflag);
} else {
tkn = NULL;
}
findkn:
if (fops->f_isfd) {
KASSERT(td != NULL, ("td is NULL"));
if (kev->ident > INT_MAX)
error = EBADF;
else
error = fget(td, kev->ident, &cap_event_rights, &fp);
if (error)
goto done;
if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
kev->ident, M_NOWAIT) != 0) {
/* try again */
fdrop(fp, td);
fp = NULL;
error = kqueue_expand(kq, fops, kev->ident, mflag);
if (error)
goto done;
goto findkn;
}
if (fp->f_type == DTYPE_KQUEUE) {
/*
* If we add some intelligence about what we are doing,
* we should be able to support events on ourselves.
* We need to know when we are doing this to prevent
* getting both the knlist lock and the kq lock since
* they are the same thing.
*/
if (fp->f_data == kq) {
error = EINVAL;
goto done;
}
/*
* Pre-lock the filedesc before the global
* lock mutex, see the comment in
* kqueue_close().
*/
FILEDESC_XLOCK(td->td_proc->p_fd);
filedesc_unlock = 1;
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
}
KQ_LOCK(kq);
if (kev->ident < kq->kq_knlistsize) {
SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
if (kev->filter == kn->kn_filter)
break;
}
} else {
if ((kev->flags & EV_ADD) == EV_ADD) {
error = kqueue_expand(kq, fops, kev->ident, mflag);
if (error != 0)
goto done;
}
KQ_LOCK(kq);
/*
* If possible, find an existing knote to use for this kevent.
*/
if (kev->filter == EVFILT_PROC &&
(kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
/* This is an internal creation of a process tracking
* note. Don't attempt to coalesce this with an
* existing note.
*/
;
} else if (kq->kq_knhashmask != 0) {
struct klist *list;
list = &kq->kq_knhash[
KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
SLIST_FOREACH(kn, list, kn_link)
if (kev->ident == kn->kn_id &&
kev->filter == kn->kn_filter)
break;
}
}
/* knote is in the process of changing, wait for it to stabilize. */
if (kn != NULL && kn_in_flux(kn)) {
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (filedesc_unlock) {
FILEDESC_XUNLOCK(td->td_proc->p_fd);
filedesc_unlock = 0;
}
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
if (fp != NULL) {
fdrop(fp, td);
fp = NULL;
}
goto findkn;
}
/*
* kn now contains the matching knote, or NULL if no match
*/
if (kn == NULL) {
if (kev->flags & EV_ADD) {
kn = tkn;
tkn = NULL;
if (kn == NULL) {
KQ_UNLOCK(kq);
error = ENOMEM;
goto done;
}
kn->kn_fp = fp;
kn->kn_kq = kq;
kn->kn_fop = fops;
/*
* apply reference counts to knote structure, and
* do not release it at the end of this routine.
*/
fops = NULL;
fp = NULL;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kev->fflags = 0;
kev->data = 0;
kn->kn_kevent = *kev;
kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
kn->kn_status = KN_DETACHED;
if ((kev->flags & EV_DISABLE) != 0)
kn->kn_status |= KN_DISABLED;
kn_enter_flux(kn);
error = knote_attach(kn, kq);
KQ_UNLOCK(kq);
if (error != 0) {
tkn = kn;
goto done;
}
if ((error = kn->kn_fop->f_attach(kn)) != 0) {
knote_drop_detached(kn, td);
goto done;
}
knl = kn_list_lock(kn);
goto done_ev_add;
} else {
/* No matching knote and the EV_ADD flag is not set. */
KQ_UNLOCK(kq);
error = ENOENT;
goto done;
}
}
if (kev->flags & EV_DELETE) {
kn_enter_flux(kn);
KQ_UNLOCK(kq);
knote_drop(kn, td);
goto done;
}
if (kev->flags & EV_FORCEONESHOT) {
kn->kn_flags |= EV_ONESHOT;
KNOTE_ACTIVATE(kn, 1);
}
if ((kev->flags & EV_ENABLE) != 0)
kn->kn_status &= ~KN_DISABLED;
else if ((kev->flags & EV_DISABLE) != 0)
kn->kn_status |= KN_DISABLED;
/*
* The user may change some filter values after the initial EV_ADD,
* but doing so will not reset any filter which has already been
* triggered.
*/
kn->kn_status |= KN_SCAN;
kn_enter_flux(kn);
KQ_UNLOCK(kq);
knl = kn_list_lock(kn);
if ((kev->flags & EV_KEEPUDATA) == 0)
kn->kn_kevent.udata = kev->udata;
if (!fops->f_isfd && fops->f_touch != NULL) {
fops->f_touch(kn, kev, EVENT_REGISTER);
} else {
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
}
done_ev_add:
/*
* We can get here with kn->kn_knlist == NULL. This can happen when
* the initial attach event decides that the event is "completed"
* already, e.g., filt_procattach() is called on a zombie process. It
* will call filt_proc() which will remove it from the list, and NULL
* kn_knlist.
*
* KN_DISABLED will be stable while the knote is in flux, so the
* unlocked read will not race with an update.
*/
if ((kn->kn_status & KN_DISABLED) == 0)
event = kn->kn_fop->f_event(kn, 0);
else
event = 0;
KQ_LOCK(kq);
if (event)
kn->kn_status |= KN_ACTIVE;
if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
KN_ACTIVE)
knote_enqueue(kn);
kn->kn_status &= ~KN_SCAN;
kn_leave_flux(kn);
kn_list_unlock(knl);
KQ_UNLOCK_FLUX(kq);
done:
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (filedesc_unlock)
FILEDESC_XUNLOCK(td->td_proc->p_fd);
if (fp != NULL)
fdrop(fp, td);
knote_free(tkn);
if (fops != NULL)
kqueue_fo_release(filt);
return (error);
}
static int
kqueue_acquire(struct file *fp, struct kqueue **kqp)
{
int error;
struct kqueue *kq;
error = 0;
kq = fp->f_data;
if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
return (EBADF);
*kqp = kq;
KQ_LOCK(kq);
if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
KQ_UNLOCK(kq);
return (EBADF);
}
kq->kq_refcnt++;
KQ_UNLOCK(kq);
return error;
}
static void
kqueue_release(struct kqueue *kq, int locked)
{
if (locked)
KQ_OWNED(kq);
else
KQ_LOCK(kq);
kq->kq_refcnt--;
if (kq->kq_refcnt == 1)
wakeup(&kq->kq_refcnt);
if (!locked)
KQ_UNLOCK(kq);
}
static void
ast_kqueue(struct thread *td, int tda __unused)
{
taskqueue_quiesce(taskqueue_kqueue_ctx);
}
static void
kqueue_schedtask(struct kqueue *kq)
{
KQ_OWNED(kq);
KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
("scheduling kqueue task while draining"));
if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
kq->kq_state |= KQ_TASKSCHED;
ast_sched(curthread, TDA_KQUEUE);
}
}
/*
* Expand the kq to make sure we have storage for fops/ident pair.
*
* Return 0 on success (or no work necessary), return errno on failure.
*/
static int
kqueue_expand(struct kqueue *kq, const struct filterops *fops, uintptr_t ident,
int mflag)
{
struct klist *list, *tmp_knhash, *to_free;
u_long tmp_knhashmask;
int error, fd, size;
KQ_NOTOWNED(kq);
error = 0;
to_free = NULL;
if (fops->f_isfd) {
fd = ident;
if (kq->kq_knlistsize <= fd) {
size = kq->kq_knlistsize;
while (size <= fd)
size += KQEXTENT;
list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
if (list == NULL)
return ENOMEM;
KQ_LOCK(kq);
if ((kq->kq_state & KQ_CLOSING) != 0) {
to_free = list;
error = EBADF;
} else if (kq->kq_knlistsize > fd) {
to_free = list;
} else {
if (kq->kq_knlist != NULL) {
bcopy(kq->kq_knlist, list,
kq->kq_knlistsize * sizeof(*list));
to_free = kq->kq_knlist;
kq->kq_knlist = NULL;
}
bzero((caddr_t)list +
kq->kq_knlistsize * sizeof(*list),
(size - kq->kq_knlistsize) * sizeof(*list));
kq->kq_knlistsize = size;
kq->kq_knlist = list;
}
KQ_UNLOCK(kq);
}
} else {
if (kq->kq_knhashmask == 0) {
tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
&tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
HASH_WAITOK : HASH_NOWAIT);
if (tmp_knhash == NULL)
return (ENOMEM);
KQ_LOCK(kq);
if ((kq->kq_state & KQ_CLOSING) != 0) {
to_free = tmp_knhash;
error = EBADF;
} else if (kq->kq_knhashmask == 0) {
kq->kq_knhash = tmp_knhash;
kq->kq_knhashmask = tmp_knhashmask;
} else {
to_free = tmp_knhash;
}
KQ_UNLOCK(kq);
}
}
free(to_free, M_KQUEUE);
KQ_NOTOWNED(kq);
return (error);
}
static void
kqueue_task(void *arg, int pending)
{
struct kqueue *kq;
int haskqglobal;
haskqglobal = 0;
kq = arg;
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
KQ_LOCK(kq);
KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
kq->kq_state &= ~KQ_TASKSCHED;
if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
wakeup(&kq->kq_state);
}
KQ_UNLOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
}
/*
* Scan, update kn_data (if not ONESHOT), and copyout triggered events.
* We treat KN_MARKER knotes as if they are in flux.
*/
static int
kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
const struct timespec *tsp, struct kevent *keva, struct thread *td)
{
struct kevent *kevp;
struct knote *kn, *marker;
struct knlist *knl;
sbintime_t asbt, rsbt;
int count, error, haskqglobal, influx, nkev, touch;
count = maxevents;
nkev = 0;
error = 0;
haskqglobal = 0;
if (maxevents == 0)
goto done_nl;
if (maxevents < 0) {
error = EINVAL;
goto done_nl;
}
rsbt = 0;
if (tsp != NULL) {
if (!timespecvalid_interval(tsp)) {
error = EINVAL;
goto done_nl;
}
if (timespecisset(tsp)) {
if (tsp->tv_sec <= INT32_MAX) {
rsbt = tstosbt(*tsp);
if (TIMESEL(&asbt, rsbt))
asbt += tc_tick_sbt;
if (asbt <= SBT_MAX - rsbt)
asbt += rsbt;
else
asbt = 0;
rsbt >>= tc_precexp;
} else
asbt = 0;
} else
asbt = -1;
} else
asbt = 0;
marker = knote_alloc(M_WAITOK);
marker->kn_status = KN_MARKER;
KQ_LOCK(kq);
retry:
kevp = keva;
if (kq->kq_count == 0) {
if (asbt == -1) {
error = EWOULDBLOCK;
} else {
kq->kq_state |= KQ_SLEEP;
error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
"kqread", asbt, rsbt, C_ABSOLUTE);
}
if (error == 0)
goto retry;
/* don't restart after signals... */
if (error == ERESTART)
error = EINTR;
else if (error == EWOULDBLOCK)
error = 0;
goto done;
}
TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
influx = 0;
while (count) {
KQ_OWNED(kq);
kn = TAILQ_FIRST(&kq->kq_head);
if ((kn->kn_status == KN_MARKER && kn != marker) ||
kn_in_flux(kn)) {
if (influx) {
influx = 0;
KQ_FLUX_WAKEUP(kq);
}
kq->kq_state |= KQ_FLUXWAIT;
error = msleep(kq, &kq->kq_lock, PSOCK,
"kqflxwt", 0);
continue;
}
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
continue;
}
if (kn == marker) {
KQ_FLUX_WAKEUP(kq);
if (count == maxevents)
goto retry;
goto done;
}
KASSERT(!kn_in_flux(kn),
("knote %p is unexpectedly in flux", kn));
if ((kn->kn_flags & EV_DROP) == EV_DROP) {
kn->kn_status &= ~KN_QUEUED;
kn_enter_flux(kn);
kq->kq_count--;
KQ_UNLOCK(kq);
/*
* We don't need to lock the list since we've
* marked it as in flux.
*/
knote_drop(kn, td);
KQ_LOCK(kq);
continue;
} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
kn->kn_status &= ~KN_QUEUED;
kn_enter_flux(kn);
kq->kq_count--;
KQ_UNLOCK(kq);
/*
* We don't need to lock the list since we've
* marked the knote as being in flux.
*/
*kevp = kn->kn_kevent;
knote_drop(kn, td);
KQ_LOCK(kq);
kn = NULL;
} else {
kn->kn_status |= KN_SCAN;
kn_enter_flux(kn);
KQ_UNLOCK(kq);
if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
knl = kn_list_lock(kn);
if (kn->kn_fop->f_event(kn, 0) == 0) {
KQ_LOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
KN_SCAN);
kn_leave_flux(kn);
kq->kq_count--;
kn_list_unlock(knl);
influx = 1;
continue;
}
touch = (!kn->kn_fop->f_isfd &&
kn->kn_fop->f_touch != NULL);
if (touch)
kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
else
*kevp = kn->kn_kevent;
KQ_LOCK(kq);
KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
/*
* Manually clear knotes who weren't
* 'touch'ed.
*/
if (touch == 0 && kn->kn_flags & EV_CLEAR) {
kn->kn_data = 0;
kn->kn_fflags = 0;
}
if (kn->kn_flags & EV_DISPATCH)
kn->kn_status |= KN_DISABLED;
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
kq->kq_count--;
} else
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_SCAN;
kn_leave_flux(kn);
kn_list_unlock(knl);
influx = 1;
}
/* we are returning a copy to the user */
kevp++;
nkev++;
count--;
if (nkev == KQ_NEVENTS) {
influx = 0;
KQ_UNLOCK_FLUX(kq);
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
nkev = 0;
kevp = keva;
KQ_LOCK(kq);
if (error)
break;
}
}
TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
done:
KQ_OWNED(kq);
KQ_UNLOCK_FLUX(kq);
knote_free(marker);
done_nl:
KQ_NOTOWNED(kq);
if (nkev != 0)
error = k_ops->k_copyout(k_ops->arg, keva, nkev);
td->td_retval[0] = maxevents - count;
return (error);
}
/*ARGSUSED*/
static int
kqueue_ioctl(struct file *fp, u_long cmd, void *data,
struct ucred *active_cred, struct thread *td)
{
/*
* Enabling sigio causes two major problems:
* 1) infinite recursion:
* Synopsys: kevent is being used to track signals and have FIOASYNC
* set. On receipt of a signal this will cause a kqueue to recurse
* into itself over and over. Sending the sigio causes the kqueue
* to become ready, which in turn posts sigio again, forever.
* Solution: this can be solved by setting a flag in the kqueue that
* we have a SIGIO in progress.
* 2) locking problems:
* Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
* us above the proc and pgrp locks.
* Solution: Post a signal using an async mechanism, being sure to
* record a generation count in the delivery so that we do not deliver
* a signal to the wrong process.
*
* Note, these two mechanisms are somewhat mutually exclusive!
*/
#if 0
struct kqueue *kq;
kq = fp->f_data;
switch (cmd) {
case FIOASYNC:
if (*(int *)data) {
kq->kq_state |= KQ_ASYNC;
} else {
kq->kq_state &= ~KQ_ASYNC;
}
return (0);
case FIOSETOWN:
return (fsetown(*(int *)data, &kq->kq_sigio));
case FIOGETOWN:
*(int *)data = fgetown(&kq->kq_sigio);
return (0);
}
#endif
return (ENOTTY);
}
/*ARGSUSED*/
static int
kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
struct thread *td)
{
struct kqueue *kq;
int revents = 0;
int error;
if ((error = kqueue_acquire(fp, &kq)))
return POLLERR;
KQ_LOCK(kq);
if (events & (POLLIN | POLLRDNORM)) {
if (kq->kq_count) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(td, &kq->kq_sel);
if (SEL_WAITING(&kq->kq_sel))
kq->kq_state |= KQ_SEL;
}
}
kqueue_release(kq, 1);
KQ_UNLOCK(kq);
return (revents);
}
/*ARGSUSED*/
static int
kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred)
{
bzero((void *)st, sizeof *st);
/*
* We no longer return kq_count because the unlocked value is useless.
* If you spent all this time getting the count, why not spend your
* syscall better by calling kevent?
*
* XXX - This is needed for libc_r.
*/
st->st_mode = S_IFIFO;
return (0);
}
static void
kqueue_drain(struct kqueue *kq, struct thread *td)
{
struct knote *kn;
int i;
KQ_LOCK(kq);
KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
("kqueue already closing"));
kq->kq_state |= KQ_CLOSING;
if (kq->kq_refcnt > 1)
msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
KASSERT(knlist_empty(&kq->kq_sel.si_note),
("kqueue's knlist not empty"));
for (i = 0; i < kq->kq_knlistsize; i++) {
while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
if (kn_in_flux(kn)) {
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
continue;
}
kn_enter_flux(kn);
KQ_UNLOCK(kq);
knote_drop(kn, td);
KQ_LOCK(kq);
}
}
if (kq->kq_knhashmask != 0) {
for (i = 0; i <= kq->kq_knhashmask; i++) {
while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
if (kn_in_flux(kn)) {
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK,
"kqclo2", 0);
continue;
}
kn_enter_flux(kn);
KQ_UNLOCK(kq);
knote_drop(kn, td);
KQ_LOCK(kq);
}
}
}
if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
kq->kq_state |= KQ_TASKDRAIN;
msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
}
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
selwakeuppri(&kq->kq_sel, PSOCK);
if (!SEL_WAITING(&kq->kq_sel))
kq->kq_state &= ~KQ_SEL;
}
KQ_UNLOCK(kq);
}
static void
kqueue_destroy(struct kqueue *kq)
{
KASSERT(kq->kq_fdp == NULL,
("kqueue still attached to a file descriptor"));
seldrain(&kq->kq_sel);
knlist_destroy(&kq->kq_sel.si_note);
mtx_destroy(&kq->kq_lock);
if (kq->kq_knhash != NULL)
free(kq->kq_knhash, M_KQUEUE);
if (kq->kq_knlist != NULL)
free(kq->kq_knlist, M_KQUEUE);
funsetown(&kq->kq_sigio);
}
/*ARGSUSED*/
static int
kqueue_close(struct file *fp, struct thread *td)
{
struct kqueue *kq = fp->f_data;
struct filedesc *fdp;
int error;
int filedesc_unlock;
if ((error = kqueue_acquire(fp, &kq)))
return error;
kqueue_drain(kq, td);
/*
* We could be called due to the knote_drop() doing fdrop(),
* called from kqueue_register(). In this case the global
* lock is owned, and filedesc sx is locked before, to not
* take the sleepable lock after non-sleepable.
*/
fdp = kq->kq_fdp;
kq->kq_fdp = NULL;
if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
FILEDESC_XLOCK(fdp);
filedesc_unlock = 1;
} else
filedesc_unlock = 0;
TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
if (filedesc_unlock)
FILEDESC_XUNLOCK(fdp);
kqueue_destroy(kq);
chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
crfree(kq->kq_cred);
free(kq, M_KQUEUE);
fp->f_data = NULL;
return (0);
}
static int
kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
{
struct kqueue *kq = fp->f_data;
kif->kf_type = KF_TYPE_KQUEUE;
kif->kf_un.kf_kqueue.kf_kqueue_addr = (uintptr_t)kq;
kif->kf_un.kf_kqueue.kf_kqueue_count = kq->kq_count;
kif->kf_un.kf_kqueue.kf_kqueue_state = kq->kq_state;
return (0);
}
static void
kqueue_wakeup(struct kqueue *kq)
{
KQ_OWNED(kq);
if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
kq->kq_state &= ~KQ_SLEEP;
wakeup(kq);
}
if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
selwakeuppri(&kq->kq_sel, PSOCK);
if (!SEL_WAITING(&kq->kq_sel))
kq->kq_state &= ~KQ_SEL;
}
if (!knlist_empty(&kq->kq_sel.si_note))
kqueue_schedtask(kq);
if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
pgsigio(&kq->kq_sigio, SIGIO, 0);
}
}
/*
* Walk down a list of knotes, activating them if their event has triggered.
*
* There is a possibility to optimize in the case of one kq watching another.
* Instead of scheduling a task to wake it up, you could pass enough state
* down the chain to make up the parent kqueue. Make this code functional
* first.
*/
void
knote(struct knlist *list, long hint, int lockflags)
{
struct kqueue *kq;
struct knote *kn, *tkn;
int error;
if (list == NULL)
return;
KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
if ((lockflags & KNF_LISTLOCKED) == 0)
list->kl_lock(list->kl_lockarg);
/*
* If we unlock the list lock (and enter influx), we can
* eliminate the kqueue scheduling, but this will introduce
* four lock/unlock's for each knote to test. Also, marker
* would be needed to keep iteration position, since filters
* or other threads could remove events.
*/
SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
kq = kn->kn_kq;
KQ_LOCK(kq);
if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
/*
* Do not process the influx notes, except for
* the influx coming from the kq unlock in the
* kqueue_scan(). In the later case, we do
* not interfere with the scan, since the code
* fragment in kqueue_scan() locks the knlist,
* and cannot proceed until we finished.
*/
KQ_UNLOCK(kq);
} else if ((lockflags & KNF_NOKQLOCK) != 0) {
kn_enter_flux(kn);
KQ_UNLOCK(kq);
error = kn->kn_fop->f_event(kn, hint);
KQ_LOCK(kq);
kn_leave_flux(kn);
if (error)
KNOTE_ACTIVATE(kn, 1);
KQ_UNLOCK_FLUX(kq);
} else {
if (kn->kn_fop->f_event(kn, hint))
KNOTE_ACTIVATE(kn, 1);
KQ_UNLOCK(kq);
}
}
if ((lockflags & KNF_LISTLOCKED) == 0)
list->kl_unlock(list->kl_lockarg);
}
/*
* add a knote to a knlist
*/
void
knlist_add(struct knlist *knl, struct knote *kn, int islocked)
{
KNL_ASSERT_LOCK(knl, islocked);
KQ_NOTOWNED(kn->kn_kq);
KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
KASSERT((kn->kn_status & KN_DETACHED) != 0,
("knote %p was not detached", kn));
if (!islocked)
knl->kl_lock(knl->kl_lockarg);
SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
if (!islocked)
knl->kl_unlock(knl->kl_lockarg);
KQ_LOCK(kn->kn_kq);
kn->kn_knlist = knl;
kn->kn_status &= ~KN_DETACHED;
KQ_UNLOCK(kn->kn_kq);
}
static void
knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
int kqislocked)
{
KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
KNL_ASSERT_LOCK(knl, knlislocked);
mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
KASSERT((kn->kn_status & KN_DETACHED) == 0,
("knote %p was already detached", kn));
if (!knlislocked)
knl->kl_lock(knl->kl_lockarg);
SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
kn->kn_knlist = NULL;
if (!knlislocked)
kn_list_unlock(knl);
if (!kqislocked)
KQ_LOCK(kn->kn_kq);
kn->kn_status |= KN_DETACHED;
if (!kqislocked)
KQ_UNLOCK(kn->kn_kq);
}
/*
* remove knote from the specified knlist
*/
void
knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
{
knlist_remove_kq(knl, kn, islocked, 0);
}
int
knlist_empty(struct knlist *knl)
{
KNL_ASSERT_LOCKED(knl);
return (SLIST_EMPTY(&knl->kl_list));
}
static struct mtx knlist_lock;
MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
MTX_DEF);
static void knlist_mtx_lock(void *arg);
static void knlist_mtx_unlock(void *arg);
static void
knlist_mtx_lock(void *arg)
{
mtx_lock((struct mtx *)arg);
}
static void
knlist_mtx_unlock(void *arg)
{
mtx_unlock((struct mtx *)arg);
}
static void
knlist_mtx_assert_lock(void *arg, int what)
{
if (what == LA_LOCKED)
mtx_assert((struct mtx *)arg, MA_OWNED);
else
mtx_assert((struct mtx *)arg, MA_NOTOWNED);
}
void
knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
void (*kl_unlock)(void *),
void (*kl_assert_lock)(void *, int))
{
if (lock == NULL)
knl->kl_lockarg = &knlist_lock;
else
knl->kl_lockarg = lock;
if (kl_lock == NULL)
knl->kl_lock = knlist_mtx_lock;
else
knl->kl_lock = kl_lock;
if (kl_unlock == NULL)
knl->kl_unlock = knlist_mtx_unlock;
else
knl->kl_unlock = kl_unlock;
if (kl_assert_lock == NULL)
knl->kl_assert_lock = knlist_mtx_assert_lock;
else
knl->kl_assert_lock = kl_assert_lock;
knl->kl_autodestroy = 0;
SLIST_INIT(&knl->kl_list);
}
void
knlist_init_mtx(struct knlist *knl, struct mtx *lock)
{
knlist_init(knl, lock, NULL, NULL, NULL);
}
struct knlist *
knlist_alloc(struct mtx *lock)
{
struct knlist *knl;
knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
knlist_init_mtx(knl, lock);
return (knl);
}
void
knlist_destroy(struct knlist *knl)
{
KASSERT(KNLIST_EMPTY(knl),
("destroying knlist %p with knotes on it", knl));
}
void
knlist_detach(struct knlist *knl)
{
KNL_ASSERT_LOCKED(knl);
knl->kl_autodestroy = 1;
if (knlist_empty(knl)) {
knlist_destroy(knl);
free(knl, M_KQUEUE);
}
}
/*
* Even if we are locked, we may need to drop the lock to allow any influx
* knotes time to "settle".
*/
void
knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
{
struct knote *kn, *kn2;
struct kqueue *kq;
KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
if (islocked)
KNL_ASSERT_LOCKED(knl);
else {
KNL_ASSERT_UNLOCKED(knl);
again: /* need to reacquire lock since we have dropped it */
knl->kl_lock(knl->kl_lockarg);
}
SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
kq = kn->kn_kq;
KQ_LOCK(kq);
if (kn_in_flux(kn)) {
KQ_UNLOCK(kq);
continue;
}
knlist_remove_kq(knl, kn, 1, 1);
if (killkn) {
kn_enter_flux(kn);
KQ_UNLOCK(kq);
knote_drop_detached(kn, td);
} else {
/* Make sure cleared knotes disappear soon */
kn->kn_flags |= EV_EOF | EV_ONESHOT;
KQ_UNLOCK(kq);
}
kq = NULL;
}
if (!SLIST_EMPTY(&knl->kl_list)) {
/* there are still in flux knotes remaining */
kn = SLIST_FIRST(&knl->kl_list);
kq = kn->kn_kq;
KQ_LOCK(kq);
KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
knl->kl_unlock(knl->kl_lockarg);
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
kq = NULL;
goto again;
}
if (islocked)
KNL_ASSERT_LOCKED(knl);
else {
knl->kl_unlock(knl->kl_lockarg);
KNL_ASSERT_UNLOCKED(knl);
}
}
/*
* Remove all knotes referencing a specified fd must be called with FILEDESC
* lock. This prevents a race where a new fd comes along and occupies the
* entry and we attach a knote to the fd.
*/
void
knote_fdclose(struct thread *td, int fd)
{
struct filedesc *fdp = td->td_proc->p_fd;
struct kqueue *kq;
struct knote *kn;
int influx;
FILEDESC_XLOCK_ASSERT(fdp);
/*
* We shouldn't have to worry about new kevents appearing on fd
* since filedesc is locked.
*/
TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
KQ_LOCK(kq);
again:
influx = 0;
while (kq->kq_knlistsize > fd &&
(kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
if (kn_in_flux(kn)) {
/* someone else might be waiting on our knote */
if (influx)
wakeup(kq);
kq->kq_state |= KQ_FLUXWAIT;
msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
goto again;
}
kn_enter_flux(kn);
KQ_UNLOCK(kq);
influx = 1;
knote_drop(kn, td);
KQ_LOCK(kq);
}
KQ_UNLOCK_FLUX(kq);
}
}
static int
knote_attach(struct knote *kn, struct kqueue *kq)
{
struct klist *list;
KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
KQ_OWNED(kq);
if ((kq->kq_state & KQ_CLOSING) != 0)
return (EBADF);
if (kn->kn_fop->f_isfd) {
if (kn->kn_id >= kq->kq_knlistsize)
return (ENOMEM);
list = &kq->kq_knlist[kn->kn_id];
} else {
if (kq->kq_knhash == NULL)
return (ENOMEM);
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
}
SLIST_INSERT_HEAD(list, kn, kn_link);
return (0);
}
static void
knote_drop(struct knote *kn, struct thread *td)
{
if ((kn->kn_status & KN_DETACHED) == 0)
kn->kn_fop->f_detach(kn);
knote_drop_detached(kn, td);
}
static void
knote_drop_detached(struct knote *kn, struct thread *td)
{
struct kqueue *kq;
struct klist *list;
kq = kn->kn_kq;
KASSERT((kn->kn_status & KN_DETACHED) != 0,
("knote %p still attached", kn));
KQ_NOTOWNED(kq);
KQ_LOCK(kq);
KASSERT(kn->kn_influx == 1,
("knote_drop called on %p with influx %d", kn, kn->kn_influx));
if (kn->kn_fop->f_isfd)
list = &kq->kq_knlist[kn->kn_id];
else
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
if (!SLIST_EMPTY(list))
SLIST_REMOVE(list, kn, knote, kn_link);
if (kn->kn_status & KN_QUEUED)
knote_dequeue(kn);
KQ_UNLOCK_FLUX(kq);
if (kn->kn_fop->f_isfd) {
fdrop(kn->kn_fp, td);
kn->kn_fp = NULL;
}
kqueue_fo_release(kn->kn_kevent.filter);
kn->kn_fop = NULL;
knote_free(kn);
}
static void
knote_enqueue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
KQ_OWNED(kn->kn_kq);
KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
kq->kq_count++;
kqueue_wakeup(kq);
}
static void
knote_dequeue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
KQ_OWNED(kn->kn_kq);
KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
}
static void
knote_init(void)
{
knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, 0);
ast_register(TDA_KQUEUE, ASTR_ASTF_REQUIRED, 0, ast_kqueue);
}
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
static struct knote *
knote_alloc(int mflag)
{
return (uma_zalloc(knote_zone, mflag | M_ZERO));
}
static void
knote_free(struct knote *kn)
{
uma_zfree(knote_zone, kn);
}
/*
* Register the kev w/ the kq specified by fd.
*/
int
kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
{
struct kqueue *kq;
struct file *fp;
cap_rights_t rights;
int error;
error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
&fp);
if (error != 0)
return (error);
if ((error = kqueue_acquire(fp, &kq)) != 0)
goto noacquire;
error = kqueue_register(kq, kev, td, mflag);
kqueue_release(kq, 0);
noacquire:
fdrop(fp, td);
return (error);
}