HardenedBSD/sys/net/if.c
Zhenlei Huang d1d839d0b5 ifnet: Assert that we are assigning network stack correctly
It makes no sense to assign NULL vnet to an interface when the kernel
option VIMAGE is enabled. Add an assertion to catch that.

This will also help diagnosing problem report [1] and [2].

1. https://bugs.freebsd.org/275381
2. https://bugs.freebsd.org/282168

Reviewed by:	kp
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D46982
2024-10-22 12:32:24 +08:00

5240 lines
118 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_bpf.h"
#include "opt_inet6.h"
#include "opt_inet.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/malloc.h>
#include <sys/domainset.h>
#include <sys/sbuf.h>
#include <sys/bus.h>
#include <sys/epoch.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/refcount.h>
#include <sys/module.h>
#include <sys/nv.h>
#include <sys/rwlock.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/taskqueue.h>
#include <sys/domain.h>
#include <sys/jail.h>
#include <sys/priv.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <machine/stdarg.h>
#include <vm/uma.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_clone.h>
#include <net/if_dl.h>
#include <net/if_strings.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_private.h>
#include <net/if_vlan_var.h>
#include <net/radix.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/vnet.h>
#if defined(INET) || defined(INET6)
#include <net/ethernet.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_carp.h>
#ifdef INET
#include <net/debugnet.h>
#include <netinet/if_ether.h>
#endif /* INET */
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet6/in6_ifattach.h>
#endif /* INET6 */
#endif /* INET || INET6 */
#include <security/mac/mac_framework.h>
/*
* Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
* and ifr_ifru when it is used in SIOCGIFCONF.
*/
_Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
__read_mostly epoch_t net_epoch_preempt;
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
struct ifreq_buffer32 {
uint32_t length; /* (size_t) */
uint32_t buffer; /* (void *) */
};
/*
* Interface request structure used for socket
* ioctl's. All interface ioctl's must have parameter
* definitions which begin with ifr_name. The
* remainder may be interface specific.
*/
struct ifreq32 {
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
struct ifreq_buffer32 ifru_buffer;
short ifru_flags[2];
short ifru_index;
int ifru_jid;
int ifru_metric;
int ifru_mtu;
int ifru_phys;
int ifru_media;
uint32_t ifru_data;
int ifru_cap[2];
u_int ifru_fib;
u_char ifru_vlan_pcp;
} ifr_ifru;
};
CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
__offsetof(struct ifreq32, ifr_ifru));
struct ifconf32 {
int32_t ifc_len;
union {
uint32_t ifcu_buf;
uint32_t ifcu_req;
} ifc_ifcu;
};
#define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32)
struct ifdrv32 {
char ifd_name[IFNAMSIZ];
uint32_t ifd_cmd;
uint32_t ifd_len;
uint32_t ifd_data;
};
#define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
#define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
struct ifgroupreq32 {
char ifgr_name[IFNAMSIZ];
u_int ifgr_len;
union {
char ifgru_group[IFNAMSIZ];
uint32_t ifgru_groups;
} ifgr_ifgru;
};
#define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
#define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
#define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
#define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
struct ifmediareq32 {
char ifm_name[IFNAMSIZ];
int ifm_current;
int ifm_mask;
int ifm_status;
int ifm_active;
int ifm_count;
uint32_t ifm_ulist; /* (int *) */
};
#define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
#define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
#endif /* COMPAT_FREEBSD32 */
union ifreq_union {
struct ifreq ifr;
#ifdef COMPAT_FREEBSD32
struct ifreq32 ifr32;
#endif
};
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Generic link-management");
SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
&ifqmaxlen, 0, "max send queue size");
/* Log link state change events */
static int log_link_state_change = 1;
SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
&log_link_state_change, 0,
"log interface link state change events");
/* Log promiscuous mode change events */
static int log_promisc_mode_change = 1;
SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
&log_promisc_mode_change, 1,
"log promiscuous mode change events");
/* Interface description */
static unsigned int ifdescr_maxlen = 1024;
SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
&ifdescr_maxlen, 0,
"administrative maximum length for interface description");
static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
/* global sx for non-critical path ifdescr */
static struct sx ifdescr_sx;
SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
void (*ng_ether_link_state_p)(struct ifnet *ifp, int state);
void (*lagg_linkstate_p)(struct ifnet *ifp, int state);
/* These are external hooks for CARP. */
void (*carp_linkstate_p)(struct ifnet *ifp);
void (*carp_demote_adj_p)(int, char *);
int (*carp_master_p)(struct ifaddr *);
#if defined(INET) || defined(INET6)
int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *sa);
int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
int (*carp_attach_p)(struct ifaddr *, int);
void (*carp_detach_p)(struct ifaddr *, bool);
#endif
#ifdef INET
int (*carp_iamatch_p)(struct ifaddr *, uint8_t **);
#endif
#ifdef INET6
struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
const struct in6_addr *taddr);
#endif
struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
/*
* XXX: Style; these should be sorted alphabetically, and unprototyped
* static functions should be prototyped. Currently they are sorted by
* declaration order.
*/
static void if_attachdomain(void *);
static void if_attachdomain1(struct ifnet *);
static int ifconf(u_long, caddr_t);
static void if_input_default(struct ifnet *, struct mbuf *);
static int if_requestencap_default(struct ifnet *, struct if_encap_req *);
static int if_setflag(struct ifnet *, int, int, int *, int);
static int if_transmit_default(struct ifnet *ifp, struct mbuf *m);
static void if_unroute(struct ifnet *, int flag, int fam);
static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
static void do_link_state_change(void *, int);
static int if_getgroup(struct ifgroupreq *, struct ifnet *);
static int if_getgroupmembers(struct ifgroupreq *);
static void if_delgroups(struct ifnet *);
static void if_attach_internal(struct ifnet *, bool);
static int if_detach_internal(struct ifnet *, bool);
static void if_siocaddmulti(void *, int);
static void if_link_ifnet(struct ifnet *);
static bool if_unlink_ifnet(struct ifnet *, bool);
#ifdef VIMAGE
static int if_vmove(struct ifnet *, struct vnet *);
#endif
#ifdef INET6
/*
* XXX: declare here to avoid to include many inet6 related files..
* should be more generalized?
*/
extern void nd6_setmtu(struct ifnet *);
#endif
/* ipsec helper hooks */
VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
int ifqmaxlen = IFQ_MAXLEN;
VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */
VNET_DEFINE(struct ifgrouphead, ifg_head);
/* Table of ifnet by index. */
static int if_index;
static int if_indexlim = 8;
static struct ifindex_entry {
struct ifnet *ife_ifnet;
uint16_t ife_gencnt;
} *ifindex_table;
SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Variables global to all interfaces");
static int
sysctl_ifcount(SYSCTL_HANDLER_ARGS)
{
int rv = 0;
IFNET_RLOCK();
for (int i = 1; i <= if_index; i++)
if (ifindex_table[i].ife_ifnet != NULL &&
ifindex_table[i].ife_ifnet->if_vnet == curvnet)
rv = i;
IFNET_RUNLOCK();
return (sysctl_handle_int(oidp, &rv, 0, req));
}
SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
"Maximum known interface index");
/*
* The global network interface list (V_ifnet) and related state (such as
* if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
* This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
*/
struct sx ifnet_sxlock;
SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
struct sx ifnet_detach_sxlock;
SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
SX_RECURSE);
#ifdef VIMAGE
#define VNET_IS_SHUTTING_DOWN(_vnet) \
((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
#endif
static if_com_alloc_t *if_com_alloc[256];
static if_com_free_t *if_com_free[256];
static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
struct ifnet *
ifnet_byindex(u_int idx)
{
struct ifnet *ifp;
NET_EPOCH_ASSERT();
if (__predict_false(idx > if_index))
return (NULL);
ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
ifp = NULL;
return (ifp);
}
struct ifnet *
ifnet_byindex_ref(u_int idx)
{
struct ifnet *ifp;
ifp = ifnet_byindex(idx);
if (ifp == NULL || (ifp->if_flags & IFF_DYING))
return (NULL);
if (!if_try_ref(ifp))
return (NULL);
return (ifp);
}
struct ifnet *
ifnet_byindexgen(uint16_t idx, uint16_t gen)
{
struct ifnet *ifp;
NET_EPOCH_ASSERT();
if (__predict_false(idx > if_index))
return (NULL);
ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
if (ifindex_table[idx].ife_gencnt == gen)
return (ifp);
else
return (NULL);
}
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
static void
if_init_idxtable(void *arg __unused)
{
ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
M_IFNET, M_WAITOK | M_ZERO);
}
SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
static void
vnet_if_init(const void *unused __unused)
{
CK_STAILQ_INIT(&V_ifnet);
CK_STAILQ_INIT(&V_ifg_head);
vnet_if_clone_init();
}
VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
NULL);
static void
if_link_ifnet(struct ifnet *ifp)
{
IFNET_WLOCK();
CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
#ifdef VIMAGE
curvnet->vnet_ifcnt++;
#endif
IFNET_WUNLOCK();
}
static bool
if_unlink_ifnet(struct ifnet *ifp, bool vmove)
{
struct ifnet *iter;
int found = 0;
IFNET_WLOCK();
CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
if (iter == ifp) {
CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
if (!vmove)
ifp->if_flags |= IFF_DYING;
found = 1;
break;
}
#ifdef VIMAGE
curvnet->vnet_ifcnt--;
#endif
IFNET_WUNLOCK();
return (found);
}
#ifdef VIMAGE
static void
vnet_if_return(const void *unused __unused)
{
struct ifnet *ifp, *nifp;
struct ifnet **pending;
int found __diagused;
int i;
i = 0;
/*
* We need to protect our access to the V_ifnet tailq. Ordinarily we'd
* enter NET_EPOCH, but that's not possible, because if_vmove() calls
* if_detach_internal(), which waits for NET_EPOCH callbacks to
* complete. We can't do that from within NET_EPOCH.
*
* However, we can also use the IFNET_xLOCK, which is the V_ifnet
* read/write lock. We cannot hold the lock as we call if_vmove()
* though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
* ctx lock.
*/
IFNET_WLOCK();
pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
M_IFNET, M_WAITOK | M_ZERO);
/* Return all inherited interfaces to their parent vnets. */
CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
if (ifp->if_home_vnet != ifp->if_vnet) {
found = if_unlink_ifnet(ifp, true);
MPASS(found);
pending[i++] = ifp;
}
}
IFNET_WUNLOCK();
for (int j = 0; j < i; j++) {
sx_xlock(&ifnet_detach_sxlock);
if_vmove(pending[j], pending[j]->if_home_vnet);
sx_xunlock(&ifnet_detach_sxlock);
}
free(pending, M_IFNET);
}
VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
vnet_if_return, NULL);
#endif
/*
* Allocate a struct ifnet and an index for an interface. A layer 2
* common structure will also be allocated if an allocation routine is
* registered for the passed type.
*/
static struct ifnet *
if_alloc_domain(u_char type, int numa_domain)
{
struct ifnet *ifp;
u_short idx;
KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
if (numa_domain == IF_NODOM)
ifp = malloc(sizeof(struct ifnet), M_IFNET,
M_WAITOK | M_ZERO);
else
ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
ifp->if_type = type;
ifp->if_alloctype = type;
ifp->if_numa_domain = numa_domain;
#ifdef VIMAGE
ifp->if_vnet = curvnet;
#endif
if (if_com_alloc[type] != NULL) {
ifp->if_l2com = if_com_alloc[type](type, ifp);
KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
type));
}
IF_ADDR_LOCK_INIT(ifp);
TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
ifp->if_afdata_initialized = 0;
IF_AFDATA_LOCK_INIT(ifp);
CK_STAILQ_INIT(&ifp->if_addrhead);
CK_STAILQ_INIT(&ifp->if_multiaddrs);
CK_STAILQ_INIT(&ifp->if_groups);
#ifdef MAC
mac_ifnet_init(ifp);
#endif
ifq_init(&ifp->if_snd, ifp);
refcount_init(&ifp->if_refcount, 1); /* Index reference. */
for (int i = 0; i < IFCOUNTERS; i++)
ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
ifp->if_get_counter = if_get_counter_default;
ifp->if_pcp = IFNET_PCP_NONE;
/* Allocate an ifindex array entry. */
IFNET_WLOCK();
/*
* Try to find an empty slot below if_index. If we fail, take the
* next slot.
*/
for (idx = 1; idx <= if_index; idx++) {
if (ifindex_table[idx].ife_ifnet == NULL)
break;
}
/* Catch if_index overflow. */
if (idx >= if_indexlim) {
struct ifindex_entry *new, *old;
int newlim;
newlim = if_indexlim * 2;
new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
old = ifindex_table;
ck_pr_store_ptr(&ifindex_table, new);
if_indexlim = newlim;
NET_EPOCH_WAIT();
free(old, M_IFNET);
}
if (idx > if_index)
if_index = idx;
ifp->if_index = idx;
ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
IFNET_WUNLOCK();
return (ifp);
}
struct ifnet *
if_alloc_dev(u_char type, device_t dev)
{
int numa_domain;
if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
return (if_alloc_domain(type, IF_NODOM));
return (if_alloc_domain(type, numa_domain));
}
struct ifnet *
if_alloc(u_char type)
{
return (if_alloc_domain(type, IF_NODOM));
}
/*
* Do the actual work of freeing a struct ifnet, and layer 2 common
* structure. This call is made when the network epoch guarantees
* us that nobody holds a pointer to the interface.
*/
static void
if_free_deferred(epoch_context_t ctx)
{
struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
KASSERT((ifp->if_flags & IFF_DYING),
("%s: interface not dying", __func__));
if (if_com_free[ifp->if_alloctype] != NULL)
if_com_free[ifp->if_alloctype](ifp->if_l2com,
ifp->if_alloctype);
#ifdef MAC
mac_ifnet_destroy(ifp);
#endif /* MAC */
IF_AFDATA_DESTROY(ifp);
IF_ADDR_LOCK_DESTROY(ifp);
ifq_delete(&ifp->if_snd);
for (int i = 0; i < IFCOUNTERS; i++)
counter_u64_free(ifp->if_counters[i]);
if_freedescr(ifp->if_description);
free(ifp->if_hw_addr, M_IFADDR);
free(ifp, M_IFNET);
}
/*
* Deregister an interface and free the associated storage.
*/
void
if_free(struct ifnet *ifp)
{
ifp->if_flags |= IFF_DYING; /* XXX: Locking */
/*
* XXXGL: An interface index is really an alias to ifp pointer.
* Why would we clear the alias now, and not in the deferred
* context? Indeed there is nothing wrong with some network
* thread obtaining ifp via ifnet_byindex() inside the network
* epoch and then dereferencing ifp while we perform if_free(),
* and after if_free() finished, too.
*
* This early index freeing was important back when ifindex was
* virtualized and interface would outlive the vnet.
*/
IFNET_WLOCK();
MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
ifindex_table[ifp->if_index].ife_gencnt++;
while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
if_index--;
IFNET_WUNLOCK();
if (refcount_release(&ifp->if_refcount))
NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
}
/*
* Interfaces to keep an ifnet type-stable despite the possibility of the
* driver calling if_free(). If there are additional references, we defer
* freeing the underlying data structure.
*/
void
if_ref(struct ifnet *ifp)
{
u_int old __diagused;
/* We don't assert the ifnet list lock here, but arguably should. */
old = refcount_acquire(&ifp->if_refcount);
KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
}
bool
if_try_ref(struct ifnet *ifp)
{
NET_EPOCH_ASSERT();
return (refcount_acquire_if_not_zero(&ifp->if_refcount));
}
void
if_rele(struct ifnet *ifp)
{
if (!refcount_release(&ifp->if_refcount))
return;
NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
}
void
ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
{
mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
if (ifq->ifq_maxlen == 0)
ifq->ifq_maxlen = ifqmaxlen;
ifq->altq_type = 0;
ifq->altq_disc = NULL;
ifq->altq_flags &= ALTQF_CANTCHANGE;
ifq->altq_tbr = NULL;
ifq->altq_ifp = ifp;
}
void
ifq_delete(struct ifaltq *ifq)
{
mtx_destroy(&ifq->ifq_mtx);
}
/*
* Perform generic interface initialization tasks and attach the interface
* to the list of "active" interfaces. If vmove flag is set on entry
* to if_attach_internal(), perform only a limited subset of initialization
* tasks, given that we are moving from one vnet to another an ifnet which
* has already been fully initialized.
*
* Note that if_detach_internal() removes group membership unconditionally
* even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
* Thus, when if_vmove() is applied to a cloned interface, group membership
* is lost while a cloned one always joins a group whose name is
* ifc->ifc_name. To recover this after if_detach_internal() and
* if_attach_internal(), the cloner should be specified to
* if_attach_internal() via ifc. If it is non-NULL, if_attach_internal()
* attempts to join a group whose name is ifc->ifc_name.
*
* XXX:
* - The decision to return void and thus require this function to
* succeed is questionable.
* - We should probably do more sanity checking. For instance we don't
* do anything to insure if_xname is unique or non-empty.
*/
void
if_attach(struct ifnet *ifp)
{
if_attach_internal(ifp, false);
}
/*
* Compute the least common TSO limit.
*/
void
if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
{
/*
* 1) If there is no limit currently, take the limit from
* the network adapter.
*
* 2) If the network adapter has a limit below the current
* limit, apply it.
*/
if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
pmax->tsomaxbytes = ifp->if_hw_tsomax;
}
if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
}
if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
}
}
/*
* Update TSO limit of a network adapter.
*
* Returns zero if no change. Else non-zero.
*/
int
if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
{
int retval = 0;
if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
ifp->if_hw_tsomax = pmax->tsomaxbytes;
retval++;
}
if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
retval++;
}
if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
retval++;
}
return (retval);
}
static void
if_attach_internal(struct ifnet *ifp, bool vmove)
{
unsigned socksize, ifasize;
int namelen, masklen;
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
#ifdef VIMAGE
CURVNET_ASSERT_SET();
ifp->if_vnet = curvnet;
if (ifp->if_home_vnet == NULL)
ifp->if_home_vnet = curvnet;
#endif
if_addgroup(ifp, IFG_ALL);
#ifdef VIMAGE
/* Restore group membership for cloned interface. */
if (vmove)
if_clone_restoregroup(ifp);
#endif
getmicrotime(&ifp->if_lastchange);
ifp->if_epoch = time_uptime;
KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
(ifp->if_transmit != NULL && ifp->if_qflush != NULL),
("transmit and qflush must both either be set or both be NULL"));
if (ifp->if_transmit == NULL) {
ifp->if_transmit = if_transmit_default;
ifp->if_qflush = if_qflush;
}
if (ifp->if_input == NULL)
ifp->if_input = if_input_default;
if (ifp->if_requestencap == NULL)
ifp->if_requestencap = if_requestencap_default;
if (!vmove) {
#ifdef MAC
mac_ifnet_create(ifp);
#endif
/*
* Create a Link Level name for this device.
*/
namelen = strlen(ifp->if_xname);
/*
* Always save enough space for any possiable name so we
* can do a rename in place later.
*/
masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
socksize = masklen + ifp->if_addrlen;
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = roundup2(socksize, sizeof(long));
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = ifa_alloc(ifasize, M_WAITOK);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(ifp->if_xname, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifp->if_addr = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
/* Reliably crash if used uninitialized. */
ifp->if_broadcastaddr = NULL;
if (ifp->if_type == IFT_ETHER) {
ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
M_WAITOK | M_ZERO);
}
#if defined(INET) || defined(INET6)
/* Use defaults for TSO, if nothing is set */
if (ifp->if_hw_tsomax == 0 &&
ifp->if_hw_tsomaxsegcount == 0 &&
ifp->if_hw_tsomaxsegsize == 0) {
/*
* The TSO defaults needs to be such that an
* NFS mbuf list of 35 mbufs totalling just
* below 64K works and that a chain of mbufs
* can be defragged into at most 32 segments:
*/
ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
ifp->if_hw_tsomaxsegcount = 35;
ifp->if_hw_tsomaxsegsize = 2048; /* 2K */
/* XXX some drivers set IFCAP_TSO after ethernet attach */
if (ifp->if_capabilities & IFCAP_TSO) {
if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
ifp->if_hw_tsomax,
ifp->if_hw_tsomaxsegcount,
ifp->if_hw_tsomaxsegsize);
}
}
#endif
}
#ifdef VIMAGE
else {
/*
* Update the interface index in the link layer address
* of the interface.
*/
for (ifa = ifp->if_addr; ifa != NULL;
ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
if (ifa->ifa_addr->sa_family == AF_LINK) {
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_index = ifp->if_index;
}
}
}
#endif
if_link_ifnet(ifp);
if (domain_init_status >= 2)
if_attachdomain1(ifp);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
}
static void
if_epochalloc(void *dummy __unused)
{
net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
}
SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
static void
if_attachdomain(void *dummy)
{
struct ifnet *ifp;
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
if_attachdomain1(ifp);
}
SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
if_attachdomain, NULL);
static void
if_attachdomain1(struct ifnet *ifp)
{
struct domain *dp;
/*
* Since dp->dom_ifattach calls malloc() with M_WAITOK, we
* cannot lock ifp->if_afdata initialization, entirely.
*/
IF_AFDATA_LOCK(ifp);
if (ifp->if_afdata_initialized >= domain_init_status) {
IF_AFDATA_UNLOCK(ifp);
log(LOG_WARNING, "%s called more than once on %s\n",
__func__, ifp->if_xname);
return;
}
ifp->if_afdata_initialized = domain_init_status;
IF_AFDATA_UNLOCK(ifp);
/* address family dependent data region */
bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
SLIST_FOREACH(dp, &domains, dom_next) {
if (dp->dom_ifattach)
ifp->if_afdata[dp->dom_family] =
(*dp->dom_ifattach)(ifp);
}
}
/*
* Remove any unicast or broadcast network addresses from an interface.
*/
void
if_purgeaddrs(struct ifnet *ifp)
{
struct ifaddr *ifa;
#ifdef INET6
/*
* Need to leave multicast addresses of proxy NDP llentries
* before in6_purgeifaddr() because the llentries are keys
* for in6_multi objects of proxy NDP entries.
* in6_purgeifaddr()s clean up llentries including proxy NDPs
* then we would lose the keys if they are called earlier.
*/
in6_purge_proxy_ndp(ifp);
#endif
while (1) {
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_LINK)
break;
}
NET_EPOCH_EXIT(et);
if (ifa == NULL)
break;
#ifdef INET
/* XXX: Ugly!! ad hoc just for INET */
if (ifa->ifa_addr->sa_family == AF_INET) {
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifr_addr = *ifa->ifa_addr;
if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
NULL) == 0)
continue;
}
#endif /* INET */
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6) {
in6_purgeifaddr((struct in6_ifaddr *)ifa);
/* ifp_addrhead is already updated */
continue;
}
#endif /* INET6 */
IF_ADDR_WLOCK(ifp);
CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
IF_ADDR_WUNLOCK(ifp);
ifa_free(ifa);
}
}
/*
* Remove any multicast network addresses from an interface when an ifnet
* is going away.
*/
static void
if_purgemaddrs(struct ifnet *ifp)
{
struct ifmultiaddr *ifma;
IF_ADDR_WLOCK(ifp);
while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
if_delmulti_locked(ifp, ifma, 1);
}
IF_ADDR_WUNLOCK(ifp);
}
/*
* Detach an interface, removing it from the list of "active" interfaces.
* If vmove flag is set on entry to if_detach_internal(), perform only a
* limited subset of cleanup tasks, given that we are moving an ifnet from
* one vnet to another, where it must be fully operational.
*
* XXXRW: There are some significant questions about event ordering, and
* how to prevent things from starting to use the interface during detach.
*/
void
if_detach(struct ifnet *ifp)
{
bool found;
CURVNET_SET_QUIET(ifp->if_vnet);
found = if_unlink_ifnet(ifp, false);
if (found) {
sx_xlock(&ifnet_detach_sxlock);
if_detach_internal(ifp, false);
sx_xunlock(&ifnet_detach_sxlock);
}
CURVNET_RESTORE();
}
/*
* The vmove flag, if set, indicates that we are called from a callpath
* that is moving an interface to a different vnet instance.
*
* The shutdown flag, if set, indicates that we are called in the
* process of shutting down a vnet instance. Currently only the
* vnet_if_return SYSUNINIT function sets it. Note: we can be called
* on a vnet instance shutdown without this flag being set, e.g., when
* the cloned interfaces are destoyed as first thing of teardown.
*/
static int
if_detach_internal(struct ifnet *ifp, bool vmove)
{
struct ifaddr *ifa;
int i;
struct domain *dp;
#ifdef VIMAGE
bool shutdown;
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
#endif
sx_assert(&ifnet_detach_sxlock, SX_XLOCKED);
/*
* At this point we know the interface still was on the ifnet list
* and we removed it so we are in a stable state.
*/
NET_EPOCH_WAIT();
/*
* Ensure all pending EPOCH(9) callbacks have been executed. This
* fixes issues about late destruction of multicast options
* which lead to leave group calls, which in turn access the
* belonging ifnet structure:
*/
NET_EPOCH_DRAIN_CALLBACKS();
/*
* In any case (destroy or vmove) detach us from the groups
* and remove/wait for pending events on the taskq.
* XXX-BZ in theory an interface could still enqueue a taskq change?
*/
if_delgroups(ifp);
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
if_down(ifp);
#ifdef VIMAGE
/*
* On VNET shutdown abort here as the stack teardown will do all
* the work top-down for us.
*/
if (shutdown) {
/* Give interface users the chance to clean up. */
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
/*
* In case of a vmove we are done here without error.
* If we would signal an error it would lead to the same
* abort as if we did not find the ifnet anymore.
* if_detach() calls us in void context and does not care
* about an early abort notification, so life is splendid :)
*/
goto finish_vnet_shutdown;
}
#endif
/*
* At this point we are not tearing down a VNET and are either
* going to destroy or vmove the interface and have to cleanup
* accordingly.
*/
/*
* Remove routes and flush queues.
*/
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_disable(&ifp->if_snd);
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
altq_detach(&ifp->if_snd);
#endif
if_purgeaddrs(ifp);
#ifdef INET
in_ifdetach(ifp);
#endif
#ifdef INET6
/*
* Remove all IPv6 kernel structs related to ifp. This should be done
* before removing routing entries below, since IPv6 interface direct
* routes are expected to be removed by the IPv6-specific kernel API.
* Otherwise, the kernel will detect some inconsistency and bark it.
*/
in6_ifdetach(ifp);
#endif
if_purgemaddrs(ifp);
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
if (!vmove) {
/*
* Prevent further calls into the device driver via ifnet.
*/
if_dead(ifp);
/*
* Clean up all addresses.
*/
IF_ADDR_WLOCK(ifp);
if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
IF_ADDR_WUNLOCK(ifp);
ifa_free(ifa);
} else
IF_ADDR_WUNLOCK(ifp);
}
rt_flushifroutes(ifp);
#ifdef VIMAGE
finish_vnet_shutdown:
#endif
/*
* We cannot hold the lock over dom_ifdetach calls as they might
* sleep, for example trying to drain a callout, thus open up the
* theoretical race with re-attaching.
*/
IF_AFDATA_LOCK(ifp);
i = ifp->if_afdata_initialized;
ifp->if_afdata_initialized = 0;
IF_AFDATA_UNLOCK(ifp);
if (i == 0)
return (0);
SLIST_FOREACH(dp, &domains, dom_next) {
if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
(*dp->dom_ifdetach)(ifp,
ifp->if_afdata[dp->dom_family]);
ifp->if_afdata[dp->dom_family] = NULL;
}
}
return (0);
}
#ifdef VIMAGE
/*
* if_vmove() performs a limited version of if_detach() in current
* vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
*/
static int
if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
{
int rc;
/*
* Detach from current vnet, but preserve LLADDR info, do not
* mark as dead etc. so that the ifnet can be reattached later.
* If we cannot find it, we lost the race to someone else.
*/
rc = if_detach_internal(ifp, true);
if (rc != 0)
return (rc);
/*
* Perform interface-specific reassignment tasks, if provided by
* the driver.
*/
if (ifp->if_reassign != NULL)
ifp->if_reassign(ifp, new_vnet, NULL);
/*
* Switch to the context of the target vnet.
*/
CURVNET_SET_QUIET(new_vnet);
if_attach_internal(ifp, true);
CURVNET_RESTORE();
return (0);
}
/*
* Move an ifnet to or from another child prison/vnet, specified by the jail id.
*/
static int
if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
{
struct prison *pr;
struct ifnet *difp;
int error;
bool found __diagused;
bool shutdown;
MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
/* Try to find the prison within our visibility. */
sx_slock(&allprison_lock);
pr = prison_find_child(td->td_ucred->cr_prison, jid);
sx_sunlock(&allprison_lock);
if (pr == NULL)
return (ENXIO);
prison_hold_locked(pr);
mtx_unlock(&pr->pr_mtx);
/* Do not try to move the iface from and to the same prison. */
if (pr->pr_vnet == ifp->if_vnet) {
prison_free(pr);
return (EEXIST);
}
/* Make sure the named iface does not exists in the dst. prison/vnet. */
/* XXX Lock interfaces to avoid races. */
CURVNET_SET_QUIET(pr->pr_vnet);
difp = ifunit(ifname);
CURVNET_RESTORE();
if (difp != NULL) {
prison_free(pr);
return (EEXIST);
}
sx_xlock(&ifnet_detach_sxlock);
/* Make sure the VNET is stable. */
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
if (shutdown) {
sx_xunlock(&ifnet_detach_sxlock);
prison_free(pr);
return (EBUSY);
}
found = if_unlink_ifnet(ifp, true);
if (! found) {
sx_xunlock(&ifnet_detach_sxlock);
prison_free(pr);
return (ENODEV);
}
/* Move the interface into the child jail/vnet. */
error = if_vmove(ifp, pr->pr_vnet);
/* Report the new if_xname back to the userland on success. */
if (error == 0)
sprintf(ifname, "%s", ifp->if_xname);
sx_xunlock(&ifnet_detach_sxlock);
prison_free(pr);
return (error);
}
static int
if_vmove_reclaim(struct thread *td, char *ifname, int jid)
{
struct prison *pr;
struct vnet *vnet_dst;
struct ifnet *ifp;
int error, found __diagused;
bool shutdown;
/* Try to find the prison within our visibility. */
sx_slock(&allprison_lock);
pr = prison_find_child(td->td_ucred->cr_prison, jid);
sx_sunlock(&allprison_lock);
if (pr == NULL)
return (ENXIO);
prison_hold_locked(pr);
mtx_unlock(&pr->pr_mtx);
/* Make sure the named iface exists in the source prison/vnet. */
CURVNET_SET(pr->pr_vnet);
ifp = ifunit(ifname); /* XXX Lock to avoid races. */
if (ifp == NULL) {
CURVNET_RESTORE();
prison_free(pr);
return (ENXIO);
}
/* Do not try to move the iface from and to the same prison. */
vnet_dst = TD_TO_VNET(td);
if (vnet_dst == ifp->if_vnet) {
CURVNET_RESTORE();
prison_free(pr);
return (EEXIST);
}
/* Make sure the VNET is stable. */
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
if (shutdown) {
CURVNET_RESTORE();
prison_free(pr);
return (EBUSY);
}
/* Get interface back from child jail/vnet. */
found = if_unlink_ifnet(ifp, true);
MPASS(found);
sx_xlock(&ifnet_detach_sxlock);
error = if_vmove(ifp, vnet_dst);
sx_xunlock(&ifnet_detach_sxlock);
CURVNET_RESTORE();
/* Report the new if_xname back to the userland on success. */
if (error == 0)
sprintf(ifname, "%s", ifp->if_xname);
prison_free(pr);
return (error);
}
#endif /* VIMAGE */
/*
* Add a group to an interface
*/
int
if_addgroup(struct ifnet *ifp, const char *groupname)
{
struct ifg_list *ifgl;
struct ifg_group *ifg = NULL;
struct ifg_member *ifgm;
int new = 0;
if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
groupname[strlen(groupname) - 1] <= '9')
return (EINVAL);
IFNET_WLOCK();
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
IFNET_WUNLOCK();
return (EEXIST);
}
if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
IFNET_WUNLOCK();
return (ENOMEM);
}
if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (!strcmp(ifg->ifg_group, groupname))
break;
if (ifg == NULL) {
if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
free(ifgm, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
ifg->ifg_refcnt = 0;
CK_STAILQ_INIT(&ifg->ifg_members);
CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
new = 1;
}
ifg->ifg_refcnt++;
ifgl->ifgl_group = ifg;
ifgm->ifgm_ifp = ifp;
IF_ADDR_WLOCK(ifp);
CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_WUNLOCK(ifp);
IFNET_WUNLOCK();
if (new)
EVENTHANDLER_INVOKE(group_attach_event, ifg);
EVENTHANDLER_INVOKE(group_change_event, groupname);
return (0);
}
/*
* Helper function to remove a group out of an interface. Expects the global
* ifnet lock to be write-locked, and drops it before returning.
*/
static void
_if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
const char *groupname)
{
struct ifg_member *ifgm;
bool freeifgl;
IFNET_WLOCK_ASSERT();
IF_ADDR_WLOCK(ifp);
CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
IF_ADDR_WUNLOCK(ifp);
CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
if (ifgm->ifgm_ifp == ifp) {
CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
ifg_member, ifgm_next);
break;
}
}
if (--ifgl->ifgl_group->ifg_refcnt == 0) {
CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
ifg_next);
freeifgl = true;
} else {
freeifgl = false;
}
IFNET_WUNLOCK();
NET_EPOCH_WAIT();
EVENTHANDLER_INVOKE(group_change_event, groupname);
if (freeifgl) {
EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
free(ifgl->ifgl_group, M_TEMP);
}
free(ifgm, M_TEMP);
free(ifgl, M_TEMP);
}
/*
* Remove a group from an interface
*/
int
if_delgroup(struct ifnet *ifp, const char *groupname)
{
struct ifg_list *ifgl;
IFNET_WLOCK();
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
break;
if (ifgl == NULL) {
IFNET_WUNLOCK();
return (ENOENT);
}
_if_delgroup_locked(ifp, ifgl, groupname);
return (0);
}
/*
* Remove an interface from all groups
*/
static void
if_delgroups(struct ifnet *ifp)
{
struct ifg_list *ifgl;
char groupname[IFNAMSIZ];
IFNET_WLOCK();
while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
_if_delgroup_locked(ifp, ifgl, groupname);
IFNET_WLOCK();
}
IFNET_WUNLOCK();
}
/*
* Stores all groups from an interface in memory pointed to by ifgr.
*/
static int
if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
{
int len, error;
struct ifg_list *ifgl;
struct ifg_req ifgrq, *ifgp;
NET_EPOCH_ASSERT();
if (ifgr->ifgr_len == 0) {
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
ifgr->ifgr_len += sizeof(struct ifg_req);
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
/* XXX: wire */
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
if (len < sizeof(ifgrq))
return (EINVAL);
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
sizeof(ifgrq.ifgrq_group));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
return (error);
len -= sizeof(ifgrq);
ifgp++;
}
return (0);
}
/*
* Stores all members of a group in memory pointed to by igfr
*/
static int
if_getgroupmembers(struct ifgroupreq *ifgr)
{
struct ifg_group *ifg;
struct ifg_member *ifgm;
struct ifg_req ifgrq, *ifgp;
int len, error;
IFNET_RLOCK();
CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
break;
if (ifg == NULL) {
IFNET_RUNLOCK();
return (ENOENT);
}
if (ifgr->ifgr_len == 0) {
CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
ifgr->ifgr_len += sizeof(ifgrq);
IFNET_RUNLOCK();
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
if (len < sizeof(ifgrq)) {
IFNET_RUNLOCK();
return (EINVAL);
}
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
sizeof(ifgrq.ifgrq_member));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
IFNET_RUNLOCK();
return (error);
}
len -= sizeof(ifgrq);
ifgp++;
}
IFNET_RUNLOCK();
return (0);
}
/*
* Return counter values from counter(9)s stored in ifnet.
*/
uint64_t
if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
{
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
return (counter_u64_fetch(ifp->if_counters[cnt]));
}
/*
* Increase an ifnet counter. Usually used for counters shared
* between the stack and a driver, but function supports them all.
*/
void
if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
{
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
counter_u64_add(ifp->if_counters[cnt], inc);
}
/*
* Copy data from ifnet to userland API structure if_data.
*/
void
if_data_copy(struct ifnet *ifp, struct if_data *ifd)
{
ifd->ifi_type = ifp->if_type;
ifd->ifi_physical = 0;
ifd->ifi_addrlen = ifp->if_addrlen;
ifd->ifi_hdrlen = ifp->if_hdrlen;
ifd->ifi_link_state = ifp->if_link_state;
ifd->ifi_vhid = 0;
ifd->ifi_datalen = sizeof(struct if_data);
ifd->ifi_mtu = ifp->if_mtu;
ifd->ifi_metric = ifp->if_metric;
ifd->ifi_baudrate = ifp->if_baudrate;
ifd->ifi_hwassist = ifp->if_hwassist;
ifd->ifi_epoch = ifp->if_epoch;
ifd->ifi_lastchange = ifp->if_lastchange;
ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
}
/*
* Initialization, destruction and refcounting functions for ifaddrs.
*/
struct ifaddr *
ifa_alloc(size_t size, int flags)
{
struct ifaddr *ifa;
KASSERT(size >= sizeof(struct ifaddr),
("%s: invalid size %zu", __func__, size));
ifa = malloc(size, M_IFADDR, M_ZERO | flags);
if (ifa == NULL)
return (NULL);
if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
goto fail;
refcount_init(&ifa->ifa_refcnt, 1);
return (ifa);
fail:
/* free(NULL) is okay */
counter_u64_free(ifa->ifa_opackets);
counter_u64_free(ifa->ifa_ipackets);
counter_u64_free(ifa->ifa_obytes);
counter_u64_free(ifa->ifa_ibytes);
free(ifa, M_IFADDR);
return (NULL);
}
void
ifa_ref(struct ifaddr *ifa)
{
u_int old __diagused;
old = refcount_acquire(&ifa->ifa_refcnt);
KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
}
int
ifa_try_ref(struct ifaddr *ifa)
{
NET_EPOCH_ASSERT();
return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
}
static void
ifa_destroy(epoch_context_t ctx)
{
struct ifaddr *ifa;
ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
counter_u64_free(ifa->ifa_opackets);
counter_u64_free(ifa->ifa_ipackets);
counter_u64_free(ifa->ifa_obytes);
counter_u64_free(ifa->ifa_ibytes);
free(ifa, M_IFADDR);
}
void
ifa_free(struct ifaddr *ifa)
{
if (refcount_release(&ifa->ifa_refcnt))
NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
}
/*
* XXX: Because sockaddr_dl has deeper structure than the sockaddr
* structs used to represent other address families, it is necessary
* to perform a different comparison.
*/
#define sa_dl_equal(a1, a2) \
((((const struct sockaddr_dl *)(a1))->sdl_len == \
((const struct sockaddr_dl *)(a2))->sdl_len) && \
(bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \
CLLADDR((const struct sockaddr_dl *)(a2)), \
((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(const struct sockaddr *addr)
{
struct ifnet *ifp;
struct ifaddr *ifa;
NET_EPOCH_ASSERT();
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (sa_equal(addr, ifa->ifa_addr)) {
goto done;
}
/* IP6 doesn't have broadcast */
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr)) {
goto done;
}
}
}
ifa = NULL;
done:
return (ifa);
}
int
ifa_ifwithaddr_check(const struct sockaddr *addr)
{
struct epoch_tracker et;
int rc;
NET_EPOCH_ENTER(et);
rc = (ifa_ifwithaddr(addr) != NULL);
NET_EPOCH_EXIT(et);
return (rc);
}
/*
* Locate an interface based on the broadcast address.
*/
/* ARGSUSED */
struct ifaddr *
ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
NET_EPOCH_ASSERT();
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr)) {
goto done;
}
}
}
ifa = NULL;
done:
return (ifa);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
NET_EPOCH_ASSERT();
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
continue;
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr)) {
goto done;
}
}
}
ifa = NULL;
done:
return (ifa);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifaddr *ifa_maybe = NULL;
u_int af = addr->sa_family;
const char *addr_data = addr->sa_data, *cplim;
NET_EPOCH_ASSERT();
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
ifp = ifnet_byindex(
((const struct sockaddr_dl *)addr)->sdl_index);
return (ifp ? ifp->if_addr : NULL);
}
/*
* Scan though each interface, looking for ones that have addresses
* in this address family and the requested fib.
*/
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
const char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (af == AF_INET &&
ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr)) {
goto done;
}
} else {
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one), or if the virtual status
* of new prefix is better than of the old one,
* then remember the new one before continuing
* to search for an even better one.
*/
if (ifa_maybe == NULL ||
ifa_preferred(ifa_maybe, ifa) ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask)) {
ifa_maybe = ifa;
}
}
}
}
ifa = ifa_maybe;
ifa_maybe = NULL;
done:
return (ifa);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
{
struct ifaddr *ifa;
const char *cp, *cp2, *cp3;
char *cplim;
struct ifaddr *ifa_maybe = NULL;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (NULL);
NET_EPOCH_ASSERT();
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == NULL)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (sa_equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr &&
sa_equal(addr, ifa->ifa_dstaddr)))
goto done;
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
goto done;
}
}
ifa = ifa_maybe;
done:
return (ifa);
}
/*
* See whether new ifa is better than current one:
* 1) A non-virtual one is preferred over virtual.
* 2) A virtual in master state preferred over any other state.
*
* Used in several address selecting functions.
*/
int
ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
{
return (cur->ifa_carp && (!next->ifa_carp ||
((*carp_master_p)(next) && !(*carp_master_p)(cur))));
}
struct sockaddr_dl *
link_alloc_sdl(size_t size, int flags)
{
return (malloc(size, M_TEMP, flags));
}
void
link_free_sdl(struct sockaddr *sa)
{
free(sa, M_TEMP);
}
/*
* Fills in given sdl with interface basic info.
* Returns pointer to filled sdl.
*/
struct sockaddr_dl *
link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
{
struct sockaddr_dl *sdl;
sdl = (struct sockaddr_dl *)paddr;
memset(sdl, 0, sizeof(struct sockaddr_dl));
sdl->sdl_len = sizeof(struct sockaddr_dl);
sdl->sdl_family = AF_LINK;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = iftype;
return (sdl);
}
/*
* Mark an interface down and notify protocols of
* the transition.
*/
static void
if_unroute(struct ifnet *ifp, int flag, int fam)
{
KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
ifp->if_flags &= ~flag;
getmicrotime(&ifp->if_lastchange);
ifp->if_qflush(ifp);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
rt_ifmsg(ifp, IFF_UP);
}
void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */
void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */
struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
int (*vlan_tag_p)(struct ifnet *, uint16_t *);
int (*vlan_pcp_p)(struct ifnet *, uint16_t *);
int (*vlan_setcookie_p)(struct ifnet *, void *);
void *(*vlan_cookie_p)(struct ifnet *);
/*
* Handle a change in the interface link state. To avoid LORs
* between driver lock and upper layer locks, as well as possible
* recursions, we post event to taskqueue, and all job
* is done in static do_link_state_change().
*/
void
if_link_state_change(struct ifnet *ifp, int link_state)
{
/* Return if state hasn't changed. */
if (ifp->if_link_state == link_state)
return;
ifp->if_link_state = link_state;
/* XXXGL: reference ifp? */
taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
}
static void
do_link_state_change(void *arg, int pending)
{
struct ifnet *ifp;
int link_state;
ifp = arg;
link_state = ifp->if_link_state;
CURVNET_SET(ifp->if_vnet);
rt_ifmsg(ifp, 0);
if (ifp->if_vlantrunk != NULL)
(*vlan_link_state_p)(ifp);
if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
ifp->if_l2com != NULL)
(*ng_ether_link_state_p)(ifp, link_state);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
if (ifp->if_bridge)
ifp->if_bridge_linkstate(ifp);
if (ifp->if_lagg)
(*lagg_linkstate_p)(ifp, link_state);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname,
(link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
NULL);
if (pending > 1)
if_printf(ifp, "%d link states coalesced\n", pending);
if (log_link_state_change)
if_printf(ifp, "link state changed to %s\n",
(link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
CURVNET_RESTORE();
}
/*
* Mark an interface down and notify protocols of
* the transition.
*/
void
if_down(struct ifnet *ifp)
{
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
if_unroute(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Mark an interface up and notify protocols of
* the transition.
*/
void
if_up(struct ifnet *ifp)
{
ifp->if_flags |= IFF_UP;
getmicrotime(&ifp->if_lastchange);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
rt_ifmsg(ifp, IFF_UP);
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
}
/*
* Flush an interface queue.
*/
void
if_qflush(struct ifnet *ifp)
{
struct mbuf *m, *n;
struct ifaltq *ifq;
ifq = &ifp->if_snd;
IFQ_LOCK(ifq);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(ifq))
ALTQ_PURGE(ifq);
#endif
n = ifq->ifq_head;
while ((m = n) != NULL) {
n = m->m_nextpkt;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
IFQ_UNLOCK(ifq);
}
/*
* Map interface name to interface structure pointer, with or without
* returning a reference.
*/
struct ifnet *
ifunit_ref(const char *name)
{
struct epoch_tracker et;
struct ifnet *ifp;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
!(ifp->if_flags & IFF_DYING))
break;
}
if (ifp != NULL) {
if_ref(ifp);
MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
}
NET_EPOCH_EXIT(et);
return (ifp);
}
struct ifnet *
ifunit(const char *name)
{
struct epoch_tracker et;
struct ifnet *ifp;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
break;
}
NET_EPOCH_EXIT(et);
return (ifp);
}
void *
ifr_buffer_get_buffer(void *data)
{
union ifreq_union *ifrup;
ifrup = data;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
return ((void *)(uintptr_t)
ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
#endif
return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
}
static void
ifr_buffer_set_buffer_null(void *data)
{
union ifreq_union *ifrup;
ifrup = data;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
else
#endif
ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
}
size_t
ifr_buffer_get_length(void *data)
{
union ifreq_union *ifrup;
ifrup = data;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
#endif
return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
}
static void
ifr_buffer_set_length(void *data, size_t len)
{
union ifreq_union *ifrup;
ifrup = data;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
else
#endif
ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
}
void *
ifr_data_get_ptr(void *ifrp)
{
union ifreq_union *ifrup;
ifrup = ifrp;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
return ((void *)(uintptr_t)
ifrup->ifr32.ifr_ifru.ifru_data);
#endif
return (ifrup->ifr.ifr_ifru.ifru_data);
}
struct ifcap_nv_bit_name {
uint64_t cap_bit;
const char *cap_name;
};
#define CAPNV(x) {.cap_bit = IFCAP_##x, \
.cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
CAPNV(RXCSUM),
CAPNV(TXCSUM),
CAPNV(NETCONS),
CAPNV(VLAN_MTU),
CAPNV(VLAN_HWTAGGING),
CAPNV(JUMBO_MTU),
CAPNV(POLLING),
CAPNV(VLAN_HWCSUM),
CAPNV(TSO4),
CAPNV(TSO6),
CAPNV(LRO),
CAPNV(WOL_UCAST),
CAPNV(WOL_MCAST),
CAPNV(WOL_MAGIC),
CAPNV(TOE4),
CAPNV(TOE6),
CAPNV(VLAN_HWFILTER),
CAPNV(VLAN_HWTSO),
CAPNV(LINKSTATE),
CAPNV(NETMAP),
CAPNV(RXCSUM_IPV6),
CAPNV(TXCSUM_IPV6),
CAPNV(HWSTATS),
CAPNV(TXRTLMT),
CAPNV(HWRXTSTMP),
CAPNV(MEXTPG),
CAPNV(TXTLS4),
CAPNV(TXTLS6),
CAPNV(VXLAN_HWCSUM),
CAPNV(VXLAN_HWTSO),
CAPNV(TXTLS_RTLMT),
{0, NULL}
};
#define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
.cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
CAP2NV(RXTLS4),
CAP2NV(RXTLS6),
CAP2NV(IPSEC_OFFLOAD),
{0, NULL}
};
#undef CAPNV
#undef CAP2NV
int
if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
const struct ifcap_nv_bit_name *nn, bool all)
{
int i, res;
res = 0;
for (i = 0; nn[i].cap_name != NULL; i++) {
if (nvlist_exists_bool(nv, nn[i].cap_name)) {
if (all || nvlist_get_bool(nv, nn[i].cap_name))
res |= nn[i].cap_bit;
} else {
res |= *old_cap & nn[i].cap_bit;
}
}
return (res);
}
void
if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
int ifr_cap, int ifr_req)
{
int i;
for (i = 0; nn[i].cap_name != NULL; i++) {
if ((nn[i].cap_bit & ifr_cap) != 0) {
nvlist_add_bool(nv, nn[i].cap_name,
(nn[i].cap_bit & ifr_req) != 0);
}
}
}
/*
* Hardware specific interface ioctls.
*/
int
ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
{
struct ifreq *ifr;
int error = 0, do_ifup = 0;
int new_flags, temp_flags;
size_t descrlen, nvbuflen;
char *descrbuf;
char new_name[IFNAMSIZ];
void *buf;
nvlist_t *nvcap;
struct siocsifcapnv_driver_data drv_ioctl_data;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCGIFINDEX:
ifr->ifr_index = ifp->if_index;
break;
case SIOCGIFFLAGS:
temp_flags = ifp->if_flags | ifp->if_drv_flags;
ifr->ifr_flags = temp_flags & 0xffff;
ifr->ifr_flagshigh = temp_flags >> 16;
break;
case SIOCGIFCAP:
ifr->ifr_reqcap = ifp->if_capabilities;
ifr->ifr_curcap = ifp->if_capenable;
break;
case SIOCGIFCAPNV:
if ((ifp->if_capabilities & IFCAP_NV) == 0) {
error = EINVAL;
break;
}
buf = NULL;
nvcap = nvlist_create(0);
for (;;) {
if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
ifp->if_capabilities, ifp->if_capenable);
if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
ifp->if_capabilities2, ifp->if_capenable2);
error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
__DECONST(caddr_t, nvcap));
if (error != 0) {
if_printf(ifp,
"SIOCGIFCAPNV driver mistake: nvlist error %d\n",
error);
break;
}
buf = nvlist_pack(nvcap, &nvbuflen);
if (buf == NULL) {
error = nvlist_error(nvcap);
if (error == 0)
error = EDOOFUS;
break;
}
if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
ifr->ifr_cap_nv.length = nvbuflen;
ifr->ifr_cap_nv.buffer = NULL;
error = EFBIG;
break;
}
ifr->ifr_cap_nv.length = nvbuflen;
error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
break;
}
free(buf, M_NVLIST);
nvlist_destroy(nvcap);
break;
case SIOCGIFDATA:
{
struct if_data ifd;
/* Ensure uninitialised padding is not leaked. */
memset(&ifd, 0, sizeof(ifd));
if_data_copy(ifp, &ifd);
error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
break;
}
#ifdef MAC
case SIOCGIFMAC:
error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
/* XXXGL: did this ever worked? */
ifr->ifr_phys = 0;
break;
case SIOCGIFDESCR:
error = 0;
sx_slock(&ifdescr_sx);
if (ifp->if_description == NULL)
error = ENOMSG;
else {
/* space for terminating nul */
descrlen = strlen(ifp->if_description) + 1;
if (ifr_buffer_get_length(ifr) < descrlen)
ifr_buffer_set_buffer_null(ifr);
else
error = copyout(ifp->if_description,
ifr_buffer_get_buffer(ifr), descrlen);
ifr_buffer_set_length(ifr, descrlen);
}
sx_sunlock(&ifdescr_sx);
break;
case SIOCSIFDESCR:
error = priv_check(td, PRIV_NET_SETIFDESCR);
if (error)
return (error);
/*
* Copy only (length-1) bytes to make sure that
* if_description is always nul terminated. The
* length parameter is supposed to count the
* terminating nul in.
*/
if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
return (ENAMETOOLONG);
else if (ifr_buffer_get_length(ifr) == 0)
descrbuf = NULL;
else {
descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
ifr_buffer_get_length(ifr) - 1);
if (error) {
if_freedescr(descrbuf);
break;
}
}
if_setdescr(ifp, descrbuf);
getmicrotime(&ifp->if_lastchange);
break;
case SIOCGIFFIB:
ifr->ifr_fib = ifp->if_fib;
break;
case SIOCSIFFIB:
error = priv_check(td, PRIV_NET_SETIFFIB);
if (error)
return (error);
if (ifr->ifr_fib >= rt_numfibs)
return (EINVAL);
ifp->if_fib = ifr->ifr_fib;
break;
case SIOCSIFFLAGS:
error = priv_check(td, PRIV_NET_SETIFFLAGS);
if (error)
return (error);
/*
* Currently, no driver owned flags pass the IFF_CANTCHANGE
* check, so we don't need special handling here yet.
*/
new_flags = (ifr->ifr_flags & 0xffff) |
(ifr->ifr_flagshigh << 16);
if (ifp->if_flags & IFF_UP &&
(new_flags & IFF_UP) == 0) {
if_down(ifp);
} else if (new_flags & IFF_UP &&
(ifp->if_flags & IFF_UP) == 0) {
do_ifup = 1;
}
/*
* See if the promiscuous mode or allmulti bits are about to
* flip. They require special handling because in-kernel
* consumers may indepdently toggle them.
*/
if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
if (new_flags & IFF_PPROMISC)
ifp->if_flags |= IFF_PROMISC;
else if (ifp->if_pcount == 0)
ifp->if_flags &= ~IFF_PROMISC;
if (log_promisc_mode_change)
if_printf(ifp, "permanently promiscuous mode %s\n",
((new_flags & IFF_PPROMISC) ?
"enabled" : "disabled"));
}
if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) {
if (new_flags & IFF_PALLMULTI)
ifp->if_flags |= IFF_ALLMULTI;
else if (ifp->if_amcount == 0)
ifp->if_flags &= ~IFF_ALLMULTI;
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(new_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl) {
(void) (*ifp->if_ioctl)(ifp, cmd, data);
}
if (do_ifup)
if_up(ifp);
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFCAP:
error = priv_check(td, PRIV_NET_SETIFCAP);
if (error != 0)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
if (ifr->ifr_reqcap & ~ifp->if_capabilities)
return (EINVAL);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFCAPNV:
error = priv_check(td, PRIV_NET_SETIFCAP);
if (error != 0)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
if ((ifp->if_capabilities & IFCAP_NV) == 0)
return (EINVAL);
if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
return (EINVAL);
nvcap = NULL;
buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
for (;;) {
error = copyin(ifr->ifr_cap_nv.buffer, buf,
ifr->ifr_cap_nv.length);
if (error != 0)
break;
nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
if (nvcap == NULL) {
error = EINVAL;
break;
}
drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
&ifp->if_capenable, ifcap_nv_bit_names, false);
if ((drv_ioctl_data.reqcap &
~ifp->if_capabilities) != 0) {
error = EINVAL;
break;
}
drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
&ifp->if_capenable2, ifcap2_nv_bit_names, false);
if ((drv_ioctl_data.reqcap2 &
~ifp->if_capabilities2) != 0) {
error = EINVAL;
break;
}
drv_ioctl_data.nvcap = nvcap;
error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
(caddr_t)&drv_ioctl_data);
break;
}
nvlist_destroy(nvcap);
free(buf, M_TEMP);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
#ifdef MAC
case SIOCSIFMAC:
error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCSIFNAME:
error = priv_check(td, PRIV_NET_SETIFNAME);
if (error)
return (error);
error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
NULL);
if (error != 0)
return (error);
error = if_rename(ifp, new_name);
break;
#ifdef VIMAGE
case SIOCSIFVNET:
error = priv_check(td, PRIV_NET_SETIFVNET);
if (error)
return (error);
error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
break;
#endif
case SIOCSIFMETRIC:
error = priv_check(td, PRIV_NET_SETIFMETRIC);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = priv_check(td, PRIV_NET_SETIFPHYS);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFMTU:
{
u_long oldmtu = ifp->if_mtu;
error = priv_check(td, PRIV_NET_SETIFMTU);
if (error)
return (error);
if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
return (EINVAL);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
/* Disallow MTU changes on bridge member interfaces. */
if (ifp->if_bridge)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0) {
getmicrotime(&ifp->if_lastchange);
rt_ifmsg(ifp, 0);
#ifdef INET
DEBUGNET_NOTIFY_MTU(ifp);
#endif
}
/*
* If the link MTU changed, do network layer specific procedure.
*/
if (ifp->if_mtu != oldmtu)
if_notifymtu(ifp);
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
if (cmd == SIOCADDMULTI)
error = priv_check(td, PRIV_NET_ADDMULTI);
else
error = priv_check(td, PRIV_NET_DELMULTI);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return (EINVAL);
if (cmd == SIOCADDMULTI) {
struct epoch_tracker et;
struct ifmultiaddr *ifma;
/*
* Userland is only permitted to join groups once
* via the if_addmulti() KPI, because it cannot hold
* struct ifmultiaddr * between calls. It may also
* lose a race while we check if the membership
* already exists.
*/
NET_EPOCH_ENTER(et);
ifma = if_findmulti(ifp, &ifr->ifr_addr);
NET_EPOCH_EXIT(et);
if (ifma != NULL)
error = EADDRINUSE;
else
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = priv_check(td, PRIV_NET_HWIOCTL);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCGIFSTATUS:
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
case SIOCGIFMEDIA:
case SIOCGIFXMEDIA:
case SIOCGIFGENERIC:
case SIOCGIFRSSKEY:
case SIOCGIFRSSHASH:
case SIOCGIFDOWNREASON:
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
break;
case SIOCSIFLLADDR:
error = priv_check(td, PRIV_NET_SETLLADDR);
if (error)
return (error);
error = if_setlladdr(ifp,
ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
break;
case SIOCGHWADDR:
error = if_gethwaddr(ifp, ifr);
break;
case SIOCAIFGROUP:
error = priv_check(td, PRIV_NET_ADDIFGROUP);
if (error)
return (error);
error = if_addgroup(ifp,
((struct ifgroupreq *)data)->ifgr_group);
if (error != 0)
return (error);
break;
case SIOCGIFGROUP:
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
error = if_getgroup((struct ifgroupreq *)data, ifp);
NET_EPOCH_EXIT(et);
break;
}
case SIOCDIFGROUP:
error = priv_check(td, PRIV_NET_DELIFGROUP);
if (error)
return (error);
error = if_delgroup(ifp,
((struct ifgroupreq *)data)->ifgr_group);
if (error != 0)
return (error);
break;
default:
error = ENOIOCTL;
break;
}
return (error);
}
/*
* Interface ioctls.
*/
int
ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
{
#ifdef COMPAT_FREEBSD32
union {
struct ifconf ifc;
struct ifdrv ifd;
struct ifgroupreq ifgr;
struct ifmediareq ifmr;
} thunk;
u_long saved_cmd;
struct ifconf32 *ifc32;
struct ifdrv32 *ifd32;
struct ifgroupreq32 *ifgr32;
struct ifmediareq32 *ifmr32;
#endif
struct ifnet *ifp;
struct ifreq *ifr;
int error;
int oif_flags;
#ifdef VIMAGE
bool shutdown;
#endif
CURVNET_SET(so->so_vnet);
#ifdef VIMAGE
/* Make sure the VNET is stable. */
shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
if (shutdown) {
CURVNET_RESTORE();
return (EBUSY);
}
#endif
#ifdef COMPAT_FREEBSD32
saved_cmd = cmd;
switch (cmd) {
case SIOCGIFCONF32:
ifc32 = (struct ifconf32 *)data;
thunk.ifc.ifc_len = ifc32->ifc_len;
thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
data = (caddr_t)&thunk.ifc;
cmd = SIOCGIFCONF;
break;
case SIOCGDRVSPEC32:
case SIOCSDRVSPEC32:
ifd32 = (struct ifdrv32 *)data;
memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
sizeof(thunk.ifd.ifd_name));
thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
thunk.ifd.ifd_len = ifd32->ifd_len;
thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
data = (caddr_t)&thunk.ifd;
cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
break;
case SIOCAIFGROUP32:
case SIOCGIFGROUP32:
case SIOCDIFGROUP32:
case SIOCGIFGMEMB32:
ifgr32 = (struct ifgroupreq32 *)data;
memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
sizeof(thunk.ifgr.ifgr_name));
thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
switch (cmd) {
case SIOCAIFGROUP32:
case SIOCDIFGROUP32:
memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
sizeof(thunk.ifgr.ifgr_group));
break;
case SIOCGIFGROUP32:
case SIOCGIFGMEMB32:
thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
break;
}
data = (caddr_t)&thunk.ifgr;
cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
break;
case SIOCGIFMEDIA32:
case SIOCGIFXMEDIA32:
ifmr32 = (struct ifmediareq32 *)data;
memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
sizeof(thunk.ifmr.ifm_name));
thunk.ifmr.ifm_current = ifmr32->ifm_current;
thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
thunk.ifmr.ifm_status = ifmr32->ifm_status;
thunk.ifmr.ifm_active = ifmr32->ifm_active;
thunk.ifmr.ifm_count = ifmr32->ifm_count;
thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
data = (caddr_t)&thunk.ifmr;
cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
break;
}
#endif
switch (cmd) {
case SIOCGIFCONF:
error = ifconf(cmd, data);
goto out_noref;
}
ifr = (struct ifreq *)data;
switch (cmd) {
#ifdef VIMAGE
case SIOCSIFRVNET:
error = priv_check(td, PRIV_NET_SETIFVNET);
if (error == 0)
error = if_vmove_reclaim(td, ifr->ifr_name,
ifr->ifr_jid);
goto out_noref;
#endif
case SIOCIFCREATE:
case SIOCIFCREATE2:
error = priv_check(td, PRIV_NET_IFCREATE);
if (error == 0)
error = if_clone_create(ifr->ifr_name,
sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
ifr_data_get_ptr(ifr) : NULL);
goto out_noref;
case SIOCIFDESTROY:
error = priv_check(td, PRIV_NET_IFDESTROY);
if (error == 0) {
sx_xlock(&ifnet_detach_sxlock);
error = if_clone_destroy(ifr->ifr_name);
sx_xunlock(&ifnet_detach_sxlock);
}
goto out_noref;
case SIOCIFGCLONERS:
error = if_clone_list((struct if_clonereq *)data);
goto out_noref;
case SIOCGIFGMEMB:
error = if_getgroupmembers((struct ifgroupreq *)data);
goto out_noref;
#if defined(INET) || defined(INET6)
case SIOCSVH:
case SIOCGVH:
if (carp_ioctl_p == NULL)
error = EPROTONOSUPPORT;
else
error = (*carp_ioctl_p)(ifr, cmd, td);
goto out_noref;
#endif
}
ifp = ifunit_ref(ifr->ifr_name);
if (ifp == NULL) {
error = ENXIO;
goto out_noref;
}
error = ifhwioctl(cmd, ifp, data, td);
if (error != ENOIOCTL)
goto out_ref;
oif_flags = ifp->if_flags;
if (so->so_proto == NULL) {
error = EOPNOTSUPP;
goto out_ref;
}
/*
* Pass the request on to the socket control method, and if the
* latter returns EOPNOTSUPP, directly to the interface.
*
* Make an exception for the legacy SIOCSIF* requests. Drivers
* trust SIOCSIFADDR et al to come from an already privileged
* layer, and do not perform any credentials checks or input
* validation.
*/
error = so->so_proto->pr_control(so, cmd, data, ifp, td);
if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
if_up(ifp);
out_ref:
if_rele(ifp);
out_noref:
CURVNET_RESTORE();
#ifdef COMPAT_FREEBSD32
if (error != 0)
return (error);
switch (saved_cmd) {
case SIOCGIFCONF32:
ifc32->ifc_len = thunk.ifc.ifc_len;
break;
case SIOCGDRVSPEC32:
/*
* SIOCGDRVSPEC is IOWR, but nothing actually touches
* the struct so just assert that ifd_len (the only
* field it might make sense to update) hasn't
* changed.
*/
KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
("ifd_len was updated %u -> %zu", ifd32->ifd_len,
thunk.ifd.ifd_len));
break;
case SIOCGIFGROUP32:
case SIOCGIFGMEMB32:
ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
break;
case SIOCGIFMEDIA32:
case SIOCGIFXMEDIA32:
ifmr32->ifm_current = thunk.ifmr.ifm_current;
ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
ifmr32->ifm_status = thunk.ifmr.ifm_status;
ifmr32->ifm_active = thunk.ifmr.ifm_active;
ifmr32->ifm_count = thunk.ifmr.ifm_count;
break;
}
#endif
return (error);
}
int
if_rename(struct ifnet *ifp, char *new_name)
{
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
size_t namelen, onamelen;
char old_name[IFNAMSIZ];
char strbuf[IFNAMSIZ + 8];
if (new_name[0] == '\0')
return (EINVAL);
if (strcmp(new_name, ifp->if_xname) == 0)
return (0);
if (ifunit(new_name) != NULL)
return (EEXIST);
/*
* XXX: Locking. Nothing else seems to lock if_flags,
* and there are numerous other races with the
* ifunit() checks not being atomic with namespace
* changes (renames, vmoves, if_attach, etc).
*/
ifp->if_flags |= IFF_RENAMING;
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
if_printf(ifp, "changing name to '%s'\n", new_name);
IF_ADDR_WLOCK(ifp);
strlcpy(old_name, ifp->if_xname, sizeof(old_name));
strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
ifa = ifp->if_addr;
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
namelen = strlen(new_name);
onamelen = sdl->sdl_nlen;
/*
* Move the address if needed. This is safe because we
* allocate space for a name of length IFNAMSIZ when we
* create this in if_attach().
*/
if (namelen != onamelen) {
bcopy(sdl->sdl_data + onamelen,
sdl->sdl_data + namelen, sdl->sdl_alen);
}
bcopy(new_name, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
bzero(sdl->sdl_data, onamelen);
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
IF_ADDR_WUNLOCK(ifp);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
ifp->if_flags &= ~IFF_RENAMING;
snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
devctl_notify("IFNET", old_name, "RENAME", strbuf);
return (0);
}
/*
* The code common to handling reference counted flags,
* e.g., in ifpromisc() and if_allmulti().
* The "pflag" argument can specify a permanent mode flag to check,
* such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
*
* Only to be used on stack-owned flags, not driver-owned flags.
*/
static int
if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
{
struct ifreq ifr;
int error;
int oldflags, oldcount;
/* Sanity checks to catch programming errors */
KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
("%s: setting driver-owned flag %d", __func__, flag));
if (onswitch)
KASSERT(*refcount >= 0,
("%s: increment negative refcount %d for flag %d",
__func__, *refcount, flag));
else
KASSERT(*refcount > 0,
("%s: decrement non-positive refcount %d for flag %d",
__func__, *refcount, flag));
/* In case this mode is permanent, just touch refcount */
if (ifp->if_flags & pflag) {
*refcount += onswitch ? 1 : -1;
return (0);
}
/* Save ifnet parameters for if_ioctl() may fail */
oldcount = *refcount;
oldflags = ifp->if_flags;
/*
* See if we aren't the only and touching refcount is enough.
* Actually toggle interface flag if we are the first or last.
*/
if (onswitch) {
if ((*refcount)++)
return (0);
ifp->if_flags |= flag;
} else {
if (--(*refcount))
return (0);
ifp->if_flags &= ~flag;
}
/* Call down the driver since we've changed interface flags */
if (ifp->if_ioctl == NULL) {
error = EOPNOTSUPP;
goto recover;
}
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
if (error)
goto recover;
/* Notify userland that interface flags have changed */
rt_ifmsg(ifp, flag);
return (0);
recover:
/* Recover after driver error */
*refcount = oldcount;
ifp->if_flags = oldflags;
return (error);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(struct ifnet *ifp, int pswitch)
{
int error;
int oldflags = ifp->if_flags;
error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
&ifp->if_pcount, pswitch);
/* If promiscuous mode status has changed, log a message */
if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
log_promisc_mode_change)
if_printf(ifp, "promiscuous mode %s\n",
(ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
return (error);
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(u_long cmd, caddr_t data)
{
struct ifconf *ifc = (struct ifconf *)data;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr;
struct sbuf *sb;
int error, full = 0, valid_len, max_len;
/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
max_len = maxphys - 1;
/* Prevent hostile input from being able to crash the system */
if (ifc->ifc_len <= 0)
return (EINVAL);
again:
if (ifc->ifc_len <= max_len) {
max_len = ifc->ifc_len;
full = 1;
}
sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
max_len = 0;
valid_len = 0;
IFNET_RLOCK();
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
struct epoch_tracker et;
int addrs;
/*
* Zero the ifr to make sure we don't disclose the contents
* of the stack.
*/
memset(&ifr, 0, sizeof(ifr));
if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
>= sizeof(ifr.ifr_name)) {
sbuf_delete(sb);
IFNET_RUNLOCK();
return (ENAMETOOLONG);
}
addrs = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa = ifa->ifa_addr;
if (prison_if(curthread->td_ucred, sa) != 0)
continue;
addrs++;
if (sa->sa_len <= sizeof(*sa)) {
if (sa->sa_len < sizeof(*sa)) {
memset(&ifr.ifr_ifru.ifru_addr, 0,
sizeof(ifr.ifr_ifru.ifru_addr));
memcpy(&ifr.ifr_ifru.ifru_addr, sa,
sa->sa_len);
} else
ifr.ifr_ifru.ifru_addr = *sa;
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
} else {
sbuf_bcat(sb, &ifr,
offsetof(struct ifreq, ifr_addr));
max_len += offsetof(struct ifreq, ifr_addr);
sbuf_bcat(sb, sa, sa->sa_len);
max_len += sa->sa_len;
}
if (sbuf_error(sb) == 0)
valid_len = sbuf_len(sb);
}
NET_EPOCH_EXIT(et);
if (addrs == 0) {
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
if (sbuf_error(sb) == 0)
valid_len = sbuf_len(sb);
}
}
IFNET_RUNLOCK();
/*
* If we didn't allocate enough space (uncommon), try again. If
* we have already allocated as much space as we are allowed,
* return what we've got.
*/
if (valid_len != max_len && !full) {
sbuf_delete(sb);
goto again;
}
ifc->ifc_len = valid_len;
sbuf_finish(sb);
error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
sbuf_delete(sb);
return (error);
}
/*
* Just like ifpromisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(struct ifnet *ifp, int onswitch)
{
return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount,
onswitch));
}
struct ifmultiaddr *
if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
IF_ADDR_LOCK_ASSERT(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (sa->sa_family == AF_LINK) {
if (sa_dl_equal(ifma->ifma_addr, sa))
break;
} else {
if (sa_equal(ifma->ifma_addr, sa))
break;
}
}
return ifma;
}
/*
* Allocate a new ifmultiaddr and initialize based on passed arguments. We
* make copies of passed sockaddrs. The ifmultiaddr will not be added to
* the ifnet multicast address list here, so the caller must do that and
* other setup work (such as notifying the device driver). The reference
* count is initialized to 1.
*/
static struct ifmultiaddr *
if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
int mflags)
{
struct ifmultiaddr *ifma;
struct sockaddr *dupsa;
ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
M_ZERO);
if (ifma == NULL)
return (NULL);
dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = NULL;
if (llsa == NULL) {
ifma->ifma_lladdr = NULL;
return (ifma);
}
dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_lladdr = dupsa;
return (ifma);
}
/*
* if_freemulti: free ifmultiaddr structure and possibly attached related
* addresses. The caller is responsible for implementing reference
* counting, notifying the driver, handling routing messages, and releasing
* any dependent link layer state.
*/
#ifdef MCAST_VERBOSE
extern void kdb_backtrace(void);
#endif
static void
if_freemulti_internal(struct ifmultiaddr *ifma)
{
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
ifma->ifma_refcount));
if (ifma->ifma_lladdr != NULL)
free(ifma->ifma_lladdr, M_IFMADDR);
#ifdef MCAST_VERBOSE
kdb_backtrace();
printf("%s freeing ifma: %p\n", __func__, ifma);
#endif
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
}
static void
if_destroymulti(epoch_context_t ctx)
{
struct ifmultiaddr *ifma;
ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
if_freemulti_internal(ifma);
}
void
if_freemulti(struct ifmultiaddr *ifma)
{
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
ifma->ifma_refcount));
NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
}
/*
* Register an additional multicast address with a network interface.
*
* - If the address is already present, bump the reference count on the
* address and return.
* - If the address is not link-layer, look up a link layer address.
* - Allocate address structures for one or both addresses, and attach to the
* multicast address list on the interface. If automatically adding a link
* layer address, the protocol address will own a reference to the link
* layer address, to be freed when it is freed.
* - Notify the network device driver of an addition to the multicast address
* list.
*
* 'sa' points to caller-owned memory with the desired multicast address.
*
* 'retifma' will be used to return a pointer to the resulting multicast
* address reference, if desired.
*/
int
if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
struct ifmultiaddr **retifma)
{
struct ifmultiaddr *ifma, *ll_ifma;
struct sockaddr *llsa;
struct sockaddr_dl sdl;
int error;
#ifdef INET
IN_MULTI_LIST_UNLOCK_ASSERT();
#endif
#ifdef INET6
IN6_MULTI_LIST_UNLOCK_ASSERT();
#endif
/*
* If the address is already present, return a new reference to it;
* otherwise, allocate storage and set up a new address.
*/
IF_ADDR_WLOCK(ifp);
ifma = if_findmulti(ifp, sa);
if (ifma != NULL) {
ifma->ifma_refcount++;
if (retifma != NULL)
*retifma = ifma;
IF_ADDR_WUNLOCK(ifp);
return (0);
}
/*
* The address isn't already present; resolve the protocol address
* into a link layer address, and then look that up, bump its
* refcount or allocate an ifma for that also.
* Most link layer resolving functions returns address data which
* fits inside default sockaddr_dl structure. However callback
* can allocate another sockaddr structure, in that case we need to
* free it later.
*/
llsa = NULL;
ll_ifma = NULL;
if (ifp->if_resolvemulti != NULL) {
/* Provide called function with buffer size information */
sdl.sdl_len = sizeof(sdl);
llsa = (struct sockaddr *)&sdl;
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error)
goto unlock_out;
}
/*
* Allocate the new address. Don't hook it up yet, as we may also
* need to allocate a link layer multicast address.
*/
ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
if (ifma == NULL) {
error = ENOMEM;
goto free_llsa_out;
}
/*
* If a link layer address is found, we'll need to see if it's
* already present in the address list, or allocate is as well.
* When this block finishes, the link layer address will be on the
* list.
*/
if (llsa != NULL) {
ll_ifma = if_findmulti(ifp, llsa);
if (ll_ifma == NULL) {
ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
if (ll_ifma == NULL) {
--ifma->ifma_refcount;
if_freemulti(ifma);
error = ENOMEM;
goto free_llsa_out;
}
ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
ifma_link);
} else
ll_ifma->ifma_refcount++;
ifma->ifma_llifma = ll_ifma;
}
/*
* We now have a new multicast address, ifma, and possibly a new or
* referenced link layer address. Add the primary address to the
* ifnet address list.
*/
ifma->ifma_flags |= IFMA_F_ENQUEUED;
CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
if (retifma != NULL)
*retifma = ifma;
/*
* Must generate the message while holding the lock so that 'ifma'
* pointer is still valid.
*/
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
IF_ADDR_WUNLOCK(ifp);
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
if (ifp->if_ioctl != NULL) {
if (THREAD_CAN_SLEEP())
(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
else
taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
}
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
link_free_sdl(llsa);
return (0);
free_llsa_out:
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
link_free_sdl(llsa);
unlock_out:
IF_ADDR_WUNLOCK(ifp);
return (error);
}
static void
if_siocaddmulti(void *arg, int pending)
{
struct ifnet *ifp;
ifp = arg;
#ifdef DIAGNOSTIC
if (pending > 1)
if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
#endif
CURVNET_SET(ifp->if_vnet);
(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
CURVNET_RESTORE();
}
/*
* Delete a multicast group membership by network-layer group address.
*
* Returns ENOENT if the entry could not be found. If ifp no longer
* exists, results are undefined. This entry point should only be used
* from subsystems which do appropriate locking to hold ifp for the
* duration of the call.
* Network-layer protocol domains must use if_delmulti_ifma().
*/
int
if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
int lastref;
KASSERT(ifp, ("%s: NULL ifp", __func__));
IF_ADDR_WLOCK(ifp);
lastref = 0;
ifma = if_findmulti(ifp, sa);
if (ifma != NULL)
lastref = if_delmulti_locked(ifp, ifma, 0);
IF_ADDR_WUNLOCK(ifp);
if (ifma == NULL)
return (ENOENT);
if (lastref && ifp->if_ioctl != NULL) {
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
}
return (0);
}
/*
* Delete all multicast group membership for an interface.
* Should be used to quickly flush all multicast filters.
*/
void
if_delallmulti(struct ifnet *ifp)
{
struct ifmultiaddr *ifma;
struct ifmultiaddr *next;
IF_ADDR_WLOCK(ifp);
CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
if_delmulti_locked(ifp, ifma, 0);
IF_ADDR_WUNLOCK(ifp);
}
void
if_delmulti_ifma(struct ifmultiaddr *ifma)
{
if_delmulti_ifma_flags(ifma, 0);
}
/*
* Delete a multicast group membership by group membership pointer.
* Network-layer protocol domains must use this routine.
*
* It is safe to call this routine if the ifp disappeared.
*/
void
if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
{
struct ifnet *ifp;
int lastref;
MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
#ifdef INET
IN_MULTI_LIST_UNLOCK_ASSERT();
#endif
ifp = ifma->ifma_ifp;
#ifdef DIAGNOSTIC
if (ifp == NULL) {
printf("%s: ifma_ifp seems to be detached\n", __func__);
} else {
struct epoch_tracker et;
struct ifnet *oifp;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
if (ifp == oifp)
break;
NET_EPOCH_EXIT(et);
if (ifp != oifp)
ifp = NULL;
}
#endif
/*
* If and only if the ifnet instance exists: Acquire the address lock.
*/
if (ifp != NULL)
IF_ADDR_WLOCK(ifp);
lastref = if_delmulti_locked(ifp, ifma, flags);
if (ifp != NULL) {
/*
* If and only if the ifnet instance exists:
* Release the address lock.
* If the group was left: update the hardware hash filter.
*/
IF_ADDR_WUNLOCK(ifp);
if (lastref && ifp->if_ioctl != NULL) {
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
}
}
}
/*
* Perform deletion of network-layer and/or link-layer multicast address.
*
* Return 0 if the reference count was decremented.
* Return 1 if the final reference was released, indicating that the
* hardware hash filter should be reprogrammed.
*/
static int
if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
{
struct ifmultiaddr *ll_ifma;
if (ifp != NULL && ifma->ifma_ifp != NULL) {
KASSERT(ifma->ifma_ifp == ifp,
("%s: inconsistent ifp %p", __func__, ifp));
IF_ADDR_WLOCK_ASSERT(ifp);
}
ifp = ifma->ifma_ifp;
MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
/*
* If the ifnet is detaching, null out references to ifnet,
* so that upper protocol layers will notice, and not attempt
* to obtain locks for an ifnet which no longer exists. The
* routing socket announcement must happen before the ifnet
* instance is detached from the system.
*/
if (detaching) {
#ifdef DIAGNOSTIC
printf("%s: detaching ifnet instance %p\n", __func__, ifp);
#endif
/*
* ifp may already be nulled out if we are being reentered
* to delete the ll_ifma.
*/
if (ifp != NULL) {
rt_newmaddrmsg(RTM_DELMADDR, ifma);
ifma->ifma_ifp = NULL;
}
}
if (--ifma->ifma_refcount > 0)
return 0;
if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
}
/*
* If this ifma is a network-layer ifma, a link-layer ifma may
* have been associated with it. Release it first if so.
*/
ll_ifma = ifma->ifma_llifma;
if (ll_ifma != NULL) {
KASSERT(ifma->ifma_lladdr != NULL,
("%s: llifma w/o lladdr", __func__));
if (detaching)
ll_ifma->ifma_ifp = NULL; /* XXX */
if (--ll_ifma->ifma_refcount == 0) {
if (ifp != NULL) {
if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
ifma_link);
ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
}
}
if_freemulti(ll_ifma);
}
}
#ifdef INVARIANTS
if (ifp) {
struct ifmultiaddr *ifmatmp;
CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
MPASS(ifma != ifmatmp);
}
#endif
if_freemulti(ifma);
/*
* The last reference to this instance of struct ifmultiaddr
* was released; the hardware should be notified of this change.
*/
return 1;
}
/*
* Set the link layer address on an interface.
*
* At this time we only support certain types of interfaces,
* and we don't allow the length of the address to change.
*
* Set noinline to be dtrace-friendly
*/
__noinline int
if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifreq ifr;
ifa = ifp->if_addr;
if (ifa == NULL)
return (EINVAL);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
if (sdl == NULL)
return (EINVAL);
if (len != sdl->sdl_alen) /* don't allow length to change */
return (EINVAL);
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_XETHER:
case IFT_L2VLAN:
case IFT_BRIDGE:
case IFT_IEEE8023ADLAG:
bcopy(lladdr, LLADDR(sdl), len);
break;
default:
return (ENODEV);
}
/*
* If the interface is already up, we need
* to re-init it in order to reprogram its
* address filter.
*/
if ((ifp->if_flags & IFF_UP) != 0) {
if (ifp->if_ioctl) {
ifp->if_flags &= ~IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
ifp->if_flags |= IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
}
}
EVENTHANDLER_INVOKE(iflladdr_event, ifp);
return (0);
}
/*
* Compat function for handling basic encapsulation requests.
* Not converted stacks (FDDI, IB, ..) supports traditional
* output model: ARP (and other similar L2 protocols) are handled
* inside output routine, arpresolve/nd6_resolve() returns MAC
* address instead of full prepend.
*
* This function creates calculated header==MAC for IPv4/IPv6 and
* returns EAFNOSUPPORT (which is then handled in ARP code) for other
* address families.
*/
static int
if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
{
if (req->rtype != IFENCAP_LL)
return (EOPNOTSUPP);
if (req->bufsize < req->lladdr_len)
return (ENOMEM);
switch (req->family) {
case AF_INET:
case AF_INET6:
break;
default:
return (EAFNOSUPPORT);
}
/* Copy lladdr to storage as is */
memmove(req->buf, req->lladdr, req->lladdr_len);
req->bufsize = req->lladdr_len;
req->lladdr_off = 0;
return (0);
}
/*
* Tunnel interfaces can nest, also they may cause infinite recursion
* calls when misconfigured. We'll prevent this by detecting loops.
* High nesting level may cause stack exhaustion. We'll prevent this
* by introducing upper limit.
*
* Return 0, if tunnel nesting count is equal or less than limit.
*/
int
if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
int limit)
{
struct m_tag *mtag;
int count;
count = 1;
mtag = NULL;
while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
if (*(struct ifnet **)(mtag + 1) == ifp) {
log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
return (EIO);
}
count++;
}
if (count > limit) {
log(LOG_NOTICE,
"%s: if_output recursively called too many times(%d)\n",
if_name(ifp), count);
return (EIO);
}
mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
if (mtag == NULL)
return (ENOMEM);
*(struct ifnet **)(mtag + 1) = ifp;
m_tag_prepend(m, mtag);
return (0);
}
/*
* Get the link layer address that was read from the hardware at attach.
*
* This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
* their component interfaces as IFT_IEEE8023ADLAG.
*/
int
if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
{
if (ifp->if_hw_addr == NULL)
return (ENODEV);
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_IEEE8023ADLAG:
bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
return (0);
default:
return (ENODEV);
}
}
/*
* The name argument must be a pointer to storage which will last as
* long as the interface does. For physical devices, the result of
* device_get_name(dev) is a good choice and for pseudo-devices a
* static string works well.
*/
void
if_initname(struct ifnet *ifp, const char *name, int unit)
{
ifp->if_dname = name;
ifp->if_dunit = unit;
if (unit != IF_DUNIT_NONE)
snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
else
strlcpy(ifp->if_xname, name, IFNAMSIZ);
}
static int
if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
{
char if_fmt[256];
snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
vlog(pri, if_fmt, ap);
return (0);
}
int
if_printf(struct ifnet *ifp, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if_vlog(ifp, LOG_INFO, fmt, ap);
va_end(ap);
return (0);
}
int
if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if_vlog(ifp, pri, fmt, ap);
va_end(ap);
return (0);
}
void
if_start(struct ifnet *ifp)
{
(*(ifp)->if_start)(ifp);
}
/*
* Backwards compatibility interface for drivers
* that have not implemented it
*/
static int
if_transmit_default(struct ifnet *ifp, struct mbuf *m)
{
int error;
IFQ_HANDOFF(ifp, m, error);
return (error);
}
static void
if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
{
m_freem(m);
}
int
if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
{
int active = 0;
IF_LOCK(ifq);
if (_IF_QFULL(ifq)) {
IF_UNLOCK(ifq);
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
m_freem(m);
return (0);
}
if (ifp != NULL) {
if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
if (m->m_flags & (M_BCAST|M_MCAST))
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
}
_IF_ENQUEUE(ifq, m);
IF_UNLOCK(ifq);
if (ifp != NULL && !active)
(*(ifp)->if_start)(ifp);
return (1);
}
void
if_register_com_alloc(u_char type,
if_com_alloc_t *a, if_com_free_t *f)
{
KASSERT(if_com_alloc[type] == NULL,
("if_register_com_alloc: %d already registered", type));
KASSERT(if_com_free[type] == NULL,
("if_register_com_alloc: %d free already registered", type));
if_com_alloc[type] = a;
if_com_free[type] = f;
}
void
if_deregister_com_alloc(u_char type)
{
KASSERT(if_com_alloc[type] != NULL,
("if_deregister_com_alloc: %d not registered", type));
KASSERT(if_com_free[type] != NULL,
("if_deregister_com_alloc: %d free not registered", type));
/*
* Ensure all pending EPOCH(9) callbacks have been executed. This
* fixes issues about late invocation of if_destroy(), which leads
* to memory leak from if_com_alloc[type] allocated if_l2com.
*/
NET_EPOCH_DRAIN_CALLBACKS();
if_com_alloc[type] = NULL;
if_com_free[type] = NULL;
}
/* API for driver access to network stack owned ifnet.*/
uint64_t
if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
{
uint64_t oldbrate;
oldbrate = ifp->if_baudrate;
ifp->if_baudrate = baudrate;
return (oldbrate);
}
uint64_t
if_getbaudrate(const if_t ifp)
{
return (ifp->if_baudrate);
}
int
if_setcapabilities(if_t ifp, int capabilities)
{
ifp->if_capabilities = capabilities;
return (0);
}
int
if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
{
ifp->if_capabilities &= ~clearbit;
ifp->if_capabilities |= setbit;
return (0);
}
int
if_getcapabilities(const if_t ifp)
{
return (ifp->if_capabilities);
}
int
if_setcapenable(if_t ifp, int capabilities)
{
ifp->if_capenable = capabilities;
return (0);
}
int
if_setcapenablebit(if_t ifp, int setcap, int clearcap)
{
ifp->if_capenable &= ~clearcap;
ifp->if_capenable |= setcap;
return (0);
}
int
if_setcapabilities2(if_t ifp, int capabilities)
{
ifp->if_capabilities2 = capabilities;
return (0);
}
int
if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
{
ifp->if_capabilities2 &= ~clearbit;
ifp->if_capabilities2 |= setbit;
return (0);
}
int
if_getcapabilities2(const if_t ifp)
{
return (ifp->if_capabilities2);
}
int
if_setcapenable2(if_t ifp, int capabilities2)
{
ifp->if_capenable2 = capabilities2;
return (0);
}
int
if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
{
ifp->if_capenable2 &= ~clearcap;
ifp->if_capenable2 |= setcap;
return (0);
}
const char *
if_getdname(const if_t ifp)
{
return (ifp->if_dname);
}
void
if_setdname(if_t ifp, const char *dname)
{
ifp->if_dname = dname;
}
const char *
if_name(if_t ifp)
{
return (ifp->if_xname);
}
int
if_setname(if_t ifp, const char *name)
{
if (strlen(name) > sizeof(ifp->if_xname) - 1)
return (ENAMETOOLONG);
strcpy(ifp->if_xname, name);
return (0);
}
int
if_togglecapenable(if_t ifp, int togglecap)
{
ifp->if_capenable ^= togglecap;
return (0);
}
int
if_getcapenable(const if_t ifp)
{
return (ifp->if_capenable);
}
int
if_togglecapenable2(if_t ifp, int togglecap)
{
ifp->if_capenable2 ^= togglecap;
return (0);
}
int
if_getcapenable2(const if_t ifp)
{
return (ifp->if_capenable2);
}
int
if_getdunit(const if_t ifp)
{
return (ifp->if_dunit);
}
int
if_getindex(const if_t ifp)
{
return (ifp->if_index);
}
int
if_getidxgen(const if_t ifp)
{
return (ifp->if_idxgen);
}
const char *
if_getdescr(if_t ifp)
{
return (ifp->if_description);
}
void
if_setdescr(if_t ifp, char *descrbuf)
{
sx_xlock(&ifdescr_sx);
char *odescrbuf = ifp->if_description;
ifp->if_description = descrbuf;
sx_xunlock(&ifdescr_sx);
if_freedescr(odescrbuf);
}
char *
if_allocdescr(size_t sz, int malloc_flag)
{
malloc_flag &= (M_WAITOK | M_NOWAIT);
return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
}
void
if_freedescr(char *descrbuf)
{
free(descrbuf, M_IFDESCR);
}
int
if_getalloctype(const if_t ifp)
{
return (ifp->if_alloctype);
}
void
if_setlastchange(if_t ifp)
{
getmicrotime(&ifp->if_lastchange);
}
/*
* This is largely undesirable because it ties ifnet to a device, but does
* provide flexiblity for an embedded product vendor. Should be used with
* the understanding that it violates the interface boundaries, and should be
* a last resort only.
*/
int
if_setdev(if_t ifp, void *dev)
{
return (0);
}
int
if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
{
ifp->if_drv_flags &= ~clear_flags;
ifp->if_drv_flags |= set_flags;
return (0);
}
int
if_getdrvflags(const if_t ifp)
{
return (ifp->if_drv_flags);
}
int
if_setdrvflags(if_t ifp, int flags)
{
ifp->if_drv_flags = flags;
return (0);
}
int
if_setflags(if_t ifp, int flags)
{
ifp->if_flags = flags;
return (0);
}
int
if_setflagbits(if_t ifp, int set, int clear)
{
ifp->if_flags &= ~clear;
ifp->if_flags |= set;
return (0);
}
int
if_getflags(const if_t ifp)
{
return (ifp->if_flags);
}
int
if_clearhwassist(if_t ifp)
{
ifp->if_hwassist = 0;
return (0);
}
int
if_sethwassistbits(if_t ifp, int toset, int toclear)
{
ifp->if_hwassist &= ~toclear;
ifp->if_hwassist |= toset;
return (0);
}
int
if_sethwassist(if_t ifp, int hwassist_bit)
{
ifp->if_hwassist = hwassist_bit;
return (0);
}
int
if_gethwassist(const if_t ifp)
{
return (ifp->if_hwassist);
}
int
if_togglehwassist(if_t ifp, int toggle_bits)
{
ifp->if_hwassist ^= toggle_bits;
return (0);
}
int
if_setmtu(if_t ifp, int mtu)
{
ifp->if_mtu = mtu;
return (0);
}
void
if_notifymtu(if_t ifp)
{
#ifdef INET6
nd6_setmtu(ifp);
#endif
rt_updatemtu(ifp);
}
int
if_getmtu(const if_t ifp)
{
return (ifp->if_mtu);
}
int
if_getmtu_family(const if_t ifp, int family)
{
struct domain *dp;
SLIST_FOREACH(dp, &domains, dom_next) {
if (dp->dom_family == family && dp->dom_ifmtu != NULL)
return (dp->dom_ifmtu(ifp));
}
return (ifp->if_mtu);
}
/*
* Methods for drivers to access interface unicast and multicast
* link level addresses. Driver shall not know 'struct ifaddr' neither
* 'struct ifmultiaddr'.
*/
u_int
if_lladdr_count(if_t ifp)
{
struct epoch_tracker et;
struct ifaddr *ifa;
u_int count;
count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (ifa->ifa_addr->sa_family == AF_LINK)
count++;
NET_EPOCH_EXIT(et);
return (count);
}
int
if_foreach(if_foreach_cb_t cb, void *cb_arg)
{
if_t ifp;
int error;
NET_EPOCH_ASSERT();
MPASS(cb);
error = 0;
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
error = cb(ifp, cb_arg);
if (error != 0)
break;
}
return (error);
}
/*
* Iterates over the list of interfaces, permitting callback function @cb to sleep.
* Stops iteration if @cb returns non-zero error code.
* Returns the last error code from @cb.
* @match_cb: optional match callback limiting the iteration to only matched interfaces
* @match_arg: argument to pass to @match_cb
* @cb: iteration callback
* @cb_arg: argument to pass to @cb
*/
int
if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
void *cb_arg)
{
int match_count = 0, array_size = 16; /* 128 bytes for malloc */
struct ifnet **match_array = NULL;
int error = 0;
MPASS(cb);
while (true) {
struct ifnet **new_array;
int new_size = array_size;
struct epoch_tracker et;
struct ifnet *ifp;
while (new_size < match_count)
new_size *= 2;
new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
if (match_array != NULL)
memcpy(new_array, match_array, array_size * sizeof(void *));
free(match_array, M_TEMP);
match_array = new_array;
array_size = new_size;
match_count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (match_cb != NULL && !match_cb(ifp, match_arg))
continue;
if (match_count < array_size) {
if (if_try_ref(ifp))
match_array[match_count++] = ifp;
} else
match_count++;
}
NET_EPOCH_EXIT(et);
if (match_count > array_size) {
for (int i = 0; i < array_size; i++)
if_rele(match_array[i]);
continue;
} else {
for (int i = 0; i < match_count; i++) {
if (error == 0)
error = cb(match_array[i], cb_arg);
if_rele(match_array[i]);
}
free(match_array, M_TEMP);
break;
}
}
return (error);
}
/*
* Uses just 1 pointer of the 4 available in the public struct.
*/
if_t
if_iter_start(struct if_iter *iter)
{
if_t ifp;
NET_EPOCH_ASSERT();
bzero(iter, sizeof(*iter));
ifp = CK_STAILQ_FIRST(&V_ifnet);
if (ifp != NULL)
iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
else
iter->context[0] = NULL;
return (ifp);
}
if_t
if_iter_next(struct if_iter *iter)
{
if_t cur_ifp = iter->context[0];
if (cur_ifp != NULL)
iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
return (cur_ifp);
}
void
if_iter_finish(struct if_iter *iter)
{
/* Nothing to do here for now. */
}
u_int
if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
{
struct epoch_tracker et;
struct ifaddr *ifa;
u_int count;
MPASS(cb);
count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
count);
}
NET_EPOCH_EXIT(et);
return (count);
}
u_int
if_llmaddr_count(if_t ifp)
{
struct epoch_tracker et;
struct ifmultiaddr *ifma;
int count;
count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
if (ifma->ifma_addr->sa_family == AF_LINK)
count++;
NET_EPOCH_EXIT(et);
return (count);
}
bool
if_maddr_empty(if_t ifp)
{
return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
}
u_int
if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
{
struct epoch_tracker et;
struct ifmultiaddr *ifma;
u_int count;
MPASS(cb);
count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
count);
}
NET_EPOCH_EXIT(et);
return (count);
}
u_int
if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
{
struct epoch_tracker et;
struct ifaddr *ifa;
u_int count;
MPASS(cb);
count = 0;
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != type)
continue;
count += (*cb)(cb_arg, ifa, count);
}
NET_EPOCH_EXIT(et);
return (count);
}
struct ifaddr *
ifa_iter_start(if_t ifp, struct ifa_iter *iter)
{
struct ifaddr *ifa;
NET_EPOCH_ASSERT();
bzero(iter, sizeof(*iter));
ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
if (ifa != NULL)
iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
else
iter->context[0] = NULL;
return (ifa);
}
struct ifaddr *
ifa_iter_next(struct ifa_iter *iter)
{
struct ifaddr *ifa = iter->context[0];
if (ifa != NULL)
iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
return (ifa);
}
void
ifa_iter_finish(struct ifa_iter *iter)
{
/* Nothing to do here for now. */
}
int
if_setsoftc(if_t ifp, void *softc)
{
ifp->if_softc = softc;
return (0);
}
void *
if_getsoftc(const if_t ifp)
{
return (ifp->if_softc);
}
void
if_setrcvif(struct mbuf *m, if_t ifp)
{
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
m->m_pkthdr.rcvif = (struct ifnet *)ifp;
}
void
if_setvtag(struct mbuf *m, uint16_t tag)
{
m->m_pkthdr.ether_vtag = tag;
}
uint16_t
if_getvtag(struct mbuf *m)
{
return (m->m_pkthdr.ether_vtag);
}
int
if_sendq_empty(if_t ifp)
{
return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
}
struct ifaddr *
if_getifaddr(const if_t ifp)
{
return (ifp->if_addr);
}
int
if_setsendqready(if_t ifp)
{
IFQ_SET_READY(&ifp->if_snd);
return (0);
}
int
if_setsendqlen(if_t ifp, int tx_desc_count)
{
IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
return (0);
}
void
if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
{
ifp->if_netmap = na;
}
struct netmap_adapter *
if_getnetmapadapter(if_t ifp)
{
return (ifp->if_netmap);
}
int
if_vlantrunkinuse(if_t ifp)
{
return (ifp->if_vlantrunk != NULL);
}
void
if_init(if_t ifp, void *ctx)
{
(*ifp->if_init)(ctx);
}
void
if_input(if_t ifp, struct mbuf* sendmp)
{
(*ifp->if_input)(ifp, sendmp);
}
int
if_transmit(if_t ifp, struct mbuf *m)
{
return ((*ifp->if_transmit)(ifp, m));
}
int
if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
{
if (ifp->if_resolvemulti == NULL)
return (EOPNOTSUPP);
return (ifp->if_resolvemulti(ifp, srcs, dst));
}
int
if_ioctl(if_t ifp, u_long cmd, void *data)
{
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
return (ifp->if_ioctl(ifp, cmd, data));
}
struct mbuf *
if_dequeue(if_t ifp)
{
struct mbuf *m;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
return (m);
}
int
if_sendq_prepend(if_t ifp, struct mbuf *m)
{
IFQ_DRV_PREPEND(&ifp->if_snd, m);
return (0);
}
int
if_setifheaderlen(if_t ifp, int len)
{
ifp->if_hdrlen = len;
return (0);
}
caddr_t
if_getlladdr(const if_t ifp)
{
return (IF_LLADDR(ifp));
}
void *
if_gethandle(u_char type)
{
return (if_alloc(type));
}
void
if_vlancap(if_t ifp)
{
VLAN_CAPABILITIES(ifp);
}
int
if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
{
ifp->if_hw_tsomax = if_hw_tsomax;
return (0);
}
int
if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
{
ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
return (0);
}
int
if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
{
ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
return (0);
}
u_int
if_gethwtsomax(const if_t ifp)
{
return (ifp->if_hw_tsomax);
}
u_int
if_gethwtsomaxsegcount(const if_t ifp)
{
return (ifp->if_hw_tsomaxsegcount);
}
u_int
if_gethwtsomaxsegsize(const if_t ifp)
{
return (ifp->if_hw_tsomaxsegsize);
}
void
if_setinitfn(if_t ifp, if_init_fn_t init_fn)
{
ifp->if_init = init_fn;
}
void
if_setinputfn(if_t ifp, if_input_fn_t input_fn)
{
ifp->if_input = input_fn;
}
if_input_fn_t
if_getinputfn(if_t ifp)
{
return (ifp->if_input);
}
void
if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
{
ifp->if_ioctl = ioctl_fn;
}
void
if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
{
ifp->if_output = output_fn;
}
void
if_setstartfn(if_t ifp, if_start_fn_t start_fn)
{
ifp->if_start = start_fn;
}
if_start_fn_t
if_getstartfn(if_t ifp)
{
return (ifp->if_start);
}
void
if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
{
ifp->if_transmit = start_fn;
}
if_transmit_fn_t
if_gettransmitfn(if_t ifp)
{
return (ifp->if_transmit);
}
void
if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
{
ifp->if_qflush = flush_fn;
}
void
if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
{
ifp->if_snd_tag_alloc = alloc_fn;
}
int
if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
struct m_snd_tag **mstp)
{
if (ifp->if_snd_tag_alloc == NULL)
return (EOPNOTSUPP);
return (ifp->if_snd_tag_alloc(ifp, params, mstp));
}
void
if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
{
ifp->if_get_counter = fn;
}
void
if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
{
ifp->if_reassign = fn;
}
void
if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
{
ifp->if_ratelimit_query = fn;
}
void
if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
{
ifp->if_debugnet_methods = m;
}
struct label *
if_getmaclabel(if_t ifp)
{
return (ifp->if_label);
}
void
if_setmaclabel(if_t ifp, struct label *label)
{
ifp->if_label = label;
}
int
if_gettype(if_t ifp)
{
return (ifp->if_type);
}
void *
if_getllsoftc(if_t ifp)
{
return (ifp->if_llsoftc);
}
void
if_setllsoftc(if_t ifp, void *llsoftc)
{
ifp->if_llsoftc = llsoftc;
};
int
if_getlinkstate(if_t ifp)
{
return (ifp->if_link_state);
}
const uint8_t *
if_getbroadcastaddr(if_t ifp)
{
return (ifp->if_broadcastaddr);
}
void
if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
{
ifp->if_broadcastaddr = addr;
}
int
if_getnumadomain(if_t ifp)
{
return (ifp->if_numa_domain);
}
uint64_t
if_getcounter(if_t ifp, ift_counter counter)
{
return (ifp->if_get_counter(ifp, counter));
}
bool
if_altq_is_enabled(if_t ifp)
{
return (ALTQ_IS_ENABLED(&ifp->if_snd));
}
struct vnet *
if_getvnet(if_t ifp)
{
return (ifp->if_vnet);
}
void *
if_getafdata(if_t ifp, int af)
{
return (ifp->if_afdata[af]);
}
u_int
if_getfib(if_t ifp)
{
return (ifp->if_fib);
}
uint8_t
if_getaddrlen(if_t ifp)
{
return (ifp->if_addrlen);
}
struct bpf_if *
if_getbpf(if_t ifp)
{
return (ifp->if_bpf);
}
struct ifvlantrunk *
if_getvlantrunk(if_t ifp)
{
return (ifp->if_vlantrunk);
}
uint8_t
if_getpcp(if_t ifp)
{
return (ifp->if_pcp);
}
void *
if_getl2com(if_t ifp)
{
return (ifp->if_l2com);
}
void
if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m)
{
ifp->if_ipsec_accel_m = m;
}
#ifdef DDB
static void
if_show_ifnet(struct ifnet *ifp)
{
if (ifp == NULL)
return;
db_printf("%s:\n", ifp->if_xname);
#define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e);
IF_DB_PRINTF("%s", if_dname);
IF_DB_PRINTF("%d", if_dunit);
IF_DB_PRINTF("%s", if_description);
IF_DB_PRINTF("%u", if_index);
IF_DB_PRINTF("%d", if_idxgen);
IF_DB_PRINTF("%u", if_refcount);
IF_DB_PRINTF("%p", if_softc);
IF_DB_PRINTF("%p", if_l2com);
IF_DB_PRINTF("%p", if_llsoftc);
IF_DB_PRINTF("%d", if_amcount);
IF_DB_PRINTF("%p", if_addr);
IF_DB_PRINTF("%p", if_broadcastaddr);
IF_DB_PRINTF("%p", if_afdata);
IF_DB_PRINTF("%d", if_afdata_initialized);
IF_DB_PRINTF("%u", if_fib);
IF_DB_PRINTF("%p", if_vnet);
IF_DB_PRINTF("%p", if_home_vnet);
IF_DB_PRINTF("%p", if_vlantrunk);
IF_DB_PRINTF("%p", if_bpf);
IF_DB_PRINTF("%u", if_pcount);
IF_DB_PRINTF("%p", if_bridge);
IF_DB_PRINTF("%p", if_lagg);
IF_DB_PRINTF("%p", if_pf_kif);
IF_DB_PRINTF("%p", if_carp);
IF_DB_PRINTF("%p", if_label);
IF_DB_PRINTF("%p", if_netmap);
IF_DB_PRINTF("0x%08x", if_flags);
IF_DB_PRINTF("0x%08x", if_drv_flags);
IF_DB_PRINTF("0x%08x", if_capabilities);
IF_DB_PRINTF("0x%08x", if_capenable);
IF_DB_PRINTF("%p", if_snd.ifq_head);
IF_DB_PRINTF("%p", if_snd.ifq_tail);
IF_DB_PRINTF("%d", if_snd.ifq_len);
IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
IF_DB_PRINTF("%d", if_snd.altq_type);
IF_DB_PRINTF("%x", if_snd.altq_flags);
#undef IF_DB_PRINTF
}
DB_SHOW_COMMAND(ifnet, db_show_ifnet)
{
if (!have_addr) {
db_printf("usage: show ifnet <struct ifnet *>\n");
return;
}
if_show_ifnet((struct ifnet *)addr);
}
DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
{
struct ifnet *ifp;
u_short idx;
for (idx = 1; idx <= if_index; idx++) {
ifp = ifindex_table[idx].ife_ifnet;
if (ifp == NULL)
continue;
db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
if (db_pager_quit)
break;
}
}
#endif /* DDB */