HardenedBSD/sys/vm/vm_radix.c
Bojan Novković da76d349b6 uma: Deduplicate uma_small_alloc
This commit refactors the UMA small alloc code and
removes most UMA machine-dependent code.
The existing machine-dependent uma_small_alloc code is almost identical
across all architectures, except for powerpc where using the direct
map addresses involved extra steps in some cases.

The MI/MD split was replaced by a default uma_small_alloc
implementation that can be overridden by architecture-specific code by
defining the UMA_MD_SMALL_ALLOC symbol. Furthermore, UMA_USE_DMAP was
introduced to replace most UMA_MD_SMALL_ALLOC uses.

Reviewed by: markj, kib
Approved by: markj (mentor)
Differential Revision:	https://reviews.freebsd.org/D45084
2024-05-25 19:24:46 +02:00

127 lines
4.2 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 EMC Corp.
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Path-compressed radix trie implementation.
* The following code is not generalized into a general purpose library
* because there are way too many parameters embedded that should really
* be decided by the library consumers. At the same time, consumers
* of this code must achieve highest possible performance.
*
* The implementation takes into account the following rationale:
* - Size of the nodes should be as small as possible but still big enough
* to avoid a large maximum depth for the trie. This is a balance
* between the necessity to not wire too much physical memory for the nodes
* and the necessity to avoid too much cache pollution during the trie
* operations.
* - There is not a huge bias toward the number of lookup operations over
* the number of insert and remove operations. This basically implies
* that optimizations supposedly helping one operation but hurting the
* other might be carefully evaluated.
* - On average not many nodes are expected to be fully populated, hence
* level compression may just complicate things.
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/pctrie.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/smr.h>
#include <sys/smr_types.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_radix.h>
static uma_zone_t vm_radix_node_zone;
smr_t vm_radix_smr;
void *
vm_radix_node_alloc(struct pctrie *ptree)
{
return (uma_zalloc_smr(vm_radix_node_zone, M_NOWAIT));
}
void
vm_radix_node_free(struct pctrie *ptree, void *node)
{
uma_zfree_smr(vm_radix_node_zone, node);
}
#ifndef UMA_USE_DMAP
void vm_radix_reserve_kva(void);
/*
* Reserve the KVA necessary to satisfy the node allocation.
* This is mandatory in architectures not supporting direct
* mapping as they will need otherwise to carve into the kernel maps for
* every node allocation, resulting into deadlocks for consumers already
* working with kernel maps.
*/
void
vm_radix_reserve_kva(void)
{
/*
* Calculate the number of reserved nodes, discounting the pages that
* are needed to store them.
*/
if (!uma_zone_reserve_kva(vm_radix_node_zone,
((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
pctrie_node_size())))
panic("%s: unable to reserve KVA", __func__);
}
#endif
/*
* Initialize the UMA slab zone.
*/
void
vm_radix_zinit(void)
{
vm_radix_node_zone = uma_zcreate("RADIX NODE", pctrie_node_size(),
NULL, NULL, pctrie_zone_init, NULL,
PCTRIE_PAD, UMA_ZONE_VM | UMA_ZONE_SMR);
vm_radix_smr = uma_zone_get_smr(vm_radix_node_zone);
}
void
vm_radix_wait(void)
{
uma_zwait(vm_radix_node_zone);
}