mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-01 00:18:15 +01:00
1261 lines
31 KiB
C
1261 lines
31 KiB
C
/*
|
|
* eval.c - gawk parse tree interpreter
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1986, 1988, 1989, 1991, 1992, 1993 the Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GAWK, the GNU implementation of the
|
|
* AWK Progamming Language.
|
|
*
|
|
* GAWK is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GAWK is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GAWK; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include "awk.h"
|
|
|
|
extern double pow P((double x, double y));
|
|
extern double modf P((double x, double *yp));
|
|
extern double fmod P((double x, double y));
|
|
|
|
static int eval_condition P((NODE *tree));
|
|
static NODE *op_assign P((NODE *tree));
|
|
static NODE *func_call P((NODE *name, NODE *arg_list));
|
|
static NODE *match_op P((NODE *tree));
|
|
|
|
NODE *_t; /* used as a temporary in macros */
|
|
#ifdef MSDOS
|
|
double _msc51bug; /* to get around a bug in MSC 5.1 */
|
|
#endif
|
|
NODE *ret_node;
|
|
int OFSlen;
|
|
int ORSlen;
|
|
int OFMTidx;
|
|
int CONVFMTidx;
|
|
|
|
/* Macros and variables to save and restore function and loop bindings */
|
|
/*
|
|
* the val variable allows return/continue/break-out-of-context to be
|
|
* caught and diagnosed
|
|
*/
|
|
#define PUSH_BINDING(stack, x, val) (memcpy ((char *)(stack), (char *)(x), sizeof (jmp_buf)), val++)
|
|
#define RESTORE_BINDING(stack, x, val) (memcpy ((char *)(x), (char *)(stack), sizeof (jmp_buf)), val--)
|
|
|
|
static jmp_buf loop_tag; /* always the current binding */
|
|
static int loop_tag_valid = 0; /* nonzero when loop_tag valid */
|
|
static int func_tag_valid = 0;
|
|
static jmp_buf func_tag;
|
|
extern int exiting, exit_val;
|
|
|
|
/*
|
|
* This table is used by the regexp routines to do case independant
|
|
* matching. Basically, every ascii character maps to itself, except
|
|
* uppercase letters map to lower case ones. This table has 256
|
|
* entries, which may be overkill. Note also that if the system this
|
|
* is compiled on doesn't use 7-bit ascii, casetable[] should not be
|
|
* defined to the linker, so gawk should not load.
|
|
*
|
|
* Do NOT make this array static, it is used in several spots, not
|
|
* just in this file.
|
|
*/
|
|
#if 'a' == 97 /* it's ascii */
|
|
char casetable[] = {
|
|
'\000', '\001', '\002', '\003', '\004', '\005', '\006', '\007',
|
|
'\010', '\011', '\012', '\013', '\014', '\015', '\016', '\017',
|
|
'\020', '\021', '\022', '\023', '\024', '\025', '\026', '\027',
|
|
'\030', '\031', '\032', '\033', '\034', '\035', '\036', '\037',
|
|
/* ' ' '!' '"' '#' '$' '%' '&' ''' */
|
|
'\040', '\041', '\042', '\043', '\044', '\045', '\046', '\047',
|
|
/* '(' ')' '*' '+' ',' '-' '.' '/' */
|
|
'\050', '\051', '\052', '\053', '\054', '\055', '\056', '\057',
|
|
/* '0' '1' '2' '3' '4' '5' '6' '7' */
|
|
'\060', '\061', '\062', '\063', '\064', '\065', '\066', '\067',
|
|
/* '8' '9' ':' ';' '<' '=' '>' '?' */
|
|
'\070', '\071', '\072', '\073', '\074', '\075', '\076', '\077',
|
|
/* '@' 'A' 'B' 'C' 'D' 'E' 'F' 'G' */
|
|
'\100', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
|
|
/* 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' */
|
|
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
|
|
/* 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' */
|
|
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
|
|
/* 'X' 'Y' 'Z' '[' '\' ']' '^' '_' */
|
|
'\170', '\171', '\172', '\133', '\134', '\135', '\136', '\137',
|
|
/* '`' 'a' 'b' 'c' 'd' 'e' 'f' 'g' */
|
|
'\140', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
|
|
/* 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o' */
|
|
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
|
|
/* 'p' 'q' 'r' 's' 't' 'u' 'v' 'w' */
|
|
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
|
|
/* 'x' 'y' 'z' '{' '|' '}' '~' */
|
|
'\170', '\171', '\172', '\173', '\174', '\175', '\176', '\177',
|
|
'\200', '\201', '\202', '\203', '\204', '\205', '\206', '\207',
|
|
'\210', '\211', '\212', '\213', '\214', '\215', '\216', '\217',
|
|
'\220', '\221', '\222', '\223', '\224', '\225', '\226', '\227',
|
|
'\230', '\231', '\232', '\233', '\234', '\235', '\236', '\237',
|
|
'\240', '\241', '\242', '\243', '\244', '\245', '\246', '\247',
|
|
'\250', '\251', '\252', '\253', '\254', '\255', '\256', '\257',
|
|
'\260', '\261', '\262', '\263', '\264', '\265', '\266', '\267',
|
|
'\270', '\271', '\272', '\273', '\274', '\275', '\276', '\277',
|
|
'\300', '\301', '\302', '\303', '\304', '\305', '\306', '\307',
|
|
'\310', '\311', '\312', '\313', '\314', '\315', '\316', '\317',
|
|
'\320', '\321', '\322', '\323', '\324', '\325', '\326', '\327',
|
|
'\330', '\331', '\332', '\333', '\334', '\335', '\336', '\337',
|
|
'\340', '\341', '\342', '\343', '\344', '\345', '\346', '\347',
|
|
'\350', '\351', '\352', '\353', '\354', '\355', '\356', '\357',
|
|
'\360', '\361', '\362', '\363', '\364', '\365', '\366', '\367',
|
|
'\370', '\371', '\372', '\373', '\374', '\375', '\376', '\377',
|
|
};
|
|
#else
|
|
#include "You lose. You will need a translation table for your character set."
|
|
#endif
|
|
|
|
/*
|
|
* Tree is a bunch of rules to run. Returns zero if it hit an exit()
|
|
* statement
|
|
*/
|
|
int
|
|
interpret(tree)
|
|
register NODE *volatile tree;
|
|
{
|
|
jmp_buf volatile loop_tag_stack; /* shallow binding stack for loop_tag */
|
|
static jmp_buf rule_tag; /* tag the rule currently being run, for NEXT
|
|
* and EXIT statements. It is static because
|
|
* there are no nested rules */
|
|
register NODE *volatile t = NULL; /* temporary */
|
|
NODE **volatile lhs; /* lhs == Left Hand Side for assigns, etc */
|
|
NODE *volatile stable_tree;
|
|
int volatile traverse = 1; /* True => loop thru tree (Node_rule_list) */
|
|
|
|
/* avoid false source indications */
|
|
source = NULL;
|
|
sourceline = 0;
|
|
|
|
if (tree == NULL)
|
|
return 1;
|
|
sourceline = tree->source_line;
|
|
source = tree->source_file;
|
|
switch (tree->type) {
|
|
case Node_rule_node:
|
|
traverse = 0; /* False => one for-loop iteration only */
|
|
/* FALL THROUGH */
|
|
case Node_rule_list:
|
|
for (t = tree; t != NULL; t = t->rnode) {
|
|
if (traverse)
|
|
tree = t->lnode;
|
|
sourceline = tree->source_line;
|
|
source = tree->source_file;
|
|
switch (setjmp(rule_tag)) {
|
|
case 0: /* normal non-jump */
|
|
/* test pattern, if any */
|
|
if (tree->lnode == NULL ||
|
|
eval_condition(tree->lnode))
|
|
(void) interpret(tree->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* NEXT statement */
|
|
return 1;
|
|
case TAG_BREAK:
|
|
return 0;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
if (!traverse) /* case Node_rule_node */
|
|
break; /* don't loop */
|
|
}
|
|
break;
|
|
|
|
case Node_statement_list:
|
|
for (t = tree; t != NULL; t = t->rnode)
|
|
(void) interpret(t->lnode);
|
|
break;
|
|
|
|
case Node_K_if:
|
|
if (eval_condition(tree->lnode)) {
|
|
(void) interpret(tree->rnode->lnode);
|
|
} else {
|
|
(void) interpret(tree->rnode->rnode);
|
|
}
|
|
break;
|
|
|
|
case Node_K_while:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
|
|
stable_tree = tree;
|
|
while (eval_condition(stable_tree->lnode)) {
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_do:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
stable_tree = tree;
|
|
do {
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
} while (eval_condition(stable_tree->lnode));
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_for:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
(void) interpret(tree->forloop->init);
|
|
stable_tree = tree;
|
|
while (eval_condition(stable_tree->forloop->cond)) {
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->lnode);
|
|
/* fall through */
|
|
case TAG_CONTINUE: /* continue statement */
|
|
(void) interpret(stable_tree->forloop->incr);
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_arrayfor:
|
|
{
|
|
volatile struct search l; /* For array_for */
|
|
Func_ptr after_assign = NULL;
|
|
|
|
#define hakvar forloop->init
|
|
#define arrvar forloop->incr
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
lhs = get_lhs(tree->hakvar, &after_assign);
|
|
t = tree->arrvar;
|
|
if (t->type == Node_param_list)
|
|
t = stack_ptr[t->param_cnt];
|
|
stable_tree = tree;
|
|
for (assoc_scan(t, (struct search *)&l);
|
|
l.retval;
|
|
assoc_next((struct search *)&l)) {
|
|
unref(*((NODE **) lhs));
|
|
*lhs = dupnode(l.retval);
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
switch (setjmp(loop_tag)) {
|
|
case 0:
|
|
(void) interpret(stable_tree->lnode);
|
|
case TAG_CONTINUE:
|
|
break;
|
|
|
|
case TAG_BREAK:
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
}
|
|
|
|
case Node_K_break:
|
|
if (loop_tag_valid == 0)
|
|
fatal("unexpected break");
|
|
longjmp(loop_tag, TAG_BREAK);
|
|
break;
|
|
|
|
case Node_K_continue:
|
|
if (loop_tag_valid == 0) {
|
|
/*
|
|
* AT&T nawk treats continue outside of loops like
|
|
* next. Allow it if not posix, and complain if
|
|
* lint.
|
|
*/
|
|
static int warned = 0;
|
|
|
|
if (do_lint && ! warned) {
|
|
warning("use of `continue' outside of loop is not portable");
|
|
warned = 1;
|
|
}
|
|
if (do_posix)
|
|
fatal("use of `continue' outside of loop is not allowed");
|
|
longjmp(rule_tag, TAG_CONTINUE);
|
|
} else
|
|
longjmp(loop_tag, TAG_CONTINUE);
|
|
break;
|
|
|
|
case Node_K_print:
|
|
do_print(tree);
|
|
break;
|
|
|
|
case Node_K_printf:
|
|
do_printf(tree);
|
|
break;
|
|
|
|
case Node_K_delete:
|
|
if (tree->rnode != NULL)
|
|
do_delete(tree->lnode, tree->rnode);
|
|
else
|
|
assoc_clear(tree->lnode);
|
|
break;
|
|
|
|
case Node_K_next:
|
|
longjmp(rule_tag, TAG_CONTINUE);
|
|
break;
|
|
|
|
case Node_K_nextfile:
|
|
do_nextfile();
|
|
break;
|
|
|
|
case Node_K_exit:
|
|
/*
|
|
* In A,K,&W, p. 49, it says that an exit statement "...
|
|
* causes the program to behave as if the end of input had
|
|
* occurred; no more input is read, and the END actions, if
|
|
* any are executed." This implies that the rest of the rules
|
|
* are not done. So we immediately break out of the main loop.
|
|
*/
|
|
exiting = 1;
|
|
if (tree) {
|
|
t = tree_eval(tree->lnode);
|
|
exit_val = (int) force_number(t);
|
|
}
|
|
free_temp(t);
|
|
longjmp(rule_tag, TAG_BREAK);
|
|
break;
|
|
|
|
case Node_K_return:
|
|
t = tree_eval(tree->lnode);
|
|
ret_node = dupnode(t);
|
|
free_temp(t);
|
|
longjmp(func_tag, TAG_RETURN);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Appears to be an expression statement. Throw away the
|
|
* value.
|
|
*/
|
|
if (do_lint && tree->type == Node_var)
|
|
warning("statement has no effect");
|
|
t = tree_eval(tree);
|
|
free_temp(t);
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* evaluate a subtree */
|
|
|
|
NODE *
|
|
r_tree_eval(tree)
|
|
register NODE *tree;
|
|
{
|
|
register NODE *r, *t1, *t2; /* return value & temporary subtrees */
|
|
register NODE **lhs;
|
|
register int di;
|
|
AWKNUM x, x1, x2;
|
|
long lx;
|
|
#ifdef _CRAY
|
|
long lx2;
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
if (tree == NULL)
|
|
return Nnull_string;
|
|
if (tree->type == Node_val) {
|
|
if ((char)tree->stref <= 0) cant_happen();
|
|
return tree;
|
|
}
|
|
if (tree->type == Node_var) {
|
|
if ((char)tree->var_value->stref <= 0) cant_happen();
|
|
return tree->var_value;
|
|
}
|
|
#endif
|
|
|
|
if (tree->type == Node_param_list) {
|
|
tree = stack_ptr[tree->param_cnt];
|
|
if (tree == NULL)
|
|
return Nnull_string;
|
|
}
|
|
|
|
switch (tree->type) {
|
|
case Node_var:
|
|
return tree->var_value;
|
|
|
|
case Node_and:
|
|
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
|
|
&& eval_condition(tree->rnode)));
|
|
|
|
case Node_or:
|
|
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
|
|
|| eval_condition(tree->rnode)));
|
|
|
|
case Node_not:
|
|
return tmp_number((AWKNUM) ! eval_condition(tree->lnode));
|
|
|
|
/* Builtins */
|
|
case Node_builtin:
|
|
return ((*tree->proc) (tree->subnode));
|
|
|
|
case Node_K_getline:
|
|
return (do_getline(tree));
|
|
|
|
case Node_in_array:
|
|
return tmp_number((AWKNUM) in_array(tree->lnode, tree->rnode));
|
|
|
|
case Node_func_call:
|
|
return func_call(tree->rnode, tree->lnode);
|
|
|
|
/* unary operations */
|
|
case Node_NR:
|
|
case Node_FNR:
|
|
case Node_NF:
|
|
case Node_FIELDWIDTHS:
|
|
case Node_FS:
|
|
case Node_RS:
|
|
case Node_field_spec:
|
|
case Node_subscript:
|
|
case Node_IGNORECASE:
|
|
case Node_OFS:
|
|
case Node_ORS:
|
|
case Node_OFMT:
|
|
case Node_CONVFMT:
|
|
lhs = get_lhs(tree, (Func_ptr *)0);
|
|
return *lhs;
|
|
|
|
case Node_var_array:
|
|
fatal("attempt to use array `%s' in a scalar context", tree->vname);
|
|
|
|
case Node_unary_minus:
|
|
t1 = tree_eval(tree->subnode);
|
|
x = -force_number(t1);
|
|
free_temp(t1);
|
|
return tmp_number(x);
|
|
|
|
case Node_cond_exp:
|
|
if (eval_condition(tree->lnode))
|
|
return tree_eval(tree->rnode->lnode);
|
|
return tree_eval(tree->rnode->rnode);
|
|
|
|
case Node_match:
|
|
case Node_nomatch:
|
|
case Node_regex:
|
|
return match_op(tree);
|
|
|
|
case Node_func:
|
|
fatal("function `%s' called with space between name and (,\n%s",
|
|
tree->lnode->param,
|
|
"or used in other expression context");
|
|
|
|
/* assignments */
|
|
case Node_assign:
|
|
{
|
|
Func_ptr after_assign = NULL;
|
|
|
|
r = tree_eval(tree->rnode);
|
|
lhs = get_lhs(tree->lnode, &after_assign);
|
|
if (r != *lhs) {
|
|
NODE *save;
|
|
|
|
save = *lhs;
|
|
*lhs = dupnode(r);
|
|
unref(save);
|
|
}
|
|
free_temp(r);
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
return *lhs;
|
|
}
|
|
|
|
case Node_concat:
|
|
{
|
|
#define STACKSIZE 10
|
|
NODE *treelist[STACKSIZE+1];
|
|
NODE *strlist[STACKSIZE+1];
|
|
register NODE **treep;
|
|
register NODE **strp;
|
|
register size_t len;
|
|
char *str;
|
|
register char *dest;
|
|
|
|
/*
|
|
* This is an efficiency hack for multiple adjacent string
|
|
* concatenations, to avoid recursion and string copies.
|
|
*
|
|
* Node_concat trees grow downward to the left, so
|
|
* descend to lowest (first) node, accumulating nodes
|
|
* to evaluate to strings as we go.
|
|
*/
|
|
treep = treelist;
|
|
while (tree->type == Node_concat) {
|
|
*treep++ = tree->rnode;
|
|
tree = tree->lnode;
|
|
if (treep == &treelist[STACKSIZE])
|
|
break;
|
|
}
|
|
*treep = tree;
|
|
/*
|
|
* Now, evaluate to strings in LIFO order, accumulating
|
|
* the string length, so we can do a single malloc at the
|
|
* end.
|
|
*/
|
|
strp = strlist;
|
|
len = 0;
|
|
while (treep >= treelist) {
|
|
*strp = force_string(tree_eval(*treep--));
|
|
len += (*strp)->stlen;
|
|
strp++;
|
|
}
|
|
*strp = NULL;
|
|
emalloc(str, char *, len+2, "tree_eval");
|
|
str[len] = str[len+1] = '\0'; /* for good measure */
|
|
dest = str;
|
|
strp = strlist;
|
|
while (*strp) {
|
|
memcpy(dest, (*strp)->stptr, (*strp)->stlen);
|
|
dest += (*strp)->stlen;
|
|
free_temp(*strp);
|
|
strp++;
|
|
}
|
|
r = make_str_node(str, len, ALREADY_MALLOCED);
|
|
r->flags |= TEMP;
|
|
}
|
|
return r;
|
|
|
|
/* other assignment types are easier because they are numeric */
|
|
case Node_preincrement:
|
|
case Node_predecrement:
|
|
case Node_postincrement:
|
|
case Node_postdecrement:
|
|
case Node_assign_exp:
|
|
case Node_assign_times:
|
|
case Node_assign_quotient:
|
|
case Node_assign_mod:
|
|
case Node_assign_plus:
|
|
case Node_assign_minus:
|
|
return op_assign(tree);
|
|
default:
|
|
break; /* handled below */
|
|
}
|
|
|
|
/* evaluate subtrees in order to do binary operation, then keep going */
|
|
t1 = tree_eval(tree->lnode);
|
|
t2 = tree_eval(tree->rnode);
|
|
|
|
switch (tree->type) {
|
|
case Node_geq:
|
|
case Node_leq:
|
|
case Node_greater:
|
|
case Node_less:
|
|
case Node_notequal:
|
|
case Node_equal:
|
|
di = cmp_nodes(t1, t2);
|
|
free_temp(t1);
|
|
free_temp(t2);
|
|
switch (tree->type) {
|
|
case Node_equal:
|
|
return tmp_number((AWKNUM) (di == 0));
|
|
case Node_notequal:
|
|
return tmp_number((AWKNUM) (di != 0));
|
|
case Node_less:
|
|
return tmp_number((AWKNUM) (di < 0));
|
|
case Node_greater:
|
|
return tmp_number((AWKNUM) (di > 0));
|
|
case Node_leq:
|
|
return tmp_number((AWKNUM) (di <= 0));
|
|
case Node_geq:
|
|
return tmp_number((AWKNUM) (di >= 0));
|
|
default:
|
|
cant_happen();
|
|
}
|
|
break;
|
|
default:
|
|
break; /* handled below */
|
|
}
|
|
|
|
x1 = force_number(t1);
|
|
free_temp(t1);
|
|
x2 = force_number(t2);
|
|
free_temp(t2);
|
|
switch (tree->type) {
|
|
case Node_exp:
|
|
if ((lx = x2) == x2 && lx >= 0) { /* integer exponent */
|
|
if (lx == 0)
|
|
x = 1;
|
|
else if (lx == 1)
|
|
x = x1;
|
|
else {
|
|
/* doing it this way should be more precise */
|
|
for (x = x1; --lx; )
|
|
x *= x1;
|
|
}
|
|
} else
|
|
x = pow((double) x1, (double) x2);
|
|
return tmp_number(x);
|
|
|
|
case Node_times:
|
|
return tmp_number(x1 * x2);
|
|
|
|
case Node_quotient:
|
|
if (x2 == 0)
|
|
fatal("division by zero attempted");
|
|
#ifdef _CRAY
|
|
/*
|
|
* special case for integer division, put in for Cray
|
|
*/
|
|
lx2 = x2;
|
|
if (lx2 == 0)
|
|
return tmp_number(x1 / x2);
|
|
lx = (long) x1 / lx2;
|
|
if (lx * x2 == x1)
|
|
return tmp_number((AWKNUM) lx);
|
|
else
|
|
#endif
|
|
return tmp_number(x1 / x2);
|
|
|
|
case Node_mod:
|
|
if (x2 == 0)
|
|
fatal("division by zero attempted in mod");
|
|
#ifndef FMOD_MISSING
|
|
return tmp_number(fmod (x1, x2));
|
|
#else
|
|
(void) modf(x1 / x2, &x);
|
|
return tmp_number(x1 - x * x2);
|
|
#endif
|
|
|
|
case Node_plus:
|
|
return tmp_number(x1 + x2);
|
|
|
|
case Node_minus:
|
|
return tmp_number(x1 - x2);
|
|
|
|
case Node_var_array:
|
|
fatal("attempt to use array `%s' in a scalar context", tree->vname);
|
|
|
|
default:
|
|
fatal("illegal type (%d) in tree_eval", tree->type);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Is TREE true or false? Returns 0==false, non-zero==true */
|
|
static int
|
|
eval_condition(tree)
|
|
register NODE *tree;
|
|
{
|
|
register NODE *t1;
|
|
register int ret;
|
|
|
|
if (tree == NULL) /* Null trees are the easiest kinds */
|
|
return 1;
|
|
if (tree->type == Node_line_range) {
|
|
/*
|
|
* Node_line_range is kind of like Node_match, EXCEPT: the
|
|
* lnode field (more properly, the condpair field) is a node
|
|
* of a Node_cond_pair; whether we evaluate the lnode of that
|
|
* node or the rnode depends on the triggered word. More
|
|
* precisely: if we are not yet triggered, we tree_eval the
|
|
* lnode; if that returns true, we set the triggered word.
|
|
* If we are triggered (not ELSE IF, note), we tree_eval the
|
|
* rnode, clear triggered if it succeeds, and perform our
|
|
* action (regardless of success or failure). We want to be
|
|
* able to begin and end on a single input record, so this
|
|
* isn't an ELSE IF, as noted above.
|
|
*/
|
|
if (!tree->triggered)
|
|
if (!eval_condition(tree->condpair->lnode))
|
|
return 0;
|
|
else
|
|
tree->triggered = 1;
|
|
/* Else we are triggered */
|
|
if (eval_condition(tree->condpair->rnode))
|
|
tree->triggered = 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Could just be J.random expression. in which case, null and 0 are
|
|
* false, anything else is true
|
|
*/
|
|
|
|
t1 = tree_eval(tree);
|
|
if (t1->flags & MAYBE_NUM)
|
|
(void) force_number(t1);
|
|
if (t1->flags & NUMBER)
|
|
ret = t1->numbr != 0.0;
|
|
else
|
|
ret = t1->stlen != 0;
|
|
free_temp(t1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* compare two nodes, returning negative, 0, positive
|
|
*/
|
|
int
|
|
cmp_nodes(t1, t2)
|
|
register NODE *t1, *t2;
|
|
{
|
|
register int ret;
|
|
register size_t len1, len2;
|
|
|
|
if (t1 == t2)
|
|
return 0;
|
|
if (t1->flags & MAYBE_NUM)
|
|
(void) force_number(t1);
|
|
if (t2->flags & MAYBE_NUM)
|
|
(void) force_number(t2);
|
|
if ((t1->flags & NUMBER) && (t2->flags & NUMBER)) {
|
|
if (t1->numbr == t2->numbr) return 0;
|
|
else if (t1->numbr - t2->numbr < 0) return -1;
|
|
else return 1;
|
|
}
|
|
(void) force_string(t1);
|
|
(void) force_string(t2);
|
|
len1 = t1->stlen;
|
|
len2 = t2->stlen;
|
|
if (len1 == 0 || len2 == 0)
|
|
return len1 - len2;
|
|
ret = memcmp(t1->stptr, t2->stptr, len1 <= len2 ? len1 : len2);
|
|
return ret == 0 ? len1-len2 : ret;
|
|
}
|
|
|
|
static NODE *
|
|
op_assign(tree)
|
|
register NODE *tree;
|
|
{
|
|
AWKNUM rval, lval;
|
|
NODE **lhs;
|
|
AWKNUM t1, t2;
|
|
long ltemp;
|
|
NODE *tmp;
|
|
Func_ptr after_assign = NULL;
|
|
|
|
lhs = get_lhs(tree->lnode, &after_assign);
|
|
lval = force_number(*lhs);
|
|
|
|
/*
|
|
* Can't unref *lhs until we know the type; doing so
|
|
* too early breaks x += x sorts of things.
|
|
*/
|
|
switch(tree->type) {
|
|
case Node_preincrement:
|
|
case Node_predecrement:
|
|
unref(*lhs);
|
|
*lhs = make_number(lval +
|
|
(tree->type == Node_preincrement ? 1.0 : -1.0));
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
return *lhs;
|
|
|
|
case Node_postincrement:
|
|
case Node_postdecrement:
|
|
unref(*lhs);
|
|
*lhs = make_number(lval +
|
|
(tree->type == Node_postincrement ? 1.0 : -1.0));
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
return tmp_number(lval);
|
|
default:
|
|
break; /* handled below */
|
|
}
|
|
|
|
tmp = tree_eval(tree->rnode);
|
|
rval = force_number(tmp);
|
|
free_temp(tmp);
|
|
unref(*lhs);
|
|
switch(tree->type) {
|
|
case Node_assign_exp:
|
|
if ((ltemp = rval) == rval) { /* integer exponent */
|
|
if (ltemp == 0)
|
|
*lhs = make_number((AWKNUM) 1);
|
|
else if (ltemp == 1)
|
|
*lhs = make_number(lval);
|
|
else {
|
|
/* doing it this way should be more precise */
|
|
for (t1 = t2 = lval; --ltemp; )
|
|
t1 *= t2;
|
|
*lhs = make_number(t1);
|
|
}
|
|
} else
|
|
*lhs = make_number((AWKNUM) pow((double) lval, (double) rval));
|
|
break;
|
|
|
|
case Node_assign_times:
|
|
*lhs = make_number(lval * rval);
|
|
break;
|
|
|
|
case Node_assign_quotient:
|
|
if (rval == (AWKNUM) 0)
|
|
fatal("division by zero attempted in /=");
|
|
#ifdef _CRAY
|
|
/*
|
|
* special case for integer division, put in for Cray
|
|
*/
|
|
ltemp = rval;
|
|
if (ltemp == 0) {
|
|
*lhs = make_number(lval / rval);
|
|
break;
|
|
}
|
|
ltemp = (long) lval / ltemp;
|
|
if (ltemp * lval == rval)
|
|
*lhs = make_number((AWKNUM) ltemp);
|
|
else
|
|
#endif
|
|
*lhs = make_number(lval / rval);
|
|
break;
|
|
|
|
case Node_assign_mod:
|
|
if (rval == (AWKNUM) 0)
|
|
fatal("division by zero attempted in %=");
|
|
#ifndef FMOD_MISSING
|
|
*lhs = make_number(fmod(lval, rval));
|
|
#else
|
|
(void) modf(lval / rval, &t1);
|
|
t2 = lval - rval * t1;
|
|
*lhs = make_number(t2);
|
|
#endif
|
|
break;
|
|
|
|
case Node_assign_plus:
|
|
*lhs = make_number(lval + rval);
|
|
break;
|
|
|
|
case Node_assign_minus:
|
|
*lhs = make_number(lval - rval);
|
|
break;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
return *lhs;
|
|
}
|
|
|
|
NODE **stack_ptr;
|
|
|
|
static NODE *
|
|
func_call(name, arg_list)
|
|
NODE *name; /* name is a Node_val giving function name */
|
|
NODE *arg_list; /* Node_expression_list of calling args. */
|
|
{
|
|
register NODE *arg, *argp, *r;
|
|
NODE *n, *f;
|
|
jmp_buf volatile func_tag_stack;
|
|
jmp_buf volatile loop_tag_stack;
|
|
int volatile save_loop_tag_valid = 0;
|
|
NODE **volatile save_stack, *save_ret_node;
|
|
NODE **volatile local_stack = NULL, **sp;
|
|
int count;
|
|
extern NODE *ret_node;
|
|
|
|
/*
|
|
* retrieve function definition node
|
|
*/
|
|
f = lookup(name->stptr);
|
|
if (!f || f->type != Node_func)
|
|
fatal("function `%s' not defined", name->stptr);
|
|
#ifdef FUNC_TRACE
|
|
fprintf(stderr, "function %s called\n", name->stptr);
|
|
#endif
|
|
count = f->lnode->param_cnt;
|
|
if (count)
|
|
emalloc(local_stack, NODE **, count*sizeof(NODE *), "func_call");
|
|
sp = local_stack;
|
|
|
|
/*
|
|
* for each calling arg. add NODE * on stack
|
|
*/
|
|
for (argp = arg_list; count && argp != NULL; argp = argp->rnode) {
|
|
arg = argp->lnode;
|
|
getnode(r);
|
|
r->type = Node_var;
|
|
/*
|
|
* call by reference for arrays; see below also
|
|
*/
|
|
if (arg->type == Node_param_list)
|
|
arg = stack_ptr[arg->param_cnt];
|
|
if (arg->type == Node_var_array)
|
|
*r = *arg;
|
|
else {
|
|
n = tree_eval(arg);
|
|
r->lnode = dupnode(n);
|
|
r->rnode = (NODE *) NULL;
|
|
free_temp(n);
|
|
}
|
|
*sp++ = r;
|
|
count--;
|
|
}
|
|
if (argp != NULL) /* left over calling args. */
|
|
warning(
|
|
"function `%s' called with more arguments than declared",
|
|
name->stptr);
|
|
/*
|
|
* add remaining params. on stack with null value
|
|
*/
|
|
while (count-- > 0) {
|
|
getnode(r);
|
|
r->type = Node_var;
|
|
r->lnode = Nnull_string;
|
|
r->rnode = (NODE *) NULL;
|
|
*sp++ = r;
|
|
}
|
|
|
|
/*
|
|
* Execute function body, saving context, as a return statement
|
|
* will longjmp back here.
|
|
*
|
|
* Have to save and restore the loop_tag stuff so that a return
|
|
* inside a loop in a function body doesn't scrog any loops going
|
|
* on in the main program. We save the necessary info in variables
|
|
* local to this function so that function nesting works OK.
|
|
* We also only bother to save the loop stuff if we're in a loop
|
|
* when the function is called.
|
|
*/
|
|
if (loop_tag_valid) {
|
|
int junk = 0;
|
|
|
|
save_loop_tag_valid = (volatile int) loop_tag_valid;
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, junk);
|
|
loop_tag_valid = 0;
|
|
}
|
|
save_stack = stack_ptr;
|
|
stack_ptr = local_stack;
|
|
PUSH_BINDING(func_tag_stack, func_tag, func_tag_valid);
|
|
save_ret_node = ret_node;
|
|
ret_node = Nnull_string; /* default return value */
|
|
if (setjmp(func_tag) == 0)
|
|
(void) interpret(f->rnode);
|
|
|
|
r = ret_node;
|
|
ret_node = (NODE *) save_ret_node;
|
|
RESTORE_BINDING(func_tag_stack, func_tag, func_tag_valid);
|
|
stack_ptr = (NODE **) save_stack;
|
|
|
|
/*
|
|
* here, we pop each parameter and check whether
|
|
* it was an array. If so, and if the arg. passed in was
|
|
* a simple variable, then the value should be copied back.
|
|
* This achieves "call-by-reference" for arrays.
|
|
*/
|
|
sp = local_stack;
|
|
count = f->lnode->param_cnt;
|
|
for (argp = arg_list; count > 0 && argp != NULL; argp = argp->rnode) {
|
|
arg = argp->lnode;
|
|
if (arg->type == Node_param_list)
|
|
arg = stack_ptr[arg->param_cnt];
|
|
n = *sp++;
|
|
if ((arg->type == Node_var || arg->type == Node_var_array)
|
|
&& n->type == Node_var_array) {
|
|
/* should we free arg->var_value ? */
|
|
arg->var_array = n->var_array;
|
|
arg->type = Node_var_array;
|
|
arg->array_size = n->array_size;
|
|
arg->table_size = n->table_size;
|
|
arg->flags = n->flags;
|
|
}
|
|
/* n->lnode overlays the array size, don't unref it if array */
|
|
if (n->type != Node_var_array)
|
|
unref(n->lnode);
|
|
freenode(n);
|
|
count--;
|
|
}
|
|
while (count-- > 0) {
|
|
n = *sp++;
|
|
/* if n is an (local) array, all the elements should be freed */
|
|
if (n->type == Node_var_array)
|
|
assoc_clear(n);
|
|
unref(n->lnode);
|
|
freenode(n);
|
|
}
|
|
if (local_stack)
|
|
free((char *) local_stack);
|
|
|
|
/* Restore the loop_tag stuff if necessary. */
|
|
if (save_loop_tag_valid) {
|
|
int junk = 0;
|
|
|
|
loop_tag_valid = (int) save_loop_tag_valid;
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, junk);
|
|
}
|
|
|
|
if (!(r->flags & PERM))
|
|
r->flags |= TEMP;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* This returns a POINTER to a node pointer. get_lhs(ptr) is the current
|
|
* value of the var, or where to store the var's new value
|
|
*/
|
|
|
|
NODE **
|
|
r_get_lhs(ptr, assign)
|
|
register NODE *ptr;
|
|
Func_ptr *assign;
|
|
{
|
|
register NODE **aptr = NULL;
|
|
register NODE *n;
|
|
|
|
switch (ptr->type) {
|
|
case Node_var_array:
|
|
fatal("attempt to use array `%s' in a scalar context", ptr->vname);
|
|
case Node_var:
|
|
aptr = &(ptr->var_value);
|
|
#ifdef DEBUG
|
|
if ((char)ptr->var_value->stref <= 0)
|
|
cant_happen();
|
|
#endif
|
|
break;
|
|
|
|
case Node_FIELDWIDTHS:
|
|
aptr = &(FIELDWIDTHS_node->var_value);
|
|
if (assign)
|
|
*assign = set_FIELDWIDTHS;
|
|
break;
|
|
|
|
case Node_RS:
|
|
aptr = &(RS_node->var_value);
|
|
if (assign)
|
|
*assign = set_RS;
|
|
break;
|
|
|
|
case Node_FS:
|
|
aptr = &(FS_node->var_value);
|
|
if (assign)
|
|
*assign = set_FS;
|
|
break;
|
|
|
|
case Node_FNR:
|
|
unref(FNR_node->var_value);
|
|
FNR_node->var_value = make_number((AWKNUM) FNR);
|
|
aptr = &(FNR_node->var_value);
|
|
if (assign)
|
|
*assign = set_FNR;
|
|
break;
|
|
|
|
case Node_NR:
|
|
unref(NR_node->var_value);
|
|
NR_node->var_value = make_number((AWKNUM) NR);
|
|
aptr = &(NR_node->var_value);
|
|
if (assign)
|
|
*assign = set_NR;
|
|
break;
|
|
|
|
case Node_NF:
|
|
if (NF == -1)
|
|
(void) get_field(HUGE-1, assign); /* parse record */
|
|
unref(NF_node->var_value);
|
|
NF_node->var_value = make_number((AWKNUM) NF);
|
|
aptr = &(NF_node->var_value);
|
|
if (assign)
|
|
*assign = set_NF;
|
|
break;
|
|
|
|
case Node_IGNORECASE:
|
|
unref(IGNORECASE_node->var_value);
|
|
IGNORECASE_node->var_value = make_number((AWKNUM) IGNORECASE);
|
|
aptr = &(IGNORECASE_node->var_value);
|
|
if (assign)
|
|
*assign = set_IGNORECASE;
|
|
break;
|
|
|
|
case Node_OFMT:
|
|
aptr = &(OFMT_node->var_value);
|
|
if (assign)
|
|
*assign = set_OFMT;
|
|
break;
|
|
|
|
case Node_CONVFMT:
|
|
aptr = &(CONVFMT_node->var_value);
|
|
if (assign)
|
|
*assign = set_CONVFMT;
|
|
break;
|
|
|
|
case Node_ORS:
|
|
aptr = &(ORS_node->var_value);
|
|
if (assign)
|
|
*assign = set_ORS;
|
|
break;
|
|
|
|
case Node_OFS:
|
|
aptr = &(OFS_node->var_value);
|
|
if (assign)
|
|
*assign = set_OFS;
|
|
break;
|
|
|
|
case Node_param_list:
|
|
aptr = &(stack_ptr[ptr->param_cnt]->var_value);
|
|
break;
|
|
|
|
case Node_field_spec:
|
|
{
|
|
int field_num;
|
|
|
|
n = tree_eval(ptr->lnode);
|
|
field_num = (int) force_number(n);
|
|
free_temp(n);
|
|
if (field_num < 0)
|
|
fatal("attempt to access field %d", field_num);
|
|
if (field_num == 0 && field0_valid) { /* short circuit */
|
|
aptr = &fields_arr[0];
|
|
if (assign)
|
|
*assign = reset_record;
|
|
break;
|
|
}
|
|
aptr = get_field(field_num, assign);
|
|
break;
|
|
}
|
|
case Node_subscript:
|
|
n = ptr->lnode;
|
|
if (n->type == Node_param_list)
|
|
n = stack_ptr[n->param_cnt];
|
|
aptr = assoc_lookup(n, concat_exp(ptr->rnode));
|
|
break;
|
|
|
|
case Node_func:
|
|
fatal ("`%s' is a function, assignment is not allowed",
|
|
ptr->lnode->param);
|
|
default:
|
|
cant_happen();
|
|
}
|
|
return aptr;
|
|
}
|
|
|
|
static NODE *
|
|
match_op(tree)
|
|
register NODE *tree;
|
|
{
|
|
register NODE *t1;
|
|
register Regexp *rp;
|
|
int i;
|
|
int match = 1;
|
|
|
|
if (tree->type == Node_nomatch)
|
|
match = 0;
|
|
if (tree->type == Node_regex)
|
|
t1 = *get_field(0, (Func_ptr *) 0);
|
|
else {
|
|
t1 = force_string(tree_eval(tree->lnode));
|
|
tree = tree->rnode;
|
|
}
|
|
rp = re_update(tree);
|
|
i = research(rp, t1->stptr, 0, t1->stlen, 0);
|
|
i = (i == -1) ^ (match == 1);
|
|
free_temp(t1);
|
|
return tmp_number((AWKNUM) i);
|
|
}
|
|
|
|
void
|
|
set_IGNORECASE()
|
|
{
|
|
static int warned = 0;
|
|
|
|
if ((do_lint || do_unix) && ! warned) {
|
|
warned = 1;
|
|
warning("IGNORECASE not supported in compatibility mode");
|
|
}
|
|
IGNORECASE = (force_number(IGNORECASE_node->var_value) != 0.0);
|
|
set_FS();
|
|
}
|
|
|
|
void
|
|
set_OFS()
|
|
{
|
|
OFS = force_string(OFS_node->var_value)->stptr;
|
|
OFSlen = OFS_node->var_value->stlen;
|
|
OFS[OFSlen] = '\0';
|
|
}
|
|
|
|
void
|
|
set_ORS()
|
|
{
|
|
ORS = force_string(ORS_node->var_value)->stptr;
|
|
ORSlen = ORS_node->var_value->stlen;
|
|
ORS[ORSlen] = '\0';
|
|
}
|
|
|
|
NODE **fmt_list = NULL;
|
|
static int fmt_ok P((NODE *n));
|
|
static int fmt_index P((NODE *n));
|
|
|
|
static int
|
|
fmt_ok(n)
|
|
NODE *n;
|
|
{
|
|
/* to be done later */
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
fmt_index(n)
|
|
NODE *n;
|
|
{
|
|
register int ix = 0;
|
|
static int fmt_num = 4;
|
|
static int fmt_hiwater = 0;
|
|
|
|
if (fmt_list == NULL)
|
|
emalloc(fmt_list, NODE **, fmt_num*sizeof(*fmt_list), "fmt_index");
|
|
(void) force_string(n);
|
|
while (ix < fmt_hiwater) {
|
|
if (cmp_nodes(fmt_list[ix], n) == 0)
|
|
return ix;
|
|
ix++;
|
|
}
|
|
/* not found */
|
|
n->stptr[n->stlen] = '\0';
|
|
if (!fmt_ok(n))
|
|
warning("bad FMT specification");
|
|
if (fmt_hiwater >= fmt_num) {
|
|
fmt_num *= 2;
|
|
emalloc(fmt_list, NODE **, fmt_num, "fmt_index");
|
|
}
|
|
fmt_list[fmt_hiwater] = dupnode(n);
|
|
return fmt_hiwater++;
|
|
}
|
|
|
|
void
|
|
set_OFMT()
|
|
{
|
|
OFMTidx = fmt_index(OFMT_node->var_value);
|
|
OFMT = fmt_list[OFMTidx]->stptr;
|
|
}
|
|
|
|
void
|
|
set_CONVFMT()
|
|
{
|
|
CONVFMTidx = fmt_index(CONVFMT_node->var_value);
|
|
CONVFMT = fmt_list[CONVFMTidx]->stptr;
|
|
}
|