mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-21 08:24:10 +01:00
6c8b634f1d
Add a new private thread flag to indicate that the thread should not sleep if runningbufspace is too large. Set this flag on the bufdaemon and syncer threads so that they skip the waitrunningbufspace() call in bufwrite() rather than than checking the proc pointer vs. the known proc pointers for these two threads. A way of preventing these threads from being starved for I/O but still placing limits on their outstanding I/O would be desirable. Set this flag in ffs_copyonwrite() to prevent bufwrite() calls from blocking on the runningbufspace check while holding snaplk. This prevents snaplk from being held for an arbitrarily long period of time if runningbufspace is high and greatly reduces the contention for snaplk. The disadvantage is that ffs_copyonwrite() can start a large amount of I/O if there are a large number of snapshots, which could cause a deadlock in other parts of the code. Call runningbufwakeup() in ffs_copyonwrite() to decrement runningbufspace before attempting to grab snaplk so that I/O requests waiting on snaplk are not counted in runningbufspace as being in-progress. Increment runningbufspace again before actually launching the original I/O request. Prior to the above two changes, the system could deadlock if enough I/O requests were blocked by snaplk to prevent runningbufspace from falling below lorunningspace and one of the bawrite() calls in ffs_copyonwrite() blocked in waitrunningbufspace() while holding snaplk. See <http://www.holm.cc/stress/log/cons143.html>
953 lines
39 KiB
C
953 lines
39 KiB
C
/*-
|
|
* Copyright (c) 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)proc.h 8.15 (Berkeley) 5/19/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _SYS_PROC_H_
|
|
#define _SYS_PROC_H_
|
|
|
|
#include <sys/callout.h> /* For struct callout. */
|
|
#include <sys/event.h> /* For struct klist. */
|
|
#ifndef _KERNEL
|
|
#include <sys/filedesc.h>
|
|
#endif
|
|
#include <sys/queue.h>
|
|
#include <sys/_lock.h>
|
|
#include <sys/_mutex.h>
|
|
#include <sys/priority.h>
|
|
#include <sys/rtprio.h> /* XXX. */
|
|
#include <sys/runq.h>
|
|
#include <sys/sigio.h>
|
|
#include <sys/signal.h>
|
|
#ifndef _KERNEL
|
|
#include <sys/time.h> /* For structs itimerval, timeval. */
|
|
#else
|
|
#include <sys/pcpu.h>
|
|
#endif
|
|
#include <sys/ucontext.h>
|
|
#include <sys/ucred.h>
|
|
#include <machine/proc.h> /* Machine-dependent proc substruct. */
|
|
|
|
/*
|
|
* One structure allocated per session.
|
|
*
|
|
* List of locks
|
|
* (m) locked by s_mtx mtx
|
|
* (e) locked by proctree_lock sx
|
|
* (c) const until freeing
|
|
*/
|
|
struct session {
|
|
int s_count; /* (m) Ref cnt; pgrps in session. */
|
|
struct proc *s_leader; /* (m + e) Session leader. */
|
|
struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */
|
|
struct tty *s_ttyp; /* (m) Controlling tty. */
|
|
pid_t s_sid; /* (c) Session ID. */
|
|
/* (m) Setlogin() name: */
|
|
char s_login[roundup(MAXLOGNAME, sizeof(long))];
|
|
struct mtx s_mtx; /* Mutex to protect members. */
|
|
};
|
|
|
|
/*
|
|
* One structure allocated per process group.
|
|
*
|
|
* List of locks
|
|
* (m) locked by pg_mtx mtx
|
|
* (e) locked by proctree_lock sx
|
|
* (c) const until freeing
|
|
*/
|
|
struct pgrp {
|
|
LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */
|
|
LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */
|
|
struct session *pg_session; /* (c) Pointer to session. */
|
|
struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */
|
|
pid_t pg_id; /* (c) Process group id. */
|
|
int pg_jobc; /* (m) Job control process count. */
|
|
struct mtx pg_mtx; /* Mutex to protect members */
|
|
};
|
|
|
|
/*
|
|
* pargs, used to hold a copy of the command line, if it had a sane length.
|
|
*/
|
|
struct pargs {
|
|
u_int ar_ref; /* Reference count. */
|
|
u_int ar_length; /* Length. */
|
|
u_char ar_args[1]; /* Arguments. */
|
|
};
|
|
|
|
/*-
|
|
* Description of a process.
|
|
*
|
|
* This structure contains the information needed to manage a thread of
|
|
* control, known in UN*X as a process; it has references to substructures
|
|
* containing descriptions of things that the process uses, but may share
|
|
* with related processes. The process structure and the substructures
|
|
* are always addressable except for those marked "(CPU)" below,
|
|
* which might be addressable only on a processor on which the process
|
|
* is running.
|
|
*
|
|
* Below is a key of locks used to protect each member of struct proc. The
|
|
* lock is indicated by a reference to a specific character in parens in the
|
|
* associated comment.
|
|
* * - not yet protected
|
|
* a - only touched by curproc or parent during fork/wait
|
|
* b - created at fork, never changes
|
|
* (exception aiods switch vmspaces, but they are also
|
|
* marked 'P_SYSTEM' so hopefully it will be left alone)
|
|
* c - locked by proc mtx
|
|
* d - locked by allproc_lock lock
|
|
* e - locked by proctree_lock lock
|
|
* f - session mtx
|
|
* g - process group mtx
|
|
* h - callout_lock mtx
|
|
* i - by curproc or the master session mtx
|
|
* j - locked by sched_lock mtx
|
|
* k - only accessed by curthread
|
|
* k*- only accessed by curthread and from an interrupt
|
|
* l - the attaching proc or attaching proc parent
|
|
* m - Giant
|
|
* n - not locked, lazy
|
|
* o - ktrace lock
|
|
* p - select lock (sellock)
|
|
* q - td_contested lock
|
|
* r - p_peers lock
|
|
* x - created at fork, only changes during single threading in exec
|
|
* z - zombie threads/ksegroup lock
|
|
*
|
|
* If the locking key specifies two identifiers (for example, p_pptr) then
|
|
* either lock is sufficient for read access, but both locks must be held
|
|
* for write access.
|
|
*/
|
|
struct ithd;
|
|
struct kg_sched;
|
|
struct nlminfo;
|
|
struct kaioinfo;
|
|
struct p_sched;
|
|
struct sleepqueue;
|
|
struct td_sched;
|
|
struct trapframe;
|
|
struct turnstile;
|
|
|
|
/*
|
|
* Here we define the three structures used for process information.
|
|
*
|
|
* The first is the thread. It might be thought of as a "Kernel
|
|
* Schedulable Entity Context".
|
|
* This structure contains all the information as to where a thread of
|
|
* execution is now, or was when it was suspended, why it was suspended,
|
|
* and anything else that will be needed to restart it when it is
|
|
* rescheduled. Always associated with a KSE when running, but can be
|
|
* reassigned to an equivalent KSE when being restarted for
|
|
* load balancing. Each of these is associated with a kernel stack
|
|
* and a pcb.
|
|
*
|
|
* It is important to remember that a particular thread structure may only
|
|
* exist as long as the system call or kernel entrance (e.g. by pagefault)
|
|
* which it is currently executing. It should therefore NEVER be referenced
|
|
* by pointers in long lived structures that live longer than a single
|
|
* request. If several threads complete their work at the same time,
|
|
* they will all rewind their stacks to the user boundary, report their
|
|
* completion state, and all but one will be freed. That last one will
|
|
* be kept to provide a kernel stack and pcb for the NEXT syscall or kernel
|
|
* entrance (basically to save freeing and then re-allocating it). The existing
|
|
* thread keeps a cached spare thread available to allow it to quickly
|
|
* get one when it needs a new one. There is also a system
|
|
* cache of free threads. Threads have priority and partake in priority
|
|
* inheritance schemes.
|
|
*/
|
|
struct thread;
|
|
|
|
/*
|
|
* The KSEGRP is allocated resources across a number of CPUs.
|
|
* (Including a number of CPUxQUANTA. It parcels these QUANTA up among
|
|
* its threads, each of which should be running in a different CPU.
|
|
* BASE priority and total available quanta are properties of a KSEGRP.
|
|
* Multiple KSEGRPs in a single process compete against each other
|
|
* for total quanta in the same way that a forked child competes against
|
|
* it's parent process.
|
|
*/
|
|
struct ksegrp;
|
|
|
|
/*
|
|
* A process is the owner of all system resources allocated to a task
|
|
* except CPU quanta.
|
|
* All KSEGs under one process see, and have the same access to, these
|
|
* resources (e.g. files, memory, sockets, credential, kqueues).
|
|
* A process may compete for CPU cycles on the same basis as a
|
|
* forked process cluster by spawning several KSEGRPs.
|
|
*/
|
|
struct proc;
|
|
|
|
/***************
|
|
* In pictures:
|
|
With a single run queue used by all processors:
|
|
|
|
RUNQ: --->KSE---KSE--... SLEEPQ:[]---THREAD---THREAD---THREAD
|
|
\ \ []---THREAD
|
|
KSEG---THREAD--THREAD--THREAD []
|
|
[]---THREAD---THREAD
|
|
|
|
(processors run THREADs from the KSEG until they are exhausted or
|
|
the KSEG exhausts its quantum)
|
|
|
|
With PER-CPU run queues:
|
|
KSEs on the separate run queues directly
|
|
They would be given priorities calculated from the KSEG.
|
|
|
|
*
|
|
*****************/
|
|
|
|
/*
|
|
* Kernel runnable context (thread).
|
|
* This is what is put to sleep and reactivated.
|
|
* The first KSE available in the correct group will run this thread.
|
|
* If several are available, use the one on the same CPU as last time.
|
|
* When waiting to be run, threads are hung off the KSEGRP in priority order.
|
|
* With N runnable and queued KSEs in the KSEGRP, the first N threads
|
|
* are linked to them. Other threads are not yet assigned.
|
|
*/
|
|
struct thread {
|
|
struct proc *td_proc; /* (*) Associated process. */
|
|
struct ksegrp *td_ksegrp; /* (*) Associated KSEG. */
|
|
TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */
|
|
TAILQ_ENTRY(thread) td_kglist; /* (*) All threads in this ksegrp. */
|
|
|
|
/* The two queues below should someday be merged. */
|
|
TAILQ_ENTRY(thread) td_slpq; /* (j) Sleep queue. */
|
|
TAILQ_ENTRY(thread) td_lockq; /* (j) Lock queue. */
|
|
TAILQ_ENTRY(thread) td_runq; /* (j/z) Run queue(s). XXXKSE */
|
|
|
|
TAILQ_HEAD(, selinfo) td_selq; /* (p) List of selinfos. */
|
|
struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */
|
|
struct turnstile *td_turnstile; /* (k) Associated turnstile. */
|
|
struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */
|
|
lwpid_t td_tid; /* (b) Thread ID. */
|
|
|
|
/* Cleared during fork1() or thread_schedule_upcall(). */
|
|
#define td_startzero td_flags
|
|
int td_flags; /* (j) TDF_* flags. */
|
|
int td_inhibitors; /* (j) Why can not run. */
|
|
int td_pflags; /* (k) Private thread (TDP_*) flags. */
|
|
int td_dupfd; /* (k) Ret value from fdopen. XXX */
|
|
void *td_wchan; /* (j) Sleep address. */
|
|
const char *td_wmesg; /* (j) Reason for sleep. */
|
|
u_char td_lastcpu; /* (j) Last cpu we were on. */
|
|
u_char td_oncpu; /* (j) Which cpu we are on. */
|
|
volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */
|
|
short td_locks; /* (k) DEBUG: lockmgr count of locks. */
|
|
struct turnstile *td_blocked; /* (j) Lock process is blocked on. */
|
|
struct ithd *td_ithd; /* (b) For interrupt threads only. */
|
|
const char *td_lockname; /* (j) Name of lock blocked on. */
|
|
LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */
|
|
struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */
|
|
int td_intr_nesting_level; /* (k) Interrupt recursion. */
|
|
int td_pinned; /* (k) Temporary cpu pin count. */
|
|
struct kse_thr_mailbox *td_mailbox; /* (*) Userland mailbox address. */
|
|
struct ucred *td_ucred; /* (k) Reference to credentials. */
|
|
struct thread *td_standin; /* (k + a) Use this for an upcall. */
|
|
struct kse_upcall *td_upcall; /* (k + j) Upcall structure. */
|
|
u_int64_t td_sticks; /* (k) Statclock hits in system mode. */
|
|
u_int td_uuticks; /* (k) Statclock hits (usr), for UTS. */
|
|
u_int td_usticks; /* (k) Statclock hits (sys), for UTS. */
|
|
int td_intrval; /* (j) Return value of TDF_INTERRUPT. */
|
|
sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */
|
|
sigset_t td_sigmask; /* (c) Current signal mask. */
|
|
sigset_t td_siglist; /* (c) Sigs arrived, not delivered. */
|
|
volatile u_int td_generation; /* (k) For detection of preemption */
|
|
stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */
|
|
int td_kflags; /* (c) Flags for KSE threading. */
|
|
int td_xsig; /* (c) Signal for ptrace */
|
|
u_long td_profil_addr; /* (k) Temporary addr until AST. */
|
|
u_int td_profil_ticks; /* (k) Temporary ticks until AST. */
|
|
#define td_endzero td_base_pri
|
|
|
|
/* Copied during fork1() or thread_sched_upcall(). */
|
|
#define td_startcopy td_endzero
|
|
u_char td_base_pri; /* (j) Thread base kernel priority. */
|
|
u_char td_priority; /* (j) Thread active priority. */
|
|
#define td_endcopy td_pcb
|
|
|
|
/*
|
|
* Fields that must be manually set in fork1() or thread_sched_upcall()
|
|
* or already have been set in the allocator, constructor, etc.
|
|
*/
|
|
struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */
|
|
enum {
|
|
TDS_INACTIVE = 0x0,
|
|
TDS_INHIBITED,
|
|
TDS_CAN_RUN,
|
|
TDS_RUNQ,
|
|
TDS_RUNNING
|
|
} td_state;
|
|
register_t td_retval[2]; /* (k) Syscall aux returns. */
|
|
struct callout td_slpcallout; /* (h) Callout for sleep. */
|
|
struct trapframe *td_frame; /* (k) */
|
|
struct vm_object *td_kstack_obj;/* (a) Kstack object. */
|
|
vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */
|
|
int td_kstack_pages; /* (a) Size of the kstack. */
|
|
struct vm_object *td_altkstack_obj;/* (a) Alternate kstack object. */
|
|
vm_offset_t td_altkstack; /* (a) Kernel VA of alternate kstack. */
|
|
int td_altkstack_pages; /* (a) Size of alternate kstack. */
|
|
volatile u_int td_critnest; /* (k*) Critical section nest level. */
|
|
struct mdthread td_md; /* (k) Any machine-dependent fields. */
|
|
struct td_sched *td_sched; /* (*) Scheduler-specific data. */
|
|
};
|
|
|
|
/*
|
|
* Flags kept in td_flags:
|
|
* To change these you MUST have the scheduler lock.
|
|
*/
|
|
#define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */
|
|
#define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */
|
|
#define TDF_SINTR 0x00000008 /* Sleep is interruptible. */
|
|
#define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */
|
|
#define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */
|
|
#define TDF_SELECT 0x00000040 /* Selecting; wakeup/waiting danger. */
|
|
#define TDF_UNUSED7 0x00000080 /* --available -- */
|
|
#define TDF_TSNOBLOCK 0x00000100 /* Don't block on a turnstile due to race. */
|
|
#define TDF_UNUSED9 0x00000200 /* --available -- */
|
|
#define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */
|
|
#define TDF_ASTPENDING 0x00000800 /* Thread has some asynchronous events. */
|
|
#define TDF_TIMOFAIL 0x00001000 /* Timeout from sleep after we were awake. */
|
|
#define TDF_INTERRUPT 0x00002000 /* Thread is marked as interrupted. */
|
|
#define TDF_UNUSED14 0x00004000 /* --available -- */
|
|
#define TDF_UNUSED15 0x00008000 /* --available -- */
|
|
#define TDF_NEEDRESCHED 0x00010000 /* Thread needs to yield. */
|
|
#define TDF_NEEDSIGCHK 0x00020000 /* Thread may need signal delivery. */
|
|
#define TDF_XSIG 0x00040000 /* Thread is exchanging signal under trace */
|
|
#define TDF_UMTXQ 0x00080000 /* Thread is sleeping on a umtx. */
|
|
#define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */
|
|
#define TDF_DBSUSPEND 0x00200000 /* Thread is suspended by debugger */
|
|
#define TDF_UNUSED22 0x00400000 /* --available -- */
|
|
#define TDF_UNUSED23 0x00800000 /* --available -- */
|
|
#define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */
|
|
#define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */
|
|
#define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */
|
|
#define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */
|
|
|
|
/*
|
|
* "Private" flags kept in td_pflags:
|
|
* These are only accessed by curthread and thus need no locking.
|
|
*/
|
|
#define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */
|
|
#define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */
|
|
#define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */
|
|
#define TDP_UPCALLING 0x00000008 /* This thread is doing an upcall. */
|
|
#define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */
|
|
#define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */
|
|
#define TDP_DEADLKTREAT 0x00000040 /* Lock aquisition - deadlock treatment. */
|
|
#define TDP_SA 0x00000080 /* A scheduler activation based thread. */
|
|
#define TDP_NOSLEEPING 0x00000100 /* Thread is not allowed to sleep on a sq. */
|
|
#define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */
|
|
#define TDP_UNUSED10 0x00000400 /* --available -- */
|
|
#define TDP_CAN_UNBIND 0x00000800 /* Only temporarily bound. */
|
|
#define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */
|
|
#define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */
|
|
#define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */
|
|
#define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */
|
|
#define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */
|
|
#define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */
|
|
#define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */
|
|
|
|
/*
|
|
* Reasons that the current thread can not be run yet.
|
|
* More than one may apply.
|
|
*/
|
|
#define TDI_SUSPENDED 0x0001 /* On suspension queue. */
|
|
#define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */
|
|
#define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */
|
|
#define TDI_LOCK 0x0008 /* Stopped on a lock. */
|
|
#define TDI_IWAIT 0x0010 /* Awaiting interrupt. */
|
|
|
|
/*
|
|
* flags (in kflags) related to M:N threading.
|
|
*/
|
|
#define TDK_KSEREL 0x0001 /* Blocked in msleep on kg->kg_completed. */
|
|
#define TDK_KSERELSIG 0x0002 /* Blocked in msleep on p->p_siglist. */
|
|
#define TDK_WAKEUP 0x0004 /* Thread has been woken by kse_wakeup. */
|
|
|
|
#define TD_CAN_UNBIND(td) \
|
|
(((td)->td_pflags & TDP_CAN_UNBIND) && \
|
|
((td)->td_upcall != NULL))
|
|
|
|
#define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING)
|
|
#define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL)
|
|
#define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED)
|
|
#define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED)
|
|
#define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK)
|
|
#define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT)
|
|
#define TD_IS_RUNNING(td) ((td)->td_state == TDS_RUNNING)
|
|
#define TD_ON_RUNQ(td) ((td)->td_state == TDS_RUNQ)
|
|
#define TD_CAN_RUN(td) ((td)->td_state == TDS_CAN_RUN)
|
|
#define TD_IS_INHIBITED(td) ((td)->td_state == TDS_INHIBITED)
|
|
|
|
#define TD_SET_INHIB(td, inhib) do { \
|
|
(td)->td_state = TDS_INHIBITED; \
|
|
(td)->td_inhibitors |= (inhib); \
|
|
} while (0)
|
|
|
|
#define TD_CLR_INHIB(td, inhib) do { \
|
|
if (((td)->td_inhibitors & (inhib)) && \
|
|
(((td)->td_inhibitors &= ~(inhib)) == 0)) \
|
|
(td)->td_state = TDS_CAN_RUN; \
|
|
} while (0)
|
|
|
|
#define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING)
|
|
#define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED)
|
|
#define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK)
|
|
#define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED)
|
|
#define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT)
|
|
#define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING)
|
|
|
|
#define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING)
|
|
#define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED)
|
|
#define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK)
|
|
#define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED)
|
|
#define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT)
|
|
|
|
#define TD_SET_RUNNING(td) (td)->td_state = TDS_RUNNING
|
|
#define TD_SET_RUNQ(td) (td)->td_state = TDS_RUNQ
|
|
#define TD_SET_CAN_RUN(td) (td)->td_state = TDS_CAN_RUN
|
|
|
|
/*
|
|
* An upcall is used when returning to userland. If a thread does not have
|
|
* an upcall on return to userland the thread exports its context and exits.
|
|
*/
|
|
struct kse_upcall {
|
|
TAILQ_ENTRY(kse_upcall) ku_link; /* List of upcalls in KSEG. */
|
|
struct ksegrp *ku_ksegrp; /* Associated KSEG. */
|
|
struct thread *ku_owner; /* Owning thread. */
|
|
int ku_flags; /* KUF_* flags. */
|
|
struct kse_mailbox *ku_mailbox; /* Userland mailbox address. */
|
|
stack_t ku_stack; /* Userland upcall stack. */
|
|
void *ku_func; /* Userland upcall function. */
|
|
unsigned int ku_mflags; /* Cached upcall mbox flags. */
|
|
};
|
|
|
|
#define KUF_DOUPCALL 0x00001 /* Do upcall now; don't wait. */
|
|
#define KUF_EXITING 0x00002 /* Upcall structure is exiting. */
|
|
|
|
/*
|
|
* Kernel-scheduled entity group (KSEG). The scheduler considers each KSEG to
|
|
* be an indivisible unit from a time-sharing perspective, though each KSEG may
|
|
* contain multiple KSEs.
|
|
*/
|
|
struct ksegrp {
|
|
struct proc *kg_proc; /* (*) Proc that contains this KSEG. */
|
|
TAILQ_ENTRY(ksegrp) kg_ksegrp; /* (*) Queue of KSEGs in kg_proc. */
|
|
TAILQ_HEAD(, thread) kg_threads;/* (td_kglist) All threads. */
|
|
TAILQ_HEAD(, thread) kg_runq; /* (td_runq) waiting RUNNABLE threads */
|
|
TAILQ_HEAD(, kse_upcall) kg_upcalls; /* All upcalls in the group. */
|
|
|
|
#define kg_startzero kg_estcpu
|
|
u_int kg_estcpu; /* (j) Sum of the same field in KSEs. */
|
|
u_int kg_slptime; /* (j) How long completely blocked. */
|
|
int kg_numupcalls; /* (j) Num upcalls. */
|
|
int kg_upsleeps; /* (c) Num threads in kse_release(). */
|
|
struct kse_thr_mailbox *kg_completed; /* (c) Completed thread mboxes. */
|
|
int kg_nextupcall; /* (n) Next upcall time. */
|
|
int kg_upquantum; /* (n) Quantum to schedule an upcall. */
|
|
#define kg_endzero kg_pri_class
|
|
|
|
#define kg_startcopy kg_endzero
|
|
u_char kg_pri_class; /* (j) Scheduling class. */
|
|
u_char kg_user_pri; /* (j) User pri from estcpu and nice. */
|
|
#define kg_endcopy kg_numthreads
|
|
int kg_numthreads; /* (j) Num threads in total. */
|
|
struct kg_sched *kg_sched; /* (*) Scheduler-specific data. */
|
|
};
|
|
|
|
/*
|
|
* XXX: Does this belong in resource.h or resourcevar.h instead?
|
|
* Resource usage extension. The times in rusage structs in the kernel are
|
|
* never up to date. The actual times are kept as runtimes and tick counts
|
|
* (with control info in the "previous" times), and are converted when
|
|
* userland asks for rusage info. Backwards compatibility prevents putting
|
|
* this directly in the user-visible rusage struct.
|
|
*
|
|
* Locking: (cj) means (j) for p_rux and (c) for p_crux.
|
|
*/
|
|
struct rusage_ext {
|
|
struct bintime rux_runtime; /* (cj) Real time. */
|
|
u_int64_t rux_uticks; /* (cj) Statclock hits in user mode. */
|
|
u_int64_t rux_sticks; /* (cj) Statclock hits in sys mode. */
|
|
u_int64_t rux_iticks; /* (cj) Statclock hits in intr mode. */
|
|
u_int64_t rux_uu; /* (c) Previous user time in usec. */
|
|
u_int64_t rux_su; /* (c) Previous sys time in usec. */
|
|
u_int64_t rux_iu; /* (c) Previous intr time in usec. */
|
|
};
|
|
|
|
/*
|
|
* The old fashionned process. May have multiple threads, KSEGRPs
|
|
* and KSEs. Starts off with a single embedded KSEGRP and THREAD.
|
|
*/
|
|
struct proc {
|
|
LIST_ENTRY(proc) p_list; /* (d) List of all processes. */
|
|
TAILQ_HEAD(, ksegrp) p_ksegrps; /* (c)(kg_ksegrp) All KSEGs. */
|
|
TAILQ_HEAD(, thread) p_threads; /* (j)(td_plist) Threads. (shortcut) */
|
|
TAILQ_HEAD(, thread) p_suspended; /* (td_runq) Suspended threads. */
|
|
struct ucred *p_ucred; /* (c) Process owner's identity. */
|
|
struct filedesc *p_fd; /* (b) Open files. */
|
|
struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */
|
|
/* Accumulated stats for all threads? */
|
|
struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */
|
|
struct plimit *p_limit; /* (c) Process limits. */
|
|
struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */
|
|
|
|
/*
|
|
* The following don't make too much sense.
|
|
* See the td_ or ke_ versions of the same flags.
|
|
*/
|
|
int p_flag; /* (c) P_* flags. */
|
|
int p_sflag; /* (j) PS_* flags. */
|
|
enum {
|
|
PRS_NEW = 0, /* In creation */
|
|
PRS_NORMAL, /* threads can be run. */
|
|
PRS_ZOMBIE
|
|
} p_state; /* (j/c) S* process status. */
|
|
|
|
pid_t p_pid; /* (b) Process identifier. */
|
|
LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */
|
|
LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */
|
|
struct proc *p_pptr; /* (c + e) Pointer to parent process. */
|
|
LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */
|
|
LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */
|
|
struct mtx p_mtx; /* (n) Lock for this struct. */
|
|
|
|
/* The following fields are all zeroed upon creation in fork. */
|
|
#define p_startzero p_oppid
|
|
pid_t p_oppid; /* (c + e) Save ppid in ptrace. XXX */
|
|
struct vmspace *p_vmspace; /* (b) Address space. */
|
|
u_int p_swtime; /* (j) Time swapped in or out. */
|
|
struct itimerval p_realtimer; /* (c) Alarm timer. */
|
|
struct rusage_ext p_rux; /* (cj) Internal resource usage. */
|
|
struct rusage_ext p_crux; /* (c) Internal child resource usage. */
|
|
int p_profthreads; /* (c) Num threads in addupc_task. */
|
|
int p_maxthrwaits; /* (c) Max threads num waiters */
|
|
int p_traceflag; /* (o) Kernel trace points. */
|
|
struct vnode *p_tracevp; /* (c + o) Trace to vnode. */
|
|
struct ucred *p_tracecred; /* (o) Credentials to trace with. */
|
|
struct vnode *p_textvp; /* (b) Vnode of executable. */
|
|
sigset_t p_siglist; /* (c) Sigs not delivered to a td. */
|
|
char p_lock; /* (c) Proclock (prevent swap) count. */
|
|
struct sigiolst p_sigiolst; /* (c) List of sigio sources. */
|
|
int p_sigparent; /* (c) Signal to parent on exit. */
|
|
int p_sig; /* (n) For core dump/debugger XXX. */
|
|
u_long p_code; /* (n) For core dump/debugger XXX. */
|
|
u_int p_stops; /* (c) Stop event bitmask. */
|
|
u_int p_stype; /* (c) Stop event type. */
|
|
char p_step; /* (c) Process is stopped. */
|
|
u_char p_pfsflags; /* (c) Procfs flags. */
|
|
struct nlminfo *p_nlminfo; /* (?) Only used by/for lockd. */
|
|
struct kaioinfo *p_aioinfo; /* (c) ASYNC I/O info. */
|
|
struct thread *p_singlethread;/* (c + j) If single threading this is it */
|
|
int p_suspcount; /* (c) Num threads in suspended mode. */
|
|
struct thread *p_xthread; /* (c) Trap thread */
|
|
int p_boundary_count;/* (c) Num threads at user boundary */
|
|
struct ksegrp *p_procscopegrp;
|
|
/* End area that is zeroed on creation. */
|
|
#define p_endzero p_magic
|
|
|
|
/* The following fields are all copied upon creation in fork. */
|
|
#define p_startcopy p_endzero
|
|
u_int p_magic; /* (b) Magic number. */
|
|
char p_comm[MAXCOMLEN + 1]; /* (b) Process name. */
|
|
struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */
|
|
struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */
|
|
struct pargs *p_args; /* (c) Process arguments. */
|
|
rlim_t p_cpulimit; /* (j) Current CPU limit in seconds. */
|
|
signed char p_nice; /* (c + j) Process "nice" value. */
|
|
/* End area that is copied on creation. */
|
|
#define p_endcopy p_xstat
|
|
|
|
u_short p_xstat; /* (c) Exit status; also stop sig. */
|
|
struct knlist p_klist; /* (c) Knotes attached to this proc. */
|
|
int p_numthreads; /* (j) Number of threads. */
|
|
int p_numksegrps; /* (c) Number of ksegrps. */
|
|
struct mdproc p_md; /* Any machine-dependent fields. */
|
|
struct callout p_itcallout; /* (h + c) Interval timer callout. */
|
|
u_short p_acflag; /* (c) Accounting flags. */
|
|
struct rusage *p_ru; /* (a) Exit information. XXX */
|
|
struct proc *p_peers; /* (r) */
|
|
struct proc *p_leader; /* (b) */
|
|
void *p_emuldata; /* (c) Emulator state data. */
|
|
struct label *p_label; /* (*) Proc (not subject) MAC label. */
|
|
struct p_sched *p_sched; /* (*) Scheduler-specific data. */
|
|
};
|
|
|
|
#define p_session p_pgrp->pg_session
|
|
#define p_pgid p_pgrp->pg_id
|
|
|
|
#define NOCPU 0xff /* For when we aren't on a CPU. */
|
|
|
|
|
|
/* These flags are kept in p_flag. */
|
|
#define P_ADVLOCK 0x00001 /* Process may hold a POSIX advisory lock. */
|
|
#define P_CONTROLT 0x00002 /* Has a controlling terminal. */
|
|
#define P_KTHREAD 0x00004 /* Kernel thread (*). */
|
|
#define P_NOLOAD 0x00008 /* Ignore during load avg calculations. */
|
|
#define P_PPWAIT 0x00010 /* Parent is waiting for child to exec/exit. */
|
|
#define P_PROFIL 0x00020 /* Has started profiling. */
|
|
#define P_STOPPROF 0x00040 /* Has thread requesting to stop profiling. */
|
|
#define P_HADTHREADS 0x00080 /* Has had threads (no cleanup shortcuts) */
|
|
#define P_SUGID 0x00100 /* Had set id privileges since last exec. */
|
|
#define P_SYSTEM 0x00200 /* System proc: no sigs, stats or swapping. */
|
|
#define P_SINGLE_EXIT 0x00400 /* Threads suspending should exit, not wait. */
|
|
#define P_TRACED 0x00800 /* Debugged process being traced. */
|
|
#define P_WAITED 0x01000 /* Someone is waiting for us. */
|
|
#define P_WEXIT 0x02000 /* Working on exiting. */
|
|
#define P_EXEC 0x04000 /* Process called exec. */
|
|
#define P_SA 0x08000 /* Using scheduler activations. */
|
|
#define P_CONTINUED 0x10000 /* Proc has continued from a stopped state. */
|
|
#define P_STOPPED_SIG 0x20000 /* Stopped due to SIGSTOP/SIGTSTP. */
|
|
#define P_STOPPED_TRACE 0x40000 /* Stopped because of tracing. */
|
|
#define P_STOPPED_SINGLE 0x80000 /* Only 1 thread can continue (not to user). */
|
|
#define P_PROTECTED 0x100000 /* Do not kill on memory overcommit. */
|
|
#define P_SIGEVENT 0x200000 /* Process pending signals changed. */
|
|
#define P_SINGLE_BOUNDARY 0x400000 /* Threads should suspend at user boundary. */
|
|
#define P_HWPMC 0x800000 /* Process is using HWPMCs */
|
|
|
|
#define P_JAILED 0x1000000 /* Process is in jail. */
|
|
#define P_INEXEC 0x4000000 /* Process is in execve(). */
|
|
#define P_STATCHILD 0x8000000 /* Child process stopped or exited. */
|
|
|
|
#define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE)
|
|
#define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED)
|
|
|
|
/* These flags are kept in p_sflag and are protected with sched_lock. */
|
|
#define PS_INMEM 0x00001 /* Loaded into memory. */
|
|
#define PS_XCPU 0x00002 /* Exceeded CPU limit. */
|
|
#define PS_ALRMPEND 0x00020 /* Pending SIGVTALRM needs to be posted. */
|
|
#define PS_PROFPEND 0x00040 /* Pending SIGPROF needs to be posted. */
|
|
#define PS_SWAPINREQ 0x00100 /* Swapin request due to wakeup. */
|
|
#define PS_SWAPPINGOUT 0x00200 /* Process is being swapped out. */
|
|
#define PS_SWAPPINGIN 0x04000 /* Process is being swapped in. */
|
|
#define PS_MACPEND 0x08000 /* AST-based MAC event pending. */
|
|
|
|
/*
|
|
* These were process status values (p_stat), now they are only used in
|
|
* legacy conversion code.
|
|
*/
|
|
#define SIDL 1 /* Process being created by fork. */
|
|
#define SRUN 2 /* Currently runnable. */
|
|
#define SSLEEP 3 /* Sleeping on an address. */
|
|
#define SSTOP 4 /* Process debugging or suspension. */
|
|
#define SZOMB 5 /* Awaiting collection by parent. */
|
|
#define SWAIT 6 /* Waiting for interrupt. */
|
|
#define SLOCK 7 /* Blocked on a lock. */
|
|
|
|
#define P_MAGIC 0xbeefface
|
|
|
|
#ifdef _KERNEL
|
|
|
|
/* Flags for mi_switch(). */
|
|
#define SW_VOL 0x0001 /* Voluntary switch. */
|
|
#define SW_INVOL 0x0002 /* Involuntary switch. */
|
|
#define SW_PREEMPT 0x0004 /* The invol switch is a preemption */
|
|
|
|
/* Flags for setrunqueue(). Why are we setting this thread on the run queue? */
|
|
#define SRQ_BORING 0x0000 /* No special circumstances. */
|
|
#define SRQ_YIELDING 0x0001 /* We are yielding (from mi_switch). */
|
|
#define SRQ_OURSELF 0x0002 /* It is ourself (from mi_switch). */
|
|
#define SRQ_INTR 0x0004 /* It is probably urgent. */
|
|
#define SRQ_PREEMPTED 0x0008 /* has been preempted.. be kind */
|
|
|
|
/* How values for thread_single(). */
|
|
#define SINGLE_NO_EXIT 0
|
|
#define SINGLE_EXIT 1
|
|
#define SINGLE_BOUNDARY 2
|
|
|
|
/* XXXKSE: Missing values for thread_suspsend_check(). */
|
|
|
|
#ifdef MALLOC_DECLARE
|
|
MALLOC_DECLARE(M_PARGS);
|
|
MALLOC_DECLARE(M_PGRP);
|
|
MALLOC_DECLARE(M_SESSION);
|
|
MALLOC_DECLARE(M_SUBPROC);
|
|
MALLOC_DECLARE(M_ZOMBIE);
|
|
#endif
|
|
|
|
#define FOREACH_PROC_IN_SYSTEM(p) \
|
|
LIST_FOREACH((p), &allproc, p_list)
|
|
#define FOREACH_KSEGRP_IN_PROC(p, kg) \
|
|
TAILQ_FOREACH((kg), &(p)->p_ksegrps, kg_ksegrp)
|
|
#define FOREACH_THREAD_IN_GROUP(kg, td) \
|
|
TAILQ_FOREACH((td), &(kg)->kg_threads, td_kglist)
|
|
#define FOREACH_UPCALL_IN_GROUP(kg, ku) \
|
|
TAILQ_FOREACH((ku), &(kg)->kg_upcalls, ku_link)
|
|
#define FOREACH_THREAD_IN_PROC(p, td) \
|
|
TAILQ_FOREACH((td), &(p)->p_threads, td_plist)
|
|
|
|
/* XXXKSE the following lines should probably only be used in 1:1 code: */
|
|
#define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads)
|
|
#define FIRST_KSEGRP_IN_PROC(p) TAILQ_FIRST(&(p)->p_ksegrps)
|
|
|
|
/*
|
|
* We use process IDs <= PID_MAX; PID_MAX + 1 must also fit in a pid_t,
|
|
* as it is used to represent "no process group".
|
|
*/
|
|
#define PID_MAX 99999
|
|
#define NO_PID 100000
|
|
|
|
#define SESS_LEADER(p) ((p)->p_session->s_leader == (p))
|
|
#define SESSHOLD(s) ((s)->s_count++)
|
|
#define SESSRELE(s) sessrele(s)
|
|
|
|
|
|
#define STOPEVENT(p, e, v) do { \
|
|
if ((p)->p_stops & (e)) { \
|
|
PROC_LOCK(p); \
|
|
stopevent((p), (e), (v)); \
|
|
PROC_UNLOCK(p); \
|
|
} \
|
|
} while (0)
|
|
#define _STOPEVENT(p, e, v) do { \
|
|
PROC_LOCK_ASSERT(p, MA_OWNED); \
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.mtx_object, \
|
|
"checking stopevent %d", (e)); \
|
|
if ((p)->p_stops & (e)) \
|
|
stopevent((p), (e), (v)); \
|
|
} while (0)
|
|
|
|
/* Lock and unlock a process. */
|
|
#define PROC_LOCK(p) mtx_lock(&(p)->p_mtx)
|
|
#define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx)
|
|
#define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx)
|
|
#define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx)
|
|
#define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type))
|
|
|
|
/* Lock and unlock a process group. */
|
|
#define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx)
|
|
#define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx)
|
|
#define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx)
|
|
#define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type))
|
|
|
|
#define PGRP_LOCK_PGSIGNAL(pg) do { \
|
|
if ((pg) != NULL) \
|
|
PGRP_LOCK(pg); \
|
|
} while (0)
|
|
#define PGRP_UNLOCK_PGSIGNAL(pg) do { \
|
|
if ((pg) != NULL) \
|
|
PGRP_UNLOCK(pg); \
|
|
} while (0)
|
|
|
|
/* Lock and unlock a session. */
|
|
#define SESS_LOCK(s) mtx_lock(&(s)->s_mtx)
|
|
#define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx)
|
|
#define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx)
|
|
#define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type))
|
|
|
|
/* Hold process U-area in memory, normally for ptrace/procfs work. */
|
|
#define PHOLD(p) do { \
|
|
PROC_LOCK(p); \
|
|
_PHOLD(p); \
|
|
PROC_UNLOCK(p); \
|
|
} while (0)
|
|
#define _PHOLD(p) do { \
|
|
PROC_LOCK_ASSERT((p), MA_OWNED); \
|
|
(p)->p_lock++; \
|
|
if (((p)->p_sflag & PS_INMEM) == 0) \
|
|
faultin((p)); \
|
|
} while (0)
|
|
|
|
#define PRELE(p) do { \
|
|
PROC_LOCK((p)); \
|
|
_PRELE((p)); \
|
|
PROC_UNLOCK((p)); \
|
|
} while (0)
|
|
#define _PRELE(p) do { \
|
|
PROC_LOCK_ASSERT((p), MA_OWNED); \
|
|
(--(p)->p_lock); \
|
|
} while (0)
|
|
|
|
/* Check whether a thread is safe to be swapped out. */
|
|
#define thread_safetoswapout(td) (TD_IS_SLEEPING(td) || TD_IS_SUSPENDED(td))
|
|
|
|
/* Control whether or not it is safe for curthread to sleep. */
|
|
#define THREAD_NO_SLEEPING() do { \
|
|
KASSERT(!(curthread->td_pflags & TDP_NOSLEEPING), \
|
|
("nested no sleeping")); \
|
|
curthread->td_pflags |= TDP_NOSLEEPING; \
|
|
} while (0)
|
|
|
|
#define THREAD_SLEEPING_OK() do { \
|
|
KASSERT((curthread->td_pflags & TDP_NOSLEEPING), \
|
|
("nested sleeping ok")); \
|
|
curthread->td_pflags &= ~TDP_NOSLEEPING; \
|
|
} while (0)
|
|
|
|
#define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash])
|
|
extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;
|
|
extern u_long pidhash;
|
|
|
|
#define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash])
|
|
extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl;
|
|
extern u_long pgrphash;
|
|
|
|
extern struct sx allproc_lock;
|
|
extern struct sx proctree_lock;
|
|
extern struct mtx ppeers_lock;
|
|
extern struct ksegrp ksegrp0; /* Primary ksegrp in proc0. */
|
|
extern struct proc proc0; /* Process slot for swapper. */
|
|
extern struct thread thread0; /* Primary thread in proc0. */
|
|
extern struct vmspace vmspace0; /* VM space for proc0. */
|
|
extern int hogticks; /* Limit on kernel cpu hogs. */
|
|
extern int lastpid;
|
|
extern int nprocs, maxproc; /* Current and max number of procs. */
|
|
extern int maxprocperuid; /* Max procs per uid. */
|
|
extern u_long ps_arg_cache_limit;
|
|
|
|
LIST_HEAD(proclist, proc);
|
|
TAILQ_HEAD(procqueue, proc);
|
|
TAILQ_HEAD(threadqueue, thread);
|
|
extern struct proclist allproc; /* List of all processes. */
|
|
extern struct proclist zombproc; /* List of zombie processes. */
|
|
extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */
|
|
|
|
extern struct uma_zone *proc_zone;
|
|
|
|
struct proc *pfind(pid_t); /* Find process by id. */
|
|
struct pgrp *pgfind(pid_t); /* Find process group by id. */
|
|
struct proc *zpfind(pid_t); /* Find zombie process by id. */
|
|
|
|
void adjustrunqueue(struct thread *, int newpri);
|
|
void ast(struct trapframe *framep);
|
|
struct thread *choosethread(void);
|
|
int cr_cansignal(struct ucred *cred, struct proc *proc, int signum);
|
|
int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp,
|
|
struct session *sess);
|
|
int enterthispgrp(struct proc *p, struct pgrp *pgrp);
|
|
void faultin(struct proc *p);
|
|
void fixjobc(struct proc *p, struct pgrp *pgrp, int entering);
|
|
int fork1(struct thread *, int, int, struct proc **);
|
|
void fork_exit(void (*)(void *, struct trapframe *), void *,
|
|
struct trapframe *);
|
|
void fork_return(struct thread *, struct trapframe *);
|
|
int inferior(struct proc *p);
|
|
void kick_proc0(void);
|
|
int leavepgrp(struct proc *p);
|
|
int maybe_preempt(struct thread *td);
|
|
void mi_switch(int flags, struct thread *newtd);
|
|
int p_candebug(struct thread *td, struct proc *p);
|
|
int p_cansee(struct thread *td, struct proc *p);
|
|
int p_cansched(struct thread *td, struct proc *p);
|
|
int p_cansignal(struct thread *td, struct proc *p, int signum);
|
|
int p_canwait(struct thread *td, struct proc *p);
|
|
struct pargs *pargs_alloc(int len);
|
|
void pargs_drop(struct pargs *pa);
|
|
void pargs_free(struct pargs *pa);
|
|
void pargs_hold(struct pargs *pa);
|
|
void procinit(void);
|
|
void proc_linkup(struct proc *p, struct ksegrp *kg, struct thread *td);
|
|
void proc_reparent(struct proc *child, struct proc *newparent);
|
|
struct pstats *pstats_alloc(void);
|
|
void pstats_fork(struct pstats *src, struct pstats *dst);
|
|
void pstats_free(struct pstats *ps);
|
|
int securelevel_ge(struct ucred *cr, int level);
|
|
int securelevel_gt(struct ucred *cr, int level);
|
|
void sessrele(struct session *);
|
|
void setrunnable(struct thread *);
|
|
void setrunqueue(struct thread *, int flags);
|
|
void setsugid(struct proc *p);
|
|
int sigonstack(size_t sp);
|
|
void sleepinit(void);
|
|
void stopevent(struct proc *, u_int, u_int);
|
|
void threadinit(void);
|
|
void cpu_idle(void);
|
|
extern void (*cpu_idle_hook)(void); /* Hook to machdep CPU idler. */
|
|
void cpu_switch(struct thread *old, struct thread *new);
|
|
void cpu_throw(struct thread *old, struct thread *new) __dead2;
|
|
void unsleep(struct thread *);
|
|
void userret(struct thread *, struct trapframe *, u_int);
|
|
|
|
void cpu_exit(struct thread *);
|
|
void exit1(struct thread *, int) __dead2;
|
|
void cpu_fork(struct thread *, struct proc *, struct thread *, int);
|
|
void cpu_set_fork_handler(struct thread *, void (*)(void *), void *);
|
|
|
|
/* New in KSE. */
|
|
struct ksegrp *ksegrp_alloc(void);
|
|
void ksegrp_free(struct ksegrp *kg);
|
|
void ksegrp_stash(struct ksegrp *kg);
|
|
void kse_GC(void);
|
|
void kseinit(void);
|
|
void cpu_set_upcall(struct thread *td, struct thread *td0);
|
|
void cpu_set_upcall_kse(struct thread *, void (*)(void *), void *, stack_t *);
|
|
int cpu_set_user_tls(struct thread *, void *tls_base);
|
|
void cpu_thread_clean(struct thread *);
|
|
void cpu_thread_exit(struct thread *);
|
|
void cpu_thread_setup(struct thread *td);
|
|
void cpu_thread_siginfo(int sig, u_long code, siginfo_t *si);
|
|
void cpu_thread_swapin(struct thread *);
|
|
void cpu_thread_swapout(struct thread *);
|
|
void ksegrp_link(struct ksegrp *kg, struct proc *p);
|
|
void ksegrp_unlink(struct ksegrp *kg);
|
|
struct thread *thread_alloc(void);
|
|
void thread_continued(struct proc *p);
|
|
void thread_exit(void) __dead2;
|
|
int thread_export_context(struct thread *td, int willexit);
|
|
void thread_free(struct thread *td);
|
|
void thread_link(struct thread *td, struct ksegrp *kg);
|
|
void thread_reap(void);
|
|
struct thread *thread_schedule_upcall(struct thread *td, struct kse_upcall *ku);
|
|
void thread_signal_add(struct thread *td, int sig);
|
|
int thread_single(int how);
|
|
void thread_single_end(void);
|
|
int thread_sleep_check(struct thread *td);
|
|
void thread_stash(struct thread *td);
|
|
int thread_statclock(int user);
|
|
void thread_stopped(struct proc *p);
|
|
int thread_suspend_check(int how);
|
|
void thread_suspend_one(struct thread *td);
|
|
struct thread *thread_switchout(struct thread *td, int flags,
|
|
struct thread *newtd);
|
|
void thread_unlink(struct thread *td);
|
|
void thread_unsuspend(struct proc *p);
|
|
void thread_unsuspend_one(struct thread *td);
|
|
void thread_unthread(struct thread *td);
|
|
int thread_userret(struct thread *td, struct trapframe *frame);
|
|
void thread_user_enter(struct thread *td);
|
|
void thread_wait(struct proc *p);
|
|
void thr_exit1(void);
|
|
struct kse_upcall *upcall_alloc(void);
|
|
void upcall_free(struct kse_upcall *ku);
|
|
void upcall_link(struct kse_upcall *ku, struct ksegrp *kg);
|
|
void upcall_unlink(struct kse_upcall *ku);
|
|
void upcall_remove(struct thread *td);
|
|
void upcall_stash(struct kse_upcall *ke);
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* !_SYS_PROC_H_ */
|