mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-23 02:41:58 +01:00
12db3c914f
To use, compile userspace code e.g. into the subr_unit binary, then do $ while ./subr_unit -iv >|/tmp/subr_unit.log ; do :; done The loop should be left run for as long as possible. Reviewed by: markj Sponsored by: The FreeBSD Foundation MFC after: 1 week Differential revision: https://reviews.freebsd.org/D40089
1352 lines
28 KiB
C
1352 lines
28 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2004 Poul-Henning Kamp
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*
|
|
* Unit number allocation functions.
|
|
*
|
|
* These functions implement a mixed run-length/bitmap management of unit
|
|
* number spaces in a very memory efficient manner.
|
|
*
|
|
* Allocation policy is always lowest free number first.
|
|
*
|
|
* A return value of -1 signals that no more unit numbers are available.
|
|
*
|
|
* There is no cost associated with the range of unitnumbers, so unless
|
|
* the resource really is finite, specify INT_MAX to new_unrhdr() and
|
|
* forget about checking the return value.
|
|
*
|
|
* If a mutex is not provided when the unit number space is created, a
|
|
* default global mutex is used. The advantage to passing a mutex in, is
|
|
* that the alloc_unrl() function can be called with the mutex already
|
|
* held (it will not be released by alloc_unrl()).
|
|
*
|
|
* The allocation function alloc_unr{l}() never sleeps (but it may block on
|
|
* the mutex of course).
|
|
*
|
|
* Freeing a unit number may require allocating memory, and can therefore
|
|
* sleep so the free_unr() function does not come in a pre-locked variant.
|
|
*
|
|
* A userland test program is included.
|
|
*
|
|
* Memory usage is a very complex function of the exact allocation
|
|
* pattern, but always very compact:
|
|
* * For the very typical case where a single unbroken run of unit
|
|
* numbers are allocated 44 bytes are used on i386.
|
|
* * For a unit number space of 1000 units and the random pattern
|
|
* in the usermode test program included, the worst case usage
|
|
* was 252 bytes on i386 for 500 allocated and 500 free units.
|
|
* * For a unit number space of 10000 units and the random pattern
|
|
* in the usermode test program included, the worst case usage
|
|
* was 798 bytes on i386 for 5000 allocated and 5000 free units.
|
|
* * The worst case is where every other unit number is allocated and
|
|
* the rest are free. In that case 44 + N/4 bytes are used where
|
|
* N is the number of the highest unit allocated.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/_unrhdr.h>
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/bitstring.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
|
|
/*
|
|
* In theory it would be smarter to allocate the individual blocks
|
|
* with the zone allocator, but at this time the expectation is that
|
|
* there will typically not even be enough allocations to fill a single
|
|
* page, so we stick with malloc for now.
|
|
*/
|
|
static MALLOC_DEFINE(M_UNIT, "Unitno", "Unit number allocation");
|
|
|
|
#define Malloc(foo) malloc(foo, M_UNIT, M_WAITOK | M_ZERO)
|
|
#define Free(foo) free(foo, M_UNIT)
|
|
|
|
static struct mtx unitmtx;
|
|
|
|
MTX_SYSINIT(unit, &unitmtx, "unit# allocation", MTX_DEF);
|
|
|
|
#else /* ...USERLAND */
|
|
|
|
#include <bitstring.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define KASSERT(cond, arg) \
|
|
do { \
|
|
if (!(cond)) { \
|
|
printf arg; \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
static int no_alloc;
|
|
#define Malloc(foo) _Malloc(foo, __LINE__)
|
|
static void *
|
|
_Malloc(size_t foo, int line)
|
|
{
|
|
|
|
KASSERT(no_alloc == 0, ("malloc in wrong place() line %d", line));
|
|
return (calloc(foo, 1));
|
|
}
|
|
#define Free(foo) free(foo)
|
|
|
|
struct unrhdr;
|
|
|
|
#define UNR_NO_MTX ((void *)(uintptr_t)-1)
|
|
|
|
struct mtx {
|
|
int state;
|
|
} unitmtx;
|
|
|
|
static void
|
|
mtx_lock(struct mtx *mp)
|
|
{
|
|
KASSERT(mp->state == 0, ("mutex already locked"));
|
|
mp->state = 1;
|
|
}
|
|
|
|
static void
|
|
mtx_unlock(struct mtx *mp)
|
|
{
|
|
KASSERT(mp->state == 1, ("mutex not locked"));
|
|
mp->state = 0;
|
|
}
|
|
|
|
#define MA_OWNED 9
|
|
|
|
static void
|
|
mtx_assert(struct mtx *mp, int flag)
|
|
{
|
|
if (flag == MA_OWNED) {
|
|
KASSERT(mp->state == 1, ("mtx_assert(MA_OWNED) not true"));
|
|
}
|
|
}
|
|
|
|
#define CTASSERT(foo)
|
|
#define WITNESS_WARN(flags, lock, fmt, ...) (void)0
|
|
|
|
#endif /* USERLAND */
|
|
|
|
/*
|
|
* This is our basic building block.
|
|
*
|
|
* It can be used in three different ways depending on the value of the ptr
|
|
* element:
|
|
* If ptr is NULL, it represents a run of free items.
|
|
* If ptr points to the unrhdr it represents a run of allocated items.
|
|
* Otherwise it points to a bitstring of allocated items.
|
|
*
|
|
* For runs the len field is the length of the run.
|
|
* For bitmaps the len field represents the number of allocated items.
|
|
*
|
|
* The bitmap is the same size as struct unr to optimize memory management.
|
|
*
|
|
* Two special ranges are not covered by unrs:
|
|
* - at the start of the allocator space, all elements in [low, low + first)
|
|
* are allocated;
|
|
* - at the end of the allocator space, all elements in [high - last, high]
|
|
* are free.
|
|
*/
|
|
struct unr {
|
|
TAILQ_ENTRY(unr) list;
|
|
u_int len;
|
|
void *ptr;
|
|
};
|
|
|
|
struct unrb {
|
|
bitstr_t map[sizeof(struct unr) / sizeof(bitstr_t)];
|
|
};
|
|
|
|
CTASSERT((sizeof(struct unr) % sizeof(bitstr_t)) == 0);
|
|
|
|
/* Number of bits we can store in the bitmap */
|
|
#define NBITS (NBBY * sizeof(((struct unrb *)NULL)->map))
|
|
|
|
static inline bool
|
|
is_bitmap(struct unrhdr *uh, struct unr *up)
|
|
{
|
|
return (up->ptr != uh && up->ptr != NULL);
|
|
}
|
|
|
|
/* Is the unrb empty in at least the first len bits? */
|
|
static inline bool
|
|
ub_empty(struct unrb *ub, int len) {
|
|
int first_set;
|
|
|
|
bit_ffs(ub->map, len, &first_set);
|
|
return (first_set == -1);
|
|
}
|
|
|
|
/* Is the unrb full? That is, is the number of set elements equal to len? */
|
|
static inline bool
|
|
ub_full(struct unrb *ub, int len)
|
|
{
|
|
int first_clear;
|
|
|
|
bit_ffc(ub->map, len, &first_clear);
|
|
return (first_clear == -1);
|
|
}
|
|
|
|
/*
|
|
* start: ipos = -1, upos = NULL;
|
|
* end: ipos = -1, upos = uh
|
|
*/
|
|
struct unrhdr_iter {
|
|
struct unrhdr *uh;
|
|
int ipos;
|
|
int upos_first_item;
|
|
void *upos;
|
|
};
|
|
|
|
void *
|
|
create_iter_unr(struct unrhdr *uh)
|
|
{
|
|
struct unrhdr_iter *iter;
|
|
|
|
iter = Malloc(sizeof(*iter));
|
|
iter->ipos = -1;
|
|
iter->uh = uh;
|
|
iter->upos = NULL;
|
|
iter->upos_first_item = -1;
|
|
return (iter);
|
|
}
|
|
|
|
static void
|
|
next_iter_unrl(struct unrhdr *uh, struct unrhdr_iter *iter)
|
|
{
|
|
struct unr *up;
|
|
struct unrb *ub;
|
|
u_int y;
|
|
int c;
|
|
|
|
if (iter->ipos == -1) {
|
|
if (iter->upos == uh)
|
|
return;
|
|
y = uh->low - 1;
|
|
if (uh->first == 0) {
|
|
up = TAILQ_FIRST(&uh->head);
|
|
if (up == NULL) {
|
|
iter->upos = uh;
|
|
return;
|
|
}
|
|
iter->upos = up;
|
|
if (up->ptr == NULL)
|
|
iter->upos = NULL;
|
|
else
|
|
iter->upos_first_item = uh->low;
|
|
}
|
|
} else {
|
|
y = iter->ipos;
|
|
}
|
|
|
|
up = iter->upos;
|
|
|
|
/* Special case for the compacted [low, first) run. */
|
|
if (up == NULL) {
|
|
if (y + 1 < uh->low + uh->first) {
|
|
iter->ipos = y + 1;
|
|
return;
|
|
}
|
|
up = iter->upos = TAILQ_FIRST(&uh->head);
|
|
iter->upos_first_item = uh->low + uh->first;
|
|
}
|
|
|
|
for (;;) {
|
|
if (y + 1 < iter->upos_first_item + up->len) {
|
|
if (up->ptr == uh) {
|
|
iter->ipos = y + 1;
|
|
return;
|
|
} else if (is_bitmap(uh, up)) {
|
|
ub = up->ptr;
|
|
bit_ffs_at(&ub->map[0],
|
|
y + 1 - iter->upos_first_item,
|
|
up->len, &c);
|
|
if (c != -1) {
|
|
iter->ipos = iter->upos_first_item + c;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
iter->upos_first_item += up->len;
|
|
y = iter->upos_first_item - 1;
|
|
up = iter->upos = TAILQ_NEXT((struct unr *)iter->upos, list);
|
|
if (iter->upos == NULL) {
|
|
iter->ipos = -1;
|
|
iter->upos = uh;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* returns -1 on end, otherwise the next element
|
|
*/
|
|
int
|
|
next_iter_unr(void *handle)
|
|
{
|
|
struct unrhdr *uh;
|
|
struct unrhdr_iter *iter;
|
|
|
|
iter = handle;
|
|
uh = iter->uh;
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
next_iter_unrl(uh, iter);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
return (iter->ipos);
|
|
}
|
|
|
|
void
|
|
free_iter_unr(void *handle)
|
|
{
|
|
Free(handle);
|
|
}
|
|
|
|
#if defined(DIAGNOSTIC) || !defined(_KERNEL)
|
|
/*
|
|
* Consistency check function.
|
|
*
|
|
* Checks the internal consistency as well as we can.
|
|
*
|
|
* Called at all boundaries of this API.
|
|
*/
|
|
static void
|
|
check_unrhdr(struct unrhdr *uh, int line)
|
|
{
|
|
struct unr *up;
|
|
struct unrb *ub;
|
|
int w;
|
|
u_int y, z;
|
|
|
|
y = uh->first;
|
|
z = 0;
|
|
TAILQ_FOREACH(up, &uh->head, list) {
|
|
z++;
|
|
if (is_bitmap(uh, up)) {
|
|
ub = up->ptr;
|
|
KASSERT (up->len <= NBITS,
|
|
("UNR inconsistency: len %u max %zd (line %d)\n",
|
|
up->len, NBITS, line));
|
|
z++;
|
|
w = 0;
|
|
bit_count(ub->map, 0, up->len, &w);
|
|
y += w;
|
|
} else if (up->ptr != NULL)
|
|
y += up->len;
|
|
}
|
|
KASSERT (y == uh->busy,
|
|
("UNR inconsistency: items %u found %u (line %d)\n",
|
|
uh->busy, y, line));
|
|
KASSERT (z == uh->alloc,
|
|
("UNR inconsistency: chunks %u found %u (line %d)\n",
|
|
uh->alloc, z, line));
|
|
}
|
|
|
|
#else
|
|
|
|
static __inline void
|
|
check_unrhdr(struct unrhdr *uh __unused, int line __unused)
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Userland memory management. Just use calloc and keep track of how
|
|
* many elements we have allocated for check_unrhdr().
|
|
*/
|
|
|
|
static __inline void *
|
|
new_unr(struct unrhdr *uh, void **p1, void **p2)
|
|
{
|
|
void *p;
|
|
|
|
uh->alloc++;
|
|
KASSERT(*p1 != NULL || *p2 != NULL, ("Out of cached memory"));
|
|
if (*p1 != NULL) {
|
|
p = *p1;
|
|
*p1 = NULL;
|
|
return (p);
|
|
} else {
|
|
p = *p2;
|
|
*p2 = NULL;
|
|
return (p);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
delete_unr(struct unrhdr *uh, void *ptr)
|
|
{
|
|
struct unr *up;
|
|
|
|
uh->alloc--;
|
|
up = ptr;
|
|
TAILQ_INSERT_TAIL(&uh->ppfree, up, list);
|
|
}
|
|
|
|
void
|
|
clean_unrhdrl(struct unrhdr *uh)
|
|
{
|
|
struct unr *up;
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_assert(uh->mtx, MA_OWNED);
|
|
while ((up = TAILQ_FIRST(&uh->ppfree)) != NULL) {
|
|
TAILQ_REMOVE(&uh->ppfree, up, list);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
Free(up);
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
clean_unrhdr(struct unrhdr *uh)
|
|
{
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
clean_unrhdrl(uh);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
}
|
|
|
|
void
|
|
init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex)
|
|
{
|
|
|
|
KASSERT(low >= 0 && low <= high,
|
|
("UNR: use error: new_unrhdr(%d, %d)", low, high));
|
|
if (mutex == UNR_NO_MTX)
|
|
uh->mtx = NULL;
|
|
else if (mutex != NULL)
|
|
uh->mtx = mutex;
|
|
else
|
|
uh->mtx = &unitmtx;
|
|
TAILQ_INIT(&uh->head);
|
|
TAILQ_INIT(&uh->ppfree);
|
|
uh->low = low;
|
|
uh->high = high;
|
|
uh->first = 0;
|
|
uh->last = 1 + (high - low);
|
|
uh->busy = 0;
|
|
uh->alloc = 0;
|
|
check_unrhdr(uh, __LINE__);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new unrheader set.
|
|
*
|
|
* Highest and lowest valid values given as parameters.
|
|
*/
|
|
|
|
struct unrhdr *
|
|
new_unrhdr(int low, int high, struct mtx *mutex)
|
|
{
|
|
struct unrhdr *uh;
|
|
|
|
uh = Malloc(sizeof *uh);
|
|
init_unrhdr(uh, low, high, mutex);
|
|
return (uh);
|
|
}
|
|
|
|
void
|
|
delete_unrhdr(struct unrhdr *uh)
|
|
{
|
|
|
|
check_unrhdr(uh, __LINE__);
|
|
KASSERT(uh->busy == 0, ("unrhdr has %u allocations", uh->busy));
|
|
KASSERT(uh->alloc == 0, ("UNR memory leak in delete_unrhdr"));
|
|
KASSERT(TAILQ_FIRST(&uh->ppfree) == NULL,
|
|
("unrhdr has postponed item for free"));
|
|
Free(uh);
|
|
}
|
|
|
|
void
|
|
clear_unrhdr(struct unrhdr *uh)
|
|
{
|
|
struct unr *up, *uq;
|
|
|
|
KASSERT(TAILQ_EMPTY(&uh->ppfree),
|
|
("unrhdr has postponed item for free"));
|
|
TAILQ_FOREACH_SAFE(up, &uh->head, list, uq) {
|
|
if (up->ptr != uh) {
|
|
Free(up->ptr);
|
|
}
|
|
Free(up);
|
|
}
|
|
uh->busy = 0;
|
|
uh->alloc = 0;
|
|
init_unrhdr(uh, uh->low, uh->high, uh->mtx);
|
|
|
|
check_unrhdr(uh, __LINE__);
|
|
}
|
|
|
|
/*
|
|
* Look for sequence of items which can be combined into a bitmap, if
|
|
* multiple are present, take the one which saves most memory.
|
|
*
|
|
* Return (1) if a sequence was found to indicate that another call
|
|
* might be able to do more. Return (0) if we found no suitable sequence.
|
|
*
|
|
* NB: called from alloc_unr(), no new memory allocation allowed.
|
|
*/
|
|
static int
|
|
optimize_unr(struct unrhdr *uh)
|
|
{
|
|
struct unr *up, *uf, *us;
|
|
struct unrb *ub, *ubf;
|
|
u_int a, l, ba;
|
|
|
|
/*
|
|
* Look for the run of items (if any) which when collapsed into
|
|
* a bitmap would save most memory.
|
|
*/
|
|
us = NULL;
|
|
ba = 0;
|
|
TAILQ_FOREACH(uf, &uh->head, list) {
|
|
if (uf->len >= NBITS)
|
|
continue;
|
|
a = 1;
|
|
if (is_bitmap(uh, uf))
|
|
a++;
|
|
l = uf->len;
|
|
up = uf;
|
|
while (1) {
|
|
up = TAILQ_NEXT(up, list);
|
|
if (up == NULL)
|
|
break;
|
|
if ((up->len + l) > NBITS)
|
|
break;
|
|
a++;
|
|
if (is_bitmap(uh, up))
|
|
a++;
|
|
l += up->len;
|
|
}
|
|
if (a > ba) {
|
|
ba = a;
|
|
us = uf;
|
|
}
|
|
}
|
|
if (ba < 3)
|
|
return (0);
|
|
|
|
/*
|
|
* If the first element is not a bitmap, make it one.
|
|
* Trying to do so without allocating more memory complicates things
|
|
* a bit
|
|
*/
|
|
if (!is_bitmap(uh, us)) {
|
|
uf = TAILQ_NEXT(us, list);
|
|
TAILQ_REMOVE(&uh->head, us, list);
|
|
a = us->len;
|
|
l = us->ptr == uh ? 1 : 0;
|
|
ub = (void *)us;
|
|
bit_nclear(ub->map, 0, NBITS - 1);
|
|
if (l)
|
|
bit_nset(ub->map, 0, a);
|
|
if (!is_bitmap(uh, uf)) {
|
|
if (uf->ptr == NULL)
|
|
bit_nclear(ub->map, a, a + uf->len - 1);
|
|
else
|
|
bit_nset(ub->map, a, a + uf->len - 1);
|
|
uf->ptr = ub;
|
|
uf->len += a;
|
|
us = uf;
|
|
} else {
|
|
ubf = uf->ptr;
|
|
for (l = 0; l < uf->len; l++, a++) {
|
|
if (bit_test(ubf->map, l))
|
|
bit_set(ub->map, a);
|
|
else
|
|
bit_clear(ub->map, a);
|
|
}
|
|
uf->len = a;
|
|
delete_unr(uh, uf->ptr);
|
|
uf->ptr = ub;
|
|
us = uf;
|
|
}
|
|
}
|
|
ub = us->ptr;
|
|
while (1) {
|
|
uf = TAILQ_NEXT(us, list);
|
|
if (uf == NULL)
|
|
return (1);
|
|
if (uf->len + us->len > NBITS)
|
|
return (1);
|
|
if (uf->ptr == NULL) {
|
|
bit_nclear(ub->map, us->len, us->len + uf->len - 1);
|
|
us->len += uf->len;
|
|
TAILQ_REMOVE(&uh->head, uf, list);
|
|
delete_unr(uh, uf);
|
|
} else if (uf->ptr == uh) {
|
|
bit_nset(ub->map, us->len, us->len + uf->len - 1);
|
|
us->len += uf->len;
|
|
TAILQ_REMOVE(&uh->head, uf, list);
|
|
delete_unr(uh, uf);
|
|
} else {
|
|
ubf = uf->ptr;
|
|
for (l = 0; l < uf->len; l++, us->len++) {
|
|
if (bit_test(ubf->map, l))
|
|
bit_set(ub->map, us->len);
|
|
else
|
|
bit_clear(ub->map, us->len);
|
|
}
|
|
TAILQ_REMOVE(&uh->head, uf, list);
|
|
delete_unr(uh, ubf);
|
|
delete_unr(uh, uf);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if a given unr should be collapsed with a neighbor.
|
|
*
|
|
* NB: called from alloc_unr(), no new memory allocation allowed.
|
|
*/
|
|
static void
|
|
collapse_unr(struct unrhdr *uh, struct unr *up)
|
|
{
|
|
struct unr *upp;
|
|
struct unrb *ub;
|
|
|
|
/* If bitmap is all set or clear, change it to runlength */
|
|
if (is_bitmap(uh, up)) {
|
|
ub = up->ptr;
|
|
if (ub_full(ub, up->len)) {
|
|
delete_unr(uh, up->ptr);
|
|
up->ptr = uh;
|
|
} else if (ub_empty(ub, up->len)) {
|
|
delete_unr(uh, up->ptr);
|
|
up->ptr = NULL;
|
|
}
|
|
}
|
|
|
|
/* If nothing left in runlength, delete it */
|
|
if (up->len == 0) {
|
|
upp = TAILQ_PREV(up, unrhd, list);
|
|
if (upp == NULL)
|
|
upp = TAILQ_NEXT(up, list);
|
|
TAILQ_REMOVE(&uh->head, up, list);
|
|
delete_unr(uh, up);
|
|
up = upp;
|
|
}
|
|
|
|
/* If we have "hot-spot" still, merge with neighbor if possible */
|
|
if (up != NULL) {
|
|
upp = TAILQ_PREV(up, unrhd, list);
|
|
if (upp != NULL && up->ptr == upp->ptr) {
|
|
up->len += upp->len;
|
|
TAILQ_REMOVE(&uh->head, upp, list);
|
|
delete_unr(uh, upp);
|
|
}
|
|
upp = TAILQ_NEXT(up, list);
|
|
if (upp != NULL && up->ptr == upp->ptr) {
|
|
up->len += upp->len;
|
|
TAILQ_REMOVE(&uh->head, upp, list);
|
|
delete_unr(uh, upp);
|
|
}
|
|
}
|
|
|
|
/* Merge into ->first if possible */
|
|
upp = TAILQ_FIRST(&uh->head);
|
|
if (upp != NULL && upp->ptr == uh) {
|
|
uh->first += upp->len;
|
|
TAILQ_REMOVE(&uh->head, upp, list);
|
|
delete_unr(uh, upp);
|
|
if (up == upp)
|
|
up = NULL;
|
|
}
|
|
|
|
/* Merge into ->last if possible */
|
|
upp = TAILQ_LAST(&uh->head, unrhd);
|
|
if (upp != NULL && upp->ptr == NULL) {
|
|
uh->last += upp->len;
|
|
TAILQ_REMOVE(&uh->head, upp, list);
|
|
delete_unr(uh, upp);
|
|
if (up == upp)
|
|
up = NULL;
|
|
}
|
|
|
|
/* Try to make bitmaps */
|
|
while (optimize_unr(uh))
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Allocate a free unr.
|
|
*/
|
|
int
|
|
alloc_unrl(struct unrhdr *uh)
|
|
{
|
|
struct unr *up;
|
|
struct unrb *ub;
|
|
u_int x;
|
|
int y;
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_assert(uh->mtx, MA_OWNED);
|
|
check_unrhdr(uh, __LINE__);
|
|
x = uh->low + uh->first;
|
|
|
|
up = TAILQ_FIRST(&uh->head);
|
|
|
|
/*
|
|
* If we have an ideal split, just adjust the first+last
|
|
*/
|
|
if (up == NULL && uh->last > 0) {
|
|
uh->first++;
|
|
uh->last--;
|
|
uh->busy++;
|
|
return (x);
|
|
}
|
|
|
|
/*
|
|
* We can always allocate from the first list element, so if we have
|
|
* nothing on the list, we must have run out of unit numbers.
|
|
*/
|
|
if (up == NULL)
|
|
return (-1);
|
|
|
|
KASSERT(up->ptr != uh, ("UNR first element is allocated"));
|
|
|
|
if (up->ptr == NULL) { /* free run */
|
|
uh->first++;
|
|
up->len--;
|
|
} else { /* bitmap */
|
|
ub = up->ptr;
|
|
bit_ffc(ub->map, up->len, &y);
|
|
KASSERT(y != -1, ("UNR corruption: No clear bit in bitmap."));
|
|
bit_set(ub->map, y);
|
|
x += y;
|
|
}
|
|
uh->busy++;
|
|
collapse_unr(uh, up);
|
|
return (x);
|
|
}
|
|
|
|
int
|
|
alloc_unr(struct unrhdr *uh)
|
|
{
|
|
int i;
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
i = alloc_unrl(uh);
|
|
clean_unrhdrl(uh);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
return (i);
|
|
}
|
|
|
|
static int
|
|
alloc_unr_specificl(struct unrhdr *uh, u_int item, void **p1, void **p2)
|
|
{
|
|
struct unr *up, *upn;
|
|
struct unrb *ub;
|
|
u_int i, last, tl;
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_assert(uh->mtx, MA_OWNED);
|
|
|
|
if (item < uh->low + uh->first || item > uh->high)
|
|
return (-1);
|
|
|
|
up = TAILQ_FIRST(&uh->head);
|
|
/* Ideal split. */
|
|
if (up == NULL && item - uh->low == uh->first) {
|
|
uh->first++;
|
|
uh->last--;
|
|
uh->busy++;
|
|
check_unrhdr(uh, __LINE__);
|
|
return (item);
|
|
}
|
|
|
|
i = item - uh->low - uh->first;
|
|
|
|
if (up == NULL) {
|
|
up = new_unr(uh, p1, p2);
|
|
up->ptr = NULL;
|
|
up->len = i;
|
|
TAILQ_INSERT_TAIL(&uh->head, up, list);
|
|
up = new_unr(uh, p1, p2);
|
|
up->ptr = uh;
|
|
up->len = 1;
|
|
TAILQ_INSERT_TAIL(&uh->head, up, list);
|
|
uh->last = uh->high - uh->low - i;
|
|
uh->busy++;
|
|
check_unrhdr(uh, __LINE__);
|
|
return (item);
|
|
} else {
|
|
/* Find the item which contains the unit we want to allocate. */
|
|
TAILQ_FOREACH(up, &uh->head, list) {
|
|
if (up->len > i)
|
|
break;
|
|
i -= up->len;
|
|
}
|
|
}
|
|
|
|
if (up == NULL) {
|
|
if (i > 0) {
|
|
up = new_unr(uh, p1, p2);
|
|
up->ptr = NULL;
|
|
up->len = i;
|
|
TAILQ_INSERT_TAIL(&uh->head, up, list);
|
|
}
|
|
up = new_unr(uh, p1, p2);
|
|
up->ptr = uh;
|
|
up->len = 1;
|
|
TAILQ_INSERT_TAIL(&uh->head, up, list);
|
|
goto done;
|
|
}
|
|
|
|
if (is_bitmap(uh, up)) {
|
|
ub = up->ptr;
|
|
if (bit_test(ub->map, i) == 0) {
|
|
bit_set(ub->map, i);
|
|
goto done;
|
|
} else
|
|
return (-1);
|
|
} else if (up->ptr == uh)
|
|
return (-1);
|
|
|
|
KASSERT(up->ptr == NULL,
|
|
("alloc_unr_specificl: up->ptr != NULL (up=%p)", up));
|
|
|
|
/* Split off the tail end, if any. */
|
|
tl = up->len - (1 + i);
|
|
if (tl > 0) {
|
|
upn = new_unr(uh, p1, p2);
|
|
upn->ptr = NULL;
|
|
upn->len = tl;
|
|
TAILQ_INSERT_AFTER(&uh->head, up, upn, list);
|
|
}
|
|
|
|
/* Split off head end, if any */
|
|
if (i > 0) {
|
|
upn = new_unr(uh, p1, p2);
|
|
upn->len = i;
|
|
upn->ptr = NULL;
|
|
TAILQ_INSERT_BEFORE(up, upn, list);
|
|
}
|
|
up->len = 1;
|
|
up->ptr = uh;
|
|
|
|
done:
|
|
last = uh->high - uh->low - (item - uh->low);
|
|
if (uh->last > last)
|
|
uh->last = last;
|
|
uh->busy++;
|
|
collapse_unr(uh, up);
|
|
check_unrhdr(uh, __LINE__);
|
|
return (item);
|
|
}
|
|
|
|
int
|
|
alloc_unr_specific(struct unrhdr *uh, u_int item)
|
|
{
|
|
void *p1, *p2;
|
|
int i;
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "alloc_unr_specific");
|
|
|
|
p1 = Malloc(sizeof(struct unr));
|
|
p2 = Malloc(sizeof(struct unr));
|
|
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
i = alloc_unr_specificl(uh, item, &p1, &p2);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
|
|
if (p1 != NULL)
|
|
Free(p1);
|
|
if (p2 != NULL)
|
|
Free(p2);
|
|
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* Free a unr.
|
|
*
|
|
* If we can save unrs by using a bitmap, do so.
|
|
*/
|
|
static void
|
|
free_unrl(struct unrhdr *uh, u_int item, void **p1, void **p2)
|
|
{
|
|
struct unr *up, *upp, *upn;
|
|
struct unrb *ub;
|
|
u_int pl;
|
|
|
|
KASSERT(item >= uh->low && item <= uh->high,
|
|
("UNR: free_unr(%u) out of range [%u...%u]",
|
|
item, uh->low, uh->high));
|
|
check_unrhdr(uh, __LINE__);
|
|
item -= uh->low;
|
|
upp = TAILQ_FIRST(&uh->head);
|
|
/*
|
|
* Freeing in the ideal split case
|
|
*/
|
|
if (item + 1 == uh->first && upp == NULL) {
|
|
uh->last++;
|
|
uh->first--;
|
|
uh->busy--;
|
|
check_unrhdr(uh, __LINE__);
|
|
return;
|
|
}
|
|
/*
|
|
* Freeing in the ->first section. Create a run starting at the
|
|
* freed item. The code below will subdivide it.
|
|
*/
|
|
if (item < uh->first) {
|
|
up = new_unr(uh, p1, p2);
|
|
up->ptr = uh;
|
|
up->len = uh->first - item;
|
|
TAILQ_INSERT_HEAD(&uh->head, up, list);
|
|
uh->first -= up->len;
|
|
}
|
|
|
|
item -= uh->first;
|
|
|
|
/* Find the item which contains the unit we want to free */
|
|
TAILQ_FOREACH(up, &uh->head, list) {
|
|
if (up->len > item)
|
|
break;
|
|
item -= up->len;
|
|
}
|
|
|
|
/* Handle bitmap items */
|
|
if (is_bitmap(uh, up)) {
|
|
ub = up->ptr;
|
|
|
|
KASSERT(bit_test(ub->map, item) != 0,
|
|
("UNR: Freeing free item %d (bitmap)\n", item));
|
|
bit_clear(ub->map, item);
|
|
uh->busy--;
|
|
collapse_unr(uh, up);
|
|
return;
|
|
}
|
|
|
|
KASSERT(up->ptr == uh, ("UNR Freeing free item %d (run))\n", item));
|
|
|
|
/* Just this one left, reap it */
|
|
if (up->len == 1) {
|
|
up->ptr = NULL;
|
|
uh->busy--;
|
|
collapse_unr(uh, up);
|
|
return;
|
|
}
|
|
|
|
/* Check if we can shift the item into the previous 'free' run */
|
|
upp = TAILQ_PREV(up, unrhd, list);
|
|
if (item == 0 && upp != NULL && upp->ptr == NULL) {
|
|
upp->len++;
|
|
up->len--;
|
|
uh->busy--;
|
|
collapse_unr(uh, up);
|
|
return;
|
|
}
|
|
|
|
/* Check if we can shift the item to the next 'free' run */
|
|
upn = TAILQ_NEXT(up, list);
|
|
if (item == up->len - 1 && upn != NULL && upn->ptr == NULL) {
|
|
upn->len++;
|
|
up->len--;
|
|
uh->busy--;
|
|
collapse_unr(uh, up);
|
|
return;
|
|
}
|
|
|
|
/* Split off the tail end, if any. */
|
|
pl = up->len - (1 + item);
|
|
if (pl > 0) {
|
|
upp = new_unr(uh, p1, p2);
|
|
upp->ptr = uh;
|
|
upp->len = pl;
|
|
TAILQ_INSERT_AFTER(&uh->head, up, upp, list);
|
|
}
|
|
|
|
/* Split off head end, if any */
|
|
if (item > 0) {
|
|
upp = new_unr(uh, p1, p2);
|
|
upp->len = item;
|
|
upp->ptr = uh;
|
|
TAILQ_INSERT_BEFORE(up, upp, list);
|
|
}
|
|
up->len = 1;
|
|
up->ptr = NULL;
|
|
uh->busy--;
|
|
collapse_unr(uh, up);
|
|
}
|
|
|
|
void
|
|
free_unr(struct unrhdr *uh, u_int item)
|
|
{
|
|
void *p1, *p2;
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "free_unr");
|
|
p1 = Malloc(sizeof(struct unr));
|
|
p2 = Malloc(sizeof(struct unr));
|
|
if (uh->mtx != NULL)
|
|
mtx_lock(uh->mtx);
|
|
free_unrl(uh, item, &p1, &p2);
|
|
clean_unrhdrl(uh);
|
|
if (uh->mtx != NULL)
|
|
mtx_unlock(uh->mtx);
|
|
if (p1 != NULL)
|
|
Free(p1);
|
|
if (p2 != NULL)
|
|
Free(p2);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
#include "opt_ddb.h"
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if (defined(_KERNEL) && defined(DDB)) || !defined(_KERNEL)
|
|
|
|
#if !defined(_KERNEL)
|
|
#define db_printf printf
|
|
#endif
|
|
|
|
static void
|
|
print_unr(struct unrhdr *uh, struct unr *up)
|
|
{
|
|
u_int x;
|
|
struct unrb *ub;
|
|
|
|
db_printf(" %p len = %5u ", up, up->len);
|
|
if (up->ptr == NULL)
|
|
db_printf("free\n");
|
|
else if (up->ptr == uh)
|
|
db_printf("alloc\n");
|
|
else {
|
|
ub = up->ptr;
|
|
db_printf("bitmap [");
|
|
for (x = 0; x < up->len; x++) {
|
|
if (bit_test(ub->map, x))
|
|
db_printf("#");
|
|
else
|
|
db_printf(" ");
|
|
}
|
|
db_printf("]\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_unrhdr(struct unrhdr *uh)
|
|
{
|
|
struct unr *up;
|
|
u_int x;
|
|
|
|
db_printf(
|
|
"%p low = %u high = %u first = %u last = %u busy %u chunks = %u\n",
|
|
uh, uh->low, uh->high, uh->first, uh->last, uh->busy, uh->alloc);
|
|
x = uh->low + uh->first;
|
|
TAILQ_FOREACH(up, &uh->head, list) {
|
|
db_printf(" from = %5u", x);
|
|
print_unr(uh, up);
|
|
if (up->ptr == NULL || up->ptr == uh)
|
|
x += up->len;
|
|
else
|
|
x += NBITS;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(_KERNEL) && defined(DDB)
|
|
DB_SHOW_COMMAND(unrhdr, unrhdr_print_unrhdr)
|
|
{
|
|
if (!have_addr) {
|
|
db_printf("show unrhdr addr\n");
|
|
return;
|
|
}
|
|
|
|
print_unrhdr((struct unrhdr *)addr);
|
|
}
|
|
|
|
static void
|
|
print_unrhdr_iter(struct unrhdr_iter *iter)
|
|
{
|
|
db_printf("iter %p unrhdr %p ipos %d upos %p ufi %d\n",
|
|
iter, iter->uh, iter->ipos, iter->upos, iter->upos_first_item);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(unrhdr_iter, unrhdr_print_iter)
|
|
{
|
|
if (!have_addr) {
|
|
db_printf("show unrhdr_iter addr\n");
|
|
return;
|
|
}
|
|
|
|
print_unrhdr_iter((struct unrhdr_iter *)addr);
|
|
}
|
|
#endif
|
|
|
|
#ifndef _KERNEL /* USERLAND test driver */
|
|
|
|
/*
|
|
* Simple stochastic test driver for the above functions. The code resides
|
|
* here so that it can access static functions and structures.
|
|
*/
|
|
|
|
static bool verbose;
|
|
#define VPRINTF(...) {if (verbose) printf(__VA_ARGS__);}
|
|
|
|
static void
|
|
test_alloc_unr(struct unrhdr *uh, u_int i, char a[])
|
|
{
|
|
int j;
|
|
|
|
if (a[i]) {
|
|
VPRINTF("F %u\n", i);
|
|
free_unr(uh, i);
|
|
a[i] = 0;
|
|
} else {
|
|
no_alloc = 1;
|
|
j = alloc_unr(uh);
|
|
if (j != -1) {
|
|
a[j] = 1;
|
|
VPRINTF("A %d\n", j);
|
|
}
|
|
no_alloc = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_alloc_unr_specific(struct unrhdr *uh, u_int i, char a[])
|
|
{
|
|
int j;
|
|
|
|
j = alloc_unr_specific(uh, i);
|
|
if (j == -1) {
|
|
VPRINTF("F %u\n", i);
|
|
a[i] = 0;
|
|
free_unr(uh, i);
|
|
} else {
|
|
a[i] = 1;
|
|
VPRINTF("A %d\n", j);
|
|
}
|
|
}
|
|
|
|
#define TBASE 7
|
|
#define XSIZE 10
|
|
#define ISIZE 1000
|
|
|
|
static int
|
|
test_iter_compar(const void *a, const void *b)
|
|
{
|
|
return (*(const int *)a - *(const int *)b);
|
|
}
|
|
|
|
static void
|
|
test_iter_fill(int *vals, struct unrhdr *uh, int i, int v, int *res)
|
|
{
|
|
int x;
|
|
|
|
vals[i] = v;
|
|
x = alloc_unr_specific(uh, v);
|
|
if (x != v) {
|
|
VPRINTF("alloc_unr_specific failed %d %d\n", x, v);
|
|
*res = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_iter(void)
|
|
{
|
|
struct unrhdr *uh;
|
|
void *ihandle;
|
|
int vals[ISIZE];
|
|
int i, j, v, x, res;
|
|
|
|
res = 0;
|
|
uh = new_unrhdr(TBASE, INT_MAX, NULL);
|
|
for (i = 0; i < XSIZE; i++) {
|
|
vals[i] = i + TBASE;
|
|
x = alloc_unr_specific(uh, i + TBASE);
|
|
if (x != i + TBASE) {
|
|
VPRINTF("alloc_unr_specific failed %d %d\n", x,
|
|
i + TBASE);
|
|
res = 1;
|
|
}
|
|
}
|
|
for (; i < ISIZE; i++) {
|
|
for (;;) {
|
|
again:
|
|
v = arc4random_uniform(INT_MAX);
|
|
if (v < TBASE)
|
|
goto again;
|
|
for (j = 0; j < i; j++) {
|
|
if (v == vals[j] || v + 1 == vals[j])
|
|
goto again;
|
|
}
|
|
break;
|
|
}
|
|
test_iter_fill(vals, uh, i, v, &res);
|
|
i++, v++;
|
|
if (i < ISIZE)
|
|
test_iter_fill(vals, uh, i, v, &res);
|
|
}
|
|
qsort(vals, ISIZE, sizeof(vals[0]), test_iter_compar);
|
|
|
|
ihandle = create_iter_unr(uh);
|
|
i = 0;
|
|
while ((v = next_iter_unr(ihandle)) != -1) {
|
|
if (vals[i] != v) {
|
|
VPRINTF("iter %d: iter %d != val %d\n", i, v, vals[i]);
|
|
if (res == 0) {
|
|
if (verbose)
|
|
print_unrhdr(uh);
|
|
res = 1;
|
|
}
|
|
} else {
|
|
VPRINTF("iter %d: val %d\n", i, v);
|
|
}
|
|
i++;
|
|
}
|
|
free_iter_unr(ihandle);
|
|
clean_unrhdr(uh);
|
|
clear_unrhdr(uh);
|
|
delete_unrhdr(uh);
|
|
exit(res);
|
|
}
|
|
|
|
static void
|
|
usage(char **argv)
|
|
{
|
|
printf("%s [-h] [-i] [-r REPETITIONS] [-v]\n", argv[0]);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct unrhdr *uh;
|
|
char *a;
|
|
long count = 10000; /* Number of unrs to test */
|
|
long reps = 1, m;
|
|
int ch;
|
|
u_int i;
|
|
bool testing_iter;
|
|
|
|
verbose = false;
|
|
testing_iter = false;
|
|
|
|
while ((ch = getopt(argc, argv, "hir:v")) != -1) {
|
|
switch (ch) {
|
|
case 'i':
|
|
testing_iter = true;
|
|
break;
|
|
case 'r':
|
|
errno = 0;
|
|
reps = strtol(optarg, NULL, 0);
|
|
if (errno == ERANGE || errno == EINVAL) {
|
|
usage(argv);
|
|
exit(2);
|
|
}
|
|
|
|
break;
|
|
case 'v':
|
|
verbose = true;
|
|
break;
|
|
case 'h':
|
|
default:
|
|
usage(argv);
|
|
exit(2);
|
|
}
|
|
}
|
|
|
|
setbuf(stdout, NULL);
|
|
|
|
if (testing_iter)
|
|
test_iter();
|
|
|
|
uh = new_unrhdr(0, count - 1, NULL);
|
|
print_unrhdr(uh);
|
|
|
|
a = calloc(count, sizeof(char));
|
|
if (a == NULL)
|
|
err(1, "calloc failed");
|
|
|
|
printf("sizeof(struct unr) %zu\n", sizeof(struct unr));
|
|
printf("sizeof(struct unrb) %zu\n", sizeof(struct unrb));
|
|
printf("sizeof(struct unrhdr) %zu\n", sizeof(struct unrhdr));
|
|
printf("NBITS %lu\n", (unsigned long)NBITS);
|
|
for (m = 0; m < count * reps; m++) {
|
|
i = arc4random_uniform(count);
|
|
#if 0
|
|
if (a[i] && (j & 1))
|
|
continue;
|
|
#endif
|
|
if ((arc4random() & 1) != 0)
|
|
test_alloc_unr(uh, i, a);
|
|
else
|
|
test_alloc_unr_specific(uh, i, a);
|
|
|
|
if (verbose)
|
|
print_unrhdr(uh);
|
|
check_unrhdr(uh, __LINE__);
|
|
}
|
|
for (i = 0; i < (u_int)count; i++) {
|
|
if (a[i]) {
|
|
if (verbose) {
|
|
printf("C %u\n", i);
|
|
print_unrhdr(uh);
|
|
}
|
|
free_unr(uh, i);
|
|
}
|
|
}
|
|
print_unrhdr(uh);
|
|
delete_unrhdr(uh);
|
|
free(a);
|
|
return (0);
|
|
}
|
|
#endif
|