HardenedBSD/sys/dev/nvme/nvme_ctrlr.c
Alexander Motin b46c7b1ed4 nvme: Add some bits from NVMe 2.0c spec.
MFC after:	1 week
2023-12-27 13:50:54 -05:00

1689 lines
46 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (C) 2012-2016 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_nvme.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/uio.h>
#include <sys/sbuf.h>
#include <sys/endian.h>
#include <machine/stdarg.h>
#include <vm/vm.h>
#include "nvme_private.h"
#define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */
static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer);
static void
nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
{
bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
}
static void
nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
{
struct sbuf sb;
va_list ap;
int error;
if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
return;
sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
va_start(ap, msg);
sbuf_vprintf(&sb, msg, ap);
va_end(ap);
error = sbuf_finish(&sb);
if (error == 0)
printf("%s\n", sbuf_data(&sb));
sbuf_clear(&sb);
sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
va_start(ap, msg);
sbuf_vprintf(&sb, msg, ap);
va_end(ap);
sbuf_printf(&sb, "\"");
error = sbuf_finish(&sb);
if (error == 0)
devctl_notify("nvme", "controller", type, sbuf_data(&sb));
sbuf_delete(&sb);
}
static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
uint32_t num_entries;
int error;
qpair = &ctrlr->adminq;
qpair->id = 0;
qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
qpair->domain = ctrlr->domain;
num_entries = NVME_ADMIN_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
/*
* If admin_entries was overridden to an invalid value, revert it
* back to our default value.
*/
if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
num_entries > NVME_MAX_ADMIN_ENTRIES) {
nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
"specified\n", num_entries);
num_entries = NVME_ADMIN_ENTRIES;
}
/*
* The admin queue's max xfer size is treated differently than the
* max I/O xfer size. 16KB is sufficient here - maybe even less?
*/
error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
ctrlr);
return (error);
}
#define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus)
static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
uint32_t cap_lo;
uint16_t mqes;
int c, error, i, n;
int num_entries, num_trackers, max_entries;
/*
* NVMe spec sets a hard limit of 64K max entries, but devices may
* specify a smaller limit, so we need to check the MQES field in the
* capabilities register. We have to cap the number of entries to the
* current stride allows for in BAR 0/1, otherwise the remainder entries
* are inaccessible. MQES should reflect this, and this is just a
* fail-safe.
*/
max_entries =
(rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
(1 << (ctrlr->dstrd + 1));
num_entries = NVME_IO_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
mqes = NVME_CAP_LO_MQES(cap_lo);
num_entries = min(num_entries, mqes + 1);
num_entries = min(num_entries, max_entries);
num_trackers = NVME_IO_TRACKERS;
TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
/*
* No need to have more trackers than entries in the submit queue. Note
* also that for a queue size of N, we can only have (N-1) commands
* outstanding, hence the "-1" here.
*/
num_trackers = min(num_trackers, (num_entries-1));
/*
* Our best estimate for the maximum number of I/Os that we should
* normally have in flight at one time. This should be viewed as a hint,
* not a hard limit and will need to be revisited when the upper layers
* of the storage system grows multi-queue support.
*/
ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
M_NVME, M_ZERO | M_WAITOK);
for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
qpair = &ctrlr->ioq[i];
/*
* Admin queue has ID=0. IO queues start at ID=1 -
* hence the 'i+1' here.
*/
qpair->id = i + 1;
if (ctrlr->num_io_queues > 1) {
/* Find number of CPUs served by this queue. */
for (n = 1; QP(ctrlr, c + n) == i; n++)
;
/* Shuffle multiple NVMe devices between CPUs. */
qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
} else {
qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
qpair->domain = ctrlr->domain;
}
/*
* For I/O queues, use the controller-wide max_xfer_size
* calculated in nvme_attach().
*/
error = nvme_qpair_construct(qpair, num_entries, num_trackers,
ctrlr);
if (error)
return (error);
/*
* Do not bother binding interrupts if we only have one I/O
* interrupt thread for this controller.
*/
if (ctrlr->num_io_queues > 1)
bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
}
return (0);
}
static void
nvme_ctrlr_fail(struct nvme_controller *ctrlr)
{
int i;
/*
* No need to disable queues before failing them. Failing is a superet
* of disabling (though pedantically we'd abort the AERs silently with
* a different error, though when we fail, that hardly matters).
*/
ctrlr->is_failed = true;
nvme_qpair_fail(&ctrlr->adminq);
if (ctrlr->ioq != NULL) {
for (i = 0; i < ctrlr->num_io_queues; i++) {
nvme_qpair_fail(&ctrlr->ioq[i]);
}
}
nvme_notify_fail_consumers(ctrlr);
}
/*
* Wait for RDY to change.
*
* Starts sleeping for 1us and geometrically increases it the longer we wait,
* capped at 1ms.
*/
static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
{
int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
sbintime_t delta_t = SBT_1US;
uint32_t csts;
while (1) {
csts = nvme_mmio_read_4(ctrlr, csts);
if (csts == NVME_GONE) /* Hot unplug. */
return (ENXIO);
if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
== desired_val)
break;
if (timeout - ticks < 0) {
nvme_printf(ctrlr, "controller ready did not become %d "
"within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
return (ENXIO);
}
pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
delta_t = min(SBT_1MS, delta_t * 3 / 2);
}
return (0);
}
static int
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
uint8_t en, rdy;
int err;
cc = nvme_mmio_read_4(ctrlr, cc);
csts = nvme_mmio_read_4(ctrlr, csts);
en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
/*
* Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
* when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
* CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
* isn't the desired value. Short circuit if we're already disabled.
*/
if (en == 0) {
/* Wait for RDY == 0 or timeout & fail */
if (rdy == 0)
return (0);
return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
}
if (rdy == 0) {
/* EN == 1, wait for RDY == 1 or timeout & fail */
err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
if (err != 0)
return (err);
}
cc &= ~NVME_CC_REG_EN_MASK;
nvme_mmio_write_4(ctrlr, cc, cc);
/*
* A few drives have firmware bugs that freeze the drive if we access
* the mmio too soon after we disable.
*/
if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
}
static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
uint32_t aqa;
uint32_t qsize;
uint8_t en, rdy;
int err;
cc = nvme_mmio_read_4(ctrlr, cc);
csts = nvme_mmio_read_4(ctrlr, csts);
en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
/*
* See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
*/
if (en == 1) {
if (rdy == 1)
return (0);
return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
}
/* EN == 0 already wait for RDY == 0 or timeout & fail */
err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
if (err != 0)
return (err);
nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
/* acqs and asqs are 0-based. */
qsize = ctrlr->adminq.num_entries - 1;
aqa = 0;
aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
nvme_mmio_write_4(ctrlr, aqa, aqa);
/* Initialization values for CC */
cc = 0;
cc |= 1 << NVME_CC_REG_EN_SHIFT;
cc |= 0 << NVME_CC_REG_CSS_SHIFT;
cc |= 0 << NVME_CC_REG_AMS_SHIFT;
cc |= 0 << NVME_CC_REG_SHN_SHIFT;
cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
/*
* Use the Memory Page Size selected during device initialization. Note
* that value stored in mps is suitable to use here without adjusting by
* NVME_MPS_SHIFT.
*/
cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
nvme_mmio_write_4(ctrlr, cc, cc);
return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
}
static void
nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
{
int i;
nvme_admin_qpair_disable(&ctrlr->adminq);
/*
* I/O queues are not allocated before the initial HW
* reset, so do not try to disable them. Use is_initialized
* to determine if this is the initial HW reset.
*/
if (ctrlr->is_initialized) {
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_io_qpair_disable(&ctrlr->ioq[i]);
}
}
static int
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
{
int err;
TSENTER();
nvme_ctrlr_disable_qpairs(ctrlr);
err = nvme_ctrlr_disable(ctrlr);
if (err != 0)
goto out;
err = nvme_ctrlr_enable(ctrlr);
out:
TSEXIT();
return (err);
}
void
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
int cmpset;
cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
if (cmpset == 0 || ctrlr->is_failed)
/*
* Controller is already resetting or has failed. Return
* immediately since there is no need to kick off another
* reset in these cases.
*/
return;
if (!ctrlr->is_dying)
taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
}
static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
status.done = 0;
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
return (ENXIO);
}
/* Convert data to host endian */
nvme_controller_data_swapbytes(&ctrlr->cdata);
/*
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
* controller supports.
*/
if (ctrlr->cdata.mdts > 0)
ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
return (0);
}
static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
int cq_allocated, sq_allocated;
status.done = 0;
nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
return (ENXIO);
}
/*
* Data in cdw0 is 0-based.
* Lower 16-bits indicate number of submission queues allocated.
* Upper 16-bits indicate number of completion queues allocated.
*/
sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
cq_allocated = (status.cpl.cdw0 >> 16) + 1;
/*
* Controller may allocate more queues than we requested,
* so use the minimum of the number requested and what was
* actually allocated.
*/
ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
if (ctrlr->num_io_queues > vm_ndomains)
ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
return (0);
}
static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_qpair *qpair;
int i;
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
status.done = 0;
nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
return (ENXIO);
}
status.done = 0;
nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
return (ENXIO);
}
}
return (0);
}
static int
nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_qpair *qpair;
for (int i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
status.done = 0;
nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
return (ENXIO);
}
status.done = 0;
nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
return (ENXIO);
}
}
return (0);
}
static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
struct nvme_namespace *ns;
uint32_t i;
for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
ns = &ctrlr->ns[i];
nvme_ns_construct(ns, i+1, ctrlr);
}
return (0);
}
static bool
is_log_page_id_valid(uint8_t page_id)
{
switch (page_id) {
case NVME_LOG_ERROR:
case NVME_LOG_HEALTH_INFORMATION:
case NVME_LOG_FIRMWARE_SLOT:
case NVME_LOG_CHANGED_NAMESPACE:
case NVME_LOG_COMMAND_EFFECT:
case NVME_LOG_RES_NOTIFICATION:
case NVME_LOG_SANITIZE_STATUS:
return (true);
}
return (false);
}
static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
{
uint32_t log_page_size;
switch (page_id) {
case NVME_LOG_ERROR:
log_page_size = min(
sizeof(struct nvme_error_information_entry) *
(ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
break;
case NVME_LOG_HEALTH_INFORMATION:
log_page_size = sizeof(struct nvme_health_information_page);
break;
case NVME_LOG_FIRMWARE_SLOT:
log_page_size = sizeof(struct nvme_firmware_page);
break;
case NVME_LOG_CHANGED_NAMESPACE:
log_page_size = sizeof(struct nvme_ns_list);
break;
case NVME_LOG_COMMAND_EFFECT:
log_page_size = sizeof(struct nvme_command_effects_page);
break;
case NVME_LOG_RES_NOTIFICATION:
log_page_size = sizeof(struct nvme_res_notification_page);
break;
case NVME_LOG_SANITIZE_STATUS:
log_page_size = sizeof(struct nvme_sanitize_status_page);
break;
default:
log_page_size = 0;
break;
}
return (log_page_size);
}
static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
uint8_t state)
{
if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"available spare space below threshold");
if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"temperature above threshold");
if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"device reliability degraded");
if (state & NVME_CRIT_WARN_ST_READ_ONLY)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"media placed in read only mode");
if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"volatile memory backup device failed");
if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
nvme_ctrlr_devctl_log(ctrlr, "critical",
"unknown critical warning(s): state = 0x%02x", state);
}
static void
nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_async_event_request *aer = arg;
struct nvme_health_information_page *health_info;
struct nvme_ns_list *nsl;
struct nvme_error_information_entry *err;
int i;
/*
* If the log page fetch for some reason completed with an error,
* don't pass log page data to the consumers. In practice, this case
* should never happen.
*/
if (nvme_completion_is_error(cpl))
nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
aer->log_page_id, NULL, 0);
else {
/* Convert data to host endian */
switch (aer->log_page_id) {
case NVME_LOG_ERROR:
err = (struct nvme_error_information_entry *)aer->log_page_buffer;
for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
nvme_error_information_entry_swapbytes(err++);
break;
case NVME_LOG_HEALTH_INFORMATION:
nvme_health_information_page_swapbytes(
(struct nvme_health_information_page *)aer->log_page_buffer);
break;
case NVME_LOG_FIRMWARE_SLOT:
nvme_firmware_page_swapbytes(
(struct nvme_firmware_page *)aer->log_page_buffer);
break;
case NVME_LOG_CHANGED_NAMESPACE:
nvme_ns_list_swapbytes(
(struct nvme_ns_list *)aer->log_page_buffer);
break;
case NVME_LOG_COMMAND_EFFECT:
nvme_command_effects_page_swapbytes(
(struct nvme_command_effects_page *)aer->log_page_buffer);
break;
case NVME_LOG_RES_NOTIFICATION:
nvme_res_notification_page_swapbytes(
(struct nvme_res_notification_page *)aer->log_page_buffer);
break;
case NVME_LOG_SANITIZE_STATUS:
nvme_sanitize_status_page_swapbytes(
(struct nvme_sanitize_status_page *)aer->log_page_buffer);
break;
case INTEL_LOG_TEMP_STATS:
intel_log_temp_stats_swapbytes(
(struct intel_log_temp_stats *)aer->log_page_buffer);
break;
default:
break;
}
if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
health_info = (struct nvme_health_information_page *)
aer->log_page_buffer;
nvme_ctrlr_log_critical_warnings(aer->ctrlr,
health_info->critical_warning);
/*
* Critical warnings reported through the
* SMART/health log page are persistent, so
* clear the associated bits in the async event
* config so that we do not receive repeated
* notifications for the same event.
*/
aer->ctrlr->async_event_config &=
~health_info->critical_warning;
nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
aer->ctrlr->async_event_config, NULL, NULL);
} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
!nvme_use_nvd) {
nsl = (struct nvme_ns_list *)aer->log_page_buffer;
for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
if (nsl->ns[i] > NVME_MAX_NAMESPACES)
break;
nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
}
}
/*
* Pass the cpl data from the original async event completion,
* not the log page fetch.
*/
nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
}
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}
static void
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_async_event_request *aer = arg;
if (nvme_completion_is_error(cpl)) {
/*
* Do not retry failed async event requests. This avoids
* infinite loops where a new async event request is submitted
* to replace the one just failed, only to fail again and
* perpetuate the loop.
*/
return;
}
/* Associated log page is in bits 23:16 of completion entry dw0. */
aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
" page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
aer->log_page_id);
if (is_log_page_id_valid(aer->log_page_id)) {
aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
aer->log_page_id);
memcpy(&aer->cpl, cpl, sizeof(*cpl));
nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
aer);
/* Wait to notify consumers until after log page is fetched. */
} else {
nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
NULL, 0);
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}
}
static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer)
{
struct nvme_request *req;
aer->ctrlr = ctrlr;
req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
aer->req = req;
/*
* Disable timeout here, since asynchronous event requests should by
* nature never be timed out.
*/
req->timeout = false;
req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static void
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_async_event_request *aer;
uint32_t i;
ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
NVME_CRIT_WARN_ST_READ_ONLY |
NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
if (ctrlr->cdata.ver >= NVME_REV(1, 2))
ctrlr->async_event_config |=
ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE |
NVME_ASYNC_EVENT_FW_ACTIVATE);
status.done = 0;
nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
0, NULL, 0, nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl) ||
(status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
(status.cpl.cdw0 & 0xFFFF) == 0x0000) {
nvme_printf(ctrlr, "temperature threshold not supported\n");
} else
ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
nvme_ctrlr_cmd_set_async_event_config(ctrlr,
ctrlr->async_event_config, NULL, NULL);
/* aerl is a zero-based value, so we need to add 1 here. */
ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
for (i = 0; i < ctrlr->num_aers; i++) {
aer = &ctrlr->aer[i];
nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
}
}
static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
{
ctrlr->int_coal_time = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
&ctrlr->int_coal_time);
ctrlr->int_coal_threshold = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
&ctrlr->int_coal_threshold);
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
ctrlr->int_coal_threshold, NULL, NULL);
}
static void
nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
{
struct nvme_hmb_chunk *hmbc;
int i;
if (ctrlr->hmb_desc_paddr) {
bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
ctrlr->hmb_desc_map);
ctrlr->hmb_desc_paddr = 0;
}
if (ctrlr->hmb_desc_tag) {
bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
ctrlr->hmb_desc_tag = NULL;
}
for (i = 0; i < ctrlr->hmb_nchunks; i++) {
hmbc = &ctrlr->hmb_chunks[i];
bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
hmbc->hmbc_map);
}
ctrlr->hmb_nchunks = 0;
if (ctrlr->hmb_tag) {
bus_dma_tag_destroy(ctrlr->hmb_tag);
ctrlr->hmb_tag = NULL;
}
if (ctrlr->hmb_chunks) {
free(ctrlr->hmb_chunks, M_NVME);
ctrlr->hmb_chunks = NULL;
}
}
static void
nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
{
struct nvme_hmb_chunk *hmbc;
size_t pref, min, minc, size;
int err, i;
uint64_t max;
/* Limit HMB to 5% of RAM size per device by default. */
max = (uint64_t)physmem * PAGE_SIZE / 20;
TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
/*
* Units of Host Memory Buffer in the Identify info are always in terms
* of 4k units.
*/
min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
if (max == 0 || max < min)
return;
pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
if (min > 0 && ctrlr->cdata.hmmaxd > 0)
minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
ctrlr->hmb_chunk = pref;
again:
/*
* However, the chunk sizes, number of chunks, and alignment of chunks
* are all based on the current MPS (ctrlr->page_size).
*/
ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
if (err != 0) {
nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
nvme_ctrlr_hmb_free(ctrlr);
return;
}
for (i = 0; i < ctrlr->hmb_nchunks; i++) {
hmbc = &ctrlr->hmb_chunks[i];
if (bus_dmamem_alloc(ctrlr->hmb_tag,
(void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
&hmbc->hmbc_map)) {
nvme_printf(ctrlr, "failed to alloc HMB\n");
break;
}
if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
&hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
hmbc->hmbc_map);
nvme_printf(ctrlr, "failed to load HMB\n");
break;
}
bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
ctrlr->hmb_chunk / 2 >= minc) {
ctrlr->hmb_nchunks = i;
nvme_ctrlr_hmb_free(ctrlr);
ctrlr->hmb_chunk /= 2;
goto again;
}
ctrlr->hmb_nchunks = i;
if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
nvme_ctrlr_hmb_free(ctrlr);
return;
}
size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
if (err != 0) {
nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
nvme_ctrlr_hmb_free(ctrlr);
return;
}
if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
(void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
&ctrlr->hmb_desc_map)) {
nvme_printf(ctrlr, "failed to alloc HMB desc\n");
nvme_ctrlr_hmb_free(ctrlr);
return;
}
if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
ctrlr->hmb_desc_vaddr, size, nvme_single_map,
&ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
ctrlr->hmb_desc_map);
nvme_printf(ctrlr, "failed to load HMB desc\n");
nvme_ctrlr_hmb_free(ctrlr);
return;
}
for (i = 0; i < ctrlr->hmb_nchunks; i++) {
memset(&ctrlr->hmb_desc_vaddr[i], 0,
sizeof(struct nvme_hmb_desc));
ctrlr->hmb_desc_vaddr[i].addr =
htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
}
bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
BUS_DMASYNC_PREWRITE);
nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
(long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
/ 1024 / 1024);
}
static void
nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
{
struct nvme_completion_poll_status status;
uint32_t cdw11;
cdw11 = 0;
if (enable)
cdw11 |= 1;
if (memret)
cdw11 |= 2;
status.done = 0;
nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
ctrlr->hmb_nchunks, NULL, 0,
nvme_completion_poll_cb, &status);
nvme_completion_poll(&status);
if (nvme_completion_is_error(&status.cpl))
nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
}
static void
nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
{
struct nvme_controller *ctrlr = ctrlr_arg;
uint32_t old_num_io_queues;
int i;
TSENTER();
/*
* Only reset adminq here when we are restarting the
* controller after a reset. During initialization,
* we have already submitted admin commands to get
* the number of I/O queues supported, so cannot reset
* the adminq again here.
*/
if (resetting) {
nvme_qpair_reset(&ctrlr->adminq);
nvme_admin_qpair_enable(&ctrlr->adminq);
}
if (ctrlr->ioq != NULL) {
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_qpair_reset(&ctrlr->ioq[i]);
}
/*
* If it was a reset on initialization command timeout, just
* return here, letting initialization code fail gracefully.
*/
if (resetting && !ctrlr->is_initialized)
return;
if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
/*
* The number of qpairs are determined during controller initialization,
* including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
* HW limit. We call SET_FEATURES again here so that it gets called
* after any reset for controllers that depend on the driver to
* explicit specify how many queues it will use. This value should
* never change between resets, so panic if somehow that does happen.
*/
if (resetting) {
old_num_io_queues = ctrlr->num_io_queues;
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
if (old_num_io_queues != ctrlr->num_io_queues) {
panic("num_io_queues changed from %u to %u",
old_num_io_queues, ctrlr->num_io_queues);
}
}
if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
nvme_ctrlr_hmb_alloc(ctrlr);
if (ctrlr->hmb_nchunks > 0)
nvme_ctrlr_hmb_enable(ctrlr, true, false);
} else if (ctrlr->hmb_nchunks > 0)
nvme_ctrlr_hmb_enable(ctrlr, true, true);
if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
nvme_ctrlr_configure_aer(ctrlr);
nvme_ctrlr_configure_int_coalescing(ctrlr);
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_io_qpair_enable(&ctrlr->ioq[i]);
TSEXIT();
}
void
nvme_ctrlr_start_config_hook(void *arg)
{
struct nvme_controller *ctrlr = arg;
TSENTER();
if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
fail:
nvme_ctrlr_fail(ctrlr);
config_intrhook_disestablish(&ctrlr->config_hook);
return;
}
nvme_qpair_reset(&ctrlr->adminq);
nvme_admin_qpair_enable(&ctrlr->adminq);
if (nvme_ctrlr_identify(ctrlr) == 0 &&
nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
nvme_ctrlr_start(ctrlr, false);
else
goto fail;
nvme_sysctl_initialize_ctrlr(ctrlr);
config_intrhook_disestablish(&ctrlr->config_hook);
ctrlr->is_initialized = 1;
nvme_notify_new_controller(ctrlr);
TSEXIT();
}
static void
nvme_ctrlr_reset_task(void *arg, int pending)
{
struct nvme_controller *ctrlr = arg;
int status;
nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
status = nvme_ctrlr_hw_reset(ctrlr);
if (status == 0)
nvme_ctrlr_start(ctrlr, true);
else
nvme_ctrlr_fail(ctrlr);
atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
}
/*
* Poll all the queues enabled on the device for completion.
*/
void
nvme_ctrlr_poll(struct nvme_controller *ctrlr)
{
int i;
nvme_qpair_process_completions(&ctrlr->adminq);
for (i = 0; i < ctrlr->num_io_queues; i++)
if (ctrlr->ioq && ctrlr->ioq[i].cpl)
nvme_qpair_process_completions(&ctrlr->ioq[i]);
}
/*
* Poll the single-vector interrupt case: num_io_queues will be 1 and
* there's only a single vector. While we're polling, we mask further
* interrupts in the controller.
*/
void
nvme_ctrlr_shared_handler(void *arg)
{
struct nvme_controller *ctrlr = arg;
nvme_mmio_write_4(ctrlr, intms, 1);
nvme_ctrlr_poll(ctrlr);
nvme_mmio_write_4(ctrlr, intmc, 1);
}
static void
nvme_pt_done(void *arg, const struct nvme_completion *cpl)
{
struct nvme_pt_command *pt = arg;
struct mtx *mtx = pt->driver_lock;
uint16_t status;
bzero(&pt->cpl, sizeof(pt->cpl));
pt->cpl.cdw0 = cpl->cdw0;
status = cpl->status;
status &= ~NVME_STATUS_P_MASK;
pt->cpl.status = status;
mtx_lock(mtx);
pt->driver_lock = NULL;
wakeup(pt);
mtx_unlock(mtx);
}
int
nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
int is_admin_cmd)
{
struct nvme_request *req;
struct mtx *mtx;
struct buf *buf = NULL;
int ret = 0;
if (pt->len > 0) {
if (pt->len > ctrlr->max_xfer_size) {
nvme_printf(ctrlr, "pt->len (%d) "
"exceeds max_xfer_size (%d)\n", pt->len,
ctrlr->max_xfer_size);
return EIO;
}
if (is_user_buffer) {
/*
* Ensure the user buffer is wired for the duration of
* this pass-through command.
*/
PHOLD(curproc);
buf = uma_zalloc(pbuf_zone, M_WAITOK);
buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
ret = EFAULT;
goto err;
}
req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
nvme_pt_done, pt);
} else
req = nvme_allocate_request_vaddr(pt->buf, pt->len,
nvme_pt_done, pt);
} else
req = nvme_allocate_request_null(nvme_pt_done, pt);
/* Assume user space already converted to little-endian */
req->cmd.opc = pt->cmd.opc;
req->cmd.fuse = pt->cmd.fuse;
req->cmd.rsvd2 = pt->cmd.rsvd2;
req->cmd.rsvd3 = pt->cmd.rsvd3;
req->cmd.cdw10 = pt->cmd.cdw10;
req->cmd.cdw11 = pt->cmd.cdw11;
req->cmd.cdw12 = pt->cmd.cdw12;
req->cmd.cdw13 = pt->cmd.cdw13;
req->cmd.cdw14 = pt->cmd.cdw14;
req->cmd.cdw15 = pt->cmd.cdw15;
req->cmd.nsid = htole32(nsid);
mtx = mtx_pool_find(mtxpool_sleep, pt);
pt->driver_lock = mtx;
if (is_admin_cmd)
nvme_ctrlr_submit_admin_request(ctrlr, req);
else
nvme_ctrlr_submit_io_request(ctrlr, req);
mtx_lock(mtx);
while (pt->driver_lock != NULL)
mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
mtx_unlock(mtx);
if (buf != NULL) {
vunmapbuf(buf);
err:
uma_zfree(pbuf_zone, buf);
PRELE(curproc);
}
return (ret);
}
static int
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
struct thread *td)
{
struct nvme_controller *ctrlr;
struct nvme_pt_command *pt;
ctrlr = cdev->si_drv1;
switch (cmd) {
case NVME_RESET_CONTROLLER:
nvme_ctrlr_reset(ctrlr);
break;
case NVME_PASSTHROUGH_CMD:
pt = (struct nvme_pt_command *)arg;
return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1 /* is_user_buffer */, 1 /* is_admin_cmd */));
case NVME_GET_NSID:
{
struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
sizeof(gnsid->cdev));
gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
gnsid->nsid = 0;
break;
}
case NVME_GET_MAX_XFER_SIZE:
*(uint64_t *)arg = ctrlr->max_xfer_size;
break;
default:
return (ENOTTY);
}
return (0);
}
static struct cdevsw nvme_ctrlr_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_ioctl = nvme_ctrlr_ioctl
};
int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
{
struct make_dev_args md_args;
uint32_t cap_lo;
uint32_t cap_hi;
uint32_t to, vs, pmrcap;
int status, timeout_period;
ctrlr->dev = dev;
mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
if (bus_get_domain(dev, &ctrlr->domain) != 0)
ctrlr->domain = 0;
ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
if (bootverbose) {
device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
cap_lo, NVME_CAP_LO_MQES(cap_lo),
NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
(NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
(NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
NVME_CAP_LO_TO(cap_lo));
}
ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
if (bootverbose) {
device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
"CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
NVME_CAP_HI_DSTRD(cap_hi),
NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
NVME_CAP_HI_CSS(cap_hi),
NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
NVME_CAP_HI_CPS(cap_hi),
NVME_CAP_HI_MPSMIN(cap_hi),
NVME_CAP_HI_MPSMAX(cap_hi),
NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
}
if (bootverbose) {
vs = nvme_mmio_read_4(ctrlr, vs);
device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
NVME_MAJOR(vs), NVME_MINOR(vs));
}
if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
"PMRWBM %x, PMRTO %u%s\n", pmrcap,
NVME_PMRCAP_BIR(pmrcap),
NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
NVME_PMRCAP_PMRTU(pmrcap),
NVME_PMRCAP_PMRWBM(pmrcap),
NVME_PMRCAP_PMRTO(pmrcap),
NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
}
ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
/* Get ready timeout value from controller, in units of 500ms. */
to = NVME_CAP_LO_TO(cap_lo) + 1;
ctrlr->ready_timeout_in_ms = to * 500;
timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
ctrlr->admin_timeout_period = timeout_period;
timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
ctrlr->timeout_period = timeout_period;
nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
ctrlr->enable_aborts = 0;
TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
return (ENXIO);
/*
* Create 2 threads for the taskqueue. The reset thread will block when
* it detects that the controller has failed until all I/O has been
* failed up the stack. The fail_req task needs to be able to run in
* this case to finish the request failure for some cases.
*
* We could partially solve this race by draining the failed requeust
* queue before proceding to free the sim, though nothing would stop
* new I/O from coming in after we do that drain, but before we reach
* cam_sim_free, so this big hammer is used instead.
*/
ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
taskqueue_thread_enqueue, &ctrlr->taskqueue);
taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
ctrlr->is_resetting = 0;
ctrlr->is_initialized = 0;
ctrlr->notification_sent = 0;
TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
STAILQ_INIT(&ctrlr->fail_req);
ctrlr->is_failed = false;
make_dev_args_init(&md_args);
md_args.mda_devsw = &nvme_ctrlr_cdevsw;
md_args.mda_uid = UID_ROOT;
md_args.mda_gid = GID_WHEEL;
md_args.mda_mode = 0600;
md_args.mda_unit = device_get_unit(dev);
md_args.mda_si_drv1 = (void *)ctrlr;
status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
device_get_unit(dev));
if (status != 0)
return (ENXIO);
return (0);
}
void
nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
{
int gone, i;
ctrlr->is_dying = true;
if (ctrlr->resource == NULL)
goto nores;
if (!mtx_initialized(&ctrlr->adminq.lock))
goto noadminq;
/*
* Check whether it is a hot unplug or a clean driver detach.
* If device is not there any more, skip any shutdown commands.
*/
gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
if (gone)
nvme_ctrlr_fail(ctrlr);
else
nvme_notify_fail_consumers(ctrlr);
for (i = 0; i < NVME_MAX_NAMESPACES; i++)
nvme_ns_destruct(&ctrlr->ns[i]);
if (ctrlr->cdev)
destroy_dev(ctrlr->cdev);
if (ctrlr->is_initialized) {
if (!gone) {
if (ctrlr->hmb_nchunks > 0)
nvme_ctrlr_hmb_enable(ctrlr, false, false);
nvme_ctrlr_delete_qpairs(ctrlr);
}
nvme_ctrlr_hmb_free(ctrlr);
}
if (ctrlr->ioq != NULL) {
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_io_qpair_destroy(&ctrlr->ioq[i]);
free(ctrlr->ioq, M_NVME);
}
nvme_admin_qpair_destroy(&ctrlr->adminq);
/*
* Notify the controller of a shutdown, even though this is due to
* a driver unload, not a system shutdown (this path is not invoked
* during shutdown). This ensures the controller receives a
* shutdown notification in case the system is shutdown before
* reloading the driver.
*/
if (!gone)
nvme_ctrlr_shutdown(ctrlr);
if (!gone)
nvme_ctrlr_disable(ctrlr);
noadminq:
if (ctrlr->taskqueue)
taskqueue_free(ctrlr->taskqueue);
if (ctrlr->tag)
bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
if (ctrlr->res)
bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
rman_get_rid(ctrlr->res), ctrlr->res);
if (ctrlr->bar4_resource != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
ctrlr->bar4_resource_id, ctrlr->bar4_resource);
}
bus_release_resource(dev, SYS_RES_MEMORY,
ctrlr->resource_id, ctrlr->resource);
nores:
mtx_destroy(&ctrlr->lock);
}
void
nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
int timeout;
cc = nvme_mmio_read_4(ctrlr, cc);
cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
nvme_mmio_write_4(ctrlr, cc, cc);
timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
while (1) {
csts = nvme_mmio_read_4(ctrlr, csts);
if (csts == NVME_GONE) /* Hot unplug. */
break;
if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
break;
if (timeout - ticks < 0) {
nvme_printf(ctrlr, "shutdown timeout\n");
break;
}
pause("nvmeshut", 1);
}
}
void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
nvme_qpair_submit_request(&ctrlr->adminq, req);
}
void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
struct nvme_qpair *qpair;
qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
nvme_qpair_submit_request(qpair, req);
}
device_t
nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
{
return (ctrlr->dev);
}
const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
{
return (&ctrlr->cdata);
}
int
nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
{
int to = hz;
/*
* Can't touch failed controllers, so it's already suspended.
*/
if (ctrlr->is_failed)
return (0);
/*
* We don't want the reset taskqueue running, since it does similar
* things, so prevent it from running after we start. Wait for any reset
* that may have been started to complete. The reset process we follow
* will ensure that any new I/O will queue and be given to the hardware
* after we resume (though there should be none).
*/
while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
pause("nvmesusp", 1);
if (to <= 0) {
nvme_printf(ctrlr,
"Competing reset task didn't finish. Try again later.\n");
return (EWOULDBLOCK);
}
if (ctrlr->hmb_nchunks > 0)
nvme_ctrlr_hmb_enable(ctrlr, false, false);
/*
* Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
* delete the hardware I/O queues, and then shutdown. This properly
* flushes any metadata the drive may have stored so it can survive
* having its power removed and prevents the unsafe shutdown count from
* incriminating. Once we delete the qpairs, we have to disable them
* before shutting down.
*/
nvme_ctrlr_delete_qpairs(ctrlr);
nvme_ctrlr_disable_qpairs(ctrlr);
nvme_ctrlr_shutdown(ctrlr);
return (0);
}
int
nvme_ctrlr_resume(struct nvme_controller *ctrlr)
{
/*
* Can't touch failed controllers, so nothing to do to resume.
*/
if (ctrlr->is_failed)
return (0);
if (nvme_ctrlr_hw_reset(ctrlr) != 0)
goto fail;
/*
* Now that we've reset the hardware, we can restart the controller. Any
* I/O that was pending is requeued. Any admin commands are aborted with
* an error. Once we've restarted, take the controller out of reset.
*/
nvme_ctrlr_start(ctrlr, true);
(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
return (0);
fail:
/*
* Since we can't bring the controller out of reset, announce and fail
* the controller. However, we have to return success for the resume
* itself, due to questionable APIs.
*/
nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
nvme_ctrlr_fail(ctrlr);
(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
return (0);
}