mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-10 00:13:04 +01:00
d611666328
compiler that we know what we're doing (the value returned has already been restricted to int ranges). Reviewed by: bde
838 lines
22 KiB
C
838 lines
22 KiB
C
static volatile int print_tci = 1;
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
|
* $Id: kern_clock.c,v 1.79 1998/09/15 10:05:18 gibbs Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/timex.h>
|
|
#include <vm/vm.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/limits.h>
|
|
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
#include <machine/smp.h>
|
|
#endif
|
|
|
|
static void initclocks __P((void *dummy));
|
|
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
|
|
|
|
static void tco_forward __P((void));
|
|
static void tco_setscales __P((struct timecounter *tc));
|
|
static __inline unsigned tco_delta __P((struct timecounter *tc));
|
|
|
|
/* Some of these don't belong here, but it's easiest to concentrate them. */
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
long cp_time[CPUSTATES];
|
|
#else
|
|
static long cp_time[CPUSTATES];
|
|
#endif
|
|
|
|
long tk_cancc;
|
|
long tk_nin;
|
|
long tk_nout;
|
|
long tk_rawcc;
|
|
|
|
struct timecounter *timecounter;
|
|
|
|
time_t time_second;
|
|
|
|
/*
|
|
* Clock handling routines.
|
|
*
|
|
* This code is written to operate with two timers that run independently of
|
|
* each other.
|
|
*
|
|
* The main timer, running hz times per second, is used to trigger interval
|
|
* timers, timeouts and rescheduling as needed.
|
|
*
|
|
* The second timer handles kernel and user profiling,
|
|
* and does resource use estimation. If the second timer is programmable,
|
|
* it is randomized to avoid aliasing between the two clocks. For example,
|
|
* the randomization prevents an adversary from always giving up the cpu
|
|
* just before its quantum expires. Otherwise, it would never accumulate
|
|
* cpu ticks. The mean frequency of the second timer is stathz.
|
|
*
|
|
* If no second timer exists, stathz will be zero; in this case we drive
|
|
* profiling and statistics off the main clock. This WILL NOT be accurate;
|
|
* do not do it unless absolutely necessary.
|
|
*
|
|
* The statistics clock may (or may not) be run at a higher rate while
|
|
* profiling. This profile clock runs at profhz. We require that profhz
|
|
* be an integral multiple of stathz.
|
|
*
|
|
* If the statistics clock is running fast, it must be divided by the ratio
|
|
* profhz/stathz for statistics. (For profiling, every tick counts.)
|
|
*
|
|
* Time-of-day is maintained using a "timecounter", which may or may
|
|
* not be related to the hardware generating the above mentioned
|
|
* interrupts.
|
|
*/
|
|
|
|
int stathz;
|
|
int profhz;
|
|
static int profprocs;
|
|
int ticks;
|
|
static int psdiv, pscnt; /* prof => stat divider */
|
|
int psratio; /* ratio: prof / stat */
|
|
|
|
/*
|
|
* Initialize clock frequencies and start both clocks running.
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
initclocks(dummy)
|
|
void *dummy;
|
|
{
|
|
register int i;
|
|
|
|
/*
|
|
* Set divisors to 1 (normal case) and let the machine-specific
|
|
* code do its bit.
|
|
*/
|
|
psdiv = pscnt = 1;
|
|
cpu_initclocks();
|
|
|
|
/*
|
|
* Compute profhz/stathz, and fix profhz if needed.
|
|
*/
|
|
i = stathz ? stathz : hz;
|
|
if (profhz == 0)
|
|
profhz = i;
|
|
psratio = profhz / i;
|
|
}
|
|
|
|
/*
|
|
* The real-time timer, interrupting hz times per second.
|
|
*/
|
|
void
|
|
hardclock(frame)
|
|
register struct clockframe *frame;
|
|
{
|
|
register struct proc *p;
|
|
|
|
p = curproc;
|
|
if (p) {
|
|
register struct pstats *pstats;
|
|
|
|
/*
|
|
* Run current process's virtual and profile time, as needed.
|
|
*/
|
|
pstats = p->p_stats;
|
|
if (CLKF_USERMODE(frame) &&
|
|
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
|
|
psignal(p, SIGVTALRM);
|
|
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
|
|
psignal(p, SIGPROF);
|
|
}
|
|
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
forward_hardclock(pscnt);
|
|
#endif
|
|
|
|
/*
|
|
* If no separate statistics clock is available, run it from here.
|
|
*/
|
|
if (stathz == 0)
|
|
statclock(frame);
|
|
|
|
tco_forward();
|
|
ticks++;
|
|
|
|
/*
|
|
* Process callouts at a very low cpu priority, so we don't keep the
|
|
* relatively high clock interrupt priority any longer than necessary.
|
|
*/
|
|
if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
|
|
if (CLKF_BASEPRI(frame)) {
|
|
/*
|
|
* Save the overhead of a software interrupt;
|
|
* it will happen as soon as we return, so do it now.
|
|
*/
|
|
(void)splsoftclock();
|
|
softclock();
|
|
} else
|
|
setsoftclock();
|
|
} else if (softticks + 1 == ticks)
|
|
++softticks;
|
|
}
|
|
|
|
/*
|
|
* Compute number of ticks in the specified amount of time.
|
|
*/
|
|
int
|
|
tvtohz(tv)
|
|
struct timeval *tv;
|
|
{
|
|
register unsigned long ticks;
|
|
register long sec, usec;
|
|
|
|
/*
|
|
* If the number of usecs in the whole seconds part of the time
|
|
* difference fits in a long, then the total number of usecs will
|
|
* fit in an unsigned long. Compute the total and convert it to
|
|
* ticks, rounding up and adding 1 to allow for the current tick
|
|
* to expire. Rounding also depends on unsigned long arithmetic
|
|
* to avoid overflow.
|
|
*
|
|
* Otherwise, if the number of ticks in the whole seconds part of
|
|
* the time difference fits in a long, then convert the parts to
|
|
* ticks separately and add, using similar rounding methods and
|
|
* overflow avoidance. This method would work in the previous
|
|
* case but it is slightly slower and assumes that hz is integral.
|
|
*
|
|
* Otherwise, round the time difference down to the maximum
|
|
* representable value.
|
|
*
|
|
* If ints have 32 bits, then the maximum value for any timeout in
|
|
* 10ms ticks is 248 days.
|
|
*/
|
|
sec = tv->tv_sec;
|
|
usec = tv->tv_usec;
|
|
if (usec < 0) {
|
|
sec--;
|
|
usec += 1000000;
|
|
}
|
|
if (sec < 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (usec > 0) {
|
|
sec++;
|
|
usec -= 1000000;
|
|
}
|
|
printf("tvotohz: negative time difference %ld sec %ld usec\n",
|
|
sec, usec);
|
|
#endif
|
|
ticks = 1;
|
|
} else if (sec <= LONG_MAX / 1000000)
|
|
ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
|
|
/ tick + 1;
|
|
else if (sec <= LONG_MAX / hz)
|
|
ticks = sec * hz
|
|
+ ((unsigned long)usec + (tick - 1)) / tick + 1;
|
|
else
|
|
ticks = LONG_MAX;
|
|
if (ticks > INT_MAX)
|
|
ticks = INT_MAX;
|
|
return ((int)ticks);
|
|
}
|
|
|
|
/*
|
|
* Start profiling on a process.
|
|
*
|
|
* Kernel profiling passes proc0 which never exits and hence
|
|
* keeps the profile clock running constantly.
|
|
*/
|
|
void
|
|
startprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
int s;
|
|
|
|
if ((p->p_flag & P_PROFIL) == 0) {
|
|
p->p_flag |= P_PROFIL;
|
|
if (++profprocs == 1 && stathz != 0) {
|
|
s = splstatclock();
|
|
psdiv = pscnt = psratio;
|
|
setstatclockrate(profhz);
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop profiling on a process.
|
|
*/
|
|
void
|
|
stopprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
int s;
|
|
|
|
if (p->p_flag & P_PROFIL) {
|
|
p->p_flag &= ~P_PROFIL;
|
|
if (--profprocs == 0 && stathz != 0) {
|
|
s = splstatclock();
|
|
psdiv = pscnt = 1;
|
|
setstatclockrate(stathz);
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Statistics clock. Grab profile sample, and if divider reaches 0,
|
|
* do process and kernel statistics.
|
|
*/
|
|
void
|
|
statclock(frame)
|
|
register struct clockframe *frame;
|
|
{
|
|
#ifdef GPROF
|
|
register struct gmonparam *g;
|
|
#endif
|
|
register struct proc *p;
|
|
register int i;
|
|
struct pstats *pstats;
|
|
long rss;
|
|
struct rusage *ru;
|
|
struct vmspace *vm;
|
|
|
|
if (CLKF_USERMODE(frame)) {
|
|
p = curproc;
|
|
if (p->p_flag & P_PROFIL)
|
|
addupc_intr(p, CLKF_PC(frame), 1);
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
if (stathz != 0)
|
|
forward_statclock(pscnt);
|
|
#endif
|
|
if (--pscnt > 0)
|
|
return;
|
|
/*
|
|
* Came from user mode; CPU was in user state.
|
|
* If this process is being profiled record the tick.
|
|
*/
|
|
p->p_uticks++;
|
|
if (p->p_nice > NZERO)
|
|
cp_time[CP_NICE]++;
|
|
else
|
|
cp_time[CP_USER]++;
|
|
} else {
|
|
#ifdef GPROF
|
|
/*
|
|
* Kernel statistics are just like addupc_intr, only easier.
|
|
*/
|
|
g = &_gmonparam;
|
|
if (g->state == GMON_PROF_ON) {
|
|
i = CLKF_PC(frame) - g->lowpc;
|
|
if (i < g->textsize) {
|
|
i /= HISTFRACTION * sizeof(*g->kcount);
|
|
g->kcount[i]++;
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
if (stathz != 0)
|
|
forward_statclock(pscnt);
|
|
#endif
|
|
if (--pscnt > 0)
|
|
return;
|
|
/*
|
|
* Came from kernel mode, so we were:
|
|
* - handling an interrupt,
|
|
* - doing syscall or trap work on behalf of the current
|
|
* user process, or
|
|
* - spinning in the idle loop.
|
|
* Whichever it is, charge the time as appropriate.
|
|
* Note that we charge interrupts to the current process,
|
|
* regardless of whether they are ``for'' that process,
|
|
* so that we know how much of its real time was spent
|
|
* in ``non-process'' (i.e., interrupt) work.
|
|
*/
|
|
p = curproc;
|
|
if (CLKF_INTR(frame)) {
|
|
if (p != NULL)
|
|
p->p_iticks++;
|
|
cp_time[CP_INTR]++;
|
|
} else if (p != NULL) {
|
|
p->p_sticks++;
|
|
cp_time[CP_SYS]++;
|
|
} else
|
|
cp_time[CP_IDLE]++;
|
|
}
|
|
pscnt = psdiv;
|
|
|
|
/*
|
|
* We maintain statistics shown by user-level statistics
|
|
* programs: the amount of time in each cpu state.
|
|
*/
|
|
|
|
/*
|
|
* We adjust the priority of the current process. The priority of
|
|
* a process gets worse as it accumulates CPU time. The cpu usage
|
|
* estimator (p_estcpu) is increased here. The formula for computing
|
|
* priorities (in kern_synch.c) will compute a different value each
|
|
* time p_estcpu increases by 4. The cpu usage estimator ramps up
|
|
* quite quickly when the process is running (linearly), and decays
|
|
* away exponentially, at a rate which is proportionally slower when
|
|
* the system is busy. The basic principal is that the system will
|
|
* 90% forget that the process used a lot of CPU time in 5 * loadav
|
|
* seconds. This causes the system to favor processes which haven't
|
|
* run much recently, and to round-robin among other processes.
|
|
*/
|
|
if (p != NULL) {
|
|
p->p_cpticks++;
|
|
if (++p->p_estcpu == 0)
|
|
p->p_estcpu--;
|
|
if ((p->p_estcpu & 3) == 0) {
|
|
resetpriority(p);
|
|
if (p->p_priority >= PUSER)
|
|
p->p_priority = p->p_usrpri;
|
|
}
|
|
|
|
/* Update resource usage integrals and maximums. */
|
|
if ((pstats = p->p_stats) != NULL &&
|
|
(ru = &pstats->p_ru) != NULL &&
|
|
(vm = p->p_vmspace) != NULL) {
|
|
ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
|
|
ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
|
|
ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
|
|
rss = vm->vm_pmap.pm_stats.resident_count *
|
|
PAGE_SIZE / 1024;
|
|
if (ru->ru_maxrss < rss)
|
|
ru->ru_maxrss = rss;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return information about system clocks.
|
|
*/
|
|
static int
|
|
sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
|
|
{
|
|
struct clockinfo clkinfo;
|
|
/*
|
|
* Construct clockinfo structure.
|
|
*/
|
|
clkinfo.hz = hz;
|
|
clkinfo.tick = tick;
|
|
clkinfo.tickadj = tickadj;
|
|
clkinfo.profhz = profhz;
|
|
clkinfo.stathz = stathz ? stathz : hz;
|
|
return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
|
|
0, 0, sysctl_kern_clockrate, "S,clockinfo","");
|
|
|
|
static __inline unsigned
|
|
tco_delta(struct timecounter *tc)
|
|
{
|
|
|
|
return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
|
|
tc->tc_counter_mask);
|
|
}
|
|
|
|
/*
|
|
* We have four functions for looking at the clock, two for microseconds
|
|
* and two for nanoseconds. For each there is fast but less precise
|
|
* version "get{nano|micro}time" which will return a time which is up
|
|
* to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
|
|
* will return a timestamp which is as precise as possible.
|
|
*/
|
|
|
|
void
|
|
getmicrotime(struct timeval *tvp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
*tvp = tc->tc_microtime;
|
|
}
|
|
|
|
void
|
|
getnanotime(struct timespec *tsp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
*tsp = tc->tc_nanotime;
|
|
}
|
|
|
|
void
|
|
microtime(struct timeval *tv)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = (struct timecounter *)timecounter;
|
|
tv->tv_sec = tc->tc_offset_sec;
|
|
tv->tv_usec = tc->tc_offset_micro;
|
|
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
|
|
tv->tv_usec += boottime.tv_usec;
|
|
tv->tv_sec += boottime.tv_sec;
|
|
while (tv->tv_usec >= 1000000) {
|
|
tv->tv_usec -= 1000000;
|
|
tv->tv_sec++;
|
|
}
|
|
}
|
|
|
|
void
|
|
nanotime(struct timespec *ts)
|
|
{
|
|
unsigned count;
|
|
u_int64_t delta;
|
|
struct timecounter *tc;
|
|
|
|
tc = (struct timecounter *)timecounter;
|
|
ts->tv_sec = tc->tc_offset_sec;
|
|
count = tco_delta(tc);
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
|
|
delta += boottime.tv_usec * 1000;
|
|
ts->tv_sec += boottime.tv_sec;
|
|
while (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
ts->tv_sec++;
|
|
}
|
|
ts->tv_nsec = delta;
|
|
}
|
|
|
|
void
|
|
timecounter_timespec(unsigned count, struct timespec *ts)
|
|
{
|
|
u_int64_t delta;
|
|
struct timecounter *tc;
|
|
|
|
tc = (struct timecounter *)timecounter;
|
|
ts->tv_sec = tc->tc_offset_sec;
|
|
count -= tc->tc_offset_count;
|
|
count &= tc->tc_counter_mask;
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
|
|
delta += boottime.tv_usec * 1000;
|
|
ts->tv_sec += boottime.tv_sec;
|
|
while (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
ts->tv_sec++;
|
|
}
|
|
ts->tv_nsec = delta;
|
|
}
|
|
|
|
void
|
|
getmicrouptime(struct timeval *tvp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
tvp->tv_sec = tc->tc_offset_sec;
|
|
tvp->tv_usec = tc->tc_offset_micro;
|
|
}
|
|
|
|
void
|
|
getnanouptime(struct timespec *tsp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
tsp->tv_sec = tc->tc_offset_sec;
|
|
tsp->tv_nsec = tc->tc_offset_nano >> 32;
|
|
}
|
|
|
|
void
|
|
microuptime(struct timeval *tv)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = (struct timecounter *)timecounter;
|
|
tv->tv_sec = tc->tc_offset_sec;
|
|
tv->tv_usec = tc->tc_offset_micro;
|
|
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
|
|
if (tv->tv_usec >= 1000000) {
|
|
tv->tv_usec -= 1000000;
|
|
tv->tv_sec++;
|
|
}
|
|
}
|
|
|
|
void
|
|
nanouptime(struct timespec *tv)
|
|
{
|
|
unsigned count;
|
|
u_int64_t delta;
|
|
struct timecounter *tc;
|
|
|
|
tc = (struct timecounter *)timecounter;
|
|
tv->tv_sec = tc->tc_offset_sec;
|
|
count = tco_delta(tc);
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
|
|
if (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
tv->tv_sec++;
|
|
}
|
|
tv->tv_nsec = delta;
|
|
}
|
|
|
|
static void
|
|
tco_setscales(struct timecounter *tc)
|
|
{
|
|
u_int64_t scale;
|
|
|
|
scale = 1000000000LL << 32;
|
|
if (tc->tc_adjustment > 0)
|
|
scale += (tc->tc_adjustment * 1000LL) << 10;
|
|
else
|
|
scale -= (-tc->tc_adjustment * 1000LL) << 10;
|
|
scale /= tc->tc_frequency;
|
|
tc->tc_scale_micro = scale / 1000;
|
|
tc->tc_scale_nano_f = scale & 0xffffffff;
|
|
tc->tc_scale_nano_i = scale >> 32;
|
|
}
|
|
|
|
void
|
|
init_timecounter(struct timecounter *tc)
|
|
{
|
|
struct timespec ts0, ts1;
|
|
int i;
|
|
|
|
tc->tc_adjustment = 0;
|
|
tco_setscales(tc);
|
|
tc->tc_offset_count = tc->tc_get_timecount(tc);
|
|
tc[0].tc_tweak = &tc[0];
|
|
tc[2] = tc[1] = tc[0];
|
|
tc[1].tc_other = &tc[2];
|
|
tc[2].tc_other = &tc[1];
|
|
if (!timecounter || !strcmp(timecounter->tc_name, "dummy"))
|
|
timecounter = &tc[2];
|
|
tc = &tc[1];
|
|
|
|
/*
|
|
* Figure out the cost of calling this timecounter.
|
|
*/
|
|
nanotime(&ts0);
|
|
for (i = 0; i < 256; i ++)
|
|
tc->tc_get_timecount(tc);
|
|
nanotime(&ts1);
|
|
ts1.tv_sec -= ts0.tv_sec;
|
|
tc->tc_cost = ts1.tv_sec * 1000000000 + ts1.tv_nsec - ts0.tv_nsec;
|
|
tc->tc_cost >>= 8;
|
|
if (print_tci && strcmp(tc->tc_name, "dummy"))
|
|
printf("Timecounter \"%s\" frequency %lu Hz cost %u ns\n",
|
|
tc->tc_name, (u_long)tc->tc_frequency, tc->tc_cost);
|
|
|
|
/* XXX: For now always start using the counter. */
|
|
tc->tc_offset_count = tc->tc_get_timecount(tc);
|
|
nanouptime(&ts1);
|
|
tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
|
|
tc->tc_offset_micro = ts1.tv_nsec / 1000;
|
|
tc->tc_offset_sec = ts1.tv_sec;
|
|
timecounter = tc;
|
|
}
|
|
|
|
void
|
|
set_timecounter(struct timespec *ts)
|
|
{
|
|
struct timespec ts2;
|
|
|
|
nanouptime(&ts2);
|
|
boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
|
|
boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
|
|
if (boottime.tv_usec < 0) {
|
|
boottime.tv_usec += 1000000;
|
|
boottime.tv_sec--;
|
|
}
|
|
/* fiddle all the little crinkly bits around the fiords... */
|
|
tco_forward();
|
|
}
|
|
|
|
|
|
#if 0 /* Currently unused */
|
|
void
|
|
switch_timecounter(struct timecounter *newtc)
|
|
{
|
|
int s;
|
|
struct timecounter *tc;
|
|
struct timespec ts;
|
|
|
|
s = splclock();
|
|
tc = timecounter;
|
|
if (newtc == tc || newtc == tc->tc_other) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
nanouptime(&ts);
|
|
newtc->tc_offset_sec = ts.tv_sec;
|
|
newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
|
|
newtc->tc_offset_micro = ts.tv_nsec / 1000;
|
|
newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
|
|
timecounter = newtc;
|
|
splx(s);
|
|
}
|
|
#endif
|
|
|
|
static struct timecounter *
|
|
sync_other_counter(void)
|
|
{
|
|
struct timecounter *tc, *tcn, *tco;
|
|
unsigned delta;
|
|
|
|
tco = timecounter;
|
|
tc = tco->tc_other;
|
|
tcn = tc->tc_other;
|
|
*tc = *tco;
|
|
tc->tc_other = tcn;
|
|
delta = tco_delta(tc);
|
|
tc->tc_offset_count += delta;
|
|
tc->tc_offset_count &= tc->tc_counter_mask;
|
|
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
|
|
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
|
|
return (tc);
|
|
}
|
|
|
|
static void
|
|
tco_forward(void)
|
|
{
|
|
struct timecounter *tc, *tco;
|
|
|
|
tco = timecounter;
|
|
tc = sync_other_counter();
|
|
/*
|
|
* We may be inducing a tiny error here, the tc_poll_pps() may
|
|
* process a latched count which happens after the tco_delta()
|
|
* in sync_other_counter(), which would extend the previous
|
|
* counters parameters into the domain of this new one.
|
|
* Since the timewindow is very small for this, the error is
|
|
* going to be only a few weenieseconds (as Dave Mills would
|
|
* say), so lets just not talk more about it, OK ?
|
|
*/
|
|
if (tco->tc_poll_pps)
|
|
tco->tc_poll_pps(tco);
|
|
if (timedelta != 0) {
|
|
tc->tc_offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
|
|
timedelta -= tickdelta;
|
|
}
|
|
|
|
while (tc->tc_offset_nano >= 1000000000ULL << 32) {
|
|
tc->tc_offset_nano -= 1000000000ULL << 32;
|
|
tc->tc_offset_sec++;
|
|
tc->tc_frequency = tc->tc_tweak->tc_frequency;
|
|
tc->tc_adjustment = tc->tc_tweak->tc_adjustment;
|
|
ntp_update_second(tc); /* XXX only needed if xntpd runs */
|
|
tco_setscales(tc);
|
|
}
|
|
|
|
tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
|
|
|
|
/* Figure out the wall-clock time */
|
|
tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
|
|
tc->tc_nanotime.tv_nsec =
|
|
(tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
|
|
tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
|
|
if (tc->tc_nanotime.tv_nsec >= 1000000000) {
|
|
tc->tc_nanotime.tv_nsec -= 1000000000;
|
|
tc->tc_microtime.tv_usec -= 1000000;
|
|
tc->tc_nanotime.tv_sec++;
|
|
}
|
|
time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
|
|
|
|
timecounter = tc;
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
|
|
{
|
|
|
|
return (sysctl_handle_opaque(oidp,
|
|
&timecounter->tc_tweak->tc_frequency,
|
|
sizeof(timecounter->tc_tweak->tc_frequency), req));
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
|
|
{
|
|
|
|
return (sysctl_handle_opaque(oidp,
|
|
&timecounter->tc_tweak->tc_adjustment,
|
|
sizeof(timecounter->tc_tweak->tc_adjustment), req));
|
|
}
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
|
|
|
|
SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");
|
|
|
|
SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
|
|
|
|
/*
|
|
* Implement a dummy timecounter which we can use until we get a real one
|
|
* in the air. This allows the console and other early stuff to use
|
|
* timeservices.
|
|
*/
|
|
|
|
static unsigned
|
|
dummy_get_timecount(struct timecounter *tc)
|
|
{
|
|
static unsigned now;
|
|
return (++now);
|
|
}
|
|
|
|
static struct timecounter dummy_timecounter[3] = {
|
|
{
|
|
dummy_get_timecount,
|
|
0,
|
|
~0u,
|
|
1000000,
|
|
"dummy"
|
|
}
|
|
};
|
|
|
|
static void
|
|
initdummytimecounter(void *dummy)
|
|
{
|
|
init_timecounter(dummy_timecounter);
|
|
}
|
|
|
|
SYSINIT(dummytc, SI_SUB_CONSOLE, SI_ORDER_FIRST, initdummytimecounter, NULL)
|