mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-18 00:21:25 +01:00
307d80be7a
and into ether_input(). It was silly to have bpf want this one way and ether_input want it another way. Ripped out trailer support from the few remaining drivers that still had it.
1158 lines
33 KiB
C
1158 lines
33 KiB
C
/*-
|
||
* Copyright (c) 1994 Matt Thomas (thomas@lkg.dec.com)
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. The name of the author may not be used to endorse or promote products
|
||
* derived from this software withough specific prior written permission
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*
|
||
* $Id: if_de.c,v 1.7 1994/11/22 09:47:31 davidg Exp $
|
||
*
|
||
*/
|
||
|
||
/*
|
||
* DEC DC21040 PCI Ethernet Controller
|
||
*
|
||
* Written by Matt Thomas
|
||
* BPF support code stolen directly from if_ec.c
|
||
*
|
||
* This driver supports the DEC DE435 or any other PCI
|
||
* board which support DC21040.
|
||
*/
|
||
|
||
#include "de.h"
|
||
#if NDE > 0
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/systm.h>
|
||
#include <sys/mbuf.h>
|
||
#include <sys/protosw.h>
|
||
#include <sys/socket.h>
|
||
#include <sys/ioctl.h>
|
||
#include <sys/errno.h>
|
||
#include <sys/malloc.h>
|
||
|
||
#include <net/if.h>
|
||
#include <net/if_types.h>
|
||
#include <net/if_dl.h>
|
||
#include <net/route.h>
|
||
|
||
#include "bpfilter.h"
|
||
#if NBPFILTER > 0
|
||
#include <net/bpf.h>
|
||
#include <net/bpfdesc.h>
|
||
#endif
|
||
|
||
#ifdef INET
|
||
#include <netinet/in.h>
|
||
#include <netinet/in_systm.h>
|
||
#include <netinet/in_var.h>
|
||
#include <netinet/ip.h>
|
||
#include <netinet/if_ether.h>
|
||
#endif
|
||
|
||
#ifdef NS
|
||
#include <netns/ns.h>
|
||
#include <netns/ns_if.h>
|
||
#endif
|
||
|
||
#include <vm/vm.h>
|
||
#include <vm/vm_kern.h>
|
||
#include <vm/vm_param.h>
|
||
|
||
|
||
#include <pci.h>
|
||
#if NPCI > 0
|
||
#include <i386/pci/pcireg.h>
|
||
#endif
|
||
#include <i386/isa/icu.h>
|
||
#include <i386/pci/dc21040.h>
|
||
|
||
/*
|
||
* This module supports the DEC DC21040 PCI Ethernet Controller.
|
||
*/
|
||
|
||
typedef struct {
|
||
unsigned long addr;
|
||
unsigned long length;
|
||
} tulip_addrvec_t;
|
||
|
||
typedef struct {
|
||
tulip_desc_t *ri_first;
|
||
tulip_desc_t *ri_last;
|
||
tulip_desc_t *ri_nextin;
|
||
tulip_desc_t *ri_nextout;
|
||
int ri_max;
|
||
int ri_free;
|
||
} tulip_ringinfo_t;
|
||
|
||
typedef struct {
|
||
volatile tulip_uint32_t *csr_busmode; /* CSR0 */
|
||
volatile tulip_uint32_t *csr_txpoll; /* CSR1 */
|
||
volatile tulip_uint32_t *csr_rxpoll; /* CSR2 */
|
||
volatile tulip_uint32_t *csr_rxlist; /* CSR3 */
|
||
volatile tulip_uint32_t *csr_txlist; /* CSR4 */
|
||
volatile tulip_uint32_t *csr_status; /* CSR5 */
|
||
volatile tulip_uint32_t *csr_command; /* CSR6 */
|
||
volatile tulip_uint32_t *csr_intr; /* CSR7 */
|
||
volatile tulip_uint32_t *csr_missed_frame; /* CSR8 */
|
||
volatile tulip_sint32_t *csr_enetrom; /* CSR9 */
|
||
volatile tulip_uint32_t *csr_reserved; /* CSR10 */
|
||
volatile tulip_uint32_t *csr_full_duplex; /* CSR11 */
|
||
volatile tulip_uint32_t *csr_sia_status; /* CSR12 */
|
||
volatile tulip_uint32_t *csr_sia_connectivity; /* CSR13 */
|
||
volatile tulip_uint32_t *csr_sia_tx_rx; /* CSR14 */
|
||
volatile tulip_uint32_t *csr_sia_general; /* CSR15 */
|
||
} tulip_regfile_t;
|
||
|
||
/*
|
||
* The DC21040 has a stupid restriction in that the receive
|
||
* buffers must be longword aligned. But since Ethernet
|
||
* headers are not a multiple of longwords in size this forces
|
||
* the data to non-longword aligned. Since IP requires the
|
||
* data to be longword aligned, we need to copy it after it has
|
||
* been DMA'ed in our memory.
|
||
*
|
||
* Since we have to copy it anyways, we might as well as allocate
|
||
* dedicated receive space for the input. This allows to use a
|
||
* small receive buffer size and more ring entries to be able to
|
||
* better keep with a flood of tiny Ethernet packets.
|
||
*
|
||
* The receive space MUST ALWAYS be a multiple of the page size.
|
||
* And the number of receive descriptors multiplied by the size
|
||
* of the receive buffers must equal the recevive space. This
|
||
* is so that we can manipulate the page tables so that even if a
|
||
* packet wraps around the end of the receive space, we can
|
||
* treat it as virtually contiguous.
|
||
*/
|
||
#define TULIP_RXBUFSIZE 512
|
||
#define TULIP_RXDESCS 128
|
||
#define TULIP_RXSPACE (TULIP_RXBUFSIZE * TULIP_RXDESCS)
|
||
#define TULIP_TXDESCS 128
|
||
|
||
typedef struct {
|
||
struct arpcom tulip_ac;
|
||
tulip_regfile_t tulip_csrs;
|
||
vm_offset_t tulip_rxspace;
|
||
unsigned tulip_flags;
|
||
#define TULIP_WANTSETUP 0x01
|
||
#define TULIP_WANTHASH 0x02
|
||
#define TULIP_DOINGSETUP 0x04
|
||
#define TULIP_ALTPHYS 0x08 /* use AUI */
|
||
unsigned char tulip_rombuf[32];
|
||
tulip_uint32_t tulip_setupbuf[192/sizeof(tulip_uint32_t)];
|
||
tulip_uint32_t tulip_setupdata[192/sizeof(tulip_uint32_t)];
|
||
tulip_uint32_t tulip_intrmask;
|
||
tulip_uint32_t tulip_cmdmode;
|
||
tulip_uint32_t tulip_revinfo;
|
||
#if NBPFILTER > 0
|
||
caddr_t tulip_bpf; /* BPF context */
|
||
#endif
|
||
struct ifqueue tulip_txq;
|
||
tulip_ringinfo_t tulip_rxinfo;
|
||
tulip_ringinfo_t tulip_txinfo;
|
||
} tulip_softc_t;
|
||
|
||
#ifndef IFF_ALTPHYS
|
||
#define IFF_ALTPHYS IFF_LINK0 /* In case it isn't defined */
|
||
#endif
|
||
typedef enum { TULIP_DC21040, TULIP_DC21140 } tulip_chipid_t;
|
||
const char *tulip_chipdescs[] = {
|
||
"DC21040 [10Mb/s]",
|
||
"DC21140 [100Mb/s]",
|
||
};
|
||
|
||
tulip_softc_t *tulips[NDE];
|
||
tulip_chipid_t tulip_chipids[NDE];
|
||
|
||
#define tulip_if tulip_ac.ac_if
|
||
#define tulip_unit tulip_ac.ac_if.if_unit
|
||
#define tulip_name tulip_ac.ac_if.if_name
|
||
#define tulip_hwaddr tulip_ac.ac_enaddr
|
||
|
||
#define TULIP_CRC32_POLY 0xEDB88320UL /* CRC-32 Poly -- Little Endian */
|
||
#define TULIP_CHECK_RXCRC 0
|
||
#define TULIP_MAX_TXSEG 30
|
||
|
||
#define TULIP_ADDREQUAL(a1, a2) \
|
||
(((u_short *)a1)[0] == ((u_short *)a2)[0] \
|
||
&& ((u_short *)a1)[1] == ((u_short *)a2)[1] \
|
||
&& ((u_short *)a1)[2] == ((u_short *)a2)[2])
|
||
#define TULIP_ADDRBRDCST(a1) \
|
||
(((u_short *)a1)[0] == 0xFFFFU \
|
||
&& ((u_short *)a1)[1] == 0xFFFFU \
|
||
&& ((u_short *)a1)[2] == 0xFFFFU)
|
||
|
||
static void tulip_start(struct ifnet *ifp);
|
||
static void tulip_addr_filter(tulip_softc_t *sc);
|
||
|
||
#if __FreeBSD__ > 1
|
||
#define TULIP_IFRESET_ARGS int unit
|
||
#define TULIP_RESET(sc) tulip_reset((sc)->tulip_unit)
|
||
#else
|
||
#define TULIP_IFRESET_ARGS int unit, int uban
|
||
#define TULIP_RESET(sc) tulip_reset((sc)->tulip_unit, 0)
|
||
#endif
|
||
|
||
static void
|
||
tulip_reset(
|
||
TULIP_IFRESET_ARGS)
|
||
{
|
||
tulip_softc_t *sc = tulips[unit];
|
||
tulip_ringinfo_t *ri;
|
||
tulip_desc_t *di;
|
||
vm_offset_t vmoff;
|
||
|
||
*sc->tulip_csrs.csr_busmode = TULIP_BUSMODE_SWRESET;
|
||
DELAY(10); /* Wait 10 microsends (actually 50 PCI cycles but at
|
||
33MHz that comes to two microseconds but wait a
|
||
bit longer anyways) */
|
||
|
||
/*
|
||
* Use the
|
||
*/
|
||
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_RESET;
|
||
if (sc->tulip_if.if_flags & IFF_ALTPHYS) {
|
||
if ((sc->tulip_flags & TULIP_ALTPHYS) == 0)
|
||
printf("%s%d: enabling Thinwire/AUI port\n",
|
||
sc->tulip_if.if_name, sc->tulip_if.if_unit);
|
||
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_AUI;
|
||
sc->tulip_flags |= TULIP_ALTPHYS;
|
||
} else {
|
||
if (sc->tulip_flags & TULIP_ALTPHYS)
|
||
printf("%s%d: enabling 10baseT/UTP port\n",
|
||
sc->tulip_if.if_name, sc->tulip_if.if_unit);
|
||
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_10BASET;
|
||
sc->tulip_flags &= ~TULIP_ALTPHYS;
|
||
}
|
||
*sc->tulip_csrs.csr_txlist = vtophys(&sc->tulip_txinfo.ri_first[0]);
|
||
*sc->tulip_csrs.csr_rxlist = vtophys(&sc->tulip_rxinfo.ri_first[0]);
|
||
*sc->tulip_csrs.csr_intr = 0;
|
||
*sc->tulip_csrs.csr_busmode = 0x4800;
|
||
|
||
sc->tulip_txq.ifq_maxlen = TULIP_TXDESCS;
|
||
/*
|
||
* Free all the mbufs that were on the transmit ring.
|
||
*/
|
||
for (;;) {
|
||
struct mbuf *m;
|
||
IF_DEQUEUE(&sc->tulip_txq, m);
|
||
if (m == NULL)
|
||
break;
|
||
m_freem(m);
|
||
}
|
||
|
||
ri = &sc->tulip_txinfo;
|
||
ri->ri_nextin = ri->ri_nextout = ri->ri_first;
|
||
ri->ri_free = ri->ri_max;
|
||
for (di = ri->ri_first; di < ri->ri_last; di++)
|
||
di->d_status = 0;
|
||
|
||
/*
|
||
* We need to collect all the mbufs were on the
|
||
* receive ring before we reinit it either to put
|
||
* them back on or to know if we have to allocate
|
||
* more.
|
||
*/
|
||
ri = &sc->tulip_rxinfo;
|
||
ri->ri_nextin = ri->ri_nextout = ri->ri_first;
|
||
ri->ri_free = ri->ri_max;
|
||
for (vmoff = vtophys(sc->tulip_rxspace), di = ri->ri_first;
|
||
di < ri->ri_last; di++, vmoff += TULIP_RXBUFSIZE) {
|
||
di->d_status |= TULIP_DSTS_OWNER;
|
||
di->d_length1 = TULIP_RXBUFSIZE; di->d_addr1 = vmoff;
|
||
di->d_length2 = 0; di->d_addr2 = 0;
|
||
}
|
||
|
||
sc->tulip_intrmask = TULIP_STS_NORMALINTR|TULIP_STS_RXINTR|TULIP_STS_TXINTR
|
||
|TULIP_STS_ABNRMLINTR|TULIP_STS_SYSERROR|TULIP_STS_TXSTOPPED
|
||
|TULIP_STS_TXBABBLE|TULIP_STS_LINKFAIL|TULIP_STS_RXSTOPPED;
|
||
sc->tulip_flags &= ~(TULIP_DOINGSETUP|TULIP_WANTSETUP);
|
||
tulip_addr_filter(sc);
|
||
}
|
||
|
||
static void
|
||
tulip_init(
|
||
int unit)
|
||
{
|
||
tulip_softc_t *sc = tulips[unit];
|
||
|
||
if (sc->tulip_if.if_flags & IFF_UP) {
|
||
sc->tulip_if.if_flags |= IFF_RUNNING;
|
||
if (sc->tulip_if.if_flags & IFF_PROMISC) {
|
||
sc->tulip_cmdmode |= TULIP_CMD_PROMISCUOUS;
|
||
} else {
|
||
sc->tulip_cmdmode &= ~TULIP_CMD_PROMISCUOUS;
|
||
if (sc->tulip_if.if_flags & IFF_ALLMULTI) {
|
||
sc->tulip_cmdmode |= TULIP_CMD_ALLMULTI;
|
||
} else {
|
||
sc->tulip_cmdmode &= ~TULIP_CMD_ALLMULTI;
|
||
}
|
||
}
|
||
sc->tulip_cmdmode |= TULIP_CMD_TXRUN;
|
||
if ((sc->tulip_flags & TULIP_WANTSETUP) == 0) {
|
||
sc->tulip_cmdmode |= TULIP_CMD_RXRUN;
|
||
sc->tulip_intrmask |= TULIP_STS_RXSTOPPED;
|
||
} else {
|
||
sc->tulip_intrmask &= ~TULIP_STS_RXSTOPPED;
|
||
tulip_start(&sc->tulip_if);
|
||
}
|
||
sc->tulip_cmdmode |= TULIP_CMD_THRSHLD160;
|
||
*sc->tulip_csrs.csr_intr = sc->tulip_intrmask;
|
||
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
|
||
} else {
|
||
TULIP_RESET(sc);
|
||
sc->tulip_if.if_flags &= ~IFF_RUNNING;
|
||
}
|
||
}
|
||
|
||
|
||
#if TULIP_CHECK_RXCRC
|
||
static unsigned
|
||
tulip_crc32(
|
||
u_char *addr,
|
||
int len)
|
||
{
|
||
unsigned int crc = 0xFFFFFFFF;
|
||
static unsigned int crctbl[256];
|
||
int idx;
|
||
static int done;
|
||
/*
|
||
* initialize the multicast address CRC table
|
||
*/
|
||
for (idx = 0; !done && idx < 256; idx++) {
|
||
unsigned int tmp = idx;
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
|
||
crctbl[idx] = tmp;
|
||
}
|
||
done = 1;
|
||
|
||
while (len-- > 0)
|
||
crc = (crc >> 8) ^ crctbl[*addr++] ^ crctbl[crc & 0xFF];
|
||
|
||
return crc;
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
tulip_rx_intr(
|
||
tulip_softc_t *sc)
|
||
{
|
||
tulip_ringinfo_t *ri = &sc->tulip_rxinfo;
|
||
struct ifnet *ifp = &sc->tulip_if;
|
||
|
||
for (;;) {
|
||
tulip_desc_t *eop;
|
||
int total_len, ndescs;
|
||
caddr_t bufaddr = (caddr_t) sc->tulip_rxspace;
|
||
|
||
for (ndescs = 1, eop = ri->ri_nextin;; ndescs++) {
|
||
if (((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_OWNER)
|
||
return;
|
||
|
||
if (eop->d_status & TULIP_DSTS_RxLASTDESC)
|
||
break;
|
||
if (++eop == ri->ri_last)
|
||
eop = ri->ri_first;
|
||
}
|
||
|
||
bufaddr += TULIP_RXBUFSIZE * (ri->ri_nextin - ri->ri_first);
|
||
total_len = ((eop->d_status >> 16) & 0x7FF) - 4;
|
||
|
||
if ((eop->d_status & TULIP_DSTS_ERRSUM) == 0) {
|
||
struct ether_header eh;
|
||
struct mbuf *m;
|
||
|
||
#if TULIP_CHECK_RXCRC
|
||
unsigned crc = tulip_crc32(bufaddr, total_len);
|
||
if (~crc != *((unsigned *) &bufaddr[total_len])) {
|
||
printf("de0: bad rx crc: %08x [rx] != %08x\n",
|
||
*((unsigned *) &bufaddr[total_len]), ~crc);
|
||
goto next;
|
||
}
|
||
#endif
|
||
eh = *(struct ether_header *) bufaddr;
|
||
#if NBPFILTER > 0
|
||
if (sc->tulip_bpf != NULL) {
|
||
bpf_tap(sc->tulip_bpf, bufaddr, total_len);
|
||
if (eh.ether_type != ETHERTYPE_IP && eh.ether_type != ETHERTYPE_ARP)
|
||
goto next;
|
||
if ((eh.ether_dhost[0] & 1) == 0 &&
|
||
!TULIP_ADDREQUAL(eh.ether_dhost, sc->tulip_ac.ac_enaddr))
|
||
goto next;
|
||
} else if (!TULIP_ADDREQUAL(eh.ether_dhost, sc->tulip_ac.ac_enaddr)
|
||
&& !TULIP_ADDRBRDCST(eh.ether_dhost)) {
|
||
goto next;
|
||
}
|
||
#endif
|
||
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
||
if (m != NULL) {
|
||
m->m_pkthdr.rcvif = ifp;
|
||
total_len -= sizeof(eh);
|
||
if (total_len > MHLEN) {
|
||
MCLGET(m, M_DONTWAIT);
|
||
if ((m->m_flags & M_EXT) == 0) {
|
||
m_freem(m);
|
||
ifp->if_ierrors++;
|
||
goto next;
|
||
}
|
||
}
|
||
bcopy(bufaddr + sizeof(eh), mtod(m, caddr_t), total_len);
|
||
m->m_len = m->m_pkthdr.len = total_len;
|
||
ether_input(ifp, &eh, m);
|
||
} else {
|
||
ifp->if_ierrors++;
|
||
}
|
||
} else {
|
||
ifp->if_ierrors++;
|
||
}
|
||
next:
|
||
ifp->if_ipackets++;
|
||
while (ndescs-- > 0) {
|
||
ri->ri_nextin->d_status |= TULIP_DSTS_OWNER;
|
||
if (++ri->ri_nextin == ri->ri_last)
|
||
ri->ri_nextin = ri->ri_first;
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
tulip_tx_intr(
|
||
tulip_softc_t *sc)
|
||
{
|
||
tulip_ringinfo_t *ri = &sc->tulip_txinfo;
|
||
struct mbuf *m;
|
||
int xmits = 0;
|
||
|
||
while (ri->ri_free < ri->ri_max) {
|
||
if (((volatile tulip_desc_t *) ri->ri_nextin)->d_status & TULIP_DSTS_OWNER)
|
||
break;
|
||
|
||
if (ri->ri_nextin->d_flag & TULIP_DFLAG_TxLASTSEG) {
|
||
if (ri->ri_nextin->d_flag & TULIP_DFLAG_TxSETUPPKT) {
|
||
/*
|
||
* We've just finished processing a setup packet.
|
||
* Mark that we can finished it. If there's not
|
||
* another pending, startup the TULIP receiver.
|
||
* Make sure we ack the RXSTOPPED so we won't get
|
||
* an abormal interrupt indication.
|
||
*/
|
||
sc->tulip_flags &= ~TULIP_DOINGSETUP;
|
||
if ((sc->tulip_flags & TULIP_WANTSETUP) == 0) {
|
||
sc->tulip_cmdmode |= TULIP_CMD_RXRUN;
|
||
sc->tulip_intrmask |= TULIP_STS_RXSTOPPED;
|
||
*sc->tulip_csrs.csr_status = TULIP_STS_RXSTOPPED;
|
||
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
|
||
*sc->tulip_csrs.csr_intr = sc->tulip_intrmask;
|
||
}
|
||
} else {
|
||
IF_DEQUEUE(&sc->tulip_txq, m);
|
||
m_freem(m);
|
||
sc->tulip_if.if_collisions +=
|
||
(ri->ri_nextin->d_status & TULIP_DSTS_TxCOLLMASK)
|
||
>> TULIP_DSTS_V_TxCOLLCNT;
|
||
if (ri->ri_nextin->d_status & TULIP_DSTS_ERRSUM)
|
||
sc->tulip_if.if_oerrors++;
|
||
xmits++;
|
||
}
|
||
}
|
||
|
||
if (++ri->ri_nextin == ri->ri_last)
|
||
ri->ri_nextin = ri->ri_first;
|
||
ri->ri_free++;
|
||
sc->tulip_if.if_flags &= ~IFF_OACTIVE;
|
||
}
|
||
sc->tulip_if.if_opackets += xmits;
|
||
return xmits;
|
||
}
|
||
|
||
static int
|
||
tulip_txsegment(
|
||
tulip_softc_t *sc,
|
||
struct mbuf *m,
|
||
tulip_addrvec_t *avp,
|
||
size_t maxseg)
|
||
{
|
||
int segcnt;
|
||
|
||
for (segcnt = 0; m; m = m->m_next) {
|
||
int len = m->m_len;
|
||
caddr_t addr = mtod(m, caddr_t);
|
||
unsigned clsize = CLBYTES - (((u_long) addr) & (CLBYTES-1));
|
||
|
||
while (len > 0) {
|
||
unsigned slen = min(len, clsize);
|
||
if (segcnt < maxseg) {
|
||
avp->addr = vtophys(addr);
|
||
avp->length = slen;
|
||
}
|
||
len -= slen;
|
||
addr += slen;
|
||
clsize = CLBYTES;
|
||
avp++;
|
||
segcnt++;
|
||
}
|
||
}
|
||
if (segcnt >= maxseg) {
|
||
printf("%s%d: tulip_txsegment: extremely fragmented packet encountered (%d segments)\n",
|
||
sc->tulip_name, sc->tulip_unit, segcnt);
|
||
return -1;
|
||
}
|
||
avp->addr = 0;
|
||
avp->length = 0;
|
||
return segcnt;
|
||
}
|
||
|
||
static void
|
||
tulip_start(
|
||
struct ifnet *ifp)
|
||
{
|
||
tulip_softc_t *sc = (tulip_softc_t *) ifp;
|
||
struct ifqueue *ifq = &ifp->if_snd;
|
||
tulip_ringinfo_t *ri = &sc->tulip_txinfo;
|
||
tulip_desc_t *sop, *eop;
|
||
struct mbuf *m;
|
||
tulip_addrvec_t addrvec[TULIP_MAX_TXSEG+1], *avp;
|
||
int segcnt;
|
||
tulip_uint32_t d_status;
|
||
|
||
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
||
return;
|
||
|
||
for (;;) {
|
||
if (sc->tulip_flags & TULIP_WANTSETUP) {
|
||
if ((sc->tulip_flags & TULIP_DOINGSETUP) || ri->ri_free == 1) {
|
||
ifp->if_flags |= IFF_OACTIVE;
|
||
return;
|
||
}
|
||
bcopy(sc->tulip_setupdata, sc->tulip_setupbuf,
|
||
sizeof(sc->tulip_setupbuf));
|
||
sc->tulip_flags &= ~TULIP_WANTSETUP;
|
||
sc->tulip_flags |= TULIP_DOINGSETUP;
|
||
ri->ri_free--;
|
||
ri->ri_nextout->d_flag &= TULIP_DFLAG_ENDRING|TULIP_DFLAG_CHAIN;
|
||
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxFIRSTSEG|TULIP_DFLAG_TxLASTSEG
|
||
|TULIP_DFLAG_TxSETUPPKT|TULIP_DFLAG_TxWANTINTR;
|
||
if (sc->tulip_flags & TULIP_WANTHASH)
|
||
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxHASHFILT;
|
||
ri->ri_nextout->d_length1 = sizeof(sc->tulip_setupbuf);
|
||
ri->ri_nextout->d_addr1 = vtophys(sc->tulip_setupbuf);
|
||
ri->ri_nextout->d_length2 = 0;
|
||
ri->ri_nextout->d_addr2 = 0;
|
||
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
|
||
*sc->tulip_csrs.csr_txpoll = 1;
|
||
/*
|
||
* Advance the ring for the next transmit packet.
|
||
*/
|
||
if (++ri->ri_nextout == ri->ri_last)
|
||
ri->ri_nextout = ri->ri_first;
|
||
}
|
||
|
||
IF_DEQUEUE(ifq, m);
|
||
if (m == NULL)
|
||
break;
|
||
|
||
/*
|
||
* First find out how many and which different pages
|
||
* the mbuf data occupies. Then check to see if we
|
||
* have enough descriptor space in our transmit ring
|
||
* to actually send it.
|
||
*/
|
||
segcnt = tulip_txsegment(sc, m, addrvec,
|
||
min(ri->ri_max - 1, TULIP_MAX_TXSEG));
|
||
if (segcnt < 0) {
|
||
struct mbuf *m0;
|
||
MGETHDR(m0, M_DONTWAIT, MT_DATA);
|
||
if (m0 != NULL) {
|
||
if (m->m_pkthdr.len > MHLEN) {
|
||
MCLGET(m0, M_DONTWAIT);
|
||
if ((m0->m_flags & M_EXT) == 0) {
|
||
m_freem(m);
|
||
continue;
|
||
}
|
||
}
|
||
m_copydata(m, 0, m0->m_pkthdr.len, mtod(m0, caddr_t));
|
||
m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len;
|
||
m_freem(m);
|
||
IF_PREPEND(ifq, m0);
|
||
continue;
|
||
} else {
|
||
m_freem(m);
|
||
continue;
|
||
}
|
||
}
|
||
if (ri->ri_free - 2 <= (segcnt + 1) >> 1)
|
||
break;
|
||
|
||
ri->ri_free -= (segcnt + 1) >> 1;
|
||
/*
|
||
* Now we fill in our transmit descriptors. This is
|
||
* a bit reminiscent of going on the Ark two by two
|
||
* since each descriptor for the TULIP can describe
|
||
* two buffers. So we advance through the address
|
||
* vector two entries at a time to to fill each
|
||
* descriptor. Clear the first and last segment bits
|
||
* in each descriptor (actually just clear everything
|
||
* but the end-of-ring or chain bits) to make sure
|
||
* we don't get messed up by previously sent packets.
|
||
*/
|
||
sop = ri->ri_nextout;
|
||
d_status = 0;
|
||
avp = addrvec;
|
||
do {
|
||
eop = ri->ri_nextout;
|
||
eop->d_flag &= TULIP_DFLAG_ENDRING|TULIP_DFLAG_CHAIN;
|
||
eop->d_status = d_status;
|
||
eop->d_addr1 = avp->addr; eop->d_length1 = avp->length; avp++;
|
||
eop->d_addr2 = avp->addr; eop->d_length2 = avp->length; avp++;
|
||
d_status = TULIP_DSTS_OWNER;
|
||
if (++ri->ri_nextout == ri->ri_last)
|
||
ri->ri_nextout = ri->ri_first;
|
||
} while ((segcnt -= 2) > 0);
|
||
#if NBPFILTER > 0
|
||
if (sc->tulip_bpf != NULL)
|
||
bpf_mtap(sc->tulip_bpf, m);
|
||
#endif
|
||
/*
|
||
* The descriptors have been filled in. Mark the first
|
||
* and last segments, indicate we want a transmit complete
|
||
* interrupt, give the descriptors to the TULIP, and tell
|
||
* it to transmit!
|
||
*/
|
||
|
||
IF_ENQUEUE(&sc->tulip_txq, m);
|
||
eop->d_flag |= TULIP_DFLAG_TxLASTSEG|TULIP_DFLAG_TxWANTINTR;
|
||
sop->d_flag |= TULIP_DFLAG_TxFIRSTSEG;
|
||
sop->d_status = TULIP_DSTS_OWNER;
|
||
|
||
*sc->tulip_csrs.csr_txpoll = 1;
|
||
}
|
||
if (m != NULL) {
|
||
ifp->if_flags |= IFF_OACTIVE;
|
||
IF_PREPEND(ifq, m);
|
||
}
|
||
}
|
||
|
||
static int
|
||
tulip_intr(
|
||
tulip_softc_t *sc)
|
||
{
|
||
tulip_uint32_t csr;
|
||
|
||
while ((csr = *sc->tulip_csrs.csr_status) & (TULIP_STS_NORMALINTR|TULIP_STS_ABNRMLINTR)) {
|
||
*sc->tulip_csrs.csr_status = csr & sc->tulip_intrmask;
|
||
|
||
if (csr & TULIP_STS_SYSERROR) {
|
||
if ((csr & TULIP_STS_ERRORMASK) == TULIP_STS_ERR_PARITY) {
|
||
TULIP_RESET(sc);
|
||
tulip_init(sc->tulip_unit);
|
||
return 1;
|
||
}
|
||
}
|
||
if (csr & TULIP_STS_ABNRMLINTR) {
|
||
printf("%s%d: abnormal interrupt: 0x%05x [0x%05x]\n",
|
||
sc->tulip_name, sc->tulip_unit, csr, csr & sc->tulip_intrmask);
|
||
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
|
||
}
|
||
if (csr & TULIP_STS_RXINTR)
|
||
tulip_rx_intr(sc);
|
||
if (sc->tulip_txinfo.ri_free < sc->tulip_txinfo.ri_max) {
|
||
tulip_tx_intr(sc);
|
||
tulip_start(&sc->tulip_if);
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* This is the standard method of reading the DEC Address ROMS.
|
||
*/
|
||
static int
|
||
tulip_read_macaddr(
|
||
tulip_softc_t *sc)
|
||
{
|
||
int cksum, rom_cksum, idx;
|
||
tulip_sint32_t csr;
|
||
unsigned char tmpbuf[8];
|
||
static u_char testpat[] = { 0xFF, 0, 0x55, 0xAA, 0xFF, 0, 0x55, 0xAA };
|
||
|
||
*sc->tulip_csrs.csr_enetrom = 1;
|
||
for (idx = 0; idx < 32; idx++) {
|
||
int cnt = 0;
|
||
while ((csr = *sc->tulip_csrs.csr_enetrom) < 0 && cnt < 10000)
|
||
cnt++;
|
||
sc->tulip_rombuf[idx] = csr & 0xFF;
|
||
}
|
||
|
||
if (bcmp(&sc->tulip_rombuf[0], &sc->tulip_rombuf[16], 8) != 0) {
|
||
/*
|
||
* Some folks don't use the standard ethernet rom format
|
||
* but instead just put the address in the first 6 bytes
|
||
* of the rom and let the rest be all 0xffs. (Can we say
|
||
* ZNYX???)
|
||
*/
|
||
for (idx = 6; idx < 32; idx++) {
|
||
if (sc->tulip_rombuf[idx] != 0xFF)
|
||
return -4;
|
||
}
|
||
/*
|
||
* Make sure the address is not multicast or locally assigned
|
||
* that the OUI is not 00-00-00.
|
||
*/
|
||
if ((sc->tulip_rombuf[0] & 3) != 0)
|
||
return -4;
|
||
if (sc->tulip_rombuf[0] == 0 && sc->tulip_rombuf[1] == 0
|
||
&& sc->tulip_rombuf[2] == 0)
|
||
return -4;
|
||
bcopy(sc->tulip_rombuf, sc->tulip_hwaddr, 6);
|
||
return 0;
|
||
}
|
||
if (bcmp(&sc->tulip_rombuf[24], testpat, 8) != 0)
|
||
return -3;
|
||
|
||
tmpbuf[0] = sc->tulip_rombuf[15]; tmpbuf[1] = sc->tulip_rombuf[14];
|
||
tmpbuf[2] = sc->tulip_rombuf[13]; tmpbuf[3] = sc->tulip_rombuf[12];
|
||
tmpbuf[4] = sc->tulip_rombuf[11]; tmpbuf[5] = sc->tulip_rombuf[10];
|
||
tmpbuf[6] = sc->tulip_rombuf[9]; tmpbuf[7] = sc->tulip_rombuf[8];
|
||
if (bcmp(&sc->tulip_rombuf[0], tmpbuf, 8) != 0)
|
||
return -2;
|
||
|
||
bcopy(sc->tulip_rombuf, sc->tulip_hwaddr, 6);
|
||
|
||
cksum = *(u_short *) &sc->tulip_hwaddr[0];
|
||
cksum *= 2;
|
||
if (cksum > 65535) cksum -= 65535;
|
||
cksum += *(u_short *) &sc->tulip_hwaddr[2];
|
||
if (cksum > 65535) cksum -= 65535;
|
||
cksum *= 2;
|
||
if (cksum > 65535) cksum -= 65535;
|
||
cksum += *(u_short *) &sc->tulip_hwaddr[4];
|
||
if (cksum >= 65535) cksum -= 65535;
|
||
|
||
rom_cksum = *(u_short *) &sc->tulip_rombuf[6];
|
||
|
||
if (cksum != rom_cksum)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
static unsigned
|
||
tulip_mchash(
|
||
unsigned char *mca)
|
||
{
|
||
u_int idx, bit, data, crc = 0xFFFFFFFFUL;
|
||
|
||
#ifdef __alpha
|
||
for (data = *(__unaligned u_long *) mca, bit = 0; bit < 48; bit++, data >>=
|
||
1)
|
||
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? TULIP_CRC32_POLY : 0);
|
||
#else
|
||
for (idx = 0; idx < 6; idx++)
|
||
for (data = *mca++, bit = 0; bit < 8; bit++, data >>= 1)
|
||
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? TULIP_CRC32_POLY : 0);
|
||
#endif
|
||
return crc & 0x1FF;
|
||
}
|
||
|
||
static void
|
||
tulip_addr_filter(
|
||
tulip_softc_t *sc)
|
||
{
|
||
tulip_uint32_t *sp = sc->tulip_setupdata;
|
||
struct ether_multistep step;
|
||
struct ether_multi *enm;
|
||
int i;
|
||
|
||
sc->tulip_flags &= ~TULIP_WANTHASH;
|
||
sc->tulip_flags |= TULIP_WANTSETUP;
|
||
sc->tulip_cmdmode &= ~TULIP_CMD_RXRUN;
|
||
sc->tulip_intrmask &= ~TULIP_STS_RXSTOPPED;
|
||
if (sc->tulip_ac.ac_multicnt > 14) {
|
||
unsigned hash;
|
||
/*
|
||
* If we have more than 14 multicasts, we have
|
||
* go into hash perfect mode (512 bit multicast
|
||
* hash and one perfect hardware).
|
||
*/
|
||
|
||
bzero(sc->tulip_setupdata, sizeof(sc->tulip_setupdata));
|
||
hash = tulip_mchash(etherbroadcastaddr);
|
||
sp[hash >> 4] |= 1 << (hash & 0xF);
|
||
ETHER_FIRST_MULTI(step, &sc->tulip_ac, enm);
|
||
while (enm != NULL) {
|
||
hash = tulip_mchash(enm->enm_addrlo);
|
||
sp[hash >> 4] |= 1 << (hash & 0xF);
|
||
ETHER_NEXT_MULTI(step, enm);
|
||
}
|
||
sc->tulip_cmdmode |= TULIP_WANTHASH;
|
||
sp[40] = ((u_short *) sc->tulip_ac.ac_enaddr)[0];
|
||
sp[41] = ((u_short *) sc->tulip_ac.ac_enaddr)[1];
|
||
sp[42] = ((u_short *) sc->tulip_ac.ac_enaddr)[2];
|
||
} else {
|
||
/*
|
||
* Else can get perfect filtering for 16 addresses.
|
||
*/
|
||
i = 0;
|
||
ETHER_FIRST_MULTI(step, &sc->tulip_ac, enm);
|
||
for (; enm != NULL; i++) {
|
||
*sp++ = ((u_short *) enm->enm_addrlo)[0];
|
||
*sp++ = ((u_short *) enm->enm_addrlo)[1];
|
||
*sp++ = ((u_short *) enm->enm_addrlo)[2];
|
||
ETHER_NEXT_MULTI(step, enm);
|
||
}
|
||
/*
|
||
* If an IP address is enabled, turn on broadcast
|
||
*/
|
||
if (sc->tulip_ac.ac_ipaddr.s_addr != 0) {
|
||
i++;
|
||
*sp++ = 0xFFFF;
|
||
*sp++ = 0xFFFF;
|
||
*sp++ = 0xFFFF;
|
||
}
|
||
/*
|
||
* Pad the rest with our hardware address
|
||
*/
|
||
for (; i < 16; i++) {
|
||
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[0];
|
||
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[1];
|
||
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[2];
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
tulip_ioctl(
|
||
struct ifnet *ifp,
|
||
int cmd,
|
||
caddr_t data)
|
||
{
|
||
tulip_softc_t *sc = tulips[ifp->if_unit];
|
||
struct ifaddr *ifa = (struct ifaddr *)data;
|
||
struct ifreq *ifr = (struct ifreq *) data;
|
||
int s, error = 0;
|
||
|
||
s = splimp();
|
||
|
||
switch (cmd) {
|
||
case SIOCSIFADDR: {
|
||
|
||
ifp->if_flags |= IFF_UP;
|
||
switch(ifa->ifa_addr->sa_family) {
|
||
#ifdef INET
|
||
case AF_INET: {
|
||
((struct arpcom *)ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr;
|
||
tulip_addr_filter(sc); /* reset multicast filtering */
|
||
(*ifp->if_init)(ifp->if_unit);
|
||
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
|
||
break;
|
||
}
|
||
#endif /* INET */
|
||
|
||
#ifdef NS
|
||
/* This magic copied from if_is.c; I don't use XNS,
|
||
* so I have no way of telling if this actually
|
||
* works or not.
|
||
*/
|
||
case AF_NS: {
|
||
struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
|
||
if (ns_nullhost(*ina)) {
|
||
ina->x_host = *(union ns_host *)(sc->tulip_ac.ac_enaddr);
|
||
} else {
|
||
ifp->if_flags &= ~IFF_RUNNING;
|
||
bcopy((caddr_t)ina->x_host.c_host,
|
||
(caddr_t)sc->tulip_ac.ac_enaddr,
|
||
sizeof sc->tulip_ac.ac_enaddr);
|
||
}
|
||
|
||
(*ifp->if_init)(ifp->if_unit);
|
||
break;
|
||
}
|
||
#endif /* NS */
|
||
|
||
default: {
|
||
(*ifp->if_init)(ifp->if_unit);
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case SIOCSIFFLAGS: {
|
||
/*
|
||
* Changing the connection forces a reset.
|
||
*/
|
||
if (sc->tulip_flags & TULIP_ALTPHYS) {
|
||
if ((ifp->if_flags & IFF_ALTPHYS) == 0)
|
||
TULIP_RESET(sc);
|
||
} else {
|
||
if (ifp->if_flags & IFF_ALTPHYS)
|
||
TULIP_RESET(sc);
|
||
}
|
||
(*ifp->if_init)(ifp->if_unit);
|
||
break;
|
||
}
|
||
|
||
case SIOCADDMULTI:
|
||
case SIOCDELMULTI: {
|
||
/*
|
||
* Update multicast listeners
|
||
*/
|
||
if (cmd == SIOCADDMULTI)
|
||
error = ether_addmulti(ifr, &sc->tulip_ac);
|
||
else
|
||
error = ether_delmulti(ifr, &sc->tulip_ac);
|
||
|
||
if (error == ENETRESET) {
|
||
tulip_addr_filter(sc); /* reset multicast filtering */
|
||
(*ifp->if_init)(ifp->if_unit);
|
||
error = 0;
|
||
}
|
||
break;
|
||
}
|
||
case SIOCSIFMTU:
|
||
/*
|
||
* Set the interface MTU.
|
||
*/
|
||
if (ifr->ifr_mtu > ETHERMTU) {
|
||
error = EINVAL;
|
||
} else {
|
||
ifp->if_mtu = ifr->ifr_mtu;
|
||
}
|
||
break;
|
||
|
||
default: {
|
||
error = EINVAL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
splx(s);
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
tulip_attach(
|
||
tulip_softc_t *sc)
|
||
{
|
||
struct ifnet *ifp = &sc->tulip_if;
|
||
int cnt;
|
||
|
||
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
||
|
||
*sc->tulip_csrs.csr_sia_connectivity = 0;
|
||
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_10BASET;
|
||
for (cnt = 0; cnt < 240000; cnt++) {
|
||
if ((*sc->tulip_csrs.csr_sia_status & TULIP_SIASTS_LINKFAIL) == 0)
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
if (*sc->tulip_csrs.csr_sia_status & TULIP_SIASTS_LINKFAIL) {
|
||
ifp->if_flags |= IFF_ALTPHYS;
|
||
} else {
|
||
sc->tulip_flags |= TULIP_ALTPHYS;
|
||
}
|
||
TULIP_RESET(sc);
|
||
|
||
ifp->if_init = tulip_init;
|
||
ifp->if_ioctl = tulip_ioctl;
|
||
ifp->if_output = ether_output;
|
||
ifp->if_reset = tulip_reset;
|
||
ifp->if_start = tulip_start;
|
||
|
||
printf("%s%d: %s pass %d.%d ethernet address %s\n",
|
||
sc->tulip_name, sc->tulip_unit,
|
||
tulip_chipdescs[tulip_chipids[sc->tulip_unit]],
|
||
(sc->tulip_revinfo & 0xF0) >> 4,
|
||
sc->tulip_revinfo & 0x0F,
|
||
ether_sprintf(sc->tulip_hwaddr));
|
||
|
||
if_attach(ifp);
|
||
|
||
#if NBPFILTER > 0
|
||
bpfattach(&sc->tulip_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
tulip_initcsrs(
|
||
tulip_softc_t *sc,
|
||
volatile tulip_uint32_t *va_csrs,
|
||
size_t csr_size)
|
||
{
|
||
sc->tulip_csrs.csr_busmode = va_csrs + 0 * csr_size;
|
||
sc->tulip_csrs.csr_txpoll = va_csrs + 1 * csr_size;
|
||
sc->tulip_csrs.csr_rxpoll = va_csrs + 2 * csr_size;
|
||
sc->tulip_csrs.csr_rxlist = va_csrs + 3 * csr_size;
|
||
sc->tulip_csrs.csr_txlist = va_csrs + 4 * csr_size;
|
||
sc->tulip_csrs.csr_status = va_csrs + 5 * csr_size;
|
||
sc->tulip_csrs.csr_command = va_csrs + 6 * csr_size;
|
||
sc->tulip_csrs.csr_intr = va_csrs + 7 * csr_size;
|
||
sc->tulip_csrs.csr_missed_frame = va_csrs + 8 * csr_size;
|
||
sc->tulip_csrs.csr_enetrom = va_csrs + 9 * csr_size;
|
||
sc->tulip_csrs.csr_reserved = va_csrs + 10 * csr_size;
|
||
sc->tulip_csrs.csr_full_duplex = va_csrs + 11 * csr_size;
|
||
sc->tulip_csrs.csr_sia_status = va_csrs + 12 * csr_size;
|
||
sc->tulip_csrs.csr_sia_connectivity = va_csrs + 13 * csr_size;
|
||
sc->tulip_csrs.csr_sia_tx_rx = va_csrs + 14 * csr_size;
|
||
sc->tulip_csrs.csr_sia_general = va_csrs + 15 * csr_size;
|
||
}
|
||
|
||
static void
|
||
tulip_initring(
|
||
tulip_softc_t *sc,
|
||
tulip_ringinfo_t *ri,
|
||
tulip_desc_t *descs,
|
||
int ndescs)
|
||
{
|
||
ri->ri_max = ndescs;
|
||
ri->ri_first = descs;
|
||
ri->ri_last = ri->ri_first + ri->ri_max;
|
||
bzero((caddr_t) ri->ri_first, sizeof(ri->ri_first[0]) * ri->ri_max);
|
||
ri->ri_last[-1].d_flag = TULIP_DFLAG_ENDRING;
|
||
}
|
||
|
||
#if NPCI > 0
|
||
/*
|
||
* This is the PCI configuration support. Since the DC21040 is available
|
||
* on both EISA and PCI boards, one must be careful in how defines the
|
||
* DC21040 in the config file.
|
||
*/
|
||
static char* tulip_pci_probe (pcici_t config_id, pcidi_t device_id);
|
||
static void tulip_pci_attach(pcici_t config_id, int unit);
|
||
static u_long tulip_count;
|
||
|
||
struct pci_driver dedevice = {
|
||
tulip_pci_probe,
|
||
tulip_pci_attach,
|
||
&tulip_count,
|
||
};
|
||
|
||
#define PCI_CFID 0x00 /* Configuration ID */
|
||
#define PCI_CFCS 0x04 /* Configurtion Command/Status */
|
||
#define PCI_CFRV 0x08 /* Configuration Revision */
|
||
#define PCI_CFLT 0x0c /* Configuration Latency Timer */
|
||
#define PCI_CBIO 0x10 /* Configuration Base IO Address */
|
||
#define PCI_CBMA 0x14 /* Configuration Base Memory Address */
|
||
#define PCI_CFIT 0x3c /* Configuration Interrupt */
|
||
#define PCI_CFDA 0x40 /* Configuration Driver Area */
|
||
|
||
#define TULIP_PCI_CSRSIZE (8 / sizeof(tulip_uint32_t))
|
||
static char*
|
||
tulip_pci_probe(
|
||
pcici_t config_id,
|
||
pcidi_t device_id)
|
||
{
|
||
int idx;
|
||
for (idx = 0; idx < NDE; idx++) {
|
||
if (tulips[idx] == NULL) {
|
||
if (device_id == 0x00021011ul) {
|
||
tulip_chipids[idx] = TULIP_DC21040;
|
||
return "Digital DC21040 Ethernet";
|
||
}
|
||
if (device_id == 0x00091011ul) {
|
||
tulip_chipids[idx] = TULIP_DC21140;
|
||
return "Digital DC21140 Fast Ethernet";
|
||
}
|
||
return NULL;
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
tulip_pci_attach(
|
||
pcici_t config_id,
|
||
int unit)
|
||
{
|
||
tulip_softc_t *sc;
|
||
int retval, idx;
|
||
vm_offset_t va_csrs, pa_csrs;
|
||
tulip_desc_t *rxdescs, *txdescs;
|
||
|
||
sc = (tulip_softc_t *) malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT);
|
||
if (sc == NULL)
|
||
return;
|
||
|
||
rxdescs = (tulip_desc_t *)
|
||
malloc(sizeof(tulip_desc_t) * TULIP_RXDESCS, M_DEVBUF, M_NOWAIT);
|
||
if (rxdescs == NULL) {
|
||
free((caddr_t) sc, M_DEVBUF);
|
||
return;
|
||
}
|
||
|
||
txdescs = (tulip_desc_t *)
|
||
malloc(sizeof(tulip_desc_t) * TULIP_TXDESCS, M_DEVBUF, M_NOWAIT);
|
||
if (txdescs == NULL) {
|
||
free((caddr_t) rxdescs, M_DEVBUF);
|
||
free((caddr_t) sc, M_DEVBUF);
|
||
return;
|
||
}
|
||
|
||
bzero(sc, sizeof(sc)); /* Zero out the softc*/
|
||
sc->tulip_rxspace = kmem_alloc(kernel_map, TULIP_RXSPACE + NBPG);
|
||
/*
|
||
* We've allocated an extra page of receive space so we can double map
|
||
* the first page of the receive space into the page after the last page
|
||
* of the receive space. This means that even if a receive wraps around
|
||
* the end of the receive space, it will still virtually contiguous and
|
||
* that greatly simplifies the recevie logic.
|
||
*/
|
||
pmap_enter(pmap_kernel(), sc->tulip_rxspace + TULIP_RXSPACE,
|
||
vtophys(sc->tulip_rxspace), VM_PROT_READ, TRUE);
|
||
|
||
sc->tulip_unit = unit;
|
||
sc->tulip_name = "de";
|
||
retval = pci_map_mem(config_id, PCI_CBMA, &va_csrs, &pa_csrs);
|
||
if (!retval) {
|
||
kmem_free(kernel_map, sc->tulip_rxspace, TULIP_RXSPACE + NBPG);
|
||
free((caddr_t) txdescs, M_DEVBUF);
|
||
free((caddr_t) rxdescs, M_DEVBUF);
|
||
free((caddr_t) sc, M_DEVBUF);
|
||
return;
|
||
}
|
||
tulips[unit] = sc;
|
||
tulip_initcsrs(sc, (volatile tulip_uint32_t *) va_csrs, TULIP_PCI_CSRSIZE);
|
||
tulip_initring(sc, &sc->tulip_rxinfo, rxdescs, TULIP_RXDESCS);
|
||
tulip_initring(sc, &sc->tulip_txinfo, txdescs, TULIP_TXDESCS);
|
||
sc->tulip_revinfo = pci_conf_read(config_id, PCI_CFRV);
|
||
if ((retval = tulip_read_macaddr(sc)) < 0) {
|
||
printf("de%d: can't read ENET ROM (why=%d) (", sc->tulip_unit, retval);
|
||
for (idx = 0; idx < 32; idx++)
|
||
printf("%02x", sc->tulip_rombuf[idx]);
|
||
printf("\n");
|
||
printf("%s%d: %s pass %d.%d ethernet address %s\n",
|
||
sc->tulip_name, sc->tulip_unit,
|
||
tulip_chipdescs[tulip_chipids[sc->tulip_unit]],
|
||
(sc->tulip_revinfo & 0xF0) >> 4, sc->tulip_revinfo & 0x0F,
|
||
"unknown");
|
||
} else {
|
||
TULIP_RESET(sc);
|
||
tulip_attach(sc);
|
||
pci_map_int (config_id, tulip_intr, (void*) sc, &net_imask);
|
||
}
|
||
}
|
||
#endif /* NPCI > 0 */
|
||
#endif /* NDE > 0 */
|