mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
b9148b8a3e
signal handler installed for SIGCHLD. The ACE MT_SOCK_Test was hanging as the result of being interrupted when it didn't expect to be.
342 lines
8.8 KiB
C
342 lines
8.8 KiB
C
/*
|
|
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by John Birrell.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <signal.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#ifdef _THREAD_SAFE
|
|
#include <pthread.h>
|
|
#include "pthread_private.h"
|
|
|
|
/* Static variables: */
|
|
static int volatile yield_on_unlock_dead = 0;
|
|
static int volatile yield_on_unlock_thread = 0;
|
|
static spinlock_t thread_dead_lock = _SPINLOCK_INITIALIZER;
|
|
static spinlock_t thread_link_list_lock = _SPINLOCK_INITIALIZER;
|
|
|
|
/* Lock the thread list: */
|
|
void
|
|
_lock_thread_list()
|
|
{
|
|
/* Lock the thread list: */
|
|
_SPINLOCK(&thread_link_list_lock);
|
|
}
|
|
|
|
/* Lock the dead thread list: */
|
|
void
|
|
_lock_dead_thread_list()
|
|
{
|
|
/* Lock the dead thread list: */
|
|
_SPINLOCK(&thread_dead_lock);
|
|
}
|
|
|
|
/* Lock the thread list: */
|
|
void
|
|
_unlock_thread_list()
|
|
{
|
|
/* Unlock the thread list: */
|
|
_SPINUNLOCK(&thread_link_list_lock);
|
|
|
|
/*
|
|
* Check if a scheduler interrupt occurred while the thread
|
|
* list was locked:
|
|
*/
|
|
if (yield_on_unlock_thread) {
|
|
/* Reset the interrupt flag: */
|
|
yield_on_unlock_thread = 0;
|
|
|
|
/* This thread has overstayed it's welcome: */
|
|
sched_yield();
|
|
}
|
|
}
|
|
|
|
/* Lock the dead thread list: */
|
|
void
|
|
_unlock_dead_thread_list()
|
|
{
|
|
/* Unlock the dead thread list: */
|
|
_SPINUNLOCK(&thread_dead_lock);
|
|
|
|
/*
|
|
* Check if a scheduler interrupt occurred while the dead
|
|
* thread list was locked:
|
|
*/
|
|
if (yield_on_unlock_dead) {
|
|
/* Reset the interrupt flag: */
|
|
yield_on_unlock_dead = 0;
|
|
|
|
/* This thread has overstayed it's welcome: */
|
|
sched_yield();
|
|
}
|
|
}
|
|
|
|
void
|
|
_thread_sig_handler(int sig, int code, struct sigcontext * scp)
|
|
{
|
|
char c;
|
|
int i;
|
|
int dispatch = 0;
|
|
pthread_t pthread;
|
|
|
|
/*
|
|
* Check if the pthread kernel has unblocked signals (or is about to)
|
|
* and was on its way into a _select when the current
|
|
* signal interrupted it:
|
|
*/
|
|
if (_thread_kern_in_select) {
|
|
/* Cast the signal number to a character variable: */
|
|
c = sig;
|
|
|
|
/*
|
|
* Write the signal number to the kernel pipe so that it will
|
|
* be ready to read when this signal handler returns. This
|
|
* means that the _select call will complete
|
|
* immediately.
|
|
*/
|
|
_thread_sys_write(_thread_kern_pipe[1], &c, 1);
|
|
}
|
|
|
|
/* Check if the signal requires a dump of thread information: */
|
|
if (sig == SIGINFO)
|
|
/* Dump thread information to file: */
|
|
_thread_dump_info();
|
|
|
|
/* Check if an interval timer signal: */
|
|
else if (sig == SIGVTALRM) {
|
|
/* Check if the scheduler interrupt has come at an
|
|
* unfortunate time which one of the threads is
|
|
* modifying the thread list:
|
|
*/
|
|
if (thread_link_list_lock.access_lock)
|
|
/*
|
|
* Set a flag so that the thread that has
|
|
* the lock yields when it unlocks the
|
|
* thread list:
|
|
*/
|
|
yield_on_unlock_thread = 1;
|
|
|
|
/* Check if the scheduler interrupt has come at an
|
|
* unfortunate time which one of the threads is
|
|
* modifying the dead thread list:
|
|
*/
|
|
if (thread_dead_lock.access_lock)
|
|
/*
|
|
* Set a flag so that the thread that has
|
|
* the lock yields when it unlocks the
|
|
* dead thread list:
|
|
*/
|
|
yield_on_unlock_dead = 1;
|
|
|
|
/*
|
|
* Check if the kernel has not been interrupted while
|
|
* executing scheduler code:
|
|
*/
|
|
else if (!_thread_kern_in_sched) {
|
|
/*
|
|
* Schedule the next thread. This function is not
|
|
* expected to return because it will do a longjmp
|
|
* instead.
|
|
*/
|
|
_thread_kern_sched(scp);
|
|
|
|
/*
|
|
* This point should not be reached, so abort the
|
|
* process:
|
|
*/
|
|
PANIC("Returned to signal function from scheduler");
|
|
}
|
|
} else {
|
|
/* Check if a child has terminated: */
|
|
if (sig == SIGCHLD) {
|
|
/*
|
|
* Go through the file list and set all files
|
|
* to non-blocking again in case the child
|
|
* set some of them to block. Sigh.
|
|
*/
|
|
for (i = 0; i < _thread_dtablesize; i++) {
|
|
/* Check if this file is used: */
|
|
if (_thread_fd_table[i] != NULL) {
|
|
/*
|
|
* Set the file descriptor to
|
|
* non-blocking:
|
|
*/
|
|
_thread_sys_fcntl(i, F_SETFL,
|
|
_thread_fd_table[i]->flags |
|
|
O_NONBLOCK);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* POSIX says that pending SIGCONT signals are
|
|
* discarded when one of there signals occurs.
|
|
*/
|
|
if (sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU) {
|
|
/*
|
|
* Enter a loop to discard pending SIGCONT
|
|
* signals:
|
|
*/
|
|
for (pthread = _thread_link_list;
|
|
pthread != NULL;
|
|
pthread = pthread->nxt)
|
|
sigdelset(&pthread->sigpend,SIGCONT);
|
|
}
|
|
|
|
/* Check if the signal is not being ignored: */
|
|
if (_thread_sigact[sig - 1].sa_handler != SIG_IGN)
|
|
/*
|
|
* Enter a loop to process each thread in the linked
|
|
* list:
|
|
*/
|
|
for (pthread = _thread_link_list; pthread != NULL;
|
|
pthread = pthread->nxt)
|
|
_thread_signal(pthread,sig);
|
|
|
|
/* Dispatch pending signals to the running thread: */
|
|
_dispatch_signals();
|
|
}
|
|
|
|
/* Returns nothing. */
|
|
return;
|
|
}
|
|
|
|
/* Perform thread specific actions in response to a signal: */
|
|
void
|
|
_thread_signal(pthread_t pthread, int sig)
|
|
{
|
|
pthread_t saved;
|
|
struct sigaction act;
|
|
|
|
/*
|
|
* Flag the signal as pending. It will be dispatched later.
|
|
*/
|
|
sigaddset(&pthread->sigpend,sig);
|
|
|
|
/*
|
|
* Process according to thread state:
|
|
*/
|
|
switch (pthread->state) {
|
|
/*
|
|
* States which do not change when a signal is trapped:
|
|
*/
|
|
case PS_COND_WAIT:
|
|
case PS_DEAD:
|
|
case PS_FDLR_WAIT:
|
|
case PS_FDLW_WAIT:
|
|
case PS_FILE_WAIT:
|
|
case PS_JOIN:
|
|
case PS_MUTEX_WAIT:
|
|
case PS_RUNNING:
|
|
case PS_STATE_MAX:
|
|
case PS_SIGTHREAD:
|
|
case PS_SUSPENDED:
|
|
/* Nothing to do here. */
|
|
break;
|
|
|
|
/*
|
|
* The wait state is a special case due to the handling of
|
|
* SIGCHLD signals.
|
|
*/
|
|
case PS_WAIT_WAIT:
|
|
/*
|
|
* Check for signals other than the death of a child
|
|
* process:
|
|
*/
|
|
if (sig != SIGCHLD)
|
|
/* Flag the operation as interrupted: */
|
|
pthread->interrupted = 1;
|
|
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
break;
|
|
|
|
/*
|
|
* States that are interrupted by the occurrence of a signal
|
|
* other than the scheduling alarm:
|
|
*/
|
|
case PS_FDR_WAIT:
|
|
case PS_FDW_WAIT:
|
|
case PS_SLEEP_WAIT:
|
|
case PS_SIGWAIT:
|
|
case PS_SELECT_WAIT:
|
|
if (sig != SIGCHLD ||
|
|
_thread_sigact[sig - 1].sa_handler != SIG_DFL) {
|
|
/* Flag the operation as interrupted: */
|
|
pthread->interrupted = 1;
|
|
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Dispatch pending signals to the running thread: */
|
|
void
|
|
_dispatch_signals()
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Check if there are pending signals for the running
|
|
* thread that aren't blocked:
|
|
*/
|
|
if ((_thread_run->sigpend & ~_thread_run->sigmask) != 0)
|
|
/* Look for all possible pending signals: */
|
|
for (i = 1; i < NSIG; i++)
|
|
/*
|
|
* Check that a custom handler is installed
|
|
* and if the signal is not blocked:
|
|
*/
|
|
if (_thread_sigact[i - 1].sa_handler != SIG_DFL &&
|
|
_thread_sigact[i - 1].sa_handler != SIG_IGN &&
|
|
sigismember(&_thread_run->sigpend,i) &&
|
|
!sigismember(&_thread_run->sigmask,i)) {
|
|
/* Clear the pending signal: */
|
|
sigdelset(&_thread_run->sigpend,i);
|
|
|
|
/*
|
|
* Dispatch the signal via the custom signal
|
|
* handler:
|
|
*/
|
|
(*(_thread_sigact[i - 1].sa_handler))(i);
|
|
}
|
|
}
|
|
#endif
|