mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
141ae16656
Addtron appear to have their own VIA Rhine II and RealTek 8139 boards with custom PCI vendor and device IDs. This commit updates the PCI vendor and device lists in the vr and rl drivers so that we can probe the additional devices. Found by: nosing around the PCI vendor and device code list at: http://www.halcyon.com/scripts/jboemler/pci/pcicode
1963 lines
46 KiB
C
1963 lines
46 KiB
C
/*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id: if_vr.c,v 1.18 1999/02/23 06:47:52 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* VIA Rhine fast ethernet PCI NIC driver
|
|
*
|
|
* Supports various network adapters based on the VIA Rhine
|
|
* and Rhine II PCI controllers, including the D-Link DFE530TX.
|
|
* Datasheets are available at http://www.via.com.tw.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The VIA Rhine controllers are similar in some respects to the
|
|
* the DEC tulip chips, except less complicated. The controller
|
|
* uses an MII bus and an external physical layer interface. The
|
|
* receiver has a one entry perfect filter and a 64-bit hash table
|
|
* multicast filter. Transmit and receive descriptors are similar
|
|
* to the tulip.
|
|
*
|
|
* The Rhine has a serious flaw in its transmit DMA mechanism:
|
|
* transmit buffers must be longword aligned. Unfortunately,
|
|
* FreeBSD doesn't guarantee that mbufs will be filled in starting
|
|
* at longword boundaries, so we have to do a buffer copy before
|
|
* transmission.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#define VR_USEIOSPACE
|
|
|
|
/* #define VR_BACKGROUND_AUTONEG */
|
|
|
|
#include <pci/if_vrreg.h>
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] =
|
|
"$Id: if_vr.c,v 1.18 1999/02/23 06:47:52 wpaul Exp $";
|
|
#endif
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct vr_type vr_devs[] = {
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
|
|
"VIA VT3043 Rhine I 10/100BaseTX" },
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
|
|
"VIA VT86C100A Rhine II 10/100BaseTX" },
|
|
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
|
|
"Delta Electronics Rhine II 10/100BaseTX" },
|
|
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
|
|
"Addtron Technology Rhine II 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Various supported PHY vendors/types and their names. Note that
|
|
* this driver will work with pretty much any MII-compliant PHY,
|
|
* so failure to positively identify the chip is not a fatal error.
|
|
*/
|
|
|
|
static struct vr_type vr_phys[] = {
|
|
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
|
|
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
|
|
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
|
|
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
|
|
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
|
|
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
};
|
|
|
|
static unsigned long vr_count = 0;
|
|
static const char *vr_probe __P((pcici_t, pcidi_t));
|
|
static void vr_attach __P((pcici_t, int));
|
|
|
|
static int vr_newbuf __P((struct vr_softc *,
|
|
struct vr_chain_onefrag *));
|
|
static int vr_encap __P((struct vr_softc *, struct vr_chain *,
|
|
struct mbuf * ));
|
|
|
|
static void vr_rxeof __P((struct vr_softc *));
|
|
static void vr_rxeoc __P((struct vr_softc *));
|
|
static void vr_txeof __P((struct vr_softc *));
|
|
static void vr_txeoc __P((struct vr_softc *));
|
|
static void vr_intr __P((void *));
|
|
static void vr_start __P((struct ifnet *));
|
|
static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void vr_init __P((void *));
|
|
static void vr_stop __P((struct vr_softc *));
|
|
static void vr_watchdog __P((struct ifnet *));
|
|
static void vr_shutdown __P((int, void *));
|
|
static int vr_ifmedia_upd __P((struct ifnet *));
|
|
static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static void vr_mii_sync __P((struct vr_softc *));
|
|
static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
|
|
static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *));
|
|
static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *));
|
|
static u_int16_t vr_phy_readreg __P((struct vr_softc *, int));
|
|
static void vr_phy_writereg __P((struct vr_softc *, u_int16_t, u_int16_t));
|
|
|
|
static void vr_autoneg_xmit __P((struct vr_softc *));
|
|
static void vr_autoneg_mii __P((struct vr_softc *, int, int));
|
|
static void vr_setmode_mii __P((struct vr_softc *, int));
|
|
static void vr_getmode_mii __P((struct vr_softc *));
|
|
static void vr_setcfg __P((struct vr_softc *, u_int16_t));
|
|
static u_int8_t vr_calchash __P((u_int8_t *));
|
|
static void vr_setmulti __P((struct vr_softc *));
|
|
static void vr_reset __P((struct vr_softc *));
|
|
static int vr_list_rx_init __P((struct vr_softc *));
|
|
static int vr_list_tx_init __P((struct vr_softc *));
|
|
|
|
#define VR_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, \
|
|
CSR_READ_1(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, \
|
|
CSR_READ_1(sc, reg) & ~x)
|
|
|
|
#define VR_SETBIT16(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, \
|
|
CSR_READ_2(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT16(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, \
|
|
CSR_READ_2(sc, reg) & ~x)
|
|
|
|
#define VR_SETBIT32(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT32(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) & ~x)
|
|
|
|
#define SIO_SET(x) \
|
|
CSR_WRITE_1(sc, VR_MIICMD, \
|
|
CSR_READ_1(sc, VR_MIICMD) | x)
|
|
|
|
#define SIO_CLR(x) \
|
|
CSR_WRITE_1(sc, VR_MIICMD, \
|
|
CSR_READ_1(sc, VR_MIICMD) & ~x)
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void vr_mii_sync(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void vr_mii_send(sc, bits, cnt)
|
|
struct vr_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
SIO_SET(VR_MIICMD_DATAIN);
|
|
} else {
|
|
SIO_CLR(VR_MIICMD_DATAIN);
|
|
}
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int vr_mii_readreg(sc, frame)
|
|
struct vr_softc *sc;
|
|
struct vr_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack, s;
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = VR_MII_STARTDELIM;
|
|
frame->mii_opcode = VR_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
CSR_WRITE_1(sc, VR_MIICMD, 0);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
|
|
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
SIO_SET(VR_MIICMD_DIR);
|
|
|
|
vr_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
vr_mii_send(sc, frame->mii_stdelim, 2);
|
|
vr_mii_send(sc, frame->mii_opcode, 2);
|
|
vr_mii_send(sc, frame->mii_phyaddr, 5);
|
|
vr_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Idle bit */
|
|
SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
SIO_CLR(VR_MIICMD_DIR);
|
|
|
|
/* Check for ack */
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
splx(s);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int vr_mii_writereg(sc, frame)
|
|
struct vr_softc *sc;
|
|
struct vr_mii_frame *frame;
|
|
|
|
{
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
CSR_WRITE_1(sc, VR_MIICMD, 0);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
|
|
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = VR_MII_STARTDELIM;
|
|
frame->mii_opcode = VR_MII_WRITEOP;
|
|
frame->mii_turnaround = VR_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
SIO_SET(VR_MIICMD_DIR);
|
|
|
|
vr_mii_sync(sc);
|
|
|
|
vr_mii_send(sc, frame->mii_stdelim, 2);
|
|
vr_mii_send(sc, frame->mii_opcode, 2);
|
|
vr_mii_send(sc, frame->mii_phyaddr, 5);
|
|
vr_mii_send(sc, frame->mii_regaddr, 5);
|
|
vr_mii_send(sc, frame->mii_turnaround, 2);
|
|
vr_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
SIO_CLR(VR_MIICMD_DIR);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static u_int16_t vr_phy_readreg(sc, reg)
|
|
struct vr_softc *sc;
|
|
int reg;
|
|
{
|
|
struct vr_mii_frame frame;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->vr_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
vr_mii_readreg(sc, &frame);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static void vr_phy_writereg(sc, reg, data)
|
|
struct vr_softc *sc;
|
|
u_int16_t reg;
|
|
u_int16_t data;
|
|
{
|
|
struct vr_mii_frame frame;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->vr_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
vr_mii_writereg(sc, &frame);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC of a multicast group address, return the lower 6 bits.
|
|
*/
|
|
static u_int8_t vr_calchash(addr)
|
|
u_int8_t *addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return((crc >> 26) & 0x0000003F);
|
|
}
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
static void vr_setmulti(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
u_int8_t rxfilt;
|
|
int mcnt = 0;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
rxfilt = CSR_READ_1(sc, VR_RXCFG);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, VR_MAR0, 0);
|
|
CSR_WRITE_4(sc, VR_MAR1, 0);
|
|
|
|
/* now program new ones */
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
mcnt++;
|
|
}
|
|
|
|
if (mcnt)
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
else
|
|
rxfilt &= ~VR_RXCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initiate an autonegotiation session.
|
|
*/
|
|
static void vr_autoneg_xmit(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
u_int16_t phy_sts;
|
|
|
|
vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(vr_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
|
|
phy_sts = vr_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
vr_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Invoke autonegotiation on a PHY.
|
|
*/
|
|
static void vr_autoneg_mii(sc, flag, verbose)
|
|
struct vr_softc *sc;
|
|
int flag;
|
|
int verbose;
|
|
{
|
|
u_int16_t phy_sts = 0, media, advert, ability;
|
|
struct ifnet *ifp;
|
|
struct ifmedia *ifm;
|
|
|
|
ifm = &sc->ifmedia;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
|
|
|
|
/*
|
|
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
|
|
* bit cleared in the status register, but has the 'autoneg enabled'
|
|
* bit set in the control register. This is a contradiction, and
|
|
* I'm not sure how to handle it. If you want to force an attempt
|
|
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
|
|
* and see what happens.
|
|
*/
|
|
#ifndef FORCE_AUTONEG_TFOUR
|
|
/*
|
|
* First, see if autoneg is supported. If not, there's
|
|
* no point in continuing.
|
|
*/
|
|
phy_sts = vr_phy_readreg(sc, PHY_BMSR);
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
if (verbose)
|
|
printf("vr%d: autonegotiation not supported\n",
|
|
sc->vr_unit);
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch (flag) {
|
|
case VR_FLAG_FORCEDELAY:
|
|
/*
|
|
* XXX Never use this option anywhere but in the probe
|
|
* routine: making the kernel stop dead in its tracks
|
|
* for three whole seconds after we've gone multi-user
|
|
* is really bad manners.
|
|
*/
|
|
vr_autoneg_xmit(sc);
|
|
DELAY(5000000);
|
|
break;
|
|
case VR_FLAG_SCHEDDELAY:
|
|
/*
|
|
* Wait for the transmitter to go idle before starting
|
|
* an autoneg session, otherwise vr_start() may clobber
|
|
* our timeout, and we don't want to allow transmission
|
|
* during an autoneg session since that can screw it up.
|
|
*/
|
|
if (sc->vr_cdata.vr_tx_head != NULL) {
|
|
sc->vr_want_auto = 1;
|
|
return;
|
|
}
|
|
vr_autoneg_xmit(sc);
|
|
ifp->if_timer = 5;
|
|
sc->vr_autoneg = 1;
|
|
sc->vr_want_auto = 0;
|
|
return;
|
|
break;
|
|
case VR_FLAG_DELAYTIMEO:
|
|
ifp->if_timer = 0;
|
|
sc->vr_autoneg = 0;
|
|
break;
|
|
default:
|
|
printf("vr%d: invalid autoneg flag: %d\n", sc->vr_unit, flag);
|
|
return;
|
|
}
|
|
|
|
if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
|
|
if (verbose)
|
|
printf("vr%d: autoneg complete, ", sc->vr_unit);
|
|
phy_sts = vr_phy_readreg(sc, PHY_BMSR);
|
|
} else {
|
|
if (verbose)
|
|
printf("vr%d: autoneg not complete, ", sc->vr_unit);
|
|
}
|
|
|
|
media = vr_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
|
|
if (verbose)
|
|
printf("link status good ");
|
|
advert = vr_phy_readreg(sc, PHY_ANAR);
|
|
ability = vr_phy_readreg(sc, PHY_LPAR);
|
|
|
|
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(100baseT4)\n");
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 10Mbps)\n");
|
|
} else {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 10Mbps)\n");
|
|
}
|
|
|
|
media &= ~PHY_BMCR_AUTONEGENBL;
|
|
|
|
/* Set ASIC's duplex mode to match the PHY. */
|
|
vr_setcfg(sc, media);
|
|
vr_phy_writereg(sc, PHY_BMCR, media);
|
|
} else {
|
|
if (verbose)
|
|
printf("no carrier\n");
|
|
}
|
|
|
|
vr_init(sc);
|
|
|
|
if (sc->vr_tx_pend) {
|
|
sc->vr_autoneg = 0;
|
|
sc->vr_tx_pend = 0;
|
|
vr_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void vr_getmode_mii(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
u_int16_t bmsr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bmsr = vr_phy_readreg(sc, PHY_BMSR);
|
|
if (bootverbose)
|
|
printf("vr%d: PHY status word: %x\n", sc->vr_unit, bmsr);
|
|
|
|
/* fallback */
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
if (bmsr & PHY_BMSR_10BTHALF) {
|
|
if (bootverbose)
|
|
printf("vr%d: 10Mbps half-duplex mode supported\n",
|
|
sc->vr_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_10BTFULL) {
|
|
if (bootverbose)
|
|
printf("vr%d: 10Mbps full-duplex mode supported\n",
|
|
sc->vr_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXHALF) {
|
|
if (bootverbose)
|
|
printf("vr%d: 100Mbps half-duplex mode supported\n",
|
|
sc->vr_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXFULL) {
|
|
if (bootverbose)
|
|
printf("vr%d: 100Mbps full-duplex mode supported\n",
|
|
sc->vr_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
}
|
|
|
|
/* Some also support 100BaseT4. */
|
|
if (bmsr & PHY_BMSR_100BT4) {
|
|
if (bootverbose)
|
|
printf("vr%d: 100baseT4 mode supported\n", sc->vr_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
|
|
#ifdef FORCE_AUTONEG_TFOUR
|
|
if (bootverbose)
|
|
printf("vr%d: forcing on autoneg support for BT4\n",
|
|
sc->vr_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
#endif
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_CANAUTONEG) {
|
|
if (bootverbose)
|
|
printf("vr%d: autoneg supported\n", sc->vr_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set speed and duplex mode.
|
|
*/
|
|
static void vr_setmode_mii(sc, media)
|
|
struct vr_softc *sc;
|
|
int media;
|
|
{
|
|
u_int16_t bmcr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* If an autoneg session is in progress, stop it.
|
|
*/
|
|
if (sc->vr_autoneg) {
|
|
printf("vr%d: canceling autoneg session\n", sc->vr_unit);
|
|
ifp->if_timer = sc->vr_autoneg = sc->vr_want_auto = 0;
|
|
bmcr = vr_phy_readreg(sc, PHY_BMCR);
|
|
bmcr &= ~PHY_BMCR_AUTONEGENBL;
|
|
vr_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
}
|
|
|
|
printf("vr%d: selecting MII, ", sc->vr_unit);
|
|
|
|
bmcr = vr_phy_readreg(sc, PHY_BMCR);
|
|
|
|
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
|
|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_T4) {
|
|
printf("100Mbps/T4, half-duplex\n");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
printf("100Mbps, ");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
printf("10Mbps, ");
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
printf("full duplex\n");
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
} else {
|
|
printf("half duplex\n");
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
vr_setcfg(sc, bmcr);
|
|
vr_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In order to fiddle with the
|
|
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
|
|
* first have to put the transmit and/or receive logic in the idle state.
|
|
*/
|
|
static void vr_setcfg(sc, bmcr)
|
|
struct vr_softc *sc;
|
|
u_int16_t bmcr;
|
|
{
|
|
int restart = 0;
|
|
|
|
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
|
|
restart = 1;
|
|
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
|
|
}
|
|
|
|
if (bmcr & PHY_BMCR_DUPLEX)
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
|
|
else
|
|
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
|
|
|
|
if (restart)
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
|
|
|
|
return;
|
|
}
|
|
|
|
static void vr_reset(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
|
|
|
|
for (i = 0; i < VR_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
|
|
break;
|
|
}
|
|
if (i == VR_TIMEOUT)
|
|
printf("vr%d: reset never completed!\n", sc->vr_unit);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for a VIA Rhine chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static const char *
|
|
vr_probe(config_id, device_id)
|
|
pcici_t config_id;
|
|
pcidi_t device_id;
|
|
{
|
|
struct vr_type *t;
|
|
|
|
t = vr_devs;
|
|
|
|
while(t->vr_name != NULL) {
|
|
if ((device_id & 0xFFFF) == t->vr_vid &&
|
|
((device_id >> 16) & 0xFFFF) == t->vr_did) {
|
|
return(t->vr_name);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static void
|
|
vr_attach(config_id, unit)
|
|
pcici_t config_id;
|
|
int unit;
|
|
{
|
|
int s, i;
|
|
#ifndef VR_USEIOSPACE
|
|
vm_offset_t pbase, vbase;
|
|
#endif
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
u_int32_t command;
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
unsigned int round;
|
|
caddr_t roundptr;
|
|
struct vr_type *p;
|
|
u_int16_t phy_vid, phy_did, phy_sts;
|
|
|
|
s = splimp();
|
|
|
|
sc = malloc(sizeof(struct vr_softc), M_DEVBUF, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
printf("vr%d: no memory for softc struct!\n", unit);
|
|
return;
|
|
}
|
|
bzero(sc, sizeof(struct vr_softc));
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
|
|
command = pci_conf_read(config_id, VR_PCI_CAPID) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
|
|
command = pci_conf_read(config_id, VR_PCI_PWRMGMTCTRL);
|
|
if (command & VR_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_conf_read(config_id, VR_PCI_LOIO);
|
|
membase = pci_conf_read(config_id, VR_PCI_LOMEM);
|
|
irq = pci_conf_read(config_id, VR_PCI_INTLINE);
|
|
|
|
/* Reset the power state. */
|
|
printf("vr%d: chip is in D%d power mode "
|
|
"-- setting to D0\n", unit, command & VR_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
pci_conf_write(config_id, VR_PCI_PWRMGMTCTRL, command);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_conf_write(config_id, VR_PCI_LOIO, iobase);
|
|
pci_conf_write(config_id, VR_PCI_LOMEM, membase);
|
|
pci_conf_write(config_id, VR_PCI_INTLINE, irq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
#ifdef VR_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("vr%d: failed to enable I/O ports!\n", unit);
|
|
free(sc, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pci_map_port(config_id, VR_PCI_LOIO,
|
|
(u_int16_t *)(&sc->vr_bhandle))) {
|
|
printf ("vr%d: couldn't map ports\n", unit);
|
|
goto fail;
|
|
}
|
|
sc->vr_btag = I386_BUS_SPACE_IO;
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("vr%d: failed to enable memory mapping!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pci_map_mem(config_id, VR_PCI_LOMEM, &vbase, &pbase)) {
|
|
printf ("vr%d: couldn't map memory\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
sc->vr_bhandle = vbase;
|
|
sc->vr_btag = I386_BUS_SPACE_MEM;
|
|
#endif
|
|
|
|
/* Allocate interrupt */
|
|
if (!pci_map_int(config_id, vr_intr, sc, &net_imask)) {
|
|
printf("vr%d: couldn't map interrupt\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
vr_reset(sc);
|
|
|
|
/*
|
|
* Get station address. The way the Rhine chips work,
|
|
* you're not allowed to directly access the EEPROM once
|
|
* they've been programmed a special way. Consequently,
|
|
* we need to read the node address from the PAR0 and PAR1
|
|
* registers.
|
|
*/
|
|
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
|
|
DELAY(200);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
|
|
|
|
/*
|
|
* A Rhine chip was detected. Inform the world.
|
|
*/
|
|
printf("vr%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
sc->vr_unit = unit;
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
sc->vr_ldata_ptr = malloc(sizeof(struct vr_list_data) + 8,
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (sc->vr_ldata_ptr == NULL) {
|
|
free(sc, M_DEVBUF);
|
|
printf("vr%d: no memory for list buffers!\n", unit);
|
|
return;
|
|
}
|
|
|
|
sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr;
|
|
round = (unsigned int)sc->vr_ldata_ptr & 0xF;
|
|
roundptr = sc->vr_ldata_ptr;
|
|
for (i = 0; i < 8; i++) {
|
|
if (round % 8) {
|
|
round++;
|
|
roundptr++;
|
|
} else
|
|
break;
|
|
}
|
|
sc->vr_ldata = (struct vr_list_data *)roundptr;
|
|
bzero(sc->vr_ldata, sizeof(struct vr_list_data));
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = "vr";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vr_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = vr_start;
|
|
ifp->if_watchdog = vr_watchdog;
|
|
ifp->if_init = vr_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1;
|
|
|
|
if (bootverbose)
|
|
printf("vr%d: probing for a PHY\n", sc->vr_unit);
|
|
for (i = VR_PHYADDR_MIN; i < VR_PHYADDR_MAX + 1; i++) {
|
|
if (bootverbose)
|
|
printf("vr%d: checking address: %d\n",
|
|
sc->vr_unit, i);
|
|
sc->vr_phy_addr = i;
|
|
vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(vr_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
if ((phy_sts = vr_phy_readreg(sc, PHY_BMSR)))
|
|
break;
|
|
}
|
|
if (phy_sts) {
|
|
phy_vid = vr_phy_readreg(sc, PHY_VENID);
|
|
phy_did = vr_phy_readreg(sc, PHY_DEVID);
|
|
if (bootverbose)
|
|
printf("vr%d: found PHY at address %d, ",
|
|
sc->vr_unit, sc->vr_phy_addr);
|
|
if (bootverbose)
|
|
printf("vendor id: %x device id: %x\n",
|
|
phy_vid, phy_did);
|
|
p = vr_phys;
|
|
while(p->vr_vid) {
|
|
if (phy_vid == p->vr_vid &&
|
|
(phy_did | 0x000F) == p->vr_did) {
|
|
sc->vr_pinfo = p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
if (sc->vr_pinfo == NULL)
|
|
sc->vr_pinfo = &vr_phys[PHY_UNKNOWN];
|
|
if (bootverbose)
|
|
printf("vr%d: PHY type: %s\n",
|
|
sc->vr_unit, sc->vr_pinfo->vr_name);
|
|
} else {
|
|
printf("vr%d: MII without any phy!\n", sc->vr_unit);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Do ifmedia setup.
|
|
*/
|
|
ifmedia_init(&sc->ifmedia, 0, vr_ifmedia_upd, vr_ifmedia_sts);
|
|
|
|
vr_getmode_mii(sc);
|
|
vr_autoneg_mii(sc, VR_FLAG_FORCEDELAY, 1);
|
|
media = sc->ifmedia.ifm_media;
|
|
vr_stop(sc);
|
|
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
at_shutdown(vr_shutdown, sc, SHUTDOWN_POST_SYNC);
|
|
|
|
fail:
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int vr_list_tx_init(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct vr_chain_data *cd;
|
|
struct vr_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->vr_cdata;
|
|
ld = sc->vr_ldata;
|
|
for (i = 0; i < VR_TX_LIST_CNT; i++) {
|
|
cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
|
|
if (i == (VR_TX_LIST_CNT - 1))
|
|
cd->vr_tx_chain[i].vr_nextdesc =
|
|
&cd->vr_tx_chain[0];
|
|
else
|
|
cd->vr_tx_chain[i].vr_nextdesc =
|
|
&cd->vr_tx_chain[i + 1];
|
|
}
|
|
|
|
cd->vr_tx_free = &cd->vr_tx_chain[0];
|
|
cd->vr_tx_tail = cd->vr_tx_head = NULL;
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int vr_list_rx_init(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct vr_chain_data *cd;
|
|
struct vr_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->vr_cdata;
|
|
ld = sc->vr_ldata;
|
|
|
|
for (i = 0; i < VR_RX_LIST_CNT; i++) {
|
|
cd->vr_rx_chain[i].vr_ptr =
|
|
(struct vr_desc *)&ld->vr_rx_list[i];
|
|
if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
if (i == (VR_RX_LIST_CNT - 1)) {
|
|
cd->vr_rx_chain[i].vr_nextdesc =
|
|
&cd->vr_rx_chain[0];
|
|
ld->vr_rx_list[i].vr_next =
|
|
vtophys(&ld->vr_rx_list[0]);
|
|
} else {
|
|
cd->vr_rx_chain[i].vr_nextdesc =
|
|
&cd->vr_rx_chain[i + 1];
|
|
ld->vr_rx_list[i].vr_next =
|
|
vtophys(&ld->vr_rx_list[i + 1]);
|
|
}
|
|
}
|
|
|
|
cd->vr_rx_head = &cd->vr_rx_chain[0];
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
* Note: the length fields are only 11 bits wide, which means the
|
|
* largest size we can specify is 2047. This is important because
|
|
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
|
|
* overflow the field and make a mess.
|
|
*/
|
|
static int vr_newbuf(sc, c)
|
|
struct vr_softc *sc;
|
|
struct vr_chain_onefrag *c;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("vr%d: no memory for rx list -- packet dropped!\n",
|
|
sc->vr_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
printf("vr%d: no memory for rx list -- packet dropped!\n",
|
|
sc->vr_unit);
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
c->vr_mbuf = m_new;
|
|
c->vr_ptr->vr_status = VR_RXSTAT;
|
|
c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
|
|
c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void vr_rxeof(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct vr_chain_onefrag *cur_rx;
|
|
int total_len = 0;
|
|
u_int32_t rxstat;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
|
|
VR_RXSTAT_OWN)) {
|
|
cur_rx = sc->vr_cdata.vr_rx_head;
|
|
sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxstat & VR_RXSTAT_RXERR) {
|
|
ifp->if_ierrors++;
|
|
printf("vr%d: rx error: ", sc->vr_unit);
|
|
switch(rxstat & 0x000000FF) {
|
|
case VR_RXSTAT_CRCERR:
|
|
printf("crc error\n");
|
|
break;
|
|
case VR_RXSTAT_FRAMEALIGNERR:
|
|
printf("frame alignment error\n");
|
|
break;
|
|
case VR_RXSTAT_FIFOOFLOW:
|
|
printf("FIFO overflow\n");
|
|
break;
|
|
case VR_RXSTAT_GIANT:
|
|
printf("received giant packet\n");
|
|
break;
|
|
case VR_RXSTAT_RUNT:
|
|
printf("received runt packet\n");
|
|
break;
|
|
case VR_RXSTAT_BUSERR:
|
|
printf("system bus error\n");
|
|
break;
|
|
case VR_RXSTAT_BUFFERR:
|
|
printf("rx buffer error\n");
|
|
break;
|
|
default:
|
|
printf("unknown rx error\n");
|
|
break;
|
|
}
|
|
cur_rx->vr_ptr->vr_status = VR_RXSTAT;
|
|
cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
|
|
continue;
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
m = cur_rx->vr_mbuf;
|
|
total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
|
|
|
|
/*
|
|
* XXX The VIA Rhine chip includes the CRC with every
|
|
* received frame, and there's no way to turn this
|
|
* behavior off (at least, I can't find anything in
|
|
* the manual that explains how to do it) so we have
|
|
* to trim off the CRC manually.
|
|
*/
|
|
total_len -= ETHER_CRC_LEN;
|
|
|
|
/*
|
|
* Try to conjure up a new mbuf cluster. If that
|
|
* fails, it means we have an out of memory condition and
|
|
* should leave the buffer in place and continue. This will
|
|
* result in a lost packet, but there's little else we
|
|
* can do in this situation.
|
|
*/
|
|
if (vr_newbuf(sc, cur_rx) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
cur_rx->vr_ptr->vr_status = VR_RXSTAT;
|
|
cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
|
|
continue;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
* address or the interface is in promiscuous mode.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) &&
|
|
(eh->ether_dhost[0] & 1) == 0)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Remove header from mbuf and pass it on. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void vr_rxeoc(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
|
|
vr_rxeof(sc);
|
|
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
|
|
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
|
|
static void vr_txeof(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct vr_chain *cur_tx;
|
|
struct ifnet *ifp;
|
|
register struct mbuf *n;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/* Sanity check. */
|
|
if (sc->vr_cdata.vr_tx_head == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
while(sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
|
|
u_int32_t txstat;
|
|
|
|
cur_tx = sc->vr_cdata.vr_tx_head;
|
|
txstat = cur_tx->vr_ptr->vr_status;
|
|
|
|
if (txstat & VR_TXSTAT_OWN)
|
|
break;
|
|
|
|
if (txstat & VR_TXSTAT_ERRSUM) {
|
|
ifp->if_oerrors++;
|
|
if (txstat & VR_TXSTAT_DEFER)
|
|
ifp->if_collisions++;
|
|
if (txstat & VR_TXSTAT_LATECOLL)
|
|
ifp->if_collisions++;
|
|
}
|
|
|
|
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
|
|
|
|
ifp->if_opackets++;
|
|
MFREE(cur_tx->vr_mbuf, n);
|
|
cur_tx->vr_mbuf = NULL;
|
|
|
|
if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
|
|
sc->vr_cdata.vr_tx_head = NULL;
|
|
sc->vr_cdata.vr_tx_tail = NULL;
|
|
break;
|
|
}
|
|
|
|
sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* TX 'end of channel' interrupt handler.
|
|
*/
|
|
static void vr_txeoc(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->vr_cdata.vr_tx_head == NULL) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->vr_cdata.vr_tx_tail = NULL;
|
|
if (sc->vr_want_auto)
|
|
vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void vr_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
|
|
sc = arg;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Supress unwanted interrupts. */
|
|
if (!(ifp->if_flags & IFF_UP)) {
|
|
vr_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
|
|
for (;;) {
|
|
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
if (status)
|
|
CSR_WRITE_2(sc, VR_ISR, status);
|
|
|
|
if ((status & VR_INTRS) == 0)
|
|
break;
|
|
|
|
if (status & VR_ISR_RX_OK)
|
|
vr_rxeof(sc);
|
|
|
|
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
|
|
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
|
|
(status & VR_ISR_RX_DROPPED)) {
|
|
vr_rxeof(sc);
|
|
vr_rxeoc(sc);
|
|
}
|
|
|
|
if (status & VR_ISR_TX_OK) {
|
|
vr_txeof(sc);
|
|
vr_txeoc(sc);
|
|
}
|
|
|
|
if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)){
|
|
ifp->if_oerrors++;
|
|
vr_txeof(sc);
|
|
if (sc->vr_cdata.vr_tx_head != NULL) {
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
|
|
}
|
|
}
|
|
|
|
if (status & VR_ISR_BUSERR) {
|
|
vr_reset(sc);
|
|
vr_init(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
|
vr_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int vr_encap(sc, c, m_head)
|
|
struct vr_softc *sc;
|
|
struct vr_chain *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
int frag = 0;
|
|
struct vr_desc *f = NULL;
|
|
int total_len;
|
|
struct mbuf *m;
|
|
|
|
m = m_head;
|
|
total_len = 0;
|
|
|
|
/*
|
|
* The VIA Rhine wants packet buffers to be longword
|
|
* aligned, but very often our mbufs aren't. Rather than
|
|
* waste time trying to decide when to copy and when not
|
|
* to copy, just do it all the time.
|
|
*/
|
|
if (m != NULL) {
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("vr%d: no memory for tx list", sc->vr_unit);
|
|
return(1);
|
|
}
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
printf("vr%d: no memory for tx list",
|
|
sc->vr_unit);
|
|
return(1);
|
|
}
|
|
}
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
m_freem(m_head);
|
|
m_head = m_new;
|
|
/*
|
|
* The Rhine chip doesn't auto-pad, so we have to make
|
|
* sure to pad short frames out to the minimum frame length
|
|
* ourselves.
|
|
*/
|
|
if (m_head->m_len < VR_MIN_FRAMELEN) {
|
|
m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
|
|
m_new->m_len = m_new->m_pkthdr.len;
|
|
}
|
|
f = c->vr_ptr;
|
|
f->vr_data = vtophys(mtod(m_new, caddr_t));
|
|
f->vr_ctl = total_len = m_new->m_len;
|
|
f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
|
|
f->vr_status = 0;
|
|
frag = 1;
|
|
}
|
|
|
|
c->vr_mbuf = m_head;
|
|
c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
|
|
c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
|
|
static void vr_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
struct vr_chain *cur_tx = NULL, *start_tx;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->vr_autoneg) {
|
|
sc->vr_tx_pend = 1;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check for an available queue slot. If there are none,
|
|
* punt.
|
|
*/
|
|
if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
start_tx = sc->vr_cdata.vr_tx_free;
|
|
|
|
while(sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/* Pick a descriptor off the free list. */
|
|
cur_tx = sc->vr_cdata.vr_tx_free;
|
|
sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
|
|
|
|
/* Pack the data into the descriptor. */
|
|
vr_encap(sc, cur_tx, m_head);
|
|
|
|
if (cur_tx != start_tx)
|
|
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, cur_tx->vr_mbuf);
|
|
#endif
|
|
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
|
|
}
|
|
|
|
/*
|
|
* If there are no frames queued, bail.
|
|
*/
|
|
if (cur_tx == NULL)
|
|
return;
|
|
|
|
sc->vr_cdata.vr_tx_tail = cur_tx;
|
|
|
|
if (sc->vr_cdata.vr_tx_head == NULL)
|
|
sc->vr_cdata.vr_tx_head = start_tx;
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void vr_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct vr_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
u_int16_t phy_bmcr = 0;
|
|
int s;
|
|
|
|
if (sc->vr_autoneg)
|
|
return;
|
|
|
|
s = splimp();
|
|
|
|
if (sc->vr_pinfo != NULL)
|
|
phy_bmcr = vr_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
vr_stop(sc);
|
|
vr_reset(sc);
|
|
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
|
|
|
|
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
|
|
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
|
|
|
|
/* Init circular RX list. */
|
|
if (vr_list_rx_init(sc) == ENOBUFS) {
|
|
printf("vr%d: initialization failed: no "
|
|
"memory for rx buffers\n", sc->vr_unit);
|
|
vr_stop(sc);
|
|
(void)splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init tx descriptors.
|
|
*/
|
|
vr_list_tx_init(sc);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
|
|
else
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
|
|
|
|
/* Set capture broadcast bit to capture broadcast frames. */
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
|
|
else
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
|
|
|
|
/*
|
|
* Program the multicast filter, if necessary.
|
|
*/
|
|
vr_setmulti(sc);
|
|
|
|
/*
|
|
* Load the address of the RX list.
|
|
*/
|
|
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
|
|
VR_CMD_TX_ON|VR_CMD_RX_ON|
|
|
VR_CMD_RX_GO);
|
|
|
|
vr_setcfg(sc, vr_phy_readreg(sc, PHY_BMCR));
|
|
|
|
CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
|
|
/* Restore state of BMCR */
|
|
if (sc->vr_pinfo != NULL)
|
|
vr_phy_writereg(sc, PHY_BMCR, phy_bmcr);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
(void)splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int vr_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
|
|
else
|
|
vr_setmode_mii(sc, ifm->ifm_media);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void vr_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct vr_softc *sc;
|
|
u_int16_t advert = 0, ability = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!(vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
|
|
if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
|
|
else
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
return;
|
|
}
|
|
|
|
ability = vr_phy_readreg(sc, PHY_LPAR);
|
|
advert = vr_phy_readreg(sc, PHY_ANAR);
|
|
if (advert & PHY_ANAR_100BT4 &&
|
|
ability & PHY_ANAR_100BT4) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int vr_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
vr_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
vr_stop(sc);
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
vr_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void vr_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->vr_autoneg) {
|
|
vr_autoneg_mii(sc, VR_FLAG_DELAYTIMEO, 1);
|
|
return;
|
|
}
|
|
|
|
ifp->if_oerrors++;
|
|
printf("vr%d: watchdog timeout\n", sc->vr_unit);
|
|
|
|
if (!(vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
|
|
printf("vr%d: no carrier - transceiver cable problem?\n",
|
|
sc->vr_unit);
|
|
|
|
vr_stop(sc);
|
|
vr_reset(sc);
|
|
vr_init(sc);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
vr_start(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void vr_stop(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_timer = 0;
|
|
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
|
|
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
|
|
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
|
|
|
|
/*
|
|
* Free data in the RX lists.
|
|
*/
|
|
for (i = 0; i < VR_RX_LIST_CNT; i++) {
|
|
if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
|
|
m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
|
|
sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->vr_ldata->vr_rx_list,
|
|
sizeof(sc->vr_ldata->vr_rx_list));
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < VR_TX_LIST_CNT; i++) {
|
|
if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
|
|
m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
|
|
sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
bzero((char *)&sc->vr_ldata->vr_tx_list,
|
|
sizeof(sc->vr_ldata->vr_tx_list));
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void vr_shutdown(howto, arg)
|
|
int howto;
|
|
void *arg;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *)arg;
|
|
|
|
vr_stop(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static struct pci_device vr_device = {
|
|
"vr",
|
|
vr_probe,
|
|
vr_attach,
|
|
&vr_count,
|
|
NULL
|
|
};
|
|
DATA_SET(pcidevice_set, vr_device);
|