mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-19 01:11:05 +01:00
b95c0fbacd
Added specific permissions for redistribution with FreeBSD and NetBSD. Fixed author's email address.
1368 lines
32 KiB
C
1368 lines
32 KiB
C
/*
|
|
* fpu_trig.c
|
|
*
|
|
* Implementation of the FPU "transcendental" functions.
|
|
*
|
|
*
|
|
* Copyright (C) 1992,1993,1994
|
|
* W. Metzenthen, 22 Parker St, Ormond, Vic 3163,
|
|
* Australia. E-mail billm@vaxc.cc.monash.edu.au
|
|
* All rights reserved.
|
|
*
|
|
* This copyright notice covers the redistribution and use of the
|
|
* FPU emulator developed by W. Metzenthen. It covers only its use
|
|
* in the 386BSD, FreeBSD and NetBSD operating systems. Any other
|
|
* use is not permitted under this copyright.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must include information specifying
|
|
* that source code for the emulator is freely available and include
|
|
* either:
|
|
* a) an offer to provide the source code for a nominal distribution
|
|
* fee, or
|
|
* b) list at least two alternative methods whereby the source
|
|
* can be obtained, e.g. a publically accessible bulletin board
|
|
* and an anonymous ftp site from which the software can be
|
|
* downloaded.
|
|
* 3. All advertising materials specifically mentioning features or use of
|
|
* this emulator must acknowledge that it was developed by W. Metzenthen.
|
|
* 4. The name of W. Metzenthen may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* W. METZENTHEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* The purpose of this copyright, based upon the Berkeley copyright, is to
|
|
* ensure that the covered software remains freely available to everyone.
|
|
*
|
|
* The software (with necessary differences) is also available, but under
|
|
* the terms of the GNU copyleft, for the Linux operating system and for
|
|
* the djgpp ms-dos extender.
|
|
*
|
|
* W. Metzenthen June 1994.
|
|
*
|
|
*
|
|
* $Id: fpu_trig.c,v 1.3 1994/04/29 21:16:25 gclarkii Exp $
|
|
*
|
|
*/
|
|
|
|
|
|
#include "param.h"
|
|
#include "proc.h"
|
|
#include "machine/cpu.h"
|
|
#include "machine/pcb.h"
|
|
|
|
#include "fpu_emu.h"
|
|
#include "fpu_system.h"
|
|
#include "exception.h"
|
|
#include "status_w.h"
|
|
#include "reg_constant.h"
|
|
#include "control_w.h"
|
|
|
|
static int
|
|
trig_arg(FPU_REG * X)
|
|
{
|
|
FPU_REG tmp, quot;
|
|
int rv;
|
|
long long q;
|
|
int old_cw = control_word;
|
|
|
|
control_word &= ~CW_RC;
|
|
control_word |= RC_CHOP;
|
|
|
|
reg_move(X, ");
|
|
reg_div(", &CONST_PI2, ", FULL_PRECISION);
|
|
|
|
reg_move(", &tmp);
|
|
round_to_int(&tmp);
|
|
if (tmp.sigh & 0x80000000)
|
|
return -1; /* |Arg| is >= 2^63 */
|
|
tmp.exp = EXP_BIAS + 63;
|
|
q = *(long long *) &(tmp.sigl);
|
|
normalize(&tmp);
|
|
|
|
reg_sub(", &tmp, X, FULL_PRECISION);
|
|
rv = q & 7;
|
|
|
|
control_word = old_cw;
|
|
return rv;;
|
|
}
|
|
|
|
|
|
/* Convert a long to register */
|
|
void
|
|
convert_l2reg(long *arg, FPU_REG * dest)
|
|
{
|
|
long num = *arg;
|
|
|
|
if (num == 0) {
|
|
reg_move(&CONST_Z, dest);
|
|
return;
|
|
}
|
|
if (num > 0)
|
|
dest->sign = SIGN_POS;
|
|
else {
|
|
num = -num;
|
|
dest->sign = SIGN_NEG;
|
|
}
|
|
|
|
dest->sigh = num;
|
|
dest->sigl = 0;
|
|
dest->exp = EXP_BIAS + 31;
|
|
dest->tag = TW_Valid;
|
|
normalize(dest);
|
|
}
|
|
|
|
|
|
static void
|
|
single_arg_error(void)
|
|
{
|
|
switch (FPU_st0_tag) {
|
|
case TW_NaN:
|
|
if (!(FPU_st0_ptr->sigh & 0x40000000)) { /* Signaling ? */
|
|
EXCEPTION(EX_Invalid);
|
|
/* Convert to a QNaN */
|
|
FPU_st0_ptr->sigh |= 0x40000000;
|
|
}
|
|
break; /* return with a NaN in st(0) */
|
|
case TW_Empty:
|
|
stack_underflow(); /* Puts a QNaN in st(0) */
|
|
break;
|
|
#ifdef PARANOID
|
|
default:
|
|
EXCEPTION(EX_INTERNAL | 0x0112);
|
|
#endif /* PARANOID */
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
f2xm1(void)
|
|
{
|
|
switch (FPU_st0_tag) {
|
|
case TW_Valid:
|
|
{
|
|
FPU_REG rv, tmp;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (FPU_st0_ptr->sign == SIGN_POS) {
|
|
/* poly_2xm1(x) requires 0 < x < 1. */
|
|
if (poly_2xm1(FPU_st0_ptr, &rv))
|
|
return; /* error */
|
|
reg_mul(&rv, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);
|
|
} else {
|
|
/* **** Should change poly_2xm1() to at least handle numbers near 0 */
|
|
/* poly_2xm1(x) doesn't handle negative
|
|
* numbers. */
|
|
/* So we compute (poly_2xm1(x+1)-1)/2, for -1
|
|
* < x < 0 */
|
|
reg_add(FPU_st0_ptr, &CONST_1, &tmp, FULL_PRECISION);
|
|
poly_2xm1(&tmp, &rv);
|
|
reg_mul(&rv, &tmp, &tmp, FULL_PRECISION);
|
|
reg_sub(&tmp, &CONST_1, FPU_st0_ptr, FULL_PRECISION);
|
|
FPU_st0_ptr->exp--;
|
|
if (FPU_st0_ptr->exp <= EXP_UNDER)
|
|
arith_underflow(FPU_st0_ptr);
|
|
}
|
|
return;
|
|
}
|
|
case TW_Zero:
|
|
return;
|
|
case TW_Infinity:
|
|
if (FPU_st0_ptr->sign == SIGN_NEG) {
|
|
/* -infinity gives -1 (p16-10) */
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = SIGN_NEG;
|
|
}
|
|
return;
|
|
default:
|
|
single_arg_error();
|
|
}
|
|
}
|
|
|
|
static void
|
|
fptan(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
int q;
|
|
char arg_sign = FPU_st0_ptr->sign;
|
|
|
|
if (STACK_OVERFLOW) {
|
|
stack_overflow();
|
|
return;
|
|
}
|
|
switch (FPU_st0_tag) {
|
|
case TW_Valid:
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
if ((q = trig_arg(FPU_st0_ptr)) != -1) {
|
|
if (q & 1)
|
|
reg_sub(&CONST_1, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);
|
|
|
|
poly_tan(FPU_st0_ptr, FPU_st0_ptr);
|
|
|
|
FPU_st0_ptr->sign = (q & 1) ^ arg_sign;
|
|
|
|
if (FPU_st0_ptr->exp <= EXP_UNDER)
|
|
arith_underflow(FPU_st0_ptr);
|
|
|
|
push();
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
setcc(0);
|
|
} else {
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
}
|
|
break;
|
|
case TW_Infinity:
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
case TW_Zero:
|
|
push();
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
setcc(0);
|
|
break;
|
|
default:
|
|
single_arg_error();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fxtract(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
register FPU_REG *st1_ptr = FPU_st0_ptr; /* anticipate */
|
|
|
|
if (STACK_OVERFLOW) {
|
|
stack_overflow();
|
|
return;
|
|
}
|
|
if (!(FPU_st0_tag ^ TW_Valid)) {
|
|
long e;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
push();
|
|
reg_move(st1_ptr, FPU_st0_ptr);
|
|
FPU_st0_ptr->exp = EXP_BIAS;
|
|
e = st1_ptr->exp - EXP_BIAS;
|
|
convert_l2reg(&e, st1_ptr);
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
char sign = FPU_st0_ptr->sign;
|
|
divide_by_zero(SIGN_NEG, FPU_st0_ptr);
|
|
push();
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
char sign = FPU_st0_ptr->sign;
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
push();
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_NaN) {
|
|
if (!(FPU_st0_ptr->sigh & 0x40000000)) { /* Signaling ? */
|
|
EXCEPTION(EX_Invalid);
|
|
/* Convert to a QNaN */
|
|
FPU_st0_ptr->sigh |= 0x40000000;
|
|
}
|
|
push();
|
|
reg_move(st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Empty) {
|
|
/* Is this the correct
|
|
* behaviour? */
|
|
if (control_word & EX_Invalid) {
|
|
stack_underflow();
|
|
push();
|
|
stack_underflow();
|
|
} else
|
|
EXCEPTION(EX_StackUnder);
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
EXCEPTION(EX_INTERNAL | 0x119);
|
|
#endif /* PARANOID */
|
|
}
|
|
|
|
|
|
static void
|
|
fdecstp(void)
|
|
{
|
|
top--; /* FPU_st0_ptr will be fixed in math_emulate()
|
|
* before the next instr */
|
|
}
|
|
|
|
static void
|
|
fincstp(void)
|
|
{
|
|
top++; /* FPU_st0_ptr will be fixed in math_emulate()
|
|
* before the next instr */
|
|
}
|
|
|
|
|
|
static void
|
|
fsqrt_(void)
|
|
{
|
|
if (!(FPU_st0_tag ^ TW_Valid)) {
|
|
int expon;
|
|
|
|
if (FPU_st0_ptr->sign == SIGN_NEG) {
|
|
arith_invalid(FPU_st0_ptr); /* sqrt(negative) is
|
|
* invalid */
|
|
return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
expon = FPU_st0_ptr->exp - EXP_BIAS;
|
|
FPU_st0_ptr->exp = EXP_BIAS + (expon & 1); /* make st(0) in [1.0
|
|
* .. 4.0) */
|
|
|
|
wm_sqrt(FPU_st0_ptr, control_word); /* Do the computation */
|
|
|
|
FPU_st0_ptr->exp += expon >> 1;
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero)
|
|
return;
|
|
else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if (FPU_st0_ptr->sign == SIGN_NEG)
|
|
arith_invalid(FPU_st0_ptr); /* sqrt(-Infinity) is
|
|
* invalid */
|
|
return;
|
|
} else {
|
|
single_arg_error();
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void
|
|
frndint_(void)
|
|
{
|
|
if (!(FPU_st0_tag ^ TW_Valid)) {
|
|
if (FPU_st0_ptr->exp > EXP_BIAS + 63)
|
|
return;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
round_to_int(FPU_st0_ptr); /* Fortunately, this can't
|
|
* overflow to 2^64 */
|
|
FPU_st0_ptr->exp = EXP_BIAS + 63;
|
|
normalize(FPU_st0_ptr);
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag == TW_Zero) || (FPU_st0_tag == TW_Infinity))
|
|
return;
|
|
else
|
|
single_arg_error();
|
|
}
|
|
|
|
|
|
static void
|
|
fsin(void)
|
|
{
|
|
char arg_sign = FPU_st0_ptr->sign;
|
|
|
|
if (FPU_st0_tag == TW_Valid) {
|
|
int q;
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if ((q = trig_arg(FPU_st0_ptr)) != -1) {
|
|
FPU_REG rv;
|
|
|
|
if (q & 1)
|
|
reg_sub(&CONST_1, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);
|
|
|
|
poly_sine(FPU_st0_ptr, &rv);
|
|
|
|
setcc(0);
|
|
if (q & 2)
|
|
rv.sign ^= SIGN_POS ^ SIGN_NEG;
|
|
rv.sign ^= arg_sign;
|
|
reg_move(&rv, FPU_st0_ptr);
|
|
|
|
if (FPU_st0_ptr->exp <= EXP_UNDER)
|
|
arith_underflow(FPU_st0_ptr);
|
|
|
|
set_precision_flag_up(); /* We do not really know
|
|
* if up or down */
|
|
|
|
return;
|
|
} else {
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
setcc(0);
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
} else
|
|
single_arg_error();
|
|
}
|
|
|
|
|
|
static int
|
|
f_cos(FPU_REG * arg)
|
|
{
|
|
char arg_sign = arg->sign;
|
|
|
|
if (arg->tag == TW_Valid) {
|
|
int q;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return 1;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
arg->sign = SIGN_POS;
|
|
if ((q = trig_arg(arg)) != -1) {
|
|
FPU_REG rv;
|
|
|
|
if (!(q & 1))
|
|
reg_sub(&CONST_1, arg, arg, FULL_PRECISION);
|
|
|
|
poly_sine(arg, &rv);
|
|
|
|
setcc(0);
|
|
if ((q + 1) & 2)
|
|
rv.sign ^= SIGN_POS ^ SIGN_NEG;
|
|
reg_move(&rv, arg);
|
|
|
|
set_precision_flag_up(); /* We do not really know
|
|
* if up or down */
|
|
|
|
return 0;
|
|
} else {
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
arg->sign = arg_sign; /* restore st(0) */
|
|
return 1;
|
|
}
|
|
} else
|
|
if (arg->tag == TW_Zero) {
|
|
reg_move(&CONST_1, arg);
|
|
setcc(0);
|
|
return 0;
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
/* Operand is out of range */
|
|
setcc(SW_C2);
|
|
arg->sign = arg_sign; /* restore st(0) */
|
|
return 1;
|
|
} else {
|
|
single_arg_error(); /* requires arg ==
|
|
* &st(0) */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fcos(void)
|
|
{
|
|
f_cos(FPU_st0_ptr);
|
|
}
|
|
|
|
|
|
static void
|
|
fsincos(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
FPU_REG arg;
|
|
|
|
if (STACK_OVERFLOW) {
|
|
stack_overflow();
|
|
return;
|
|
}
|
|
reg_move(FPU_st0_ptr, &arg);
|
|
if (!f_cos(&arg)) {
|
|
fsin();
|
|
push();
|
|
reg_move(&arg, FPU_st0_ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* The following all require two arguments: st(0) and st(1) */
|
|
|
|
/* remainder of st(0) / st(1) */
|
|
/* Assumes that st(0) and st(1) are both TW_Valid */
|
|
static void
|
|
fprem_kernel(int round)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
if (!((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid))) {
|
|
FPU_REG tmp;
|
|
int old_cw = control_word;
|
|
int expdif = FPU_st0_ptr->exp - (st1_ptr)->exp;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if (((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
control_word &= ~CW_RC;
|
|
control_word |= round;
|
|
|
|
if (expdif < 64) {
|
|
/* This should be the most common case */
|
|
long long q;
|
|
int c = 0;
|
|
|
|
reg_div(FPU_st0_ptr, st1_ptr, &tmp, FULL_PRECISION);
|
|
|
|
round_to_int(&tmp); /* Fortunately, this can't
|
|
* overflow to 2^64 */
|
|
tmp.exp = EXP_BIAS + 63;
|
|
q = *(long long *) &(tmp.sigl);
|
|
normalize(&tmp);
|
|
|
|
reg_mul(st1_ptr, &tmp, &tmp, FULL_PRECISION);
|
|
reg_sub(FPU_st0_ptr, &tmp, FPU_st0_ptr, FULL_PRECISION);
|
|
|
|
if (q & 4)
|
|
c |= SW_C3;
|
|
if (q & 2)
|
|
c |= SW_C1;
|
|
if (q & 1)
|
|
c |= SW_C0;
|
|
|
|
setcc(c);
|
|
} else {
|
|
/* There is a large exponent difference ( >= 64 ) */
|
|
int N_exp;
|
|
|
|
reg_div(FPU_st0_ptr, st1_ptr, &tmp, FULL_PRECISION);
|
|
/* N is 'a number between 32 and 63' (p26-113) */
|
|
N_exp = (tmp.exp & 31) + 32;
|
|
tmp.exp = EXP_BIAS + N_exp;
|
|
|
|
round_to_int(&tmp); /* Fortunately, this can't
|
|
* overflow to 2^64 */
|
|
tmp.exp = EXP_BIAS + 63;
|
|
normalize(&tmp);
|
|
|
|
tmp.exp = EXP_BIAS + expdif - N_exp;
|
|
|
|
reg_mul(st1_ptr, &tmp, &tmp, FULL_PRECISION);
|
|
reg_sub(FPU_st0_ptr, &tmp, FPU_st0_ptr, FULL_PRECISION);
|
|
|
|
setcc(SW_C2);
|
|
}
|
|
control_word = old_cw;
|
|
|
|
if (FPU_st0_ptr->exp <= EXP_UNDER)
|
|
arith_underflow(FPU_st0_ptr);
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag == TW_Empty) | (st1_tag == TW_Empty)) {
|
|
stack_underflow();
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
if (st1_tag == TW_Valid) {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
setcc(0);
|
|
return;
|
|
} else
|
|
if (st1_tag == TW_Zero) {
|
|
arith_invalid(FPU_st0_ptr);
|
|
return;
|
|
}
|
|
/* fprem(?,0) always invalid */
|
|
else
|
|
if (st1_tag == TW_Infinity) {
|
|
setcc(0);
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_Valid) {
|
|
if (st1_tag == TW_Zero) {
|
|
arith_invalid(FPU_st0_ptr); /* fprem(Valid,Zero) is
|
|
* invalid */
|
|
return;
|
|
} else
|
|
if (st1_tag != TW_NaN) {
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (st1_tag == TW_Infinity) {
|
|
/* fprem(Valid,
|
|
* Infinity)
|
|
* is o.k. */
|
|
setcc(0);
|
|
return;
|
|
}
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if (st1_tag != TW_NaN) {
|
|
arith_invalid(FPU_st0_ptr); /* fprem(Infinity,?) is
|
|
* invalid */
|
|
return;
|
|
}
|
|
}
|
|
/* One of the registers must contain a NaN is we got here. */
|
|
|
|
#ifdef PARANOID
|
|
if ((FPU_st0_tag != TW_NaN) && (st1_tag != TW_NaN))
|
|
EXCEPTION(EX_INTERNAL | 0x118);
|
|
#endif /* PARANOID */
|
|
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr);
|
|
|
|
}
|
|
|
|
|
|
/* ST(1) <- ST(1) * log ST; pop ST */
|
|
static void
|
|
fyl2x(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
if (!((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid))) {
|
|
if (FPU_st0_ptr->sign == SIGN_POS) {
|
|
int saved_control, saved_status;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if (((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
/* We use the general purpose arithmetic, so we need
|
|
* to save these. */
|
|
saved_status = status_word;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
poly_l2(FPU_st0_ptr, FPU_st0_ptr);
|
|
|
|
/* Enough of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
status_word = saved_status;
|
|
|
|
/* Let the multiply set the flags */
|
|
reg_mul(FPU_st0_ptr, st1_ptr, st1_ptr, FULL_PRECISION);
|
|
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
} else {
|
|
/* negative */
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
arith_invalid(FPU_st0_ptr); /* st(0) cannot be
|
|
* negative */
|
|
return;
|
|
}
|
|
} else
|
|
if ((FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty)) {
|
|
stack_underflow_pop(1);
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag == TW_NaN) || (st1_tag == TW_NaN)) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag <= TW_Zero) && (st1_tag <= TW_Zero)) {
|
|
/* one of the args is zero, the other
|
|
* valid, or both zero */
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
if (FPU_st0_ptr->tag == TW_Zero)
|
|
arith_invalid(FPU_st0_ptr); /* Both args zero is
|
|
* invalid */
|
|
#ifdef PECULIAR_486
|
|
/* This case is not
|
|
* specifically covered in the
|
|
* manual, but divide-by-zero
|
|
* would seem to be the best
|
|
* response. However, a real
|
|
* 80486 does it this way... */
|
|
else
|
|
if (FPU_st0_ptr->tag == TW_Infinity) {
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
#endif /* PECULIAR_486 */
|
|
else
|
|
divide_by_zero(st1_ptr->sign ^ SIGN_NEG ^ SIGN_POS, FPU_st0_ptr);
|
|
return;
|
|
} else {
|
|
/* st(1) contains zero, st(0)
|
|
* valid <> 0 */
|
|
/* Zero is the valid answer */
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
if (FPU_st0_ptr->sign == SIGN_NEG) {
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
arith_invalid(FPU_st0_ptr); /* log(negative) */
|
|
return;
|
|
}
|
|
if (FPU_st0_ptr->exp < EXP_BIAS)
|
|
sign ^= SIGN_NEG ^ SIGN_POS;
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
}
|
|
/* One or both arg must be an infinity */
|
|
else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if ((FPU_st0_ptr->sign == SIGN_NEG) || (st1_tag == TW_Zero)) {
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
arith_invalid(FPU_st0_ptr); /* log(-infinity) or
|
|
* 0*log(infinity) */
|
|
return;
|
|
} else {
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
}
|
|
/* st(1) must be infinity here */
|
|
else
|
|
if ((FPU_st0_tag == TW_Valid) && (FPU_st0_ptr->sign == SIGN_POS)) {
|
|
if (FPU_st0_ptr->exp >= EXP_BIAS) {
|
|
if ((FPU_st0_ptr->exp == EXP_BIAS) &&
|
|
(FPU_st0_ptr->sigh == 0x80000000) &&
|
|
(FPU_st0_ptr->sigl == 0)) {
|
|
/* st(0
|
|
* )
|
|
* hold
|
|
* s
|
|
* 1.0 */
|
|
pop();
|
|
FPU_st0_ptr = &st(0);
|
|
arith_invalid(FPU_st0_ptr); /* infinity*log(1) */
|
|
return;
|
|
}
|
|
/* st(0) is
|
|
* positive
|
|
* and > 1.0 */
|
|
pop();
|
|
} else {
|
|
/* st(0) is
|
|
* positive
|
|
* and < 1.0 */
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
st1_ptr->sign ^= SIGN_NEG;
|
|
pop();
|
|
}
|
|
return;
|
|
} else {
|
|
/* st(0) must be zero
|
|
* or negative */
|
|
if (FPU_st0_ptr->tag == TW_Zero) {
|
|
pop();
|
|
FPU_st0_ptr = st1_ptr;
|
|
st1_ptr->sign ^= SIGN_NEG ^ SIGN_POS;
|
|
/* This should
|
|
* be invalid,
|
|
* but a real
|
|
* 80486 is
|
|
* happy with
|
|
* it. */
|
|
#ifndef PECULIAR_486
|
|
divide_by_zero(st1_ptr->sign, FPU_st0_ptr);
|
|
#endif /* PECULIAR_486 */
|
|
} else {
|
|
pop();
|
|
FPU_st0_ptr = st1_ptr;
|
|
arith_invalid(FPU_st0_ptr); /* log(negative) */
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fpatan(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
if (!((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid))) {
|
|
int saved_control, saved_status;
|
|
FPU_REG sum;
|
|
int quadrant = st1_ptr->sign | ((FPU_st0_ptr->sign) << 1);
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if (((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
/* We use the general purpose arithmetic so we need to save
|
|
* these. */
|
|
saved_status = status_word;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
st1_ptr->sign = FPU_st0_ptr->sign = SIGN_POS;
|
|
if (compare(st1_ptr) == COMP_A_lt_B) {
|
|
quadrant |= 4;
|
|
reg_div(FPU_st0_ptr, st1_ptr, &sum, FULL_PRECISION);
|
|
} else
|
|
reg_div(st1_ptr, FPU_st0_ptr, &sum, FULL_PRECISION);
|
|
|
|
poly_atan(&sum);
|
|
|
|
if (quadrant & 4) {
|
|
reg_sub(&CONST_PI2, &sum, &sum, FULL_PRECISION);
|
|
}
|
|
if (quadrant & 2) {
|
|
reg_sub(&CONST_PI, &sum, &sum, FULL_PRECISION);
|
|
}
|
|
if (quadrant & 1)
|
|
sum.sign ^= SIGN_POS ^ SIGN_NEG;
|
|
|
|
/* All of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
status_word = saved_status;
|
|
|
|
reg_move(&sum, st1_ptr);
|
|
} else
|
|
if ((FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty)) {
|
|
stack_underflow_pop(1);
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag == TW_NaN) || (st1_tag == TW_NaN)) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
if ((FPU_st0_tag == TW_Infinity) || (st1_tag == TW_Infinity)) {
|
|
char sign = st1_ptr->sign;
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if (st1_tag == TW_Infinity) {
|
|
if (FPU_st0_ptr->sign == SIGN_POS) {
|
|
reg_move(&CONST_PI4, st1_ptr);
|
|
} else
|
|
reg_add(&CONST_PI4, &CONST_PI2, st1_ptr, FULL_PRECISION);
|
|
} else {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (FPU_st0_ptr->sign == SIGN_POS) {
|
|
reg_move(&CONST_Z, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
reg_move(&CONST_PI, st1_ptr);
|
|
}
|
|
} else {
|
|
/* st(1) is infinity, st(0)
|
|
* not infinity */
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
reg_move(&CONST_PI2, st1_ptr);
|
|
}
|
|
st1_ptr->sign = sign;
|
|
} else
|
|
if (st1_tag == TW_Zero) {
|
|
/* st(0) must be valid or zero */
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (FPU_st0_ptr->sign == SIGN_POS) {
|
|
reg_move(&CONST_Z, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
reg_move(&CONST_PI, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
/* st(1) must be
|
|
* TW_Valid here */
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
reg_move(&CONST_PI2, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
EXCEPTION(EX_INTERNAL | 0x220);
|
|
#endif /* PARANOID */
|
|
|
|
pop();
|
|
set_precision_flag_up();/* We do not really know if up or down */
|
|
}
|
|
|
|
|
|
static void
|
|
fprem(void)
|
|
{
|
|
fprem_kernel(RC_CHOP);
|
|
}
|
|
|
|
|
|
static void
|
|
fprem1(void)
|
|
{
|
|
fprem_kernel(RC_RND);
|
|
}
|
|
|
|
|
|
static void
|
|
fyl2xp1(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
if (!((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid))) {
|
|
int saved_control, saved_status;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if (((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
/* We use the general purpose arithmetic so we need to save
|
|
* these. */
|
|
saved_status = status_word;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
if (poly_l2p1(FPU_st0_ptr, FPU_st0_ptr)) {
|
|
arith_invalid(st1_ptr); /* poly_l2p1() returned
|
|
* invalid */
|
|
pop();
|
|
return;
|
|
}
|
|
/* Enough of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
status_word = saved_status;
|
|
|
|
/* Let the multiply set the flags */
|
|
reg_mul(FPU_st0_ptr, st1_ptr, st1_ptr, FULL_PRECISION);
|
|
|
|
pop();
|
|
} else
|
|
if ((FPU_st0_tag == TW_Empty) | (st1_tag == TW_Empty)) {
|
|
stack_underflow_pop(1);
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
if (st1_tag <= TW_Zero) {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_tag == TW_Valid) && (st1_ptr->exp <= EXP_UNDER) &&
|
|
(denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
st1_ptr->sign ^= FPU_st0_ptr->sign;
|
|
reg_move(FPU_st0_ptr, st1_ptr);
|
|
} else
|
|
if (st1_tag == TW_Infinity) {
|
|
arith_invalid(st1_ptr); /* Infinity*log(1) */
|
|
pop();
|
|
return;
|
|
} else
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef PARANOID
|
|
else {
|
|
EXCEPTION(EX_INTERNAL | 0x116);
|
|
return;
|
|
}
|
|
#endif /* PARANOID */
|
|
pop();
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Valid) {
|
|
if (st1_tag == TW_Zero) {
|
|
if (FPU_st0_ptr->sign == SIGN_NEG) {
|
|
if (FPU_st0_ptr->exp >= EXP_BIAS) {
|
|
/* st(0) holds
|
|
* <= -1.0 */
|
|
arith_invalid(st1_ptr); /* infinity*log(1) */
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
st1_ptr->sign ^= SIGN_POS ^ SIGN_NEG;
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
pop();
|
|
return;
|
|
}
|
|
if (st1_tag == TW_Infinity) {
|
|
if (FPU_st0_ptr->sign == SIGN_NEG) {
|
|
if ((FPU_st0_ptr->exp >= EXP_BIAS) &&
|
|
!((FPU_st0_ptr->sigh == 0x80000000) &&
|
|
(FPU_st0_ptr->sigl == 0))) {
|
|
/* st(0) holds
|
|
* < -1.0 */
|
|
arith_invalid(st1_ptr);
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
st1_ptr->sign ^= SIGN_POS ^ SIGN_NEG;
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
pop();
|
|
return;
|
|
}
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr);
|
|
pop();
|
|
return;
|
|
} else
|
|
if ((FPU_st0_ptr->sign == SIGN_NEG) ||
|
|
(st1_tag == TW_Zero)) {
|
|
arith_invalid(st1_ptr); /* log(infinity) */
|
|
pop();
|
|
return;
|
|
}
|
|
/* st(1) must be valid
|
|
* here. */
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
/* The Manual says
|
|
* that log(Infinity)
|
|
* is invalid, but a
|
|
* real 80486 sensibly
|
|
* says that it is
|
|
* o.k. */
|
|
{
|
|
char sign = st1_ptr->sign;
|
|
reg_move(&CONST_INF, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
}
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef PARANOID
|
|
else {
|
|
EXCEPTION(EX_INTERNAL | 0x117);
|
|
}
|
|
#endif /* PARANOID */
|
|
}
|
|
|
|
|
|
static void
|
|
emu_fscale(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
int old_cw = control_word;
|
|
|
|
if (!((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid))) {
|
|
long scale;
|
|
FPU_REG tmp;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if (((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (st1_ptr->exp > EXP_BIAS + 30) {
|
|
/* 2^31 is far too large, would require 2^(2^30) or
|
|
* 2^(-2^30) */
|
|
char sign;
|
|
|
|
if (st1_ptr->sign == SIGN_POS) {
|
|
EXCEPTION(EX_Overflow);
|
|
sign = FPU_st0_ptr->sign;
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
} else {
|
|
EXCEPTION(EX_Underflow);
|
|
sign = FPU_st0_ptr->sign;
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
}
|
|
return;
|
|
}
|
|
control_word &= ~CW_RC;
|
|
control_word |= RC_CHOP;
|
|
reg_move(st1_ptr, &tmp);
|
|
round_to_int(&tmp); /* This can never overflow here */
|
|
control_word = old_cw;
|
|
scale = st1_ptr->sign ? -tmp.sigl : tmp.sigl;
|
|
scale += FPU_st0_ptr->exp;
|
|
FPU_st0_ptr->exp = scale;
|
|
|
|
/* Use round_reg() to properly detect under/overflow etc */
|
|
round_reg(FPU_st0_ptr, 0, control_word);
|
|
|
|
return;
|
|
} else
|
|
if (FPU_st0_tag == TW_Valid) {
|
|
if (st1_tag == TW_Zero) {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
return;
|
|
}
|
|
if (st1_tag == TW_Infinity) {
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
if (sign == SIGN_POS) {
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
} else
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_Zero) {
|
|
if (st1_tag == TW_Valid) {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
return;
|
|
} else
|
|
if (st1_tag == TW_Zero) {
|
|
return;
|
|
} else
|
|
if (st1_tag == TW_Infinity) {
|
|
if (st1_ptr->sign == SIGN_NEG)
|
|
return;
|
|
else {
|
|
arith_invalid(FPU_st0_ptr); /* Zero scaled by
|
|
* +Infinity */
|
|
return;
|
|
}
|
|
} else
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_Infinity) {
|
|
if (st1_tag == TW_Valid) {
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ((st1_ptr->exp <= EXP_UNDER) && (denormal_operand()))
|
|
return;
|
|
#endif /* DENORM_OPERAND */
|
|
|
|
return;
|
|
}
|
|
if (((st1_tag == TW_Infinity) && (st1_ptr->sign == SIGN_POS))
|
|
|| (st1_tag == TW_Zero))
|
|
return;
|
|
else
|
|
if (st1_tag == TW_Infinity) {
|
|
arith_invalid(FPU_st0_ptr); /* Infinity scaled by
|
|
* -Infinity */
|
|
return;
|
|
} else
|
|
if (st1_tag == TW_NaN) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
} else
|
|
if (FPU_st0_tag == TW_NaN) {
|
|
if (st1_tag != TW_Empty) {
|
|
real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
}
|
|
#ifdef PARANOID
|
|
if (!((FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty))) {
|
|
EXCEPTION(EX_INTERNAL | 0x115);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* At least one of st(0), st(1) must be empty */
|
|
stack_underflow();
|
|
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static FUNC trig_table_a[] = {
|
|
f2xm1, fyl2x, fptan, fpatan, fxtract, fprem1, fdecstp, fincstp
|
|
};
|
|
|
|
void
|
|
trig_a(void)
|
|
{
|
|
(trig_table_a[FPU_rm]) ();
|
|
}
|
|
|
|
|
|
static FUNC trig_table_b[] =
|
|
{
|
|
fprem, fyl2xp1, fsqrt_, fsincos, frndint_, emu_fscale, fsin, fcos
|
|
};
|
|
|
|
void
|
|
trig_b(void)
|
|
{
|
|
(trig_table_b[FPU_rm]) ();
|
|
}
|