HardenedBSD/contrib/bison/lalr.c
Peter Wemm 9f36c7f497 Import the FSF release of bison-1.25 onto the vendor branch.
In case you're wondering, the gcc-2.7.2.1 import uses this to generate
code.  The size of the generated code is bigger than the entire bison
release, making this a saving.  The bison doc is pretty good apparently.
1996-09-10 13:12:03 +00:00

771 lines
14 KiB
C

/* Compute look-ahead criteria for bison,
Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
Bison is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Bison is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Bison; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Compute how to make the finite state machine deterministic;
find which rules need lookahead in each state, and which lookahead tokens they accept.
lalr(), the entry point, builds these data structures:
goto_map, from_state and to_state
record each shift transition which accepts a variable (a nonterminal).
ngotos is the number of such transitions.
from_state[t] is the state number which a transition leads from
and to_state[t] is the state number it leads to.
All the transitions that accept a particular variable are grouped together and
goto_map[i - ntokens] is the index in from_state and to_state of the first of them.
consistent[s] is nonzero if no lookahead is needed to decide what to do in state s.
LAruleno is a vector which records the rules that need lookahead in various states.
The elements of LAruleno that apply to state s are those from
lookaheads[s] through lookaheads[s+1]-1.
Each element of LAruleno is a rule number.
If lr is the length of LAruleno, then a number from 0 to lr-1
can specify both a rule and a state where the rule might be applied.
LA is a lr by ntokens matrix of bits.
LA[l, i] is 1 if the rule LAruleno[l] is applicable in the appropriate state
when the next token is symbol i.
If LA[l, i] and LA[l, j] are both 1 for i != j, it is a conflict.
*/
#include <stdio.h>
#include "system.h"
#include "machine.h"
#include "types.h"
#include "state.h"
#include "new.h"
#include "gram.h"
extern short **derives;
extern char *nullable;
int tokensetsize;
short *lookaheads;
short *LAruleno;
unsigned *LA;
short *accessing_symbol;
char *consistent;
core **state_table;
shifts **shift_table;
reductions **reduction_table;
short *goto_map;
short *from_state;
short *to_state;
short **transpose();
void set_state_table();
void set_accessing_symbol();
void set_shift_table();
void set_reduction_table();
void set_maxrhs();
void initialize_LA();
void set_goto_map();
void initialize_F();
void build_relations();
void add_lookback_edge();
void compute_FOLLOWS();
void compute_lookaheads();
void digraph();
void traverse();
extern void toomany();
extern void berror();
static int infinity;
static int maxrhs;
static int ngotos;
static unsigned *F;
static short **includes;
static shorts **lookback;
static short **R;
static short *INDEX;
static short *VERTICES;
static int top;
void
lalr()
{
tokensetsize = WORDSIZE(ntokens);
set_state_table();
set_accessing_symbol();
set_shift_table();
set_reduction_table();
set_maxrhs();
initialize_LA();
set_goto_map();
initialize_F();
build_relations();
compute_FOLLOWS();
compute_lookaheads();
}
void
set_state_table()
{
register core *sp;
state_table = NEW2(nstates, core *);
for (sp = first_state; sp; sp = sp->next)
state_table[sp->number] = sp;
}
void
set_accessing_symbol()
{
register core *sp;
accessing_symbol = NEW2(nstates, short);
for (sp = first_state; sp; sp = sp->next)
accessing_symbol[sp->number] = sp->accessing_symbol;
}
void
set_shift_table()
{
register shifts *sp;
shift_table = NEW2(nstates, shifts *);
for (sp = first_shift; sp; sp = sp->next)
shift_table[sp->number] = sp;
}
void
set_reduction_table()
{
register reductions *rp;
reduction_table = NEW2(nstates, reductions *);
for (rp = first_reduction; rp; rp = rp->next)
reduction_table[rp->number] = rp;
}
void
set_maxrhs()
{
register short *itemp;
register int length;
register int max;
length = 0;
max = 0;
for (itemp = ritem; *itemp; itemp++)
{
if (*itemp > 0)
{
length++;
}
else
{
if (length > max) max = length;
length = 0;
}
}
maxrhs = max;
}
void
initialize_LA()
{
register int i;
register int j;
register int count;
register reductions *rp;
register shifts *sp;
register short *np;
consistent = NEW2(nstates, char);
lookaheads = NEW2(nstates + 1, short);
count = 0;
for (i = 0; i < nstates; i++)
{
register int k;
lookaheads[i] = count;
rp = reduction_table[i];
sp = shift_table[i];
if (rp && (rp->nreds > 1
|| (sp && ! ISVAR(accessing_symbol[sp->shifts[0]]))))
count += rp->nreds;
else
consistent[i] = 1;
if (sp)
for (k = 0; k < sp->nshifts; k++)
{
if (accessing_symbol[sp->shifts[k]] == error_token_number)
{
consistent[i] = 0;
break;
}
}
}
lookaheads[nstates] = count;
if (count == 0)
{
LA = NEW2(1 * tokensetsize, unsigned);
LAruleno = NEW2(1, short);
lookback = NEW2(1, shorts *);
}
else
{
LA = NEW2(count * tokensetsize, unsigned);
LAruleno = NEW2(count, short);
lookback = NEW2(count, shorts *);
}
np = LAruleno;
for (i = 0; i < nstates; i++)
{
if (!consistent[i])
{
if (rp = reduction_table[i])
for (j = 0; j < rp->nreds; j++)
*np++ = rp->rules[j];
}
}
}
void
set_goto_map()
{
register shifts *sp;
register int i;
register int symbol;
register int k;
register short *temp_map;
register int state2;
register int state1;
goto_map = NEW2(nvars + 1, short) - ntokens;
temp_map = NEW2(nvars + 1, short) - ntokens;
ngotos = 0;
for (sp = first_shift; sp; sp = sp->next)
{
for (i = sp->nshifts - 1; i >= 0; i--)
{
symbol = accessing_symbol[sp->shifts[i]];
if (ISTOKEN(symbol)) break;
if (ngotos == MAXSHORT)
toomany("gotos");
ngotos++;
goto_map[symbol]++;
}
}
k = 0;
for (i = ntokens; i < nsyms; i++)
{
temp_map[i] = k;
k += goto_map[i];
}
for (i = ntokens; i < nsyms; i++)
goto_map[i] = temp_map[i];
goto_map[nsyms] = ngotos;
temp_map[nsyms] = ngotos;
from_state = NEW2(ngotos, short);
to_state = NEW2(ngotos, short);
for (sp = first_shift; sp; sp = sp->next)
{
state1 = sp->number;
for (i = sp->nshifts - 1; i >= 0; i--)
{
state2 = sp->shifts[i];
symbol = accessing_symbol[state2];
if (ISTOKEN(symbol)) break;
k = temp_map[symbol]++;
from_state[k] = state1;
to_state[k] = state2;
}
}
FREE(temp_map + ntokens);
}
/* Map_goto maps a state/symbol pair into its numeric representation. */
int
map_goto(state, symbol)
int state;
int symbol;
{
register int high;
register int low;
register int middle;
register int s;
low = goto_map[symbol];
high = goto_map[symbol + 1] - 1;
while (low <= high)
{
middle = (low + high) / 2;
s = from_state[middle];
if (s == state)
return (middle);
else if (s < state)
low = middle + 1;
else
high = middle - 1;
}
berror("map_goto");
/* NOTREACHED */
return 0;
}
void
initialize_F()
{
register int i;
register int j;
register int k;
register shifts *sp;
register short *edge;
register unsigned *rowp;
register short *rp;
register short **reads;
register int nedges;
register int stateno;
register int symbol;
register int nwords;
nwords = ngotos * tokensetsize;
F = NEW2(nwords, unsigned);
reads = NEW2(ngotos, short *);
edge = NEW2(ngotos + 1, short);
nedges = 0;
rowp = F;
for (i = 0; i < ngotos; i++)
{
stateno = to_state[i];
sp = shift_table[stateno];
if (sp)
{
k = sp->nshifts;
for (j = 0; j < k; j++)
{
symbol = accessing_symbol[sp->shifts[j]];
if (ISVAR(symbol))
break;
SETBIT(rowp, symbol);
}
for (; j < k; j++)
{
symbol = accessing_symbol[sp->shifts[j]];
if (nullable[symbol])
edge[nedges++] = map_goto(stateno, symbol);
}
if (nedges)
{
reads[i] = rp = NEW2(nedges + 1, short);
for (j = 0; j < nedges; j++)
rp[j] = edge[j];
rp[nedges] = -1;
nedges = 0;
}
}
rowp += tokensetsize;
}
digraph(reads);
for (i = 0; i < ngotos; i++)
{
if (reads[i])
FREE(reads[i]);
}
FREE(reads);
FREE(edge);
}
void
build_relations()
{
register int i;
register int j;
register int k;
register short *rulep;
register short *rp;
register shifts *sp;
register int length;
register int nedges;
register int done;
register int state1;
register int stateno;
register int symbol1;
register int symbol2;
register short *shortp;
register short *edge;
register short *states;
register short **new_includes;
includes = NEW2(ngotos, short *);
edge = NEW2(ngotos + 1, short);
states = NEW2(maxrhs + 1, short);
for (i = 0; i < ngotos; i++)
{
nedges = 0;
state1 = from_state[i];
symbol1 = accessing_symbol[to_state[i]];
for (rulep = derives[symbol1]; *rulep > 0; rulep++)
{
length = 1;
states[0] = state1;
stateno = state1;
for (rp = ritem + rrhs[*rulep]; *rp > 0; rp++)
{
symbol2 = *rp;
sp = shift_table[stateno];
k = sp->nshifts;
for (j = 0; j < k; j++)
{
stateno = sp->shifts[j];
if (accessing_symbol[stateno] == symbol2) break;
}
states[length++] = stateno;
}
if (!consistent[stateno])
add_lookback_edge(stateno, *rulep, i);
length--;
done = 0;
while (!done)
{
done = 1;
rp--;
/* JF added rp>=ritem && I hope to god its right! */
if (rp>=ritem && ISVAR(*rp))
{
stateno = states[--length];
edge[nedges++] = map_goto(stateno, *rp);
if (nullable[*rp]) done = 0;
}
}
}
if (nedges)
{
includes[i] = shortp = NEW2(nedges + 1, short);
for (j = 0; j < nedges; j++)
shortp[j] = edge[j];
shortp[nedges] = -1;
}
}
new_includes = transpose(includes, ngotos);
for (i = 0; i < ngotos; i++)
if (includes[i])
FREE(includes[i]);
FREE(includes);
includes = new_includes;
FREE(edge);
FREE(states);
}
void
add_lookback_edge(stateno, ruleno, gotono)
int stateno;
int ruleno;
int gotono;
{
register int i;
register int k;
register int found;
register shorts *sp;
i = lookaheads[stateno];
k = lookaheads[stateno + 1];
found = 0;
while (!found && i < k)
{
if (LAruleno[i] == ruleno)
found = 1;
else
i++;
}
if (found == 0)
berror("add_lookback_edge");
sp = NEW(shorts);
sp->next = lookback[i];
sp->value = gotono;
lookback[i] = sp;
}
short **
transpose(R_arg, n)
short **R_arg;
int n;
{
register short **new_R;
register short **temp_R;
register short *nedges;
register short *sp;
register int i;
register int k;
nedges = NEW2(n, short);
for (i = 0; i < n; i++)
{
sp = R_arg[i];
if (sp)
{
while (*sp >= 0)
nedges[*sp++]++;
}
}
new_R = NEW2(n, short *);
temp_R = NEW2(n, short *);
for (i = 0; i < n; i++)
{
k = nedges[i];
if (k > 0)
{
sp = NEW2(k + 1, short);
new_R[i] = sp;
temp_R[i] = sp;
sp[k] = -1;
}
}
FREE(nedges);
for (i = 0; i < n; i++)
{
sp = R_arg[i];
if (sp)
{
while (*sp >= 0)
*temp_R[*sp++]++ = i;
}
}
FREE(temp_R);
return (new_R);
}
void
compute_FOLLOWS()
{
register int i;
digraph(includes);
for (i = 0; i < ngotos; i++)
{
if (includes[i]) FREE(includes[i]);
}
FREE(includes);
}
void
compute_lookaheads()
{
register int i;
register int n;
register unsigned *fp1;
register unsigned *fp2;
register unsigned *fp3;
register shorts *sp;
register unsigned *rowp;
/* register short *rulep; JF unused */
/* register int count; JF unused */
register shorts *sptmp;/* JF */
rowp = LA;
n = lookaheads[nstates];
for (i = 0; i < n; i++)
{
fp3 = rowp + tokensetsize;
for (sp = lookback[i]; sp; sp = sp->next)
{
fp1 = rowp;
fp2 = F + tokensetsize * sp->value;
while (fp1 < fp3)
*fp1++ |= *fp2++;
}
rowp = fp3;
}
for (i = 0; i < n; i++)
{/* JF removed ref to freed storage */
for (sp = lookback[i]; sp; sp = sptmp) {
sptmp=sp->next;
FREE(sp);
}
}
FREE(lookback);
FREE(F);
}
void
digraph(relation)
short **relation;
{
register int i;
infinity = ngotos + 2;
INDEX = NEW2(ngotos + 1, short);
VERTICES = NEW2(ngotos + 1, short);
top = 0;
R = relation;
for (i = 0; i < ngotos; i++)
INDEX[i] = 0;
for (i = 0; i < ngotos; i++)
{
if (INDEX[i] == 0 && R[i])
traverse(i);
}
FREE(INDEX);
FREE(VERTICES);
}
void
traverse(i)
register int i;
{
register unsigned *fp1;
register unsigned *fp2;
register unsigned *fp3;
register int j;
register short *rp;
int height;
unsigned *base;
VERTICES[++top] = i;
INDEX[i] = height = top;
base = F + i * tokensetsize;
fp3 = base + tokensetsize;
rp = R[i];
if (rp)
{
while ((j = *rp++) >= 0)
{
if (INDEX[j] == 0)
traverse(j);
if (INDEX[i] > INDEX[j])
INDEX[i] = INDEX[j];
fp1 = base;
fp2 = F + j * tokensetsize;
while (fp1 < fp3)
*fp1++ |= *fp2++;
}
}
if (INDEX[i] == height)
{
for (;;)
{
j = VERTICES[top--];
INDEX[j] = infinity;
if (i == j)
break;
fp1 = base;
fp2 = F + j * tokensetsize;
while (fp1 < fp3)
*fp2++ = *fp1++;
}
}
}