mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-27 21:44:34 +01:00
1126 lines
26 KiB
C
1126 lines
26 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
|
|
* $Id: vm_page.c,v 1.37 1995/10/23 05:35:46 dyson Exp $
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Resident memory management module.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
|
|
/*
|
|
* Associated with page of user-allocatable memory is a
|
|
* page structure.
|
|
*/
|
|
|
|
struct pglist *vm_page_buckets; /* Array of buckets */
|
|
int vm_page_bucket_count; /* How big is array? */
|
|
static int vm_page_hash_mask; /* Mask for hash function */
|
|
|
|
struct pglist vm_page_queue_free;
|
|
struct pglist vm_page_queue_zero;
|
|
struct pglist vm_page_queue_active;
|
|
struct pglist vm_page_queue_inactive;
|
|
struct pglist vm_page_queue_cache;
|
|
|
|
/* has physical page allocation been initialized? */
|
|
boolean_t vm_page_startup_initialized;
|
|
|
|
vm_page_t vm_page_array;
|
|
int vm_page_array_size;
|
|
long first_page;
|
|
long last_page;
|
|
vm_offset_t first_phys_addr;
|
|
vm_offset_t last_phys_addr;
|
|
vm_size_t page_mask;
|
|
int page_shift;
|
|
|
|
/*
|
|
* map of contiguous valid DEV_BSIZE chunks in a page
|
|
* (this list is valid for page sizes upto 16*DEV_BSIZE)
|
|
*/
|
|
static u_short vm_page_dev_bsize_chunks[] = {
|
|
0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
|
|
0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
|
|
};
|
|
|
|
static void vm_page_unqueue __P((vm_page_t ));
|
|
|
|
/*
|
|
* vm_set_page_size:
|
|
*
|
|
* Sets the page size, perhaps based upon the memory
|
|
* size. Must be called before any use of page-size
|
|
* dependent functions.
|
|
*
|
|
* Sets page_shift and page_mask from cnt.v_page_size.
|
|
*/
|
|
void
|
|
vm_set_page_size()
|
|
{
|
|
|
|
if (cnt.v_page_size == 0)
|
|
cnt.v_page_size = DEFAULT_PAGE_SIZE;
|
|
page_mask = cnt.v_page_size - 1;
|
|
if ((page_mask & cnt.v_page_size) != 0)
|
|
panic("vm_set_page_size: page size not a power of two");
|
|
for (page_shift = 0;; page_shift++)
|
|
if ((1 << page_shift) == cnt.v_page_size)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* vm_page_startup:
|
|
*
|
|
* Initializes the resident memory module.
|
|
*
|
|
* Allocates memory for the page cells, and
|
|
* for the object/offset-to-page hash table headers.
|
|
* Each page cell is initialized and placed on the free list.
|
|
*/
|
|
|
|
vm_offset_t
|
|
vm_page_startup(starta, enda, vaddr)
|
|
register vm_offset_t starta;
|
|
vm_offset_t enda;
|
|
register vm_offset_t vaddr;
|
|
{
|
|
register vm_offset_t mapped;
|
|
register vm_page_t m;
|
|
register struct pglist *bucket;
|
|
vm_size_t npages, page_range;
|
|
register vm_offset_t new_start;
|
|
int i;
|
|
vm_offset_t pa;
|
|
int nblocks;
|
|
vm_offset_t first_managed_page;
|
|
|
|
/* the biggest memory array is the second group of pages */
|
|
vm_offset_t start;
|
|
vm_offset_t biggestone, biggestsize;
|
|
|
|
vm_offset_t total;
|
|
|
|
total = 0;
|
|
biggestsize = 0;
|
|
biggestone = 0;
|
|
nblocks = 0;
|
|
vaddr = round_page(vaddr);
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
phys_avail[i] = round_page(phys_avail[i]);
|
|
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
|
|
}
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
int size = phys_avail[i + 1] - phys_avail[i];
|
|
|
|
if (size > biggestsize) {
|
|
biggestone = i;
|
|
biggestsize = size;
|
|
}
|
|
++nblocks;
|
|
total += size;
|
|
}
|
|
|
|
start = phys_avail[biggestone];
|
|
|
|
/*
|
|
* Initialize the queue headers for the free queue, the active queue
|
|
* and the inactive queue.
|
|
*/
|
|
|
|
TAILQ_INIT(&vm_page_queue_free);
|
|
TAILQ_INIT(&vm_page_queue_zero);
|
|
TAILQ_INIT(&vm_page_queue_active);
|
|
TAILQ_INIT(&vm_page_queue_inactive);
|
|
TAILQ_INIT(&vm_page_queue_cache);
|
|
|
|
/*
|
|
* Allocate (and initialize) the hash table buckets.
|
|
*
|
|
* The number of buckets MUST BE a power of 2, and the actual value is
|
|
* the next power of 2 greater than the number of physical pages in
|
|
* the system.
|
|
*
|
|
* Note: This computation can be tweaked if desired.
|
|
*/
|
|
vm_page_buckets = (struct pglist *) vaddr;
|
|
bucket = vm_page_buckets;
|
|
if (vm_page_bucket_count == 0) {
|
|
vm_page_bucket_count = 1;
|
|
while (vm_page_bucket_count < atop(total))
|
|
vm_page_bucket_count <<= 1;
|
|
}
|
|
vm_page_hash_mask = vm_page_bucket_count - 1;
|
|
|
|
/*
|
|
* Validate these addresses.
|
|
*/
|
|
|
|
new_start = start + vm_page_bucket_count * sizeof(struct pglist);
|
|
new_start = round_page(new_start);
|
|
mapped = vaddr;
|
|
vaddr = pmap_map(mapped, start, new_start,
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
|
start = new_start;
|
|
bzero((caddr_t) mapped, vaddr - mapped);
|
|
mapped = vaddr;
|
|
|
|
for (i = 0; i < vm_page_bucket_count; i++) {
|
|
TAILQ_INIT(bucket);
|
|
bucket++;
|
|
}
|
|
|
|
/*
|
|
* round (or truncate) the addresses to our page size.
|
|
*/
|
|
|
|
/*
|
|
* Pre-allocate maps and map entries that cannot be dynamically
|
|
* allocated via malloc(). The maps include the kernel_map and
|
|
* kmem_map which must be initialized before malloc() will work
|
|
* (obviously). Also could include pager maps which would be
|
|
* allocated before kmeminit.
|
|
*
|
|
* Allow some kernel map entries... this should be plenty since people
|
|
* shouldn't be cluttering up the kernel map (they should use their
|
|
* own maps).
|
|
*/
|
|
|
|
kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
|
|
MAX_KMAPENT * sizeof(struct vm_map_entry);
|
|
kentry_data_size = round_page(kentry_data_size);
|
|
kentry_data = (vm_offset_t) vaddr;
|
|
vaddr += kentry_data_size;
|
|
|
|
/*
|
|
* Validate these zone addresses.
|
|
*/
|
|
|
|
new_start = start + (vaddr - mapped);
|
|
pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE);
|
|
bzero((caddr_t) mapped, (vaddr - mapped));
|
|
start = round_page(new_start);
|
|
|
|
/*
|
|
* Compute the number of pages of memory that will be available for
|
|
* use (taking into account the overhead of a page structure per
|
|
* page).
|
|
*/
|
|
|
|
first_page = phys_avail[0] / PAGE_SIZE;
|
|
last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
|
|
|
|
page_range = last_page - (phys_avail[0] / PAGE_SIZE);
|
|
npages = (total - (page_range * sizeof(struct vm_page)) -
|
|
(start - phys_avail[biggestone])) / PAGE_SIZE;
|
|
|
|
/*
|
|
* Initialize the mem entry structures now, and put them in the free
|
|
* queue.
|
|
*/
|
|
|
|
vm_page_array = (vm_page_t) vaddr;
|
|
mapped = vaddr;
|
|
|
|
|
|
/*
|
|
* Validate these addresses.
|
|
*/
|
|
|
|
new_start = round_page(start + page_range * sizeof(struct vm_page));
|
|
mapped = pmap_map(mapped, start, new_start,
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
|
start = new_start;
|
|
|
|
first_managed_page = start / PAGE_SIZE;
|
|
|
|
/*
|
|
* Clear all of the page structures
|
|
*/
|
|
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
|
|
vm_page_array_size = page_range;
|
|
|
|
cnt.v_page_count = 0;
|
|
cnt.v_free_count = 0;
|
|
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
|
|
if (i == biggestone)
|
|
pa = ptoa(first_managed_page);
|
|
else
|
|
pa = phys_avail[i];
|
|
while (pa < phys_avail[i + 1] && npages-- > 0) {
|
|
++cnt.v_page_count;
|
|
++cnt.v_free_count;
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
m->flags = PG_FREE;
|
|
m->phys_addr = pa;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
|
|
pa += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
return (mapped);
|
|
}
|
|
|
|
/*
|
|
* vm_page_hash:
|
|
*
|
|
* Distributes the object/offset key pair among hash buckets.
|
|
*
|
|
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
|
|
*/
|
|
inline const int
|
|
vm_page_hash(vm_object_t object, vm_offset_t offset)
|
|
{
|
|
return ((unsigned) object + (offset >> PAGE_SHIFT)) & vm_page_hash_mask;
|
|
}
|
|
|
|
/*
|
|
* vm_page_insert: [ internal use only ]
|
|
*
|
|
* Inserts the given mem entry into the object/object-page
|
|
* table and object list.
|
|
*
|
|
* The object and page must be locked, and must be splhigh.
|
|
*/
|
|
|
|
inline void
|
|
vm_page_insert(mem, object, offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t object;
|
|
register vm_offset_t offset;
|
|
{
|
|
register struct pglist *bucket;
|
|
|
|
if (mem->flags & PG_TABLED)
|
|
panic("vm_page_insert: already inserted");
|
|
|
|
/*
|
|
* Record the object/offset pair in this page
|
|
*/
|
|
|
|
mem->object = object;
|
|
mem->offset = offset;
|
|
|
|
/*
|
|
* Insert it into the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
TAILQ_INSERT_TAIL(bucket, mem, hashq);
|
|
|
|
/*
|
|
* Now link into the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_INSERT_TAIL(&object->memq, mem, listq);
|
|
mem->flags |= PG_TABLED;
|
|
|
|
/*
|
|
* And show that the object has one more resident page.
|
|
*/
|
|
|
|
object->resident_page_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_remove: [ internal use only ]
|
|
* NOTE: used by device pager as well -wfj
|
|
*
|
|
* Removes the given mem entry from the object/offset-page
|
|
* table and the object page list.
|
|
*
|
|
* The object and page must be locked, and at splhigh.
|
|
*/
|
|
|
|
inline void
|
|
vm_page_remove(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
register struct pglist *bucket;
|
|
|
|
if (!(mem->flags & PG_TABLED))
|
|
return;
|
|
|
|
/*
|
|
* Remove from the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
|
|
TAILQ_REMOVE(bucket, mem, hashq);
|
|
|
|
/*
|
|
* Now remove from the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_REMOVE(&mem->object->memq, mem, listq);
|
|
|
|
/*
|
|
* And show that the object has one fewer resident page.
|
|
*/
|
|
|
|
mem->object->resident_page_count--;
|
|
|
|
mem->flags &= ~PG_TABLED;
|
|
}
|
|
|
|
/*
|
|
* vm_page_lookup:
|
|
*
|
|
* Returns the page associated with the object/offset
|
|
* pair specified; if none is found, NULL is returned.
|
|
*
|
|
* The object must be locked. No side effects.
|
|
*/
|
|
|
|
vm_page_t
|
|
vm_page_lookup(object, offset)
|
|
register vm_object_t object;
|
|
register vm_offset_t offset;
|
|
{
|
|
register vm_page_t mem;
|
|
register struct pglist *bucket;
|
|
int s;
|
|
|
|
/*
|
|
* Search the hash table for this object/offset pair
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
|
|
s = splhigh();
|
|
for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
|
|
if ((mem->object == object) && (mem->offset == offset)) {
|
|
splx(s);
|
|
return (mem);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* vm_page_rename:
|
|
*
|
|
* Move the given memory entry from its
|
|
* current object to the specified target object/offset.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void
|
|
vm_page_rename(mem, new_object, new_offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t new_object;
|
|
vm_offset_t new_offset;
|
|
{
|
|
int s;
|
|
|
|
if (mem->object == new_object)
|
|
return;
|
|
|
|
s = splhigh();
|
|
vm_page_remove(mem);
|
|
vm_page_insert(mem, new_object, new_offset);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_unqueue must be called at splhigh();
|
|
*/
|
|
static inline void
|
|
vm_page_unqueue(vm_page_t mem)
|
|
{
|
|
int origflags;
|
|
|
|
origflags = mem->flags;
|
|
|
|
if ((origflags & (PG_ACTIVE|PG_INACTIVE|PG_CACHE)) == 0)
|
|
return;
|
|
|
|
if (origflags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count--;
|
|
mem->flags &= ~PG_ACTIVE;
|
|
} else if (origflags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
|
|
cnt.v_inactive_count--;
|
|
mem->flags &= ~PG_INACTIVE;
|
|
} else if (origflags & PG_CACHE) {
|
|
TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
|
|
cnt.v_cache_count--;
|
|
mem->flags &= ~PG_CACHE;
|
|
if (cnt.v_cache_count + cnt.v_free_count < cnt.v_free_reserved)
|
|
pagedaemon_wakeup();
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* vm_page_alloc:
|
|
*
|
|
* Allocate and return a memory cell associated
|
|
* with this VM object/offset pair.
|
|
*
|
|
* page_req classes:
|
|
* VM_ALLOC_NORMAL normal process request
|
|
* VM_ALLOC_SYSTEM system *really* needs a page
|
|
* VM_ALLOC_INTERRUPT interrupt time request
|
|
* or in:
|
|
* VM_ALLOC_ZERO zero page
|
|
*
|
|
* Object must be locked.
|
|
*/
|
|
vm_page_t
|
|
vm_page_alloc(object, offset, page_req)
|
|
vm_object_t object;
|
|
vm_offset_t offset;
|
|
int page_req;
|
|
{
|
|
register vm_page_t mem;
|
|
int s;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (offset != trunc_page(offset))
|
|
panic("vm_page_alloc: offset not page aligned");
|
|
|
|
#if 0
|
|
mem = vm_page_lookup(object, offset);
|
|
if (mem)
|
|
panic("vm_page_alloc: page already allocated");
|
|
#endif
|
|
#endif
|
|
|
|
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
|
|
page_req = VM_ALLOC_SYSTEM;
|
|
};
|
|
|
|
s = splhigh();
|
|
|
|
switch ((page_req & ~(VM_ALLOC_ZERO))) {
|
|
case VM_ALLOC_NORMAL:
|
|
if (cnt.v_free_count >= cnt.v_free_reserved) {
|
|
if (page_req & VM_ALLOC_ZERO) {
|
|
mem = vm_page_queue_zero.tqh_first;
|
|
if (mem) {
|
|
TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
|
|
mem->flags = PG_BUSY|PG_ZERO;
|
|
} else {
|
|
mem = vm_page_queue_free.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
mem->flags = PG_BUSY;
|
|
}
|
|
} else {
|
|
mem = vm_page_queue_free.tqh_first;
|
|
if (mem) {
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
mem->flags = PG_BUSY;
|
|
} else {
|
|
mem = vm_page_queue_zero.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
|
|
mem->flags = PG_BUSY|PG_ZERO;
|
|
}
|
|
}
|
|
cnt.v_free_count--;
|
|
} else {
|
|
mem = vm_page_queue_cache.tqh_first;
|
|
if (mem != NULL) {
|
|
TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
|
|
vm_page_remove(mem);
|
|
mem->flags = PG_BUSY;
|
|
cnt.v_cache_count--;
|
|
} else {
|
|
splx(s);
|
|
pagedaemon_wakeup();
|
|
return (NULL);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case VM_ALLOC_SYSTEM:
|
|
if ((cnt.v_free_count >= cnt.v_free_reserved) ||
|
|
((cnt.v_cache_count == 0) &&
|
|
(cnt.v_free_count >= cnt.v_interrupt_free_min))) {
|
|
if (page_req & VM_ALLOC_ZERO) {
|
|
mem = vm_page_queue_zero.tqh_first;
|
|
if (mem) {
|
|
TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
|
|
mem->flags = PG_BUSY|PG_ZERO;
|
|
} else {
|
|
mem = vm_page_queue_free.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
mem->flags = PG_BUSY;
|
|
}
|
|
} else {
|
|
mem = vm_page_queue_free.tqh_first;
|
|
if (mem) {
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
mem->flags = PG_BUSY;
|
|
} else {
|
|
mem = vm_page_queue_zero.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
|
|
mem->flags = PG_BUSY|PG_ZERO;
|
|
}
|
|
}
|
|
cnt.v_free_count--;
|
|
} else {
|
|
mem = vm_page_queue_cache.tqh_first;
|
|
if (mem != NULL) {
|
|
TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
|
|
vm_page_remove(mem);
|
|
mem->flags = PG_BUSY;
|
|
cnt.v_cache_count--;
|
|
} else {
|
|
splx(s);
|
|
pagedaemon_wakeup();
|
|
return (NULL);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case VM_ALLOC_INTERRUPT:
|
|
if (cnt.v_free_count > 0) {
|
|
mem = vm_page_queue_free.tqh_first;
|
|
if (mem) {
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
mem->flags = PG_BUSY;
|
|
} else {
|
|
mem = vm_page_queue_zero.tqh_first;
|
|
TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
|
|
mem->flags = PG_BUSY|PG_ZERO;
|
|
}
|
|
cnt.v_free_count--;
|
|
} else {
|
|
splx(s);
|
|
pagedaemon_wakeup();
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("vm_page_alloc: invalid allocation class");
|
|
}
|
|
|
|
mem->wire_count = 0;
|
|
mem->hold_count = 0;
|
|
mem->act_count = 0;
|
|
mem->busy = 0;
|
|
mem->valid = 0;
|
|
mem->dirty = 0;
|
|
mem->bmapped = 0;
|
|
|
|
/* XXX before splx until vm_page_insert is safe */
|
|
vm_page_insert(mem, object, offset);
|
|
|
|
splx(s);
|
|
|
|
/*
|
|
* Don't wakeup too often - wakeup the pageout daemon when
|
|
* we would be nearly out of memory.
|
|
*/
|
|
if (((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) ||
|
|
(cnt.v_free_count < cnt.v_pageout_free_min))
|
|
pagedaemon_wakeup();
|
|
|
|
return (mem);
|
|
}
|
|
|
|
vm_offset_t
|
|
vm_page_alloc_contig(size, low, high, alignment)
|
|
vm_offset_t size;
|
|
vm_offset_t low;
|
|
vm_offset_t high;
|
|
vm_offset_t alignment;
|
|
{
|
|
int i, s, start;
|
|
vm_offset_t addr, phys, tmp_addr;
|
|
vm_page_t pga = vm_page_array;
|
|
|
|
if ((alignment & (alignment - 1)) != 0)
|
|
panic("vm_page_alloc_contig: alignment must be a power of 2");
|
|
|
|
start = 0;
|
|
s = splhigh();
|
|
again:
|
|
/*
|
|
* Find first page in array that is free, within range, and aligned.
|
|
*/
|
|
for (i = start; i < cnt.v_page_count; i++) {
|
|
phys = VM_PAGE_TO_PHYS(&pga[i]);
|
|
if (((pga[i].flags & PG_FREE) == PG_FREE) &&
|
|
(phys >= low) && (phys < high) &&
|
|
((phys & (alignment - 1)) == 0))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the above failed or we will exceed the upper bound, fail.
|
|
*/
|
|
if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
start = i;
|
|
|
|
/*
|
|
* Check successive pages for contiguous and free.
|
|
*/
|
|
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
|
|
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
|
|
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
|
|
((pga[i].flags & PG_FREE) != PG_FREE)) {
|
|
start++;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've found a contiguous chunk that meets are requirements.
|
|
* Allocate kernel VM, unfree and assign the physical pages to it and
|
|
* return kernel VM pointer.
|
|
*/
|
|
tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);
|
|
|
|
for (i = start; i < (start + size / PAGE_SIZE); i++) {
|
|
vm_page_t m = &pga[i];
|
|
|
|
TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
|
|
cnt.v_free_count--;
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
m->flags = 0;
|
|
m->dirty = 0;
|
|
m->wire_count = 0;
|
|
m->act_count = 0;
|
|
m->bmapped = 0;
|
|
m->busy = 0;
|
|
vm_page_insert(m, kernel_object, tmp_addr - VM_MIN_KERNEL_ADDRESS);
|
|
vm_page_wire(m);
|
|
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
|
|
tmp_addr += PAGE_SIZE;
|
|
}
|
|
|
|
splx(s);
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* vm_page_free:
|
|
*
|
|
* Returns the given page to the free list,
|
|
* disassociating it with any VM object.
|
|
*
|
|
* Object and page must be locked prior to entry.
|
|
*/
|
|
void
|
|
vm_page_free(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
int flags;
|
|
|
|
s = splhigh();
|
|
vm_page_remove(mem);
|
|
vm_page_unqueue(mem);
|
|
|
|
flags = mem->flags;
|
|
if (mem->bmapped || mem->busy || flags & (PG_BUSY|PG_FREE)) {
|
|
if (flags & PG_FREE)
|
|
panic("vm_page_free: freeing free page");
|
|
printf("vm_page_free: offset(%ld), bmapped(%d), busy(%d), PG_BUSY(%d)\n",
|
|
mem->offset, mem->bmapped, mem->busy, (flags & PG_BUSY) ? 1 : 0);
|
|
panic("vm_page_free: freeing busy page");
|
|
}
|
|
|
|
if ((flags & PG_WANTED) != 0)
|
|
wakeup(mem);
|
|
if ((flags & PG_FICTITIOUS) == 0) {
|
|
if (mem->wire_count) {
|
|
if (mem->wire_count > 1) {
|
|
printf("vm_page_free: wire count > 1 (%d)", mem->wire_count);
|
|
panic("vm_page_free: invalid wire count");
|
|
}
|
|
cnt.v_wire_count--;
|
|
mem->wire_count = 0;
|
|
}
|
|
mem->flags |= PG_FREE;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);
|
|
splx(s);
|
|
/*
|
|
* if pageout daemon needs pages, then tell it that there are
|
|
* some free.
|
|
*/
|
|
if (vm_pageout_pages_needed) {
|
|
wakeup(&vm_pageout_pages_needed);
|
|
vm_pageout_pages_needed = 0;
|
|
}
|
|
|
|
cnt.v_free_count++;
|
|
/*
|
|
* wakeup processes that are waiting on memory if we hit a
|
|
* high water mark. And wakeup scheduler process if we have
|
|
* lots of memory. this process will swapin processes.
|
|
*/
|
|
if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
|
|
wakeup(&cnt.v_free_count);
|
|
wakeup(&proc0);
|
|
}
|
|
} else {
|
|
splx(s);
|
|
}
|
|
cnt.v_tfree++;
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_page_wire:
|
|
*
|
|
* Mark this page as wired down by yet
|
|
* another map, removing it from paging queues
|
|
* as necessary.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_wire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
|
|
if (mem->wire_count == 0) {
|
|
s = splhigh();
|
|
vm_page_unqueue(mem);
|
|
splx(s);
|
|
cnt.v_wire_count++;
|
|
}
|
|
mem->flags |= PG_WRITEABLE|PG_MAPPED;
|
|
mem->wire_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_unwire:
|
|
*
|
|
* Release one wiring of this page, potentially
|
|
* enabling it to be paged again.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_unwire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
|
|
s = splhigh();
|
|
|
|
if (mem->wire_count)
|
|
mem->wire_count--;
|
|
if (mem->wire_count == 0) {
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count++;
|
|
mem->flags |= PG_ACTIVE;
|
|
cnt.v_wire_count--;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_activate:
|
|
*
|
|
* Put the specified page on the active list (if appropriate).
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_activate(m)
|
|
register vm_page_t m;
|
|
{
|
|
int s;
|
|
|
|
s = splhigh();
|
|
if (m->flags & PG_ACTIVE)
|
|
panic("vm_page_activate: already active");
|
|
|
|
if (m->flags & PG_CACHE)
|
|
cnt.v_reactivated++;
|
|
|
|
vm_page_unqueue(m);
|
|
|
|
if (m->wire_count == 0) {
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
|
|
m->flags |= PG_ACTIVE;
|
|
if (m->act_count < 5)
|
|
m->act_count = 5;
|
|
else if( m->act_count < ACT_MAX)
|
|
m->act_count += 1;
|
|
cnt.v_active_count++;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_deactivate:
|
|
*
|
|
* Returns the given page to the inactive list,
|
|
* indicating that no physical maps have access
|
|
* to this page. [Used by the physical mapping system.]
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_deactivate(m)
|
|
register vm_page_t m;
|
|
{
|
|
int spl;
|
|
|
|
/*
|
|
* Only move active pages -- ignore locked or already inactive ones.
|
|
*
|
|
* XXX: sometimes we get pages which aren't wired down or on any queue -
|
|
* we need to put them on the inactive queue also, otherwise we lose
|
|
* track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
|
|
*/
|
|
|
|
spl = splhigh();
|
|
if (!(m->flags & PG_INACTIVE) && m->wire_count == 0 &&
|
|
m->hold_count == 0) {
|
|
if (m->flags & PG_CACHE)
|
|
cnt.v_reactivated++;
|
|
vm_page_unqueue(m);
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
|
|
m->flags |= PG_INACTIVE;
|
|
cnt.v_inactive_count++;
|
|
m->act_count = 0;
|
|
}
|
|
splx(spl);
|
|
}
|
|
|
|
/*
|
|
* vm_page_cache
|
|
*
|
|
* Put the specified page onto the page cache queue (if appropriate).
|
|
*/
|
|
void
|
|
vm_page_cache(m)
|
|
register vm_page_t m;
|
|
{
|
|
int s;
|
|
|
|
if ((m->flags & (PG_CACHE | PG_BUSY)) || m->busy || m->wire_count ||
|
|
m->bmapped)
|
|
return;
|
|
|
|
s = splhigh();
|
|
vm_page_unqueue(m);
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_cache, m, pageq);
|
|
m->flags |= PG_CACHE;
|
|
cnt.v_cache_count++;
|
|
if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
|
|
wakeup(&cnt.v_free_count);
|
|
wakeup(&proc0);
|
|
}
|
|
if (vm_pageout_pages_needed) {
|
|
wakeup(&vm_pageout_pages_needed);
|
|
vm_pageout_pages_needed = 0;
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_zero_fill:
|
|
*
|
|
* Zero-fill the specified page.
|
|
* Written as a standard pagein routine, to
|
|
* be used by the zero-fill object.
|
|
*/
|
|
boolean_t
|
|
vm_page_zero_fill(m)
|
|
vm_page_t m;
|
|
{
|
|
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* vm_page_copy:
|
|
*
|
|
* Copy one page to another
|
|
*/
|
|
void
|
|
vm_page_copy(src_m, dest_m)
|
|
vm_page_t src_m;
|
|
vm_page_t dest_m;
|
|
{
|
|
pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
|
|
dest_m->valid = VM_PAGE_BITS_ALL;
|
|
}
|
|
|
|
|
|
/*
|
|
* mapping function for valid bits or for dirty bits in
|
|
* a page
|
|
*/
|
|
inline int
|
|
vm_page_bits(int base, int size)
|
|
{
|
|
u_short chunk;
|
|
|
|
if ((base == 0) && (size >= PAGE_SIZE))
|
|
return VM_PAGE_BITS_ALL;
|
|
size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
|
|
base = (base % PAGE_SIZE) / DEV_BSIZE;
|
|
chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
|
|
return (chunk << base) & VM_PAGE_BITS_ALL;
|
|
}
|
|
|
|
/*
|
|
* set a page valid and clean
|
|
*/
|
|
void
|
|
vm_page_set_validclean(m, base, size)
|
|
vm_page_t m;
|
|
int base;
|
|
int size;
|
|
{
|
|
int pagebits = vm_page_bits(base, size);
|
|
m->valid |= pagebits;
|
|
m->dirty &= ~pagebits;
|
|
if( base == 0 && size == PAGE_SIZE)
|
|
pmap_clear_modify(VM_PAGE_TO_PHYS(m));
|
|
}
|
|
|
|
/*
|
|
* set a page (partially) invalid
|
|
*/
|
|
void
|
|
vm_page_set_invalid(m, base, size)
|
|
vm_page_t m;
|
|
int base;
|
|
int size;
|
|
{
|
|
int bits;
|
|
|
|
m->valid &= ~(bits = vm_page_bits(base, size));
|
|
if (m->valid == 0)
|
|
m->dirty &= ~bits;
|
|
}
|
|
|
|
/*
|
|
* is (partial) page valid?
|
|
*/
|
|
int
|
|
vm_page_is_valid(m, base, size)
|
|
vm_page_t m;
|
|
int base;
|
|
int size;
|
|
{
|
|
int bits = vm_page_bits(base, size);
|
|
|
|
if (m->valid && ((m->valid & bits) == bits))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
vm_page_test_dirty(m)
|
|
vm_page_t m;
|
|
{
|
|
if ((m->dirty != VM_PAGE_BITS_ALL) &&
|
|
pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
|
|
m->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
void
|
|
print_page_info(void)
|
|
{
|
|
printf("cnt.v_free_count: %d\n", cnt.v_free_count);
|
|
printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
|
|
printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
|
|
printf("cnt.v_active_count: %d\n", cnt.v_active_count);
|
|
printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
|
|
printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
|
|
printf("cnt.v_free_min: %d\n", cnt.v_free_min);
|
|
printf("cnt.v_free_target: %d\n", cnt.v_free_target);
|
|
printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
|
|
printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
|
|
}
|
|
#endif
|