mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-10 16:31:18 +01:00
757 lines
17 KiB
C
757 lines
17 KiB
C
/*-
|
|
* Copyright (c) 1997 Nicolas Souchu
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: ppc.c,v 1.1 1997/08/14 14:01:35 msmith Exp $
|
|
*
|
|
*/
|
|
#include "ppc.h"
|
|
|
|
#if NPPC > 0
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <machine/clock.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <i386/isa/isa_device.h>
|
|
|
|
#include <dev/ppbus/ppbconf.h>
|
|
#include <i386/isa/ppcreg.h>
|
|
|
|
static int ppcprobe(struct isa_device *);
|
|
static int ppcattach(struct isa_device *);
|
|
|
|
struct isa_driver ppcdriver = {
|
|
ppcprobe, ppcattach, "ppc"
|
|
};
|
|
|
|
static struct ppc_data *ppcdata[NPPC];
|
|
static int nppc = 0;
|
|
|
|
static char *ppc_types[] = {
|
|
"SMC", "SMC FDC37C665GT", "SMC FDC37C666GT",
|
|
"NatSemi", "PC87332", "PC87306",
|
|
"Intel 82091AA", "Generic", 0
|
|
};
|
|
|
|
static char *ppc_modes[] = {
|
|
"AUTODETECT", "NIBBLE", "PS/2", "EPP", "ECP+EPP", "ECP+PS/2", "ECP",
|
|
"UNKNOWN", 0
|
|
};
|
|
|
|
static char *ppc_epp_protocol[] = { " (EPP 1.9)", " (EPP 1.7)", 0 };
|
|
|
|
/*
|
|
* BIOS printer list - used by BIOS probe.
|
|
*/
|
|
#define BIOS_PPC_PORTS 0x408
|
|
#define BIOS_PORTS (short *)(KERNBASE+BIOS_PPC_PORTS)
|
|
#define BIOS_MAX_PPC 4
|
|
|
|
/*
|
|
* All these functions are default actions for IN/OUT operations.
|
|
* They may be redefined if needed.
|
|
*/
|
|
static void ppc_outsb_epp(int unit, char *addr, int cnt) {
|
|
outsb(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
static void ppc_outsw_epp(int unit, char *addr, int cnt) {
|
|
outsw(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
static void ppc_outsl_epp(int unit, char *addr, int cnt) {
|
|
outsl(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
static void ppc_insb_epp(int unit, char *addr, int cnt) {
|
|
insb(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
static void ppc_insw_epp(int unit, char *addr, int cnt) {
|
|
insw(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
static void ppc_insl_epp(int unit, char *addr, int cnt) {
|
|
insl(ppcdata[unit]->ppc_base + PPC_EPP_DATA, addr, cnt); }
|
|
|
|
static char ppc_rdtr(int unit) { return r_dtr(ppcdata[unit]); }
|
|
static char ppc_rstr(int unit) { return r_str(ppcdata[unit]); }
|
|
static char ppc_rctr(int unit) { return r_ctr(ppcdata[unit]); }
|
|
static char ppc_repp(int unit) { return r_epp(ppcdata[unit]); }
|
|
static char ppc_recr(int unit) { return r_ecr(ppcdata[unit]); }
|
|
static char ppc_rfifo(int unit) { return r_fifo(ppcdata[unit]); }
|
|
|
|
static void ppc_wdtr(int unit, char byte) { w_dtr(ppcdata[unit], byte); }
|
|
static void ppc_wstr(int unit, char byte) { w_str(ppcdata[unit], byte); }
|
|
static void ppc_wctr(int unit, char byte) { w_ctr(ppcdata[unit], byte); }
|
|
static void ppc_wepp(int unit, char byte) { w_epp(ppcdata[unit], byte); }
|
|
static void ppc_wecr(int unit, char byte) { w_ecr(ppcdata[unit], byte); }
|
|
static void ppc_wfifo(int unit, char byte) { w_fifo(ppcdata[unit], byte); }
|
|
|
|
static void ppc_reset_epp_timeout(int);
|
|
static void ppc_ecp_sync(int);
|
|
|
|
static struct ppb_adapter ppc_adapter = {
|
|
|
|
0, /* no intr handler, filled by chipset dependent code */
|
|
|
|
ppc_reset_epp_timeout, ppc_ecp_sync,
|
|
|
|
ppc_outsb_epp, ppc_outsw_epp, ppc_outsl_epp,
|
|
ppc_insb_epp, ppc_insw_epp, ppc_insl_epp,
|
|
|
|
ppc_rdtr, ppc_rstr, ppc_rctr, ppc_repp, ppc_recr, ppc_rfifo,
|
|
ppc_wdtr, ppc_wstr, ppc_wctr, ppc_wepp, ppc_wecr, ppc_wfifo
|
|
};
|
|
|
|
/*
|
|
* ppc_ecp_sync() XXX
|
|
*/
|
|
static void
|
|
ppc_ecp_sync(int unit) {
|
|
|
|
struct ppc_data *ppc = ppcdata[unit];
|
|
int i, r;
|
|
|
|
r = r_ecr(ppc);
|
|
if ((r & 0xe0) != 0x80)
|
|
return;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
r = r_ecr(ppc);
|
|
if (r & 0x1)
|
|
return;
|
|
DELAY(100);
|
|
}
|
|
|
|
printf("ppc: ECP sync failed as data still " \
|
|
"present in FIFO.\n");
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
ppcintr(int unit)
|
|
{
|
|
/* call directly upper code */
|
|
ppb_intr(&ppcdata[unit]->ppc_link);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* ppc_pc873xx_detect
|
|
*
|
|
* Probe for a Natsemi PC873xx-family part.
|
|
*
|
|
* References in this function are to the National Semiconductor
|
|
* PC87332 datasheet TL/C/11930, May 1995 revision.
|
|
*/
|
|
static int pc873xx_basetab[] = {0x0398, 0x026e, 0x015c, 0x002e, 0};
|
|
static int pc873xx_porttab[] = {0x0378, 0x03bc, 0x0278, 0};
|
|
|
|
static int
|
|
ppc_pc873xx_detect(struct ppc_data *ppc)
|
|
{
|
|
static int index = 0;
|
|
int base, idport;
|
|
int val, mode;
|
|
|
|
while ((idport = pc873xx_basetab[index++])) {
|
|
|
|
/* XXX should check first to see if this location is already claimed */
|
|
|
|
/*
|
|
* Pull the 873xx through the power-on ID cycle (2.2,1.). We can't use this
|
|
* to locate the chip as it may already have been used by the BIOS.
|
|
*/
|
|
(void)inb(idport); (void)inb(idport); (void)inb(idport); (void)inb(idport);
|
|
|
|
/*
|
|
* Read the SID byte. Possible values are :
|
|
*
|
|
* 0001xxxx PC87332
|
|
* 01110xxx PC87306
|
|
*/
|
|
outb(idport, PC873_SID);
|
|
val = inb(idport + 1);
|
|
if ((val & 0xf0) == 0x10) {
|
|
ppc->ppc_type = NS_PC87332;
|
|
} else if ((val & 0xf8) == 0x70) {
|
|
ppc->ppc_type = NS_PC87306;
|
|
} else {
|
|
if (bootverbose && (val != 0xff))
|
|
printf("PC873xx probe at 0x%x got unknown ID 0x%x\n", idport, val);
|
|
continue ; /* not recognised */
|
|
}
|
|
|
|
/*
|
|
* We think we have one. Is it enabled and where we want it to be?
|
|
*/
|
|
outb(idport, PC873_FER);
|
|
val = inb(idport + 1);
|
|
if (!(val & PC873_PPENABLE)) {
|
|
if (bootverbose)
|
|
printf("PC873xx parallel port disabled\n");
|
|
continue;
|
|
}
|
|
outb(idport, PC873_FAR);
|
|
val = inb(idport + 1) & 0x3;
|
|
/* XXX we should create a driver instance for every port found */
|
|
if (pc873xx_porttab[val] != ppc->ppc_base) {
|
|
if (bootverbose)
|
|
printf("PC873xx at 0x%x not for driver at port 0x%x\n",
|
|
pc873xx_porttab[val], ppc->ppc_base);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This is the port we want. Can we dink with it to improve
|
|
* our chances?
|
|
*/
|
|
outb(idport, PC873_PTR);
|
|
val = inb(idport + 1);
|
|
if (val & PC873_CFGLOCK) {
|
|
if (bootverbose)
|
|
printf("PC873xx locked\n");
|
|
|
|
/* work out what mode we're in */
|
|
mode = PPB_NIBBLE; /* worst case */
|
|
|
|
outb(idport, PC873_PCR);
|
|
val = inb(idport + 1);
|
|
if ((val & PC873_EPPEN) && (val & PC873_EPP19)) {
|
|
outb(idport, PC873_PTR);
|
|
val = inb(idport + 1);
|
|
if (!(val & PC873_EPPRDIR)) {
|
|
mode = PPB_EPP; /* As we would have done it anwyay */
|
|
}
|
|
} else if ((val & PC873_ECPEN) && (val & PC873_ECPCLK)) {
|
|
mode = PPB_PS2; /* tolerable alternative */
|
|
}
|
|
} else {
|
|
if (bootverbose)
|
|
printf("PC873xx unlocked, ");
|
|
|
|
#if 0 /* broken */
|
|
/*
|
|
* Frob the zero-wait-state option if possible; it causes
|
|
* unreliable operation.
|
|
*/
|
|
outb(idport, PC873_FCR);
|
|
val = inb(idport + 1);
|
|
if ((ppc->ppc_type == NS_PC87306) || /* we are a '306 */
|
|
!(val & PC873_ZWSPWDN)) { /* or pin _is_ ZWS */
|
|
val &= ~PC873_ZWS;
|
|
outb(idport + 1, val); /* must disable ZWS */
|
|
outb(idport + 1, val);
|
|
|
|
if (bootverbose)
|
|
printf("ZWS %s, ", (val & PC873_ZWS) ? "enabled" : "disabled");
|
|
}
|
|
|
|
#endif
|
|
if (bootverbose)
|
|
printf("reconfiguring for ");
|
|
|
|
/*
|
|
* if the chip is at 0x3bc, we can't use EPP as there's no room
|
|
* for the extra registers.
|
|
*
|
|
* XXX should we use ECP mode always and use the EPP submode?
|
|
*/
|
|
if (ppc->ppc_base != 0x3bc) {
|
|
if (bootverbose)
|
|
printf("EPP 1.9\n");
|
|
|
|
/* configure for EPP 1.9 operation XXX should be configurable */
|
|
outb(idport, PC873_PCR);
|
|
val = inb(idport + 1);
|
|
val &= ~(PC873_ECPEN | PC873_ECPCLK); /* disable ECP */
|
|
val |= (PC873_EPPEN | PC873_EPP19); /* enable EPP */
|
|
outb(idport + 1, val);
|
|
outb(idport + 1, val);
|
|
|
|
/* enable automatic direction turnover */
|
|
outb(idport, PC873_PTR);
|
|
val = inb(idport + 1);
|
|
val &= ~PC873_EPPRDIR; /* disable "regular" direction change */
|
|
outb(idport + 1, val);
|
|
outb(idport + 1, val);
|
|
|
|
/* we are an EPP-32 port */
|
|
mode = PPB_EPP;
|
|
} else {
|
|
if (bootverbose)
|
|
printf("ECP\n");
|
|
|
|
/* configure as an ECP port to get bidirectional operation for now */
|
|
outb(idport, PC873_PCR);
|
|
outb(idport + 1, inb(idport + 1) | PC873_ECPEN | PC873_ECPCLK);
|
|
|
|
/* we look like a PS/2 port */
|
|
mode = PPB_PS2;
|
|
}
|
|
}
|
|
return(mode);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
ppc_detect_ps2(struct ppc_data *ppc)
|
|
{
|
|
char save_control, r;
|
|
|
|
save_control = r_ctr(ppc);
|
|
|
|
/* Try PS/2 mode */
|
|
w_ctr(ppc, 0xec);
|
|
w_dtr(ppc, 0x55);
|
|
|
|
/* needed if in ECP mode */
|
|
if (ppc->ppc_mode == PPB_ECP)
|
|
w_ctr(ppc, PCD | 0xec);
|
|
r = r_dtr(ppc);
|
|
|
|
if (r != (char) 0xff) {
|
|
if (r != (char) 0x55)
|
|
return 0;
|
|
|
|
w_dtr(ppc, 0xaa);
|
|
r = r_dtr(ppc);
|
|
if (r != (char) 0xaa)
|
|
return 0;
|
|
|
|
return (PPB_NIBBLE);
|
|
} else
|
|
w_ctr(ppc, save_control);
|
|
|
|
return (PPB_PS2);
|
|
}
|
|
|
|
/*
|
|
* ppc_smc37c66xgt_detect
|
|
*
|
|
* SMC FDC37C66xGT configuration.
|
|
*/
|
|
static int
|
|
ppc_smc37c66xgt_detect(struct ppc_data *ppc, int mode)
|
|
{
|
|
int s, i;
|
|
char r;
|
|
int retry = 0; /* boolean */
|
|
int type = -1;
|
|
int csr = SMC66x_CSR; /* initial value is 0x3F0 */
|
|
|
|
int port_address[] = { -1 /* disabled */ , 0x3bc, 0x378, 0x278 };
|
|
|
|
|
|
#define cio csr+1 /* config IO port is either 0x3F1 or 0x371 */
|
|
|
|
/*
|
|
* Detection: enter configuration mode and read CRD register.
|
|
*/
|
|
|
|
s = splhigh();
|
|
outb(csr, SMC665_iCODE);
|
|
outb(csr, SMC665_iCODE);
|
|
splx(s);
|
|
|
|
outb(csr, 0xd);
|
|
if (inb(cio) == 0x65) {
|
|
type = SMC_37C665GT;
|
|
goto config;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
s = splhigh();
|
|
outb(csr, SMC666_iCODE);
|
|
outb(csr, SMC666_iCODE);
|
|
splx(s);
|
|
|
|
outb(csr, 0xd);
|
|
if (inb(cio) == 0x66) {
|
|
type = SMC_37C666GT;
|
|
break;
|
|
}
|
|
|
|
/* Another chance, CSR may be hard-configured to be at 0x370 */
|
|
csr = SMC666_CSR;
|
|
}
|
|
|
|
config:
|
|
/*
|
|
* If chipset not found, do not continue.
|
|
*/
|
|
if (type == -1)
|
|
return (0);
|
|
|
|
/* select CR1 */
|
|
outb(csr, 0x1);
|
|
|
|
/* read the port's address: bits 0 and 1 of CR1 */
|
|
r = inb(cio) & SMC_CR1_ADDR;
|
|
if (port_address[r] != ppc->ppc_base)
|
|
return (0);
|
|
|
|
ppc->ppc_type = type;
|
|
|
|
/*
|
|
* CR1 and CR4 registers bits 3 and 0/1 for mode configuration
|
|
* If SPP mode is detected, try to set ECP+EPP mode end retry
|
|
* detection to verify.
|
|
*/
|
|
|
|
retry:
|
|
/* select CR1 register */
|
|
outb(csr, 0x1);
|
|
|
|
if (!mode) {
|
|
/* autodetect mode */
|
|
|
|
/* 666GT chipset is hardwired to an extended mode */
|
|
if (type == SMC_37C666GT)
|
|
mode = PPB_ECP_EPP;
|
|
|
|
else if ((inb(cio) & SMC_CR1_MODE) == 0) {
|
|
/* already in extended parallel port mode, read CR4 */
|
|
outb(csr, 0x4);
|
|
r = (inb(cio) & SMC_CR4_EMODE);
|
|
|
|
switch (r) {
|
|
case SMC_SPP:
|
|
/* let's detect NIBBLE or PS/2 later */
|
|
break;
|
|
|
|
case SMC_EPPSPP:
|
|
mode = PPB_EPP;
|
|
break;
|
|
|
|
case SMC_ECP:
|
|
/*
|
|
* Yet, don't know what to do with it! XXX
|
|
* So, consider ECP mode as PS/2.
|
|
* (see configuration later).
|
|
*/
|
|
mode = PPB_ECP;
|
|
break;
|
|
|
|
case SMC_ECPEPP:
|
|
mode = PPB_ECP_EPP;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* mode forced */
|
|
|
|
/* 666GT chipset is hardwired to an extended mode */
|
|
if (type == SMC_37C666GT)
|
|
goto end_detect;
|
|
|
|
r = inb(cio);
|
|
if (mode == PPB_NIBBLE || mode == PPB_PS2) {
|
|
/* do not use ECP when the mode is forced to SPP */
|
|
outb(cio, r | SMC_CR1_MODE);
|
|
} else {
|
|
/* an extended mode is selected */
|
|
outb(cio, r & ~SMC_CR1_MODE);
|
|
|
|
/* read CR4 register and reset mode field */
|
|
outb(csr, 0x4);
|
|
r = inb(cio) & ~SMC_CR4_EMODE;
|
|
|
|
switch (mode) {
|
|
case PPB_EPP:
|
|
outb(cio, r | SMC_EPPSPP);
|
|
break;
|
|
|
|
case PPB_ECP:
|
|
case PPB_ECP_PS2:
|
|
outb(cio, r | SMC_ECP);
|
|
break;
|
|
|
|
case PPB_ECP_EPP:
|
|
outb(cio, r | SMC_ECPEPP);
|
|
break;
|
|
|
|
default:
|
|
printf("ppc: unknown mode (%d)\n",
|
|
mode);
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
end_detect:
|
|
if (PPB_IS_EPP(mode)) {
|
|
/* select CR4 */
|
|
outb(csr, 0x4);
|
|
r = inb(cio);
|
|
|
|
/*
|
|
* Set the EPP protocol...
|
|
* Low=EPP 1.9 (1284 standard) and High=EPP 1.7
|
|
* ...then check the result.
|
|
*/
|
|
if (ppc->ppc_epp == EPP_1_9)
|
|
outb(cio, (r & ~SMC_CR4_EPPTYPE));
|
|
|
|
else
|
|
outb(cio, (r | SMC_CR4_EPPTYPE));
|
|
}
|
|
|
|
/* end config mode */
|
|
outb(csr, 0xaa);
|
|
|
|
/*
|
|
* Write 100 to the mode bits and disable DMA, enable intr.
|
|
*/
|
|
if (mode == PPB_ECP_EPP)
|
|
w_ecr(ppc, 0x80);
|
|
|
|
/*
|
|
* Write 001 to the mode bits and disable DMA, enable intr.
|
|
*/
|
|
if (mode == PPB_ECP)
|
|
w_ecr(ppc, 0x20);
|
|
|
|
if (PPB_IS_EPP(mode)) {
|
|
/*
|
|
* Try to reset EPP timeout bit.
|
|
* If it fails, try PS/2 and NIBBLE modes.
|
|
*/
|
|
ppc_reset_epp_timeout(ppc->ppc_unit);
|
|
|
|
r = r_str(ppc);
|
|
if (!(r & TIMEOUT))
|
|
return (mode);
|
|
} else {
|
|
if (mode)
|
|
return (mode);
|
|
}
|
|
|
|
/* detect PS/2 or NIBBLE mode */
|
|
return (ppc_detect_ps2(ppc));
|
|
}
|
|
|
|
static int
|
|
ppc_check_ecpepp_timeout(struct ppc_data *ppc)
|
|
{
|
|
char r;
|
|
|
|
ppc_reset_epp_timeout(ppc->ppc_unit);
|
|
|
|
r = r_str(ppc);
|
|
if (!(r & TIMEOUT)) {
|
|
return (PPB_ECP_EPP);
|
|
}
|
|
|
|
/* If EPP timeout bit is not reset, DON'T use EPP */
|
|
w_ecr(ppc, 0x20);
|
|
|
|
return (PPB_ECP_PS2);
|
|
}
|
|
|
|
/*
|
|
* ppc_generic_detect
|
|
*/
|
|
static int
|
|
ppc_generic_detect(struct ppc_data *ppc, int mode)
|
|
{
|
|
char save_control, r;
|
|
|
|
/* don't know what to do here */
|
|
if (mode)
|
|
return (mode);
|
|
|
|
/* try to reset EPP timeout bit */
|
|
ppc_reset_epp_timeout(ppc->ppc_unit);
|
|
|
|
r = r_str(ppc);
|
|
if (!(r & TIMEOUT)) {
|
|
return (PPB_EPP);
|
|
}
|
|
|
|
/* Now check for ECP */
|
|
w_ecr(ppc, 0x20);
|
|
r = r_ecr(ppc);
|
|
if ((r & 0xe0) == 0x20) {
|
|
/* Search for SMC style EPP+ECP mode */
|
|
w_ecr(ppc, 0x80);
|
|
|
|
return (ppc_check_ecpepp_timeout(ppc));
|
|
}
|
|
|
|
return (ppc_detect_ps2(ppc));
|
|
}
|
|
|
|
/*
|
|
* ppc_detect()
|
|
*
|
|
* mode is the mode suggested at boot
|
|
*/
|
|
static int
|
|
ppc_detect(struct ppc_data *ppc, int mode) {
|
|
|
|
if (!ppc->ppc_mode && (ppc->ppc_mode = ppc_pc873xx_detect(ppc)))
|
|
goto end_detect;
|
|
|
|
if (!ppc->ppc_mode && (ppc->ppc_mode =
|
|
ppc_smc37c66xgt_detect(ppc, mode)))
|
|
goto end_detect;
|
|
|
|
if (!ppc->ppc_mode && (ppc->ppc_mode = ppc_generic_detect(ppc, mode)))
|
|
goto end_detect;
|
|
|
|
printf("ppc: port not present at 0x%x.\n", ppc->ppc_base);
|
|
return (PPC_ENOPORT);
|
|
|
|
end_detect:
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* EPP timeout, according to the PC87332 manual
|
|
* Semantics of clearing EPP timeout bit.
|
|
* PC87332 - reading SPP_STR does it...
|
|
* SMC - write 1 to EPP timeout bit XXX
|
|
* Others - (???) write 0 to EPP timeout bit
|
|
*/
|
|
static void
|
|
ppc_reset_epp_timeout(int unit)
|
|
{
|
|
struct ppc_data *ppc = ppcdata[unit];
|
|
register char r;
|
|
|
|
r = r_str(ppc);
|
|
w_str(ppc, r | 0x1);
|
|
w_str(ppc, r & 0xfe);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
ppcprobe(struct isa_device *dvp)
|
|
{
|
|
static short next_bios_ppc = 0;
|
|
struct ppc_data *ppc;
|
|
int error;
|
|
|
|
/*
|
|
* If port not specified, use bios list.
|
|
*/
|
|
if(dvp->id_iobase < 0) {
|
|
if((next_bios_ppc < BIOS_MAX_PPC) &&
|
|
(*(BIOS_PORTS+next_bios_ppc) != 0) ) {
|
|
dvp->id_iobase = *(BIOS_PORTS+next_bios_ppc++);
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Port was explicitly specified.
|
|
* This allows probing of ports unknown to the BIOS.
|
|
*/
|
|
|
|
/*
|
|
* Allocate the ppc_data structure.
|
|
*/
|
|
ppc = malloc(sizeof(struct ppc_data), M_DEVBUF, M_NOWAIT);
|
|
if (!ppc) {
|
|
printf("ppc: cannot malloc!\n");
|
|
goto error;
|
|
}
|
|
bzero(ppc, sizeof(struct ppc_data));
|
|
|
|
ppc->ppc_base = dvp->id_iobase;
|
|
ppc->ppc_unit = dvp->id_unit;
|
|
ppc->ppc_type = GENERIC;
|
|
|
|
/* PPB_AUTODETECT is default to allow chipset detection even if
|
|
* mode is forced by dvp->id_flags (see later, ppc_detect() call) */
|
|
ppc->ppc_mode = PPB_AUTODETECT;
|
|
ppc->ppc_epp = (dvp->id_flags & 0x8) >> 3;
|
|
|
|
/*
|
|
* XXX
|
|
* Try and detect if interrupts are working.
|
|
*/
|
|
if (!(dvp->id_flags & 0x10))
|
|
ppc->ppc_irq = (dvp->id_irq);
|
|
|
|
ppcdata[ppc->ppc_unit] = ppc;
|
|
nppc ++;
|
|
|
|
/*
|
|
* Try to detect the chipset and it's mode.
|
|
*/
|
|
if (ppc_detect(ppc, dvp->id_flags & 0x7))
|
|
goto error;
|
|
|
|
end_probe:
|
|
|
|
return (1);
|
|
|
|
error:
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ppcattach(struct isa_device *isdp)
|
|
{
|
|
struct ppc_data *ppc = ppcdata[isdp->id_unit];
|
|
struct ppb_data *ppbus;
|
|
|
|
/*
|
|
* Link the Parallel Port Chipset (adapter) to
|
|
* the future ppbus.
|
|
*/
|
|
ppc->ppc_link.adapter_unit = ppc->ppc_unit;
|
|
ppc->ppc_link.adapter = &ppc_adapter;
|
|
|
|
printf("ppc%d: %s chipset in %s mode%s\n", ppc->ppc_unit,
|
|
ppc_types[ppc->ppc_type], ppc_modes[ppc->ppc_mode],
|
|
(PPB_IS_EPP(ppc->ppc_mode)) ?
|
|
ppc_epp_protocol[ppc->ppc_epp] : "");
|
|
|
|
/*
|
|
* Prepare ppbus data area for upper level code.
|
|
*/
|
|
ppbus = ppb_alloc_bus();
|
|
|
|
if (!ppbus)
|
|
return (0);
|
|
|
|
ppc->ppc_link.ppbus = ppbus;
|
|
ppbus->ppb_link = &ppc->ppc_link;
|
|
|
|
/*
|
|
* Probe the ppbus and attach devices found.
|
|
*/
|
|
ppb_attachdevs(ppbus);
|
|
|
|
return (1);
|
|
}
|
|
#endif
|