mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
501 lines
13 KiB
C
501 lines
13 KiB
C
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char copyright[] =
|
|
"@(#) Copyright (c) 1992, 1993\n\
|
|
The Regents of the University of California. All rights reserved.\n";
|
|
#endif /* not lint */
|
|
|
|
#ifndef lint
|
|
static char sccsid[] = "@(#)cleanerd.c 8.2 (Berkeley) 1/13/94";
|
|
#endif /* not lint */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <ufs/ufs/dinode.h>
|
|
#include <ufs/lfs/lfs.h>
|
|
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#include "clean.h"
|
|
char *special = "cleanerd";
|
|
int do_small = 0;
|
|
int do_mmap = 0;
|
|
struct cleaner_stats {
|
|
int blocks_read;
|
|
int blocks_written;
|
|
int segs_cleaned;
|
|
int segs_empty;
|
|
int segs_error;
|
|
} cleaner_stats;
|
|
|
|
struct seglist {
|
|
int sl_id; /* segment number */
|
|
int sl_cost; /* cleaning cost */
|
|
char sl_empty; /* is segment empty */
|
|
};
|
|
|
|
struct tossstruct {
|
|
struct lfs *lfs;
|
|
int seg;
|
|
};
|
|
|
|
/* function prototypes for system calls; not sure where they should go */
|
|
int lfs_segwait __P((fsid_t *, struct timeval *));
|
|
int lfs_segclean __P((fsid_t *, u_long));
|
|
int lfs_bmapv __P((fsid_t *, BLOCK_INFO *, int));
|
|
int lfs_markv __P((fsid_t *, BLOCK_INFO *, int));
|
|
|
|
/* function prototypes */
|
|
int bi_tossold __P((const void *, const void *, const void *));
|
|
int choose_segments __P((FS_INFO *, struct seglist *,
|
|
int (*)(FS_INFO *, SEGUSE *)));
|
|
void clean_fs __P((FS_INFO *, int (*)(FS_INFO *, SEGUSE *)));
|
|
int clean_loop __P((FS_INFO *));
|
|
int clean_segment __P((FS_INFO *, int));
|
|
int cost_benefit __P((FS_INFO *, SEGUSE *));
|
|
int cost_compare __P((const void *, const void *));
|
|
void sig_report __P((int));
|
|
|
|
/*
|
|
* Cleaning Cost Functions:
|
|
*
|
|
* These return the cost of cleaning a segment. The higher the cost value
|
|
* the better it is to clean the segment, so empty segments have the highest
|
|
* cost. (It is probably better to think of this as a priority value
|
|
* instead).
|
|
*
|
|
* This is the cost-benefit policy simulated and described in Rosenblum's
|
|
* 1991 SOSP paper.
|
|
*/
|
|
|
|
int
|
|
cost_benefit(fsp, su)
|
|
FS_INFO *fsp; /* file system information */
|
|
SEGUSE *su;
|
|
{
|
|
struct lfs *lfsp;
|
|
struct timeval t;
|
|
int age;
|
|
int live;
|
|
|
|
gettimeofday(&t, NULL);
|
|
|
|
live = su->su_nbytes;
|
|
age = t.tv_sec < su->su_lastmod ? 0 : t.tv_sec - su->su_lastmod;
|
|
|
|
lfsp = &fsp->fi_lfs;
|
|
if (live == 0)
|
|
return (t.tv_sec * lblkno(lfsp, seg_size(lfsp)));
|
|
else {
|
|
/*
|
|
* from lfsSegUsage.c (Mendel's code).
|
|
* priority calculation is done using INTEGER arithmetic.
|
|
* sizes are in BLOCKS (that is why we use lblkno below).
|
|
* age is in seconds.
|
|
*
|
|
* priority = ((seg_size - live) * age) / (seg_size + live)
|
|
*/
|
|
#ifdef VERBOSE
|
|
if (live < 0 || live > seg_size(lfsp)) {
|
|
err(0, "Bad segusage count: %d", live);
|
|
live = 0;
|
|
}
|
|
#endif
|
|
return (lblkno(lfsp, seg_size(lfsp) - live) * age)
|
|
/ lblkno(lfsp, seg_size(lfsp) + live);
|
|
}
|
|
}
|
|
|
|
int
|
|
main(argc, argv)
|
|
int argc;
|
|
char *argv[];
|
|
{
|
|
FS_INFO *fsp;
|
|
struct statfs *lstatfsp; /* file system stats */
|
|
struct timeval timeout; /* sleep timeout */
|
|
fsid_t fsid;
|
|
int i, nodaemon;
|
|
int opt, cmd_err;
|
|
char *fs_name; /* name of filesystem to clean */
|
|
extern int optind;
|
|
|
|
cmd_err = nodaemon = 0;
|
|
while ((opt = getopt(argc, argv, "smd")) != EOF) {
|
|
switch (opt) {
|
|
case 's': /* small writes */
|
|
do_small = 1;
|
|
break;
|
|
case 'm':
|
|
do_mmap = 1;
|
|
break;
|
|
case 'd':
|
|
nodaemon = 1;
|
|
break;
|
|
default:
|
|
++cmd_err;
|
|
}
|
|
}
|
|
argc -= optind;
|
|
argv += optind;
|
|
if (cmd_err || (argc != 1))
|
|
err(1, "usage: lfs_cleanerd [-smd] fs_name");
|
|
|
|
fs_name = argv[0];
|
|
|
|
signal(SIGINT, sig_report);
|
|
signal(SIGUSR1, sig_report);
|
|
signal(SIGUSR2, sig_report);
|
|
if (fs_getmntinfo(&lstatfsp, fs_name, MOUNT_LFS) == 0) {
|
|
/* didn't find the filesystem */
|
|
err(1, "lfs_cleanerd: filesystem %s isn't an LFS!", fs_name);
|
|
}
|
|
|
|
if (!nodaemon) /* should we become a daemon, chdir to / & close fd's */
|
|
if (daemon(0, 0) == -1)
|
|
err(1, "lfs_cleanerd: couldn't become a daemon!");
|
|
|
|
timeout.tv_sec = 5*60; /* five minutes */
|
|
timeout.tv_usec = 0;
|
|
fsid.val[0] = 0;
|
|
fsid.val[1] = 0;
|
|
|
|
for (fsp = get_fs_info(lstatfsp, do_mmap); ;
|
|
reread_fs_info(fsp, do_mmap)) {
|
|
/*
|
|
* clean the filesystem, and, if it needed cleaning
|
|
* (i.e. it returned nonzero) try it again
|
|
* to make sure that some nasty process hasn't just
|
|
* filled the disk system up.
|
|
*/
|
|
if (clean_loop(fsp))
|
|
continue;
|
|
|
|
#ifdef VERBOSE
|
|
(void)printf("Cleaner going to sleep.\n");
|
|
#endif
|
|
if (lfs_segwait(&fsid, &timeout) < 0)
|
|
err(0, "lfs_segwait: returned error\n");
|
|
#ifdef VERBOSE
|
|
(void)printf("Cleaner waking up.\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* return the number of segments cleaned */
|
|
int
|
|
clean_loop(fsp)
|
|
FS_INFO *fsp; /* file system information */
|
|
{
|
|
double loadavg[MAXLOADS];
|
|
time_t now;
|
|
u_long max_free_segs;
|
|
|
|
/*
|
|
* Compute the maximum possible number of free segments, given the
|
|
* number of free blocks.
|
|
*/
|
|
max_free_segs = fsp->fi_statfsp->f_bfree / fsp->fi_lfs.lfs_ssize;
|
|
|
|
/*
|
|
* We will clean if there are not enough free blocks or total clean
|
|
* space is less than BUSY_LIM % of possible clean space.
|
|
*/
|
|
now = time((time_t *)NULL);
|
|
if (fsp->fi_cip->clean < max_free_segs &&
|
|
(fsp->fi_cip->clean <= MIN_SEGS(&fsp->fi_lfs) ||
|
|
fsp->fi_cip->clean < max_free_segs * BUSY_LIM)) {
|
|
printf("Cleaner Running at %s (%d of %d segments available)\n",
|
|
ctime(&now), fsp->fi_cip->clean, max_free_segs);
|
|
clean_fs(fsp, cost_benefit);
|
|
return (1);
|
|
} else {
|
|
/*
|
|
* We will also clean if the system is reasonably idle and
|
|
* the total clean space is less then IDLE_LIM % of possible
|
|
* clean space.
|
|
*/
|
|
if (getloadavg(loadavg, MAXLOADS) == -1) {
|
|
perror("getloadavg: failed\n");
|
|
return (-1);
|
|
}
|
|
if (loadavg[ONE_MIN] == 0.2 && loadavg[FIVE_MIN] &&
|
|
fsp->fi_cip->clean < max_free_segs * IDLE_LIM) {
|
|
clean_fs(fsp, cost_benefit);
|
|
printf("Cleaner running (system idle) at %s",
|
|
ctime(&now));
|
|
return (1);
|
|
}
|
|
}
|
|
#ifdef VERBOSE
|
|
printf("Cleaner not running at %s", ctime(&now));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
|
|
void
|
|
clean_fs(fsp, cost_func)
|
|
FS_INFO *fsp; /* file system information */
|
|
int (*cost_func) __P((FS_INFO *, SEGUSE *));
|
|
{
|
|
struct seglist *segs, *sp;
|
|
int i;
|
|
|
|
if ((segs =
|
|
malloc(fsp->fi_lfs.lfs_nseg * sizeof(struct seglist))) == NULL) {
|
|
err(0, "malloc failed");
|
|
return;
|
|
}
|
|
i = choose_segments(fsp, segs, cost_func);
|
|
#ifdef VERBOSE
|
|
printf("clean_fs: found %d segments to clean in file system %s\n",
|
|
i, fsp->fi_statfsp->f_mntonname);
|
|
fflush(stdout);
|
|
#endif
|
|
if (i)
|
|
for (i = MIN(i, NUM_TO_CLEAN(fsp)), sp = segs; i-- ; ++sp) {
|
|
if (clean_segment(fsp, sp->sl_id) < 0)
|
|
perror("clean_segment failed");
|
|
else if (lfs_segclean(&fsp->fi_statfsp->f_fsid,
|
|
sp->sl_id) < 0)
|
|
perror("lfs_segclean failed");
|
|
printf("Completed cleaning segment %d\n", sp->sl_id);
|
|
}
|
|
free(segs);
|
|
}
|
|
|
|
/*
|
|
* Segment with the highest priority get sorted to the beginning of the
|
|
* list. This sort assumes that empty segments always have a higher
|
|
* cost/benefit than any utilized segment.
|
|
*/
|
|
int
|
|
cost_compare(a, b)
|
|
const void *a;
|
|
const void *b;
|
|
{
|
|
return (((struct seglist *)b)->sl_cost -
|
|
((struct seglist *)a)->sl_cost);
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the number of segments to be cleaned with the elements of seglist
|
|
* filled in.
|
|
*/
|
|
int
|
|
choose_segments(fsp, seglist, cost_func)
|
|
FS_INFO *fsp;
|
|
struct seglist *seglist;
|
|
int (*cost_func) __P((FS_INFO *, SEGUSE *));
|
|
{
|
|
struct lfs *lfsp;
|
|
struct seglist *sp;
|
|
SEGUSE *sup;
|
|
int i, nsegs;
|
|
|
|
lfsp = &fsp->fi_lfs;
|
|
|
|
#ifdef VERBOSE
|
|
(void)printf("Entering choose_segments\n");
|
|
#endif
|
|
dump_super(lfsp);
|
|
dump_cleaner_info(fsp->fi_cip);
|
|
|
|
for (sp = seglist, i = 0; i < lfsp->lfs_nseg; ++i) {
|
|
sup = SEGUSE_ENTRY(lfsp, fsp->fi_segusep, i);
|
|
PRINT_SEGUSE(sup, i);
|
|
if (!(sup->su_flags & SEGUSE_DIRTY) ||
|
|
sup->su_flags & SEGUSE_ACTIVE)
|
|
continue;
|
|
#ifdef VERBOSE
|
|
(void)printf("\tchoosing segment %d\n", i);
|
|
#endif
|
|
sp->sl_cost = (*cost_func)(fsp, sup);
|
|
sp->sl_id = i;
|
|
sp->sl_empty = sup->su_nbytes ? 0 : 1;
|
|
++sp;
|
|
}
|
|
nsegs = sp - seglist;
|
|
qsort(seglist, nsegs, sizeof(struct seglist), cost_compare);
|
|
#ifdef VERBOSE
|
|
(void)printf("Returning %d segments\n", nsegs);
|
|
#endif
|
|
return (nsegs);
|
|
}
|
|
|
|
|
|
int
|
|
clean_segment(fsp, id)
|
|
FS_INFO *fsp; /* file system information */
|
|
int id; /* segment number */
|
|
{
|
|
BLOCK_INFO *block_array, *bp;
|
|
SEGUSE *sp;
|
|
struct lfs *lfsp;
|
|
struct tossstruct t;
|
|
caddr_t seg_buf;
|
|
int num_blocks, maxblocks, clean_blocks;
|
|
|
|
lfsp = &fsp->fi_lfs;
|
|
sp = SEGUSE_ENTRY(lfsp, fsp->fi_segusep, id);
|
|
|
|
#ifdef VERBOSE
|
|
(void)printf("cleaning segment %d: contains %lu bytes\n", id,
|
|
sp->su_nbytes);
|
|
fflush(stdout);
|
|
#endif
|
|
/* XXX could add debugging to verify that segment is really empty */
|
|
if (sp->su_nbytes == sp->su_nsums * LFS_SUMMARY_SIZE) {
|
|
++cleaner_stats.segs_empty;
|
|
return (0);
|
|
}
|
|
|
|
/* map the segment into a buffer */
|
|
if (mmap_segment(fsp, id, &seg_buf, do_mmap) < 0) {
|
|
err(0, "mmap_segment failed");
|
|
++cleaner_stats.segs_error;
|
|
return (-1);
|
|
}
|
|
/* get a list of blocks that are contained by the segment */
|
|
if (lfs_segmapv(fsp, id, seg_buf, &block_array, &num_blocks) < 0) {
|
|
err(0, "clean_segment: lfs_segmapv failed");
|
|
++cleaner_stats.segs_error;
|
|
return (-1);
|
|
}
|
|
cleaner_stats.blocks_read += fsp->fi_lfs.lfs_ssize;
|
|
|
|
#ifdef VERBOSE
|
|
(void)printf("lfs_segmapv returned %d blocks\n", num_blocks);
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
/* get the current disk address of blocks contained by the segment */
|
|
if (lfs_bmapv(&fsp->fi_statfsp->f_fsid, block_array, num_blocks) < 0) {
|
|
perror("clean_segment: lfs_bmapv failed\n");
|
|
++cleaner_stats.segs_error;
|
|
return -1;
|
|
}
|
|
|
|
/* Now toss any blocks not in the current segment */
|
|
t.lfs = lfsp;
|
|
t.seg = id;
|
|
toss(block_array, &num_blocks, sizeof(BLOCK_INFO), bi_tossold, &t);
|
|
|
|
/* Check if last element should be tossed */
|
|
if (num_blocks && bi_tossold(&t, block_array + num_blocks - 1, NULL))
|
|
--num_blocks;
|
|
|
|
#ifdef VERBOSE
|
|
{
|
|
BLOCK_INFO *_bip;
|
|
u_long *lp;
|
|
int i;
|
|
|
|
(void)printf("after bmapv still have %d blocks\n", num_blocks);
|
|
fflush(stdout);
|
|
if (num_blocks)
|
|
printf("BLOCK INFOS\n");
|
|
for (_bip = block_array, i=0; i < num_blocks; ++_bip, ++i) {
|
|
PRINT_BINFO(_bip);
|
|
lp = (u_long *)_bip->bi_bp;
|
|
}
|
|
}
|
|
#endif
|
|
cleaner_stats.blocks_written += num_blocks;
|
|
if (do_small)
|
|
maxblocks = MAXPHYS / fsp->fi_lfs.lfs_bsize - 1;
|
|
else
|
|
maxblocks = num_blocks;
|
|
|
|
for (bp = block_array; num_blocks > 0; bp += clean_blocks) {
|
|
clean_blocks = maxblocks < num_blocks ? maxblocks : num_blocks;
|
|
if (lfs_markv(&fsp->fi_statfsp->f_fsid,
|
|
bp, clean_blocks) < 0) {
|
|
err(0, "clean_segment: lfs_markv failed");
|
|
++cleaner_stats.segs_error;
|
|
return (-1);
|
|
}
|
|
num_blocks -= clean_blocks;
|
|
}
|
|
|
|
free(block_array);
|
|
munmap_segment(fsp, seg_buf, do_mmap);
|
|
++cleaner_stats.segs_cleaned;
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
bi_tossold(client, a, b)
|
|
const void *client;
|
|
const void *a;
|
|
const void *b;
|
|
{
|
|
const struct tossstruct *t;
|
|
|
|
t = (struct tossstruct *)client;
|
|
|
|
return (((BLOCK_INFO *)a)->bi_daddr == LFS_UNUSED_DADDR ||
|
|
datosn(t->lfs, ((BLOCK_INFO *)a)->bi_daddr) != t->seg);
|
|
}
|
|
|
|
void
|
|
sig_report(sig)
|
|
int sig;
|
|
{
|
|
printf("lfs_cleanerd:\t%s%d\n\t\t%s%d\n\t\t%s%d\n\t\t%s%d\n\t\t%s%d\n",
|
|
"blocks_read ", cleaner_stats.blocks_read,
|
|
"blocks_written ", cleaner_stats.blocks_written,
|
|
"segs_cleaned ", cleaner_stats.segs_cleaned,
|
|
"segs_empty ", cleaner_stats.segs_empty,
|
|
"seg_error ", cleaner_stats.segs_error);
|
|
if (sig == SIGUSR2) {
|
|
cleaner_stats.blocks_read = 0;
|
|
cleaner_stats.blocks_written = 0;
|
|
cleaner_stats.segs_cleaned = 0;
|
|
cleaner_stats.segs_empty = 0;
|
|
cleaner_stats.segs_error = 0;
|
|
}
|
|
if (sig == SIGINT)
|
|
exit(0);
|
|
}
|