HardenedBSD/stand/i386/pmbr/pmbr.S
Warner Losh c596126a5d pmbr: Only load the first 545k rather than error out
It would be nice to have larger boot partitions for ESPs to live in one
day. It's trivial to carve out 5M 10M or 200M when provisioning, but
logistical issues may make it hard to do it after the fact. So only warn
when the partition is > 545k. If we ever grow the boot loader larger
than that, then it will be responsible for loading the rest anyway.

Sponsored by:		Netflix
Reviewed by:		tsoome
Differential Revision:	https://reviews.freebsd.org/D42774
2023-11-27 15:45:56 -07:00

259 lines
7.9 KiB
ArmAsm

#-
# Copyright (c) 2007 Yahoo!, Inc.
# All rights reserved.
# Written by: John Baldwin <jhb@FreeBSD.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the author nor the names of any co-contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
#
# Partly from: src/sys/boot/i386/mbr/mbr.s 1.7
# A 512 byte PMBR boot manager that looks for a FreeBSD boot GPT partition
# and boots it.
.set LOAD,0x7c00 # Load address
.set EXEC,0x600 # Execution address
.set MAGIC,0xaa55 # Magic: bootable
.set SECSIZE,0x200 # Size of a single disk sector
.set DISKSIG,440 # Disk signature offset
.set STACK,EXEC+SECSIZE*4 # Stack address
.set GPT_ADDR,STACK # GPT header address
.set GPT_SIG,0
.set GPT_SIG_0,0x20494645 # "EFI "
.set GPT_SIG_1,0x54524150 # "PART"
.set GPT_MYLBA,24
.set GPT_PART_LBA,72
.set GPT_NPART,80
.set GPT_PART_SIZE,84
.set PART_ADDR,GPT_ADDR+SECSIZE # GPT partition array address
.set PART_TYPE,0
.set PART_START_LBA,32
.set PART_END_LBA,40
.set DPBUF,PART_ADDR+SECSIZE
.set DPBUF_SEC,0x10 # Number of sectors
.set NHRDRV,0x475 # Number of hard drives
.globl start # Entry point
.code16
#
# Setup the segment registers for flat addressing and setup the stack.
#
start: cld # String ops inc
xorw %ax,%ax # Zero
movw %ax,%es # Address
movw %ax,%ds # data
movw %ax,%ss # Set up
movw $STACK,%sp # stack
#
# Relocate ourself to a lower address so that we have more room to load
# other sectors.
#
movw $main-EXEC+LOAD,%si # Source
movw $main,%di # Destination
movw $SECSIZE-(main-start),%cx # Byte count
rep # Relocate
movsb # code
#
# Jump to the relocated code.
#
jmp main-LOAD+EXEC # To relocated code
#
# Validate drive number in %dl.
#
main: cmpb $0x80,%dl # Drive valid?
jb main.1 # No
movb NHRDRV,%dh # Calculate the highest
addb $0x80,%dh # drive number available
cmpb %dh,%dl # Within range?
jb main.2 # Yes
main.1: movb $0x80,%dl # Assume drive 0x80
#
# Load the GPT header and verify signature. Try LBA 1 for the primary one and
# the last LBA for the backup if it is broken.
#
main.2: call getdrvparams # Read drive parameters
movb $1,%dh # %dh := 1 (reading primary)
main.2a: movw $GPT_ADDR,%bx
movw $lba,%si
call read # Read header and check GPT sig
cmpl $GPT_SIG_0,GPT_ADDR+GPT_SIG
jnz main.2b
cmpl $GPT_SIG_1,GPT_ADDR+GPT_SIG+4
jnz main.2b
jmp load_part
main.2b: cmpb $1,%dh # Reading primary?
jne err_pt # If no - invalid table found
#
# Try alternative LBAs from the last sector for the GPT header.
#
main.3: movb $0,%dh # %dh := 0 (reading backup)
movw $DPBUF+DPBUF_SEC,%si # %si = last sector + 1
movw $lba,%di # %di = $lba
main.3a: subl $1, (%si) # 0x0(%si) = last sec (0-31)
sbbl $0, 4(%si)
movw $4,%cx
rep
movsw # $lastsec--, copy it to $lba
jmp main.2a # Read the next sector
#
# Load a partition table sector from disk and look for a FreeBSD boot
# partition.
#
load_part: movw $GPT_ADDR+GPT_PART_LBA,%si
movw $PART_ADDR,%bx
call read
scan: movw %bx,%si # Compare partition UUID
movw $boot_uuid,%di # with FreeBSD boot UUID
movw $0x10,%cx
repe cmpsb
jnz next_part # Didn't match, next partition
#
# We found a boot partition. Load it into RAM starting at 0x7c00.
#
movw %bx,%di # Save partition pointer in %di
leaw PART_START_LBA(%di),%si
movw $LOAD/16,%bx
movw %bx,%es
xorw %bx,%bx
load_boot: push %si # Save %si
call read
pop %si # Restore
movl PART_END_LBA(%di),%eax # See if this was the last LBA
cmpl (%si),%eax
jnz next_boot
movl PART_END_LBA+4(%di),%eax
cmpl 4(%si),%eax
jnz next_boot
mov %bx,%es # Reset %es to zero
jmp LOAD # Jump to boot code
next_boot: addl $1,(%si) # Next LBA
adcl $0,4(%si)
mov %es,%ax # Adjust segment for next
addw $SECSIZE/16,%ax # sector
cmp $0x9000,%ax # Don't load past 0x90000,
jb sz_ok # 545k should be enough for
call err_big # any boot code, but warn
mov $0x9000-SECSIZE/16,%ax # and truncate
sz_ok: mov %ax,%es
jmp load_boot
#
# Move to the next partition. If we walk off the end of the sector, load
# the next sector. We assume that partition entries are smaller than 64k
# and that they won't span a sector boundary.
#
# XXX: Should we int 0x18 instead of err_noboot if we hit the end of the table?
#
next_part: decl GPT_ADDR+GPT_NPART # Was this the last partition?
jz err_noboot
movw GPT_ADDR+GPT_PART_SIZE,%ax
addw %ax,%bx # Next partition
cmpw $PART_ADDR+0x200,%bx # Still in sector?
jb scan
addl $1, GPT_ADDR+GPT_PART_LBA # Next sector
adcl $0,GPT_ADDR+GPT_PART_LBA+4
jmp load_part
#
# Load a sector (64-bit LBA at %si) from disk %dl into %es:%bx by creating
# a EDD packet on the stack and passing it to the BIOS. Trashes %ax and %si.
#
read: pushl 0x4(%si) # Set the LBA
pushl 0x0(%si) # address
pushw %es # Set the address of
pushw %bx # the transfer buffer
pushw $0x1 # Read 1 sector
pushw $0x10 # Packet length
movw %sp,%si # Packer pointer
movw $0x4200,%ax # BIOS: LBA Read from disk
int $0x13 # Call the BIOS
add $0x10,%sp # Restore stack
jc err_rd # If error
ret
#
# Check the number of LBAs on the drive index %dx. Trashes %ax and %si.
#
getdrvparams:
movw $DPBUF,%si # Set the address of result buf
movw $0x001e,(%si) # len
movw $0x4800,%ax # BIOS: Read Drive Parameters
int $0x13 # Call the BIOS
jc err_rd # "I/O error" if error
ret
#
# Various error message entry points.
#
err_big: movw $msg_big,%si # "Truncated
call putstr # to 545k"
ret
err_pt: movw $msg_pt,%si # "Invalid partition
call putstr # table"
err_pt.1: jmp err_pt.1 # Await reset
err_rd: movw $msg_rd,%si # "I/O error loading
call putstr # boot loader"
jmp err_pt.1
err_noboot: movw $msg_noboot,%si # "Missing boot
call putstr # loader"
jmp err_pt.1
#
# Output an ASCIZ string to the console via the BIOS.
#
putstr.0: movw $0x7,%bx # Page:attribute
movb $0xe,%ah # BIOS: Display
int $0x10 # character
putstr: lodsb # Get character
testb %al,%al # End of string?
jnz putstr.0 # No
ret
msg_big: .asciz "Loaded only 545k"
msg_pt: .asciz "Invalid partition table"
msg_rd: .asciz "I/O error loading boot loader"
msg_noboot: .asciz "Missing boot loader"
lba: .quad 1 # LBA of GPT header
boot_uuid: .long 0x83bd6b9d
.word 0x7f41
.word 0x11dc
.byte 0xbe
.byte 0x0b
.byte 0x00
.byte 0x15
.byte 0x60
.byte 0xb8
.byte 0x4f
.byte 0x0f
.org DISKSIG,0x90
sig: .long 0 # OS Disk Signature
.word 0 # "Unknown" in PMBR
partbl: .fill 0x10,0x4,0x0 # Partition table
.word MAGIC # Magic number