HardenedBSD/usr.bin/lex/dfa.c
2002-06-30 05:25:07 +00:00

1098 lines
25 KiB
C

/* dfa - DFA construction routines */
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Vern Paxson.
*
* The United States Government has rights in this work pursuant
* to contract no. DE-AC03-76SF00098 between the United States
* Department of Energy and the University of California.
*
* Redistribution and use in source and binary forms are permitted provided
* that: (1) source distributions retain this entire copyright notice and
* comment, and (2) distributions including binaries display the following
* acknowledgement: ``This product includes software developed by the
* University of California, Berkeley and its contributors'' in the
* documentation or other materials provided with the distribution and in
* all advertising materials mentioning features or use of this software.
* Neither the name of the University nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* $Header: /home/daffy/u0/vern/flex/RCS/dfa.c,v 2.26 95/04/20 13:53:14 vern Exp $ */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "flexdef.h"
/* declare functions that have forward references */
void dump_associated_rules PROTO((FILE*, int));
void dump_transitions PROTO((FILE*, int[]));
void sympartition PROTO((int[], int, int[], int[]));
int symfollowset PROTO((int[], int, int, int[]));
/* check_for_backing_up - check a DFA state for backing up
*
* synopsis
* void check_for_backing_up( int ds, int state[numecs] );
*
* ds is the number of the state to check and state[] is its out-transitions,
* indexed by equivalence class.
*/
void check_for_backing_up( ds, state )
int ds;
int state[];
{
if ( (reject && ! dfaacc[ds].dfaacc_set) ||
(! reject && ! dfaacc[ds].dfaacc_state) )
{ /* state is non-accepting */
++num_backing_up;
if ( backing_up_report )
{
fprintf( backing_up_file,
_( "State #%d is non-accepting -\n" ), ds );
/* identify the state */
dump_associated_rules( backing_up_file, ds );
/* Now identify it further using the out- and
* jam-transitions.
*/
dump_transitions( backing_up_file, state );
putc( '\n', backing_up_file );
}
}
}
/* check_trailing_context - check to see if NFA state set constitutes
* "dangerous" trailing context
*
* synopsis
* void check_trailing_context( int nfa_states[num_states+1], int num_states,
* int accset[nacc+1], int nacc );
*
* NOTES
* Trailing context is "dangerous" if both the head and the trailing
* part are of variable size \and/ there's a DFA state which contains
* both an accepting state for the head part of the rule and NFA states
* which occur after the beginning of the trailing context.
*
* When such a rule is matched, it's impossible to tell if having been
* in the DFA state indicates the beginning of the trailing context or
* further-along scanning of the pattern. In these cases, a warning
* message is issued.
*
* nfa_states[1 .. num_states] is the list of NFA states in the DFA.
* accset[1 .. nacc] is the list of accepting numbers for the DFA state.
*/
void check_trailing_context( nfa_states, num_states, accset, nacc )
int *nfa_states, num_states;
int *accset;
int nacc;
{
register int i, j;
for ( i = 1; i <= num_states; ++i )
{
int ns = nfa_states[i];
register int type = state_type[ns];
register int ar = assoc_rule[ns];
if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
{ /* do nothing */
}
else if ( type == STATE_TRAILING_CONTEXT )
{
/* Potential trouble. Scan set of accepting numbers
* for the one marking the end of the "head". We
* assume that this looping will be fairly cheap
* since it's rare that an accepting number set
* is large.
*/
for ( j = 1; j <= nacc; ++j )
if ( accset[j] & YY_TRAILING_HEAD_MASK )
{
line_warning(
_( "dangerous trailing context" ),
rule_linenum[ar] );
return;
}
}
}
}
/* dump_associated_rules - list the rules associated with a DFA state
*
* Goes through the set of NFA states associated with the DFA and
* extracts the first MAX_ASSOC_RULES unique rules, sorts them,
* and writes a report to the given file.
*/
void dump_associated_rules( file, ds )
FILE *file;
int ds;
{
register int i, j;
register int num_associated_rules = 0;
int rule_set[MAX_ASSOC_RULES + 1];
int *dset = dss[ds];
int size = dfasiz[ds];
for ( i = 1; i <= size; ++i )
{
register int rule_num = rule_linenum[assoc_rule[dset[i]]];
for ( j = 1; j <= num_associated_rules; ++j )
if ( rule_num == rule_set[j] )
break;
if ( j > num_associated_rules )
{ /* new rule */
if ( num_associated_rules < MAX_ASSOC_RULES )
rule_set[++num_associated_rules] = rule_num;
}
}
bubble( rule_set, num_associated_rules );
fprintf( file, _( " associated rule line numbers:" ) );
for ( i = 1; i <= num_associated_rules; ++i )
{
if ( i % 8 == 1 )
putc( '\n', file );
fprintf( file, "\t%d", rule_set[i] );
}
putc( '\n', file );
}
/* dump_transitions - list the transitions associated with a DFA state
*
* synopsis
* dump_transitions( FILE *file, int state[numecs] );
*
* Goes through the set of out-transitions and lists them in human-readable
* form (i.e., not as equivalence classes); also lists jam transitions
* (i.e., all those which are not out-transitions, plus EOF). The dump
* is done to the given file.
*/
void dump_transitions( file, state )
FILE *file;
int state[];
{
register int i, ec;
int out_char_set[CSIZE];
for ( i = 0; i < csize; ++i )
{
ec = ABS( ecgroup[i] );
out_char_set[i] = state[ec];
}
fprintf( file, _( " out-transitions: " ) );
list_character_set( file, out_char_set );
/* now invert the members of the set to get the jam transitions */
for ( i = 0; i < csize; ++i )
out_char_set[i] = ! out_char_set[i];
fprintf( file, _( "\n jam-transitions: EOF " ) );
list_character_set( file, out_char_set );
putc( '\n', file );
}
/* epsclosure - construct the epsilon closure of a set of ndfa states
*
* synopsis
* int *epsclosure( int t[num_states], int *numstates_addr,
* int accset[num_rules+1], int *nacc_addr,
* int *hashval_addr );
*
* NOTES
* The epsilon closure is the set of all states reachable by an arbitrary
* number of epsilon transitions, which themselves do not have epsilon
* transitions going out, unioned with the set of states which have non-null
* accepting numbers. t is an array of size numstates of nfa state numbers.
* Upon return, t holds the epsilon closure and *numstates_addr is updated.
* accset holds a list of the accepting numbers, and the size of accset is
* given by *nacc_addr. t may be subjected to reallocation if it is not
* large enough to hold the epsilon closure.
*
* hashval is the hash value for the dfa corresponding to the state set.
*/
int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
{
register int stkpos, ns, tsp;
int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
int stkend, nstate;
static int did_stk_init = false, *stk;
#define MARK_STATE(state) \
trans1[state] = trans1[state] - MARKER_DIFFERENCE;
#define IS_MARKED(state) (trans1[state] < 0)
#define UNMARK_STATE(state) \
trans1[state] = trans1[state] + MARKER_DIFFERENCE;
#define CHECK_ACCEPT(state) \
{ \
nfaccnum = accptnum[state]; \
if ( nfaccnum != NIL ) \
accset[++nacc] = nfaccnum; \
}
#define DO_REALLOCATION \
{ \
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
++num_reallocs; \
t = reallocate_integer_array( t, current_max_dfa_size ); \
stk = reallocate_integer_array( stk, current_max_dfa_size ); \
} \
#define PUT_ON_STACK(state) \
{ \
if ( ++stkend >= current_max_dfa_size ) \
DO_REALLOCATION \
stk[stkend] = state; \
MARK_STATE(state) \
}
#define ADD_STATE(state) \
{ \
if ( ++numstates >= current_max_dfa_size ) \
DO_REALLOCATION \
t[numstates] = state; \
hashval += state; \
}
#define STACK_STATE(state) \
{ \
PUT_ON_STACK(state) \
CHECK_ACCEPT(state) \
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
ADD_STATE(state) \
}
if ( ! did_stk_init )
{
stk = allocate_integer_array( current_max_dfa_size );
did_stk_init = true;
}
nacc = stkend = hashval = 0;
for ( nstate = 1; nstate <= numstates; ++nstate )
{
ns = t[nstate];
/* The state could be marked if we've already pushed it onto
* the stack.
*/
if ( ! IS_MARKED(ns) )
{
PUT_ON_STACK(ns)
CHECK_ACCEPT(ns)
hashval += ns;
}
}
for ( stkpos = 1; stkpos <= stkend; ++stkpos )
{
ns = stk[stkpos];
transsym = transchar[ns];
if ( transsym == SYM_EPSILON )
{
tsp = trans1[ns] + MARKER_DIFFERENCE;
if ( tsp != NO_TRANSITION )
{
if ( ! IS_MARKED(tsp) )
STACK_STATE(tsp)
tsp = trans2[ns];
if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
STACK_STATE(tsp)
}
}
}
/* Clear out "visit" markers. */
for ( stkpos = 1; stkpos <= stkend; ++stkpos )
{
if ( IS_MARKED(stk[stkpos]) )
UNMARK_STATE(stk[stkpos])
else
flexfatal(
_( "consistency check failed in epsclosure()" ) );
}
*ns_addr = numstates;
*hv_addr = hashval;
*nacc_addr = nacc;
return t;
}
/* increase_max_dfas - increase the maximum number of DFAs */
void increase_max_dfas()
{
current_max_dfas += MAX_DFAS_INCREMENT;
++num_reallocs;
base = reallocate_integer_array( base, current_max_dfas );
def = reallocate_integer_array( def, current_max_dfas );
dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
accsiz = reallocate_integer_array( accsiz, current_max_dfas );
dhash = reallocate_integer_array( dhash, current_max_dfas );
dss = reallocate_int_ptr_array( dss, current_max_dfas );
dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
if ( nultrans )
nultrans =
reallocate_integer_array( nultrans, current_max_dfas );
}
/* ntod - convert an ndfa to a dfa
*
* Creates the dfa corresponding to the ndfa we've constructed. The
* dfa starts out in state #1.
*/
void ntod()
{
int *accset, ds, nacc, newds;
int sym, hashval, numstates, dsize;
int num_full_table_rows; /* used only for -f */
int *nset, *dset;
int targptr, totaltrans, i, comstate, comfreq, targ;
int symlist[CSIZE + 1];
int num_start_states;
int todo_head, todo_next;
/* Note that the following are indexed by *equivalence classes*
* and not by characters. Since equivalence classes are indexed
* beginning with 1, even if the scanner accepts NUL's, this
* means that (since every character is potentially in its own
* equivalence class) these arrays must have room for indices
* from 1 to CSIZE, so their size must be CSIZE + 1.
*/
int duplist[CSIZE + 1], state[CSIZE + 1];
int targfreq[CSIZE + 1], targstate[CSIZE + 1];
accset = allocate_integer_array( num_rules + 1 );
nset = allocate_integer_array( current_max_dfa_size );
/* The "todo" queue is represented by the head, which is the DFA
* state currently being processed, and the "next", which is the
* next DFA state number available (not in use). We depend on the
* fact that snstods() returns DFA's \in increasing order/, and thus
* need only know the bounds of the dfas to be processed.
*/
todo_head = todo_next = 0;
for ( i = 0; i <= csize; ++i )
{
duplist[i] = NIL;
symlist[i] = false;
}
for ( i = 0; i <= num_rules; ++i )
accset[i] = NIL;
if ( trace )
{
dumpnfa( scset[1] );
fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
}
inittbl();
/* Check to see whether we should build a separate table for
* transitions on NUL characters. We don't do this for full-speed
* (-F) scanners, since for them we don't have a simple state
* number lying around with which to index the table. We also
* don't bother doing it for scanners unless (1) NUL is in its own
* equivalence class (indicated by a positive value of
* ecgroup[NUL]), (2) NUL's equivalence class is the last
* equivalence class, and (3) the number of equivalence classes is
* the same as the number of characters. This latter case comes
* about when useecs is false or when it's true but every character
* still manages to land in its own class (unlikely, but it's
* cheap to check for). If all these things are true then the
* character code needed to represent NUL's equivalence class for
* indexing the tables is going to take one more bit than the
* number of characters, and therefore we won't be assured of
* being able to fit it into a YY_CHAR variable. This rules out
* storing the transitions in a compressed table, since the code
* for interpreting them uses a YY_CHAR variable (perhaps it
* should just use an integer, though; this is worth pondering ...
* ###).
*
* Finally, for full tables, we want the number of entries in the
* table to be a power of two so the array references go fast (it
* will just take a shift to compute the major index). If
* encoding NUL's transitions in the table will spoil this, we
* give it its own table (note that this will be the case if we're
* not using equivalence classes).
*/
/* Note that the test for ecgroup[0] == numecs below accomplishes
* both (1) and (2) above
*/
if ( ! fullspd && ecgroup[0] == numecs )
{
/* NUL is alone in its equivalence class, which is the
* last one.
*/
int use_NUL_table = (numecs == csize);
if ( fulltbl && ! use_NUL_table )
{
/* We still may want to use the table if numecs
* is a power of 2.
*/
int power_of_two;
for ( power_of_two = 1; power_of_two <= csize;
power_of_two *= 2 )
if ( numecs == power_of_two )
{
use_NUL_table = true;
break;
}
}
if ( use_NUL_table )
nultrans = allocate_integer_array( current_max_dfas );
/* From now on, nultrans != nil indicates that we're
* saving null transitions for later, separate encoding.
*/
}
if ( fullspd )
{
for ( i = 0; i <= numecs; ++i )
state[i] = 0;
place_state( state, 0, 0 );
dfaacc[0].dfaacc_state = 0;
}
else if ( fulltbl )
{
if ( nultrans )
/* We won't be including NUL's transitions in the
* table, so build it for entries from 0 .. numecs - 1.
*/
num_full_table_rows = numecs;
else
/* Take into account the fact that we'll be including
* the NUL entries in the transition table. Build it
* from 0 .. numecs.
*/
num_full_table_rows = numecs + 1;
/* Unless -Ca, declare it "short" because it's a real
* long-shot that that won't be large enough.
*/
out_str_dec( "static yyconst %s yy_nxt[][%d] =\n {\n",
/* '}' so vi doesn't get too confused */
long_align ? "long" : "short", num_full_table_rows );
outn( " {" );
/* Generate 0 entries for state #0. */
for ( i = 0; i < num_full_table_rows; ++i )
mk2data( 0 );
dataflush();
outn( " },\n" );
}
/* Create the first states. */
num_start_states = lastsc * 2;
for ( i = 1; i <= num_start_states; ++i )
{
numstates = 1;
/* For each start condition, make one state for the case when
* we're at the beginning of the line (the '^' operator) and
* one for the case when we're not.
*/
if ( i % 2 == 1 )
nset[numstates] = scset[(i / 2) + 1];
else
nset[numstates] =
mkbranch( scbol[i / 2], scset[i / 2] );
nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
{
numas += nacc;
totnst += numstates;
++todo_next;
if ( variable_trailing_context_rules && nacc > 0 )
check_trailing_context( nset, numstates,
accset, nacc );
}
}
if ( ! fullspd )
{
if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
flexfatal(
_( "could not create unique end-of-buffer state" ) );
++numas;
++num_start_states;
++todo_next;
}
while ( todo_head < todo_next )
{
targptr = 0;
totaltrans = 0;
for ( i = 1; i <= numecs; ++i )
state[i] = 0;
ds = ++todo_head;
dset = dss[ds];
dsize = dfasiz[ds];
if ( trace )
fprintf( stderr, _( "state # %d:\n" ), ds );
sympartition( dset, dsize, symlist, duplist );
for ( sym = 1; sym <= numecs; ++sym )
{
if ( symlist[sym] )
{
symlist[sym] = 0;
if ( duplist[sym] == NIL )
{
/* Symbol has unique out-transitions. */
numstates = symfollowset( dset, dsize,
sym, nset );
nset = epsclosure( nset, &numstates,
accset, &nacc, &hashval );
if ( snstods( nset, numstates, accset,
nacc, hashval, &newds ) )
{
totnst = totnst + numstates;
++todo_next;
numas += nacc;
if (
variable_trailing_context_rules &&
nacc > 0 )
check_trailing_context(
nset, numstates,
accset, nacc );
}
state[sym] = newds;
if ( trace )
fprintf( stderr, "\t%d\t%d\n",
sym, newds );
targfreq[++targptr] = 1;
targstate[targptr] = newds;
++numuniq;
}
else
{
/* sym's equivalence class has the same
* transitions as duplist(sym)'s
* equivalence class.
*/
targ = state[duplist[sym]];
state[sym] = targ;
if ( trace )
fprintf( stderr, "\t%d\t%d\n",
sym, targ );
/* Update frequency count for
* destination state.
*/
i = 0;
while ( targstate[++i] != targ )
;
++targfreq[i];
++numdup;
}
++totaltrans;
duplist[sym] = NIL;
}
}
if ( caseins && ! useecs )
{
register int j;
for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
{
if ( state[i] == 0 && state[j] != 0 )
/* We're adding a transition. */
++totaltrans;
else if ( state[i] != 0 && state[j] == 0 )
/* We're taking away a transition. */
--totaltrans;
state[i] = state[j];
}
}
numsnpairs += totaltrans;
if ( ds > num_start_states )
check_for_backing_up( ds, state );
if ( nultrans )
{
nultrans[ds] = state[NUL_ec];
state[NUL_ec] = 0; /* remove transition */
}
if ( fulltbl )
{
outn( " {" );
/* Supply array's 0-element. */
if ( ds == end_of_buffer_state )
mk2data( -end_of_buffer_state );
else
mk2data( end_of_buffer_state );
for ( i = 1; i < num_full_table_rows; ++i )
/* Jams are marked by negative of state
* number.
*/
mk2data( state[i] ? state[i] : -ds );
dataflush();
outn( " },\n" );
}
else if ( fullspd )
place_state( state, ds, totaltrans );
else if ( ds == end_of_buffer_state )
/* Special case this state to make sure it does what
* it's supposed to, i.e., jam on end-of-buffer.
*/
stack1( ds, 0, 0, JAMSTATE );
else /* normal, compressed state */
{
/* Determine which destination state is the most
* common, and how many transitions to it there are.
*/
comfreq = 0;
comstate = 0;
for ( i = 1; i <= targptr; ++i )
if ( targfreq[i] > comfreq )
{
comfreq = targfreq[i];
comstate = targstate[i];
}
bldtbl( state, ds, totaltrans, comstate, comfreq );
}
}
if ( fulltbl )
dataend();
else if ( ! fullspd )
{
cmptmps(); /* create compressed template entries */
/* Create tables for all the states with only one
* out-transition.
*/
while ( onesp > 0 )
{
mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
onedef[onesp] );
--onesp;
}
mkdeftbl();
}
flex_free( (void *) accset );
flex_free( (void *) nset );
}
/* snstods - converts a set of ndfa states into a dfa state
*
* synopsis
* is_new_state = snstods( int sns[numstates], int numstates,
* int accset[num_rules+1], int nacc,
* int hashval, int *newds_addr );
*
* On return, the dfa state number is in newds.
*/
int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
int sns[], numstates, accset[], nacc, hashval, *newds_addr;
{
int didsort = 0;
register int i, j;
int newds, *oldsns;
for ( i = 1; i <= lastdfa; ++i )
if ( hashval == dhash[i] )
{
if ( numstates == dfasiz[i] )
{
oldsns = dss[i];
if ( ! didsort )
{
/* We sort the states in sns so we
* can compare it to oldsns quickly.
* We use bubble because there probably
* aren't very many states.
*/
bubble( sns, numstates );
didsort = 1;
}
for ( j = 1; j <= numstates; ++j )
if ( sns[j] != oldsns[j] )
break;
if ( j > numstates )
{
++dfaeql;
*newds_addr = i;
return 0;
}
++hshcol;
}
else
++hshsave;
}
/* Make a new dfa. */
if ( ++lastdfa >= current_max_dfas )
increase_max_dfas();
newds = lastdfa;
dss[newds] = allocate_integer_array( numstates + 1 );
/* If we haven't already sorted the states in sns, we do so now,
* so that future comparisons with it can be made quickly.
*/
if ( ! didsort )
bubble( sns, numstates );
for ( i = 1; i <= numstates; ++i )
dss[newds][i] = sns[i];
dfasiz[newds] = numstates;
dhash[newds] = hashval;
if ( nacc == 0 )
{
if ( reject )
dfaacc[newds].dfaacc_set = (int *) 0;
else
dfaacc[newds].dfaacc_state = 0;
accsiz[newds] = 0;
}
else if ( reject )
{
/* We sort the accepting set in increasing order so the
* disambiguating rule that the first rule listed is considered
* match in the event of ties will work. We use a bubble
* sort since the list is probably quite small.
*/
bubble( accset, nacc );
dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
/* Save the accepting set for later */
for ( i = 1; i <= nacc; ++i )
{
dfaacc[newds].dfaacc_set[i] = accset[i];
if ( accset[i] <= num_rules )
/* Who knows, perhaps a REJECT can yield
* this rule.
*/
rule_useful[accset[i]] = true;
}
accsiz[newds] = nacc;
}
else
{
/* Find lowest numbered rule so the disambiguating rule
* will work.
*/
j = num_rules + 1;
for ( i = 1; i <= nacc; ++i )
if ( accset[i] < j )
j = accset[i];
dfaacc[newds].dfaacc_state = j;
if ( j <= num_rules )
rule_useful[j] = true;
}
*newds_addr = newds;
return 1;
}
/* symfollowset - follow the symbol transitions one step
*
* synopsis
* numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
* int transsym, int nset[current_max_dfa_size] );
*/
int symfollowset( ds, dsize, transsym, nset )
int ds[], dsize, transsym, nset[];
{
int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
numstates = 0;
for ( i = 1; i <= dsize; ++i )
{ /* for each nfa state ns in the state set of ds */
ns = ds[i];
sym = transchar[ns];
tsp = trans1[ns];
if ( sym < 0 )
{ /* it's a character class */
sym = -sym;
ccllist = cclmap[sym];
lenccl = ccllen[sym];
if ( cclng[sym] )
{
for ( j = 0; j < lenccl; ++j )
{
/* Loop through negated character
* class.
*/
ch = ccltbl[ccllist + j];
if ( ch == 0 )
ch = NUL_ec;
if ( ch > transsym )
/* Transsym isn't in negated
* ccl.
*/
break;
else if ( ch == transsym )
/* next 2 */ goto bottom;
}
/* Didn't find transsym in ccl. */
nset[++numstates] = tsp;
}
else
for ( j = 0; j < lenccl; ++j )
{
ch = ccltbl[ccllist + j];
if ( ch == 0 )
ch = NUL_ec;
if ( ch > transsym )
break;
else if ( ch == transsym )
{
nset[++numstates] = tsp;
break;
}
}
}
else if ( sym >= 'A' && sym <= 'Z' && caseins )
flexfatal(
_( "consistency check failed in symfollowset" ) );
else if ( sym == SYM_EPSILON )
{ /* do nothing */
}
else if ( ABS( ecgroup[sym] ) == transsym )
nset[++numstates] = tsp;
bottom: ;
}
return numstates;
}
/* sympartition - partition characters with same out-transitions
*
* synopsis
* sympartition( int ds[current_max_dfa_size], int numstates,
* int symlist[numecs], int duplist[numecs] );
*/
void sympartition( ds, numstates, symlist, duplist )
int ds[], numstates;
int symlist[], duplist[];
{
int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
/* Partitioning is done by creating equivalence classes for those
* characters which have out-transitions from the given state. Thus
* we are really creating equivalence classes of equivalence classes.
*/
for ( i = 1; i <= numecs; ++i )
{ /* initialize equivalence class list */
duplist[i] = i - 1;
dupfwd[i] = i + 1;
}
duplist[1] = NIL;
dupfwd[numecs] = NIL;
for ( i = 1; i <= numstates; ++i )
{
ns = ds[i];
tch = transchar[ns];
if ( tch != SYM_EPSILON )
{
if ( tch < -lastccl || tch >= csize )
{
flexfatal(
_( "bad transition character detected in sympartition()" ) );
}
if ( tch >= 0 )
{ /* character transition */
int ec = ecgroup[tch];
mkechar( ec, dupfwd, duplist );
symlist[ec] = 1;
}
else
{ /* character class */
tch = -tch;
lenccl = ccllen[tch];
cclp = cclmap[tch];
mkeccl( ccltbl + cclp, lenccl, dupfwd,
duplist, numecs, NUL_ec );
if ( cclng[tch] )
{
j = 0;
for ( k = 0; k < lenccl; ++k )
{
ich = ccltbl[cclp + k];
if ( ich == 0 )
ich = NUL_ec;
for ( ++j; j < ich; ++j )
symlist[j] = 1;
}
for ( ++j; j <= numecs; ++j )
symlist[j] = 1;
}
else
for ( k = 0; k < lenccl; ++k )
{
ich = ccltbl[cclp + k];
if ( ich == 0 )
ich = NUL_ec;
symlist[ich] = 1;
}
}
}
}
}