mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-19 22:43:22 +01:00
885 lines
19 KiB
C
885 lines
19 KiB
C
/* $Id: apropos_db.c,v 1.32.2.3 2013/10/10 23:43:04 schwarze Exp $ */
|
|
/*
|
|
* Copyright (c) 2011, 2012 Kristaps Dzonsons <kristaps@bsd.lv>
|
|
* Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <regex.h>
|
|
#include <stdarg.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#if defined(__APPLE__)
|
|
# include <libkern/OSByteOrder.h>
|
|
#elif defined(__linux__)
|
|
# include <endian.h>
|
|
#elif defined(__sun)
|
|
# include <sys/byteorder.h>
|
|
#else
|
|
# include <sys/endian.h>
|
|
#endif
|
|
|
|
#if defined(__linux__) || defined(__sun)
|
|
# include <db_185.h>
|
|
#else
|
|
# include <db.h>
|
|
#endif
|
|
|
|
#include "mandocdb.h"
|
|
#include "apropos_db.h"
|
|
#include "mandoc.h"
|
|
|
|
#define RESFREE(_x) \
|
|
do { \
|
|
free((_x)->file); \
|
|
free((_x)->cat); \
|
|
free((_x)->title); \
|
|
free((_x)->arch); \
|
|
free((_x)->desc); \
|
|
free((_x)->matches); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
struct expr {
|
|
int regex; /* is regex? */
|
|
int index; /* index in match array */
|
|
uint64_t mask; /* type-mask */
|
|
int and; /* is rhs of logical AND? */
|
|
char *v; /* search value */
|
|
regex_t re; /* compiled re, if regex */
|
|
struct expr *next; /* next in sequence */
|
|
struct expr *subexpr;
|
|
};
|
|
|
|
struct type {
|
|
uint64_t mask;
|
|
const char *name;
|
|
};
|
|
|
|
struct rectree {
|
|
struct res *node; /* record array for dir tree */
|
|
int len; /* length of record array */
|
|
};
|
|
|
|
static const struct type types[] = {
|
|
{ TYPE_An, "An" },
|
|
{ TYPE_Ar, "Ar" },
|
|
{ TYPE_At, "At" },
|
|
{ TYPE_Bsx, "Bsx" },
|
|
{ TYPE_Bx, "Bx" },
|
|
{ TYPE_Cd, "Cd" },
|
|
{ TYPE_Cm, "Cm" },
|
|
{ TYPE_Dv, "Dv" },
|
|
{ TYPE_Dx, "Dx" },
|
|
{ TYPE_Em, "Em" },
|
|
{ TYPE_Er, "Er" },
|
|
{ TYPE_Ev, "Ev" },
|
|
{ TYPE_Fa, "Fa" },
|
|
{ TYPE_Fl, "Fl" },
|
|
{ TYPE_Fn, "Fn" },
|
|
{ TYPE_Fn, "Fo" },
|
|
{ TYPE_Ft, "Ft" },
|
|
{ TYPE_Fx, "Fx" },
|
|
{ TYPE_Ic, "Ic" },
|
|
{ TYPE_In, "In" },
|
|
{ TYPE_Lb, "Lb" },
|
|
{ TYPE_Li, "Li" },
|
|
{ TYPE_Lk, "Lk" },
|
|
{ TYPE_Ms, "Ms" },
|
|
{ TYPE_Mt, "Mt" },
|
|
{ TYPE_Nd, "Nd" },
|
|
{ TYPE_Nm, "Nm" },
|
|
{ TYPE_Nx, "Nx" },
|
|
{ TYPE_Ox, "Ox" },
|
|
{ TYPE_Pa, "Pa" },
|
|
{ TYPE_Rs, "Rs" },
|
|
{ TYPE_Sh, "Sh" },
|
|
{ TYPE_Ss, "Ss" },
|
|
{ TYPE_St, "St" },
|
|
{ TYPE_Sy, "Sy" },
|
|
{ TYPE_Tn, "Tn" },
|
|
{ TYPE_Va, "Va" },
|
|
{ TYPE_Va, "Vt" },
|
|
{ TYPE_Xr, "Xr" },
|
|
{ UINT64_MAX, "any" },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static DB *btree_open(void);
|
|
static int btree_read(const DBT *, const DBT *,
|
|
const struct mchars *,
|
|
uint64_t *, recno_t *, char **);
|
|
static int expreval(const struct expr *, int *);
|
|
static void exprexec(const struct expr *,
|
|
const char *, uint64_t, struct res *);
|
|
static int exprmark(const struct expr *,
|
|
const char *, uint64_t, int *);
|
|
static struct expr *exprexpr(int, char *[], int *, int *, size_t *);
|
|
static struct expr *exprterm(char *, int);
|
|
static DB *index_open(void);
|
|
static int index_read(const DBT *, const DBT *, int,
|
|
const struct mchars *, struct res *);
|
|
static void norm_string(const char *,
|
|
const struct mchars *, char **);
|
|
static size_t norm_utf8(unsigned int, char[7]);
|
|
static int single_search(struct rectree *, const struct opts *,
|
|
const struct expr *, size_t terms,
|
|
struct mchars *, int);
|
|
|
|
/*
|
|
* Open the keyword mandoc-db database.
|
|
*/
|
|
static DB *
|
|
btree_open(void)
|
|
{
|
|
BTREEINFO info;
|
|
DB *db;
|
|
|
|
memset(&info, 0, sizeof(BTREEINFO));
|
|
info.lorder = 4321;
|
|
info.flags = R_DUP;
|
|
|
|
db = dbopen(MANDOC_DB, O_RDONLY, 0, DB_BTREE, &info);
|
|
if (NULL != db)
|
|
return(db);
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Read a keyword from the database and normalise it.
|
|
* Return 0 if the database is insane, else 1.
|
|
*/
|
|
static int
|
|
btree_read(const DBT *k, const DBT *v, const struct mchars *mc,
|
|
uint64_t *mask, recno_t *rec, char **buf)
|
|
{
|
|
uint64_t vbuf[2];
|
|
|
|
/* Are our sizes sane? */
|
|
if (k->size < 2 || sizeof(vbuf) != v->size)
|
|
return(0);
|
|
|
|
/* Is our string nil-terminated? */
|
|
if ('\0' != ((const char *)k->data)[(int)k->size - 1])
|
|
return(0);
|
|
|
|
norm_string((const char *)k->data, mc, buf);
|
|
memcpy(vbuf, v->data, v->size);
|
|
*mask = betoh64(vbuf[0]);
|
|
*rec = betoh64(vbuf[1]);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Take a Unicode codepoint and produce its UTF-8 encoding.
|
|
* This isn't the best way to do this, but it works.
|
|
* The magic numbers are from the UTF-8 packaging.
|
|
* They're not as scary as they seem: read the UTF-8 spec for details.
|
|
*/
|
|
static size_t
|
|
norm_utf8(unsigned int cp, char out[7])
|
|
{
|
|
int rc;
|
|
|
|
rc = 0;
|
|
|
|
if (cp <= 0x0000007F) {
|
|
rc = 1;
|
|
out[0] = (char)cp;
|
|
} else if (cp <= 0x000007FF) {
|
|
rc = 2;
|
|
out[0] = (cp >> 6 & 31) | 192;
|
|
out[1] = (cp & 63) | 128;
|
|
} else if (cp <= 0x0000FFFF) {
|
|
rc = 3;
|
|
out[0] = (cp >> 12 & 15) | 224;
|
|
out[1] = (cp >> 6 & 63) | 128;
|
|
out[2] = (cp & 63) | 128;
|
|
} else if (cp <= 0x001FFFFF) {
|
|
rc = 4;
|
|
out[0] = (cp >> 18 & 7) | 240;
|
|
out[1] = (cp >> 12 & 63) | 128;
|
|
out[2] = (cp >> 6 & 63) | 128;
|
|
out[3] = (cp & 63) | 128;
|
|
} else if (cp <= 0x03FFFFFF) {
|
|
rc = 5;
|
|
out[0] = (cp >> 24 & 3) | 248;
|
|
out[1] = (cp >> 18 & 63) | 128;
|
|
out[2] = (cp >> 12 & 63) | 128;
|
|
out[3] = (cp >> 6 & 63) | 128;
|
|
out[4] = (cp & 63) | 128;
|
|
} else if (cp <= 0x7FFFFFFF) {
|
|
rc = 6;
|
|
out[0] = (cp >> 30 & 1) | 252;
|
|
out[1] = (cp >> 24 & 63) | 128;
|
|
out[2] = (cp >> 18 & 63) | 128;
|
|
out[3] = (cp >> 12 & 63) | 128;
|
|
out[4] = (cp >> 6 & 63) | 128;
|
|
out[5] = (cp & 63) | 128;
|
|
} else
|
|
return(0);
|
|
|
|
out[rc] = '\0';
|
|
return((size_t)rc);
|
|
}
|
|
|
|
/*
|
|
* Normalise strings from the index and database.
|
|
* These strings are escaped as defined by mandoc_char(7) along with
|
|
* other goop in mandoc.h (e.g., soft hyphens).
|
|
* This function normalises these into a nice UTF-8 string.
|
|
* Returns 0 if the database is fucked.
|
|
*/
|
|
static void
|
|
norm_string(const char *val, const struct mchars *mc, char **buf)
|
|
{
|
|
size_t sz, bsz;
|
|
char utfbuf[7];
|
|
const char *seq, *cpp;
|
|
int len, u, pos;
|
|
enum mandoc_esc esc;
|
|
static const char res[] = { '\\', '\t',
|
|
ASCII_NBRSP, ASCII_HYPH, '\0' };
|
|
|
|
/* Pre-allocate by the length of the input */
|
|
|
|
bsz = strlen(val) + 1;
|
|
*buf = mandoc_realloc(*buf, bsz);
|
|
pos = 0;
|
|
|
|
while ('\0' != *val) {
|
|
/*
|
|
* Halt on the first escape sequence.
|
|
* This also halts on the end of string, in which case
|
|
* we just copy, fallthrough, and exit the loop.
|
|
*/
|
|
if ((sz = strcspn(val, res)) > 0) {
|
|
memcpy(&(*buf)[pos], val, sz);
|
|
pos += (int)sz;
|
|
val += (int)sz;
|
|
}
|
|
|
|
if (ASCII_HYPH == *val) {
|
|
(*buf)[pos++] = '-';
|
|
val++;
|
|
continue;
|
|
} else if ('\t' == *val || ASCII_NBRSP == *val) {
|
|
(*buf)[pos++] = ' ';
|
|
val++;
|
|
continue;
|
|
} else if ('\\' != *val)
|
|
break;
|
|
|
|
/* Read past the slash. */
|
|
|
|
val++;
|
|
u = 0;
|
|
|
|
/*
|
|
* Parse the escape sequence and see if it's a
|
|
* predefined character or special character.
|
|
*/
|
|
|
|
esc = mandoc_escape(&val, &seq, &len);
|
|
if (ESCAPE_ERROR == esc)
|
|
break;
|
|
|
|
/*
|
|
* XXX - this just does UTF-8, but we need to know
|
|
* beforehand whether we should do text substitution.
|
|
*/
|
|
|
|
switch (esc) {
|
|
case (ESCAPE_SPECIAL):
|
|
if (0 != (u = mchars_spec2cp(mc, seq, len)))
|
|
break;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we have a Unicode codepoint, try to convert that
|
|
* to a UTF-8 byte string.
|
|
*/
|
|
|
|
cpp = utfbuf;
|
|
if (0 == (sz = norm_utf8(u, utfbuf)))
|
|
continue;
|
|
|
|
/* Copy the rendered glyph into the stream. */
|
|
|
|
sz = strlen(cpp);
|
|
bsz += sz;
|
|
|
|
*buf = mandoc_realloc(*buf, bsz);
|
|
|
|
memcpy(&(*buf)[pos], cpp, sz);
|
|
pos += (int)sz;
|
|
}
|
|
|
|
(*buf)[pos] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Open the filename-index mandoc-db database.
|
|
* Returns NULL if opening failed.
|
|
*/
|
|
static DB *
|
|
index_open(void)
|
|
{
|
|
DB *db;
|
|
|
|
db = dbopen(MANDOC_IDX, O_RDONLY, 0, DB_RECNO, NULL);
|
|
if (NULL != db)
|
|
return(db);
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Safely unpack from an index file record into the structure.
|
|
* Returns 1 if an entry was unpacked, 0 if the database is insane.
|
|
*/
|
|
static int
|
|
index_read(const DBT *key, const DBT *val, int index,
|
|
const struct mchars *mc, struct res *rec)
|
|
{
|
|
size_t left;
|
|
char *np, *cp;
|
|
char type;
|
|
|
|
#define INDEX_BREAD(_dst) \
|
|
do { \
|
|
if (NULL == (np = memchr(cp, '\0', left))) \
|
|
return(0); \
|
|
norm_string(cp, mc, &(_dst)); \
|
|
left -= (np - cp) + 1; \
|
|
cp = np + 1; \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
if (0 == (left = val->size))
|
|
return(0);
|
|
|
|
cp = val->data;
|
|
assert(sizeof(recno_t) == key->size);
|
|
memcpy(&rec->rec, key->data, key->size);
|
|
rec->volume = index;
|
|
|
|
if ('d' == (type = *cp++))
|
|
rec->type = RESTYPE_MDOC;
|
|
else if ('a' == type)
|
|
rec->type = RESTYPE_MAN;
|
|
else if ('c' == type)
|
|
rec->type = RESTYPE_CAT;
|
|
else
|
|
return(0);
|
|
|
|
left--;
|
|
INDEX_BREAD(rec->file);
|
|
INDEX_BREAD(rec->cat);
|
|
INDEX_BREAD(rec->title);
|
|
INDEX_BREAD(rec->arch);
|
|
INDEX_BREAD(rec->desc);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Search mandocdb databases in paths for expression "expr".
|
|
* Filter out by "opts".
|
|
* Call "res" with the results, which may be zero.
|
|
* Return 0 if there was a database error, else return 1.
|
|
*/
|
|
int
|
|
apropos_search(int pathsz, char **paths, const struct opts *opts,
|
|
const struct expr *expr, size_t terms, void *arg,
|
|
size_t *sz, struct res **resp,
|
|
void (*res)(struct res *, size_t, void *))
|
|
{
|
|
struct rectree tree;
|
|
struct mchars *mc;
|
|
int i;
|
|
|
|
memset(&tree, 0, sizeof(struct rectree));
|
|
|
|
mc = mchars_alloc();
|
|
*sz = 0;
|
|
*resp = NULL;
|
|
|
|
/*
|
|
* Main loop. Change into the directory containing manpage
|
|
* databases. Run our expession over each database in the set.
|
|
*/
|
|
|
|
for (i = 0; i < pathsz; i++) {
|
|
assert('/' == paths[i][0]);
|
|
if (chdir(paths[i]))
|
|
continue;
|
|
if (single_search(&tree, opts, expr, terms, mc, i))
|
|
continue;
|
|
|
|
resfree(tree.node, tree.len);
|
|
mchars_free(mc);
|
|
return(0);
|
|
}
|
|
|
|
(*res)(tree.node, tree.len, arg);
|
|
*sz = tree.len;
|
|
*resp = tree.node;
|
|
mchars_free(mc);
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
single_search(struct rectree *tree, const struct opts *opts,
|
|
const struct expr *expr, size_t terms,
|
|
struct mchars *mc, int vol)
|
|
{
|
|
int root, leaf, ch;
|
|
DBT key, val;
|
|
DB *btree, *idx;
|
|
char *buf;
|
|
struct res *rs;
|
|
struct res r;
|
|
uint64_t mask;
|
|
recno_t rec;
|
|
|
|
root = -1;
|
|
leaf = -1;
|
|
btree = NULL;
|
|
idx = NULL;
|
|
buf = NULL;
|
|
rs = tree->node;
|
|
|
|
memset(&r, 0, sizeof(struct res));
|
|
|
|
if (NULL == (btree = btree_open()))
|
|
return(1);
|
|
|
|
if (NULL == (idx = index_open())) {
|
|
(*btree->close)(btree);
|
|
return(1);
|
|
}
|
|
|
|
while (0 == (ch = (*btree->seq)(btree, &key, &val, R_NEXT))) {
|
|
if ( ! btree_read(&key, &val, mc, &mask, &rec, &buf))
|
|
break;
|
|
|
|
/*
|
|
* See if this keyword record matches any of the
|
|
* expressions we have stored.
|
|
*/
|
|
if ( ! exprmark(expr, buf, mask, NULL))
|
|
continue;
|
|
|
|
/*
|
|
* O(log n) scan for prior records. Since a record
|
|
* number is unbounded, this has decent performance over
|
|
* a complex hash function.
|
|
*/
|
|
|
|
for (leaf = root; leaf >= 0; )
|
|
if (rec > rs[leaf].rec &&
|
|
rs[leaf].rhs >= 0)
|
|
leaf = rs[leaf].rhs;
|
|
else if (rec < rs[leaf].rec &&
|
|
rs[leaf].lhs >= 0)
|
|
leaf = rs[leaf].lhs;
|
|
else
|
|
break;
|
|
|
|
/*
|
|
* If we find a record, see if it has already evaluated
|
|
* to true. If it has, great, just keep going. If not,
|
|
* try to evaluate it now and continue anyway.
|
|
*/
|
|
|
|
if (leaf >= 0 && rs[leaf].rec == rec) {
|
|
if (0 == rs[leaf].matched)
|
|
exprexec(expr, buf, mask, &rs[leaf]);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We have a new file to examine.
|
|
* Extract the manpage's metadata from the index
|
|
* database, then begin partial evaluation.
|
|
*/
|
|
|
|
key.data = &rec;
|
|
key.size = sizeof(recno_t);
|
|
|
|
if (0 != (*idx->get)(idx, &key, &val, 0))
|
|
break;
|
|
|
|
r.lhs = r.rhs = -1;
|
|
if ( ! index_read(&key, &val, vol, mc, &r))
|
|
break;
|
|
|
|
/* XXX: this should be elsewhere, I guess? */
|
|
|
|
if (opts->cat && strcasecmp(opts->cat, r.cat))
|
|
continue;
|
|
|
|
if (opts->arch && *r.arch)
|
|
if (strcasecmp(opts->arch, r.arch))
|
|
continue;
|
|
|
|
tree->node = rs = mandoc_realloc
|
|
(rs, (tree->len + 1) * sizeof(struct res));
|
|
|
|
memcpy(&rs[tree->len], &r, sizeof(struct res));
|
|
memset(&r, 0, sizeof(struct res));
|
|
rs[tree->len].matches =
|
|
mandoc_calloc(terms, sizeof(int));
|
|
|
|
exprexec(expr, buf, mask, &rs[tree->len]);
|
|
|
|
/* Append to our tree. */
|
|
|
|
if (leaf >= 0) {
|
|
if (rec > rs[leaf].rec)
|
|
rs[leaf].rhs = tree->len;
|
|
else
|
|
rs[leaf].lhs = tree->len;
|
|
} else
|
|
root = tree->len;
|
|
|
|
tree->len++;
|
|
}
|
|
|
|
(*btree->close)(btree);
|
|
(*idx->close)(idx);
|
|
|
|
free(buf);
|
|
RESFREE(&r);
|
|
return(1 == ch);
|
|
}
|
|
|
|
void
|
|
resfree(struct res *rec, size_t sz)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < sz; i++)
|
|
RESFREE(&rec[i]);
|
|
free(rec);
|
|
}
|
|
|
|
/*
|
|
* Compile a list of straight-up terms.
|
|
* The arguments are re-written into ~[[:<:]]term[[:>:]], or "term"
|
|
* surrounded by word boundaries, then pumped through exprterm().
|
|
* Terms are case-insensitive.
|
|
* This emulates whatis(1) behaviour.
|
|
*/
|
|
struct expr *
|
|
termcomp(int argc, char *argv[], size_t *tt)
|
|
{
|
|
char *buf;
|
|
int pos;
|
|
struct expr *e, *next;
|
|
size_t sz;
|
|
|
|
buf = NULL;
|
|
e = NULL;
|
|
*tt = 0;
|
|
|
|
for (pos = argc - 1; pos >= 0; pos--) {
|
|
sz = strlen(argv[pos]) + 18;
|
|
buf = mandoc_realloc(buf, sz);
|
|
strlcpy(buf, "Nm~[[:<:]]", sz);
|
|
strlcat(buf, argv[pos], sz);
|
|
strlcat(buf, "[[:>:]]", sz);
|
|
if (NULL == (next = exprterm(buf, 0))) {
|
|
free(buf);
|
|
exprfree(e);
|
|
return(NULL);
|
|
}
|
|
next->next = e;
|
|
e = next;
|
|
(*tt)++;
|
|
}
|
|
|
|
free(buf);
|
|
return(e);
|
|
}
|
|
|
|
/*
|
|
* Compile a sequence of logical expressions.
|
|
* See apropos.1 for a grammar of this sequence.
|
|
*/
|
|
struct expr *
|
|
exprcomp(int argc, char *argv[], size_t *tt)
|
|
{
|
|
int pos, lvl;
|
|
struct expr *e;
|
|
|
|
pos = lvl = 0;
|
|
*tt = 0;
|
|
|
|
e = exprexpr(argc, argv, &pos, &lvl, tt);
|
|
|
|
if (0 == lvl && pos >= argc)
|
|
return(e);
|
|
|
|
exprfree(e);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Compile an array of tokens into an expression.
|
|
* An informal expression grammar is defined in apropos(1).
|
|
* Return NULL if we fail doing so. All memory will be cleaned up.
|
|
* Return the root of the expression sequence if alright.
|
|
*/
|
|
static struct expr *
|
|
exprexpr(int argc, char *argv[], int *pos, int *lvl, size_t *tt)
|
|
{
|
|
struct expr *e, *first, *next;
|
|
int log;
|
|
|
|
first = next = NULL;
|
|
|
|
for ( ; *pos < argc; (*pos)++) {
|
|
e = next;
|
|
|
|
/*
|
|
* Close out a subexpression.
|
|
*/
|
|
|
|
if (NULL != e && 0 == strcmp(")", argv[*pos])) {
|
|
if (--(*lvl) < 0)
|
|
goto err;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Small note: if we're just starting, don't let "-a"
|
|
* and "-o" be considered logical operators: they're
|
|
* just tokens unless pairwise joining, in which case we
|
|
* record their existence (or assume "OR").
|
|
*/
|
|
log = 0;
|
|
|
|
if (NULL != e && 0 == strcmp("-a", argv[*pos]))
|
|
log = 1;
|
|
else if (NULL != e && 0 == strcmp("-o", argv[*pos]))
|
|
log = 2;
|
|
|
|
if (log > 0 && ++(*pos) >= argc)
|
|
goto err;
|
|
|
|
/*
|
|
* Now we parse the term part. This can begin with
|
|
* "-i", in which case the expression is case
|
|
* insensitive.
|
|
*/
|
|
|
|
if (0 == strcmp("(", argv[*pos])) {
|
|
++(*pos);
|
|
++(*lvl);
|
|
next = mandoc_calloc(1, sizeof(struct expr));
|
|
next->subexpr = exprexpr(argc, argv, pos, lvl, tt);
|
|
if (NULL == next->subexpr) {
|
|
free(next);
|
|
next = NULL;
|
|
}
|
|
} else if (0 == strcmp("-i", argv[*pos])) {
|
|
if (++(*pos) >= argc)
|
|
goto err;
|
|
next = exprterm(argv[*pos], 0);
|
|
} else
|
|
next = exprterm(argv[*pos], 1);
|
|
|
|
if (NULL == next)
|
|
goto err;
|
|
|
|
next->and = log == 1;
|
|
next->index = (int)(*tt)++;
|
|
|
|
/* Append to our chain of expressions. */
|
|
|
|
if (NULL == first) {
|
|
assert(NULL == e);
|
|
first = next;
|
|
} else {
|
|
assert(NULL != e);
|
|
e->next = next;
|
|
}
|
|
}
|
|
|
|
return(first);
|
|
err:
|
|
exprfree(first);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Parse a terminal expression with the grammar as defined in
|
|
* apropos(1).
|
|
* Return NULL if we fail the parse.
|
|
*/
|
|
static struct expr *
|
|
exprterm(char *buf, int cs)
|
|
{
|
|
struct expr e;
|
|
struct expr *p;
|
|
char *key;
|
|
int i;
|
|
|
|
memset(&e, 0, sizeof(struct expr));
|
|
|
|
/* Choose regex or substring match. */
|
|
|
|
if (NULL == (e.v = strpbrk(buf, "=~"))) {
|
|
e.regex = 0;
|
|
e.v = buf;
|
|
} else {
|
|
e.regex = '~' == *e.v;
|
|
*e.v++ = '\0';
|
|
}
|
|
|
|
/* Determine the record types to search for. */
|
|
|
|
e.mask = 0;
|
|
if (buf < e.v) {
|
|
while (NULL != (key = strsep(&buf, ","))) {
|
|
i = 0;
|
|
while (types[i].mask &&
|
|
strcmp(types[i].name, key))
|
|
i++;
|
|
e.mask |= types[i].mask;
|
|
}
|
|
}
|
|
if (0 == e.mask)
|
|
e.mask = TYPE_Nm | TYPE_Nd;
|
|
|
|
if (e.regex) {
|
|
i = REG_EXTENDED | REG_NOSUB | (cs ? 0 : REG_ICASE);
|
|
if (regcomp(&e.re, e.v, i))
|
|
return(NULL);
|
|
}
|
|
|
|
e.v = mandoc_strdup(e.v);
|
|
|
|
p = mandoc_calloc(1, sizeof(struct expr));
|
|
memcpy(p, &e, sizeof(struct expr));
|
|
return(p);
|
|
}
|
|
|
|
void
|
|
exprfree(struct expr *p)
|
|
{
|
|
struct expr *pp;
|
|
|
|
while (NULL != p) {
|
|
if (p->subexpr)
|
|
exprfree(p->subexpr);
|
|
if (p->regex)
|
|
regfree(&p->re);
|
|
free(p->v);
|
|
pp = p->next;
|
|
free(p);
|
|
p = pp;
|
|
}
|
|
}
|
|
|
|
static int
|
|
exprmark(const struct expr *p, const char *cp,
|
|
uint64_t mask, int *ms)
|
|
{
|
|
|
|
for ( ; p; p = p->next) {
|
|
if (p->subexpr) {
|
|
if (exprmark(p->subexpr, cp, mask, ms))
|
|
return(1);
|
|
continue;
|
|
} else if ( ! (mask & p->mask))
|
|
continue;
|
|
|
|
if (p->regex) {
|
|
if (regexec(&p->re, cp, 0, NULL, 0))
|
|
continue;
|
|
} else if (NULL == strcasestr(cp, p->v))
|
|
continue;
|
|
|
|
if (NULL == ms)
|
|
return(1);
|
|
else
|
|
ms[p->index] = 1;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
expreval(const struct expr *p, int *ms)
|
|
{
|
|
int match;
|
|
|
|
/*
|
|
* AND has precedence over OR. Analysis is left-right, though
|
|
* it doesn't matter because there are no side-effects.
|
|
* Thus, step through pairwise ANDs and accumulate their Boolean
|
|
* evaluation. If we encounter a single true AND collection or
|
|
* standalone term, the whole expression is true (by definition
|
|
* of OR).
|
|
*/
|
|
|
|
for (match = 0; p && ! match; p = p->next) {
|
|
/* Evaluate a subexpression, if applicable. */
|
|
if (p->subexpr && ! ms[p->index])
|
|
ms[p->index] = expreval(p->subexpr, ms);
|
|
|
|
match = ms[p->index];
|
|
for ( ; p->next && p->next->and; p = p->next) {
|
|
/* Evaluate a subexpression, if applicable. */
|
|
if (p->next->subexpr && ! ms[p->next->index])
|
|
ms[p->next->index] =
|
|
expreval(p->next->subexpr, ms);
|
|
match = match && ms[p->next->index];
|
|
}
|
|
}
|
|
|
|
return(match);
|
|
}
|
|
|
|
/*
|
|
* First, update the array of terms for which this expression evaluates
|
|
* to true.
|
|
* Second, logically evaluate all terms over the updated array of truth
|
|
* values.
|
|
* If this evaluates to true, mark the expression as satisfied.
|
|
*/
|
|
static void
|
|
exprexec(const struct expr *e, const char *cp,
|
|
uint64_t mask, struct res *r)
|
|
{
|
|
|
|
assert(0 == r->matched);
|
|
exprmark(e, cp, mask, r->matches);
|
|
r->matched = expreval(e, r->matches);
|
|
}
|