HardenedBSD src tree
Go to file
John Polstra 630df077ab Solve the dynamic linker's problems with multithreaded programs once
and for all (I hope).  Packages such as wine, JDK, and linuxthreads
should no longer have any problems with re-entering the dynamic
linker.

This commit replaces the locking used in the dynamic linker with a
new spinlock-based reader/writer lock implementation.  Brian
Fundakowski Feldman <green> argued for this from the very beginning,
but it took me a long time to come around to his point of view.
Spinlocks are the only kinds of locks that work with all thread
packages.  But on uniprocessor systems they can be inefficient,
because while a contender for the lock is spinning the holder of the
lock cannot make any progress toward releasing it.  To alleviate
this disadvantage I have borrowed a trick from Sleepycat's Berkeley
DB implementation.  When spinning for a lock, the requester does a
nanosleep() call for 1 usec. each time around the loop.  This will
generally yield the CPU to other threads, allowing the lock holder
to finish its business and release the lock.  I chose 1 usec. as the
minimum sleep which would with reasonable certainty not be rounded
down to 0.

The formerly machine-independent file "lockdflt.c" has been moved
into the architecture-specific subdirectories by repository copy.
It now contains the machine-dependent spinlocking code.  For the
spinlocks I used the very nifty "simple, non-scalable reader-preference
lock" which I found at

  <http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/rw.html>

on all CPUs except the 80386 (the specific CPU model, not the
architecture).  The 80386 CPU doesn't support the necessary "cmpxchg"
instruction, so on that CPU a simple exclusive test-and-set lock
is used instead.  80386 CPUs are detected at initialization time by
trying to execute "cmpxchg" and catching the resulting SIGILL
signal.

To reduce contention for the locks, I have revamped a couple of
key data structures, permitting all common operations to be done
under non-exclusive (reader) locking.  The only operations that
require exclusive locking now are the rare intrusive operations
such as dlopen() and dlclose().

The dllockinit() interface is now deprecated.  It still exists,
but only as a do-nothing stub.  I plan to remove it as soon as is
reasonably possible.  (From the very beginning it was clearly
labeled as experimental and subject to change.)  As far as I know,
only the linuxthreads port uses dllockinit().  This interface turned
out to have several problems.  As one example, when the dynamic
linker called a client-supplied locking function, that function
sometimes needed lazy binding, causing re-entry into the dynamic
linker and a big looping mess.  And in any case, it turned out to be
too burdensome to require threads packages to register themselves
with the dynamic linker.
2000-07-08 04:10:38 +00:00
bin
contrib
crypto
etc
games
gnu
include
kerberos5
kerberosIV
lib
libexec Solve the dynamic linker's problems with multithreaded programs once 2000-07-08 04:10:38 +00:00
release
sbin
secure
share
sys
tools
usr.bin
usr.sbin
COPYRIGHT
Makefile
Makefile.inc1
Makefile.upgrade
README
UPDATING

This is the top level of the FreeBSD source directory.  This file
was last revised on:
$FreeBSD$

For copyright information, please see the file COPYRIGHT in this
directory (additional copyright information also exists for some
sources in this tree - please see the specific source directories for
more information).

The Makefile in this directory supports a number of targets for
building components (or all) of the FreeBSD source tree, the most
commonly used one being ``world'', which rebuilds and installs
everything in the FreeBSD system from the source tree except the
kernel and the contents of /etc.  Please see the top of the Makefile
in this directory for more information on the standard build targets
and compile-time flags.

Building a kernel with config(8) is a somewhat more involved process,
documentation for which can be found at:
   http://www.freebsd.org/handbook/kernelconfig.html
And in the config(8) man page.

The sample kernel configuration files reside in the sys/i386/conf
sub-directory (assuming that you've installed the kernel sources), the
file named GENERIC being the one used to build your initial installation
kernel.  The file LINT contains entries for all possible devices, not
just those commonly used, and is meant more as a general reference
than an actual kernel configuration file (a kernel built from it
wouldn't even run).


Source Roadmap:
---------------
bin		System/User commands.

contrib		Packages contributed by 3rd parties.

crypto		Export controlled stuff (see crypto/README).

etc		Template files for /etc

games		Amusements.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberosIV	Kerberos package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

sbin		System commands.

secure		DES and DES-related utilities - NOT FOR EXPORT!

share		Shared resources.

sys		Kernel sources.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.


For information on synchronizing your source tree with one or more of
the FreeBSD Project's development branches, please see:

  http://www.freebsd.org/handbook/synching.html