mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-23 09:23:00 +01:00
489 lines
12 KiB
C
489 lines
12 KiB
C
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $Id: vm_glue.c,v 1.63 1997/04/13 01:48:34 dyson Exp $
|
|
*/
|
|
|
|
#include "opt_rlimit.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <sys/kernel.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_inherit.h>
|
|
#include <vm/vm_prot.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <sys/user.h>
|
|
|
|
/*
|
|
* System initialization
|
|
*
|
|
* Note: proc0 from proc.h
|
|
*/
|
|
|
|
static void vm_init_limits __P((void *));
|
|
SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
|
|
|
|
/*
|
|
* THIS MUST BE THE LAST INITIALIZATION ITEM!!!
|
|
*
|
|
* Note: run scheduling should be divorced from the vm system.
|
|
*/
|
|
static void scheduler __P((void *));
|
|
SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
|
|
|
|
|
|
static void swapout __P((struct proc *));
|
|
|
|
extern char kstack[];
|
|
|
|
/* vm_map_t upages_map; */
|
|
|
|
int
|
|
kernacc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_offset_t saddr, eaddr;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
saddr = trunc_page(addr);
|
|
eaddr = round_page(addr + len);
|
|
vm_map_lock_read(kernel_map);
|
|
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
|
|
vm_map_unlock_read(kernel_map);
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
int
|
|
useracc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
vm_map_t map;
|
|
vm_map_entry_t save_hint;
|
|
|
|
/*
|
|
* XXX - check separately to disallow access to user area and user
|
|
* page tables - they are in the map.
|
|
*
|
|
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. It was once
|
|
* only used (as an end address) in trap.c. Use it as an end address
|
|
* here too. This bogusness has spread. I just fixed where it was
|
|
* used as a max in vm_mmap.c.
|
|
*/
|
|
if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
|
|
|| (vm_offset_t) addr + len < (vm_offset_t) addr) {
|
|
return (FALSE);
|
|
}
|
|
map = &curproc->p_vmspace->vm_map;
|
|
vm_map_lock_read(map);
|
|
/*
|
|
* We save the map hint, and restore it. Useracc appears to distort
|
|
* the map hint unnecessarily.
|
|
*/
|
|
save_hint = map->hint;
|
|
rv = vm_map_check_protection(map,
|
|
trunc_page(addr), round_page(addr + len), prot);
|
|
map->hint = save_hint;
|
|
vm_map_unlock_read(map);
|
|
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
void
|
|
vslock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr + len), FALSE);
|
|
}
|
|
|
|
void
|
|
vsunlock(addr, len, dirtied)
|
|
caddr_t addr;
|
|
u_int len;
|
|
int dirtied;
|
|
{
|
|
#ifdef lint
|
|
dirtied++;
|
|
#endif /* lint */
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr + len), TRUE);
|
|
}
|
|
|
|
/*
|
|
* Implement fork's actions on an address space.
|
|
* Here we arrange for the address space to be copied or referenced,
|
|
* allocate a user struct (pcb and kernel stack), then call the
|
|
* machine-dependent layer to fill those in and make the new process
|
|
* ready to run. The new process is set up so that it returns directly
|
|
* to user mode to avoid stack copying and relocation problems.
|
|
*/
|
|
void
|
|
vm_fork(p1, p2, flags)
|
|
register struct proc *p1, *p2;
|
|
int flags;
|
|
{
|
|
register struct user *up;
|
|
int i;
|
|
pmap_t pvp;
|
|
|
|
if (flags & RFMEM) {
|
|
p2->p_vmspace = p1->p_vmspace;
|
|
p1->p_vmspace->vm_refcnt++;
|
|
}
|
|
|
|
while ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
|
|
VM_WAIT;
|
|
}
|
|
|
|
if ((flags & RFMEM) == 0) {
|
|
p2->p_vmspace = vmspace_fork(p1->p_vmspace);
|
|
|
|
if (p1->p_vmspace->vm_shm)
|
|
shmfork(p1, p2);
|
|
}
|
|
|
|
pmap_new_proc(p2);
|
|
|
|
up = p2->p_addr;
|
|
|
|
/*
|
|
* p_stats and p_sigacts currently point at fields in the user struct
|
|
* but not at &u, instead at p_addr. Copy p_sigacts and parts of
|
|
* p_stats; zero the rest of p_stats (statistics).
|
|
*/
|
|
p2->p_stats = &up->u_stats;
|
|
p2->p_sigacts = &up->u_sigacts;
|
|
up->u_sigacts = *p1->p_sigacts;
|
|
bzero(&up->u_stats.pstat_startzero,
|
|
(unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
|
|
(caddr_t) &up->u_stats.pstat_startzero));
|
|
bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
|
|
((caddr_t) &up->u_stats.pstat_endcopy -
|
|
(caddr_t) &up->u_stats.pstat_startcopy));
|
|
|
|
|
|
/*
|
|
* cpu_fork will copy and update the pcb, set up the kernel stack,
|
|
* and make the child ready to run.
|
|
*/
|
|
cpu_fork(p1, p2);
|
|
}
|
|
|
|
/*
|
|
* Set default limits for VM system.
|
|
* Called for proc 0, and then inherited by all others.
|
|
*
|
|
* XXX should probably act directly on proc0.
|
|
*/
|
|
static void
|
|
vm_init_limits(udata)
|
|
void *udata;
|
|
{
|
|
register struct proc *p = udata;
|
|
int rss_limit;
|
|
|
|
/*
|
|
* Set up the initial limits on process VM. Set the maximum resident
|
|
* set size to be half of (reasonably) available memory. Since this
|
|
* is a soft limit, it comes into effect only when the system is out
|
|
* of memory - half of main memory helps to favor smaller processes,
|
|
* and reduces thrashing of the object cache.
|
|
*/
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
|
|
/* limit the limit to no less than 2MB */
|
|
rss_limit = max(cnt.v_free_count, 512);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
|
|
}
|
|
|
|
void
|
|
faultin(p)
|
|
struct proc *p;
|
|
{
|
|
vm_offset_t i;
|
|
int s;
|
|
|
|
if ((p->p_flag & P_INMEM) == 0) {
|
|
|
|
++p->p_lock;
|
|
|
|
pmap_swapin_proc(p);
|
|
|
|
s = splhigh();
|
|
|
|
if (p->p_stat == SRUN)
|
|
setrunqueue(p);
|
|
|
|
p->p_flag |= P_INMEM;
|
|
|
|
/* undo the effect of setting SLOCK above */
|
|
--p->p_lock;
|
|
splx(s);
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This swapin algorithm attempts to swap-in processes only if there
|
|
* is enough space for them. Of course, if a process waits for a long
|
|
* time, it will be swapped in anyway.
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
scheduler(dummy)
|
|
void *dummy;
|
|
{
|
|
register struct proc *p;
|
|
register int pri;
|
|
struct proc *pp;
|
|
int ppri;
|
|
|
|
loop:
|
|
while ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
|
|
VM_WAIT;
|
|
}
|
|
|
|
pp = NULL;
|
|
ppri = INT_MIN;
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
if (p->p_stat == SRUN &&
|
|
(p->p_flag & (P_INMEM | P_SWAPPING)) == 0) {
|
|
int mempri;
|
|
|
|
pri = p->p_swtime + p->p_slptime;
|
|
if ((p->p_flag & P_SWAPINREQ) == 0) {
|
|
pri -= p->p_nice * 8;
|
|
}
|
|
mempri = pri > 0 ? pri : 0;
|
|
/*
|
|
* if this process is higher priority and there is
|
|
* enough space, then select this process instead of
|
|
* the previous selection.
|
|
*/
|
|
if (pri > ppri) {
|
|
pp = p;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Nothing to do, back to sleep.
|
|
*/
|
|
if ((p = pp) == NULL) {
|
|
tsleep(&proc0, PVM, "sched", 0);
|
|
goto loop;
|
|
}
|
|
p->p_flag &= ~P_SWAPINREQ;
|
|
|
|
/*
|
|
* We would like to bring someone in. (only if there is space).
|
|
*/
|
|
faultin(p);
|
|
p->p_swtime = 0;
|
|
goto loop;
|
|
}
|
|
|
|
#ifndef NO_SWAPPING
|
|
|
|
#define swappable(p) \
|
|
(((p)->p_lock == 0) && \
|
|
((p)->p_flag & (P_TRACED|P_NOSWAP|P_SYSTEM|P_INMEM|P_WEXIT|P_PHYSIO|P_SWAPPING)) == P_INMEM)
|
|
|
|
/*
|
|
* Swapout is driven by the pageout daemon. Very simple, we find eligible
|
|
* procs and unwire their u-areas. We try to always "swap" at least one
|
|
* process in case we need the room for a swapin.
|
|
* If any procs have been sleeping/stopped for at least maxslp seconds,
|
|
* they are swapped. Else, we swap the longest-sleeping or stopped process,
|
|
* if any, otherwise the longest-resident process.
|
|
*/
|
|
void
|
|
swapout_procs()
|
|
{
|
|
register struct proc *p;
|
|
struct proc *outp, *outp2;
|
|
int outpri, outpri2;
|
|
int didswap = 0;
|
|
|
|
outp = outp2 = NULL;
|
|
outpri = outpri2 = INT_MIN;
|
|
retry:
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
struct vmspace *vm;
|
|
if (!swappable(p))
|
|
continue;
|
|
|
|
vm = p->p_vmspace;
|
|
|
|
switch (p->p_stat) {
|
|
default:
|
|
continue;
|
|
|
|
case SSLEEP:
|
|
case SSTOP:
|
|
/*
|
|
* do not swapout a realtime process
|
|
*/
|
|
if (p->p_rtprio.type == RTP_PRIO_REALTIME)
|
|
continue;
|
|
|
|
/*
|
|
* do not swapout a process waiting on a critical
|
|
* event of some kind
|
|
*/
|
|
if (((p->p_priority & 0x7f) < PSOCK) ||
|
|
(p->p_slptime <= 10))
|
|
continue;
|
|
|
|
++vm->vm_refcnt;
|
|
vm_map_reference(&vm->vm_map);
|
|
/*
|
|
* do not swapout a process that is waiting for VM
|
|
* data structures there is a possible deadlock.
|
|
*/
|
|
if (lockmgr(&vm->vm_map.lock,
|
|
LK_EXCLUSIVE | LK_NOWAIT,
|
|
(void *)0, curproc)) {
|
|
vm_map_deallocate(&vm->vm_map);
|
|
vmspace_free(vm);
|
|
continue;
|
|
}
|
|
vm_map_unlock(&vm->vm_map);
|
|
/*
|
|
* If the process has been asleep for awhile and had
|
|
* most of its pages taken away already, swap it out.
|
|
*/
|
|
swapout(p);
|
|
vm_map_deallocate(&vm->vm_map);
|
|
vmspace_free(vm);
|
|
didswap++;
|
|
goto retry;
|
|
}
|
|
}
|
|
/*
|
|
* If we swapped something out, and another process needed memory,
|
|
* then wakeup the sched process.
|
|
*/
|
|
if (didswap)
|
|
wakeup(&proc0);
|
|
}
|
|
|
|
static void
|
|
swapout(p)
|
|
register struct proc *p;
|
|
{
|
|
pmap_t pmap = &p->p_vmspace->vm_pmap;
|
|
int i;
|
|
|
|
#if defined(SWAP_DEBUG)
|
|
printf("swapping out %d\n", p->p_pid);
|
|
#endif
|
|
++p->p_stats->p_ru.ru_nswap;
|
|
/*
|
|
* remember the process resident count
|
|
*/
|
|
p->p_vmspace->vm_swrss =
|
|
p->p_vmspace->vm_pmap.pm_stats.resident_count;
|
|
|
|
(void) splhigh();
|
|
p->p_flag &= ~P_INMEM;
|
|
p->p_flag |= P_SWAPPING;
|
|
if (p->p_stat == SRUN)
|
|
remrq(p);
|
|
(void) spl0();
|
|
|
|
pmap_swapout_proc(p);
|
|
|
|
p->p_flag &= ~P_SWAPPING;
|
|
p->p_swtime = 0;
|
|
}
|
|
#endif /* !NO_SWAPPING */
|