HardenedBSD/sys/netatalk/at_control.c
Julian Elischer f3b44df01d First cut at patches to make appletalk compile again
after the dissapearance of the USRREQ() entrypoint.
1997-05-13 21:01:45 +00:00

837 lines
22 KiB
C

/*
* Copyright (c) 1990,1991 Regents of The University of Michigan.
* All Rights Reserved.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#undef s_net
#include <netinet/if_ether.h>
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/aarp.h>
#include <netatalk/phase2.h>
#include <netatalk/at_extern.h>
static int aa_dorangeroute(struct ifaddr *ifa,
u_int first, u_int last, int cmd);
static int aa_addsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask);
static int aa_delsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask);
static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask, int cmd, int flags);
static int at_scrub( struct ifnet *ifp, struct at_ifaddr *aa );
static int at_ifinit( struct ifnet *ifp, struct at_ifaddr *aa,
struct sockaddr_at *sat );
# define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
(a)->sat_family == (b)->sat_family && \
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
(a)->sat_addr.s_node == (b)->sat_addr.s_node )
int
at_control(struct socket *so, int cmd, caddr_t data,
struct ifnet *ifp, struct proc *p )
{
struct ifreq *ifr = (struct ifreq *)data;
struct sockaddr_at *sat;
struct netrange *nr;
struct at_aliasreq *ifra = (struct at_aliasreq *)data;
struct at_ifaddr *aa0;
struct at_ifaddr *aa = 0;
struct ifaddr *ifa, *ifa0;
/*
* If we have an ifp, then find the matching at_ifaddr if it exists
*/
if ( ifp ) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp ) break;
}
}
/*
* In this first switch table we are basically getting ready for
* the second one, by getting the atalk-specific things set up
* so that they start to look more similar to other protocols etc.
*/
switch ( cmd ) {
case SIOCAIFADDR:
case SIOCDIFADDR:
/*
* If we have an appletalk sockaddr, scan forward of where
* we are now on the at_ifaddr list to find one with a matching
* address on this interface.
* This may leave aa pointing to the first address on the
* NEXT interface!
*/
if ( ifra->ifra_addr.sat_family == AF_APPLETALK ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
sateqaddr( &aa->aa_addr, &ifra->ifra_addr )) {
break;
}
}
}
/*
* If we a retrying to delete an addres but didn't find such,
* then rewurn with an error
*/
if ( cmd == SIOCDIFADDR && aa == 0 ) {
return( EADDRNOTAVAIL );
}
/*FALLTHROUGH*/
case SIOCSIFADDR:
/*
* If we are not superuser, then we don't get to do these ops.
*/
if ( suser(p->p_ucred, &p->p_acflag) ) {
return( EPERM );
}
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
/*
* Look for a phase 1 address on this interface.
* This may leave aa pointing to the first address on the
* NEXT interface!
*/
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else { /* default to phase 2 */
/*
* Look for a phase 2 address on this interface.
* This may leave aa pointing to the first address on the
* NEXT interface!
*/
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( ifp == 0 )
panic( "at_control" );
/*
* If we failed to find an existing at_ifaddr entry, then we
* allocate a fresh one.
* XXX change this to use malloc
*/
if ( aa == (struct at_ifaddr *) 0 ) {
aa0 = malloc(sizeof(struct at_ifaddr), M_IFADDR, M_WAITOK);
bzero(aa0, sizeof(struct at_ifaddr));
if (( aa = at_ifaddr ) != NULL ) {
/*
* Don't let the loopback be first, since the first
* address is the machine's default address for
* binding.
* If it is, stick ourself in front, otherwise
* go to the back of the list.
*/
if ( at_ifaddr->aa_ifp->if_flags & IFF_LOOPBACK ) {
aa = aa0;
aa->aa_next = at_ifaddr;
at_ifaddr = aa;
} else {
for ( ; aa->aa_next; aa = aa->aa_next )
;
aa->aa_next = aa0;
}
} else {
at_ifaddr = aa0;
}
/*
* Don't Add a reference for the aa itself!
* I fell into this trap. IFAFREE tests for <=0
* not <= 1 like RTFREE
*/
/* aa->aa_ifa.ifa_refcnt++; DON'T DO THIS!! */
aa = aa0;
/*
* Find the end of the interface's addresses
* and link our new one on the end
*/
ifa = (struct ifaddr *)aa;
TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
/*
* Add a reference for the linking into the ifp_if_addrlist.
*/
ifa->ifa_refcnt++;
/*
* As the at_ifaddr contains the actual sockaddrs,
* and the ifaddr itself, link them al together correctly.
*/
ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr;
ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask;
/*
* Set/clear the phase 2 bit.
*/
if ( nr->nr_phase == 1 ) {
aa->aa_flags &= ~AFA_PHASE2;
} else {
aa->aa_flags |= AFA_PHASE2;
}
/*
* and link it all together
*/
aa->aa_ifp = ifp;
} else {
/*
* If we DID find one then we clobber any routes dependent on it..
*/
at_scrub( ifp, aa );
}
break;
case SIOCGIFADDR :
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
/*
* If the request is specifying phase 1, then
* only look at a phase one address
*/
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else {
/*
* default to phase 2
*/
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( aa == (struct at_ifaddr *) 0 )
return( EADDRNOTAVAIL );
break;
}
/*
* By the time this switch is run we should be able to assume that
* the "aa" pointer is valid when needed.
*/
switch ( cmd ) {
case SIOCGIFADDR:
/*
* copy the contents of the sockaddr blindly.
*/
sat = (struct sockaddr_at *)&ifr->ifr_addr;
*sat = aa->aa_addr;
/*
* and do some cleanups
*/
((struct netrange *)&sat->sat_zero)->nr_phase
= (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
((struct netrange *)&sat->sat_zero)->nr_firstnet = aa->aa_firstnet;
((struct netrange *)&sat->sat_zero)->nr_lastnet = aa->aa_lastnet;
break;
case SIOCSIFADDR:
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
case SIOCAIFADDR:
if ( sateqaddr( &ifra->ifra_addr, &aa->aa_addr )) {
return( 0 );
}
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
case SIOCDIFADDR:
/*
* scrub all routes.. didn't we just DO this? XXX yes, del it
*/
at_scrub( ifp, aa );
/*
* remove the ifaddr from the interface
*/
ifa0 = (struct ifaddr *)aa;
TAILQ_REMOVE(&ifp->if_addrhead, ifa0, ifa_link);
/*
* refs goes from 1->0 if no external refs. note..
* This will not free it ... looks for -1.
*/
IFAFREE(ifa0);
/*
* Now remove the at_ifaddr from the parallel structure
* as well, or we'd be in deep trouble
*/
aa0 = aa;
if ( aa0 == ( aa = at_ifaddr )) {
at_ifaddr = aa->aa_next;
} else {
while ( aa->aa_next && ( aa->aa_next != aa0 )) {
aa = aa->aa_next;
}
/*
* if we found it, remove it, otherwise we screwed up.
*/
if ( aa->aa_next ) {
aa->aa_next = aa0->aa_next;
} else {
panic( "at_control" );
}
}
/*
* Now dump the memory we were using.
* Decrement the reference count.
* This should probably be the last reference
* as the count will go from 0 to -1.
* (unless there is still a route referencing this)
*/
IFAFREE(ifa0);
break;
default:
if ( ifp == 0 || ifp->if_ioctl == 0 )
return( EOPNOTSUPP );
return( (*ifp->if_ioctl)( ifp, cmd, data ));
}
return( 0 );
}
/*
* Given an interface and an at_ifaddr (supposedly on that interface)
* remove any routes that depend on this.
* Why ifp is needed I'm not sure,
* as aa->at_ifaddr.ifa_ifp should be the same.
*/
static int
at_scrub( ifp, aa )
struct ifnet *ifp;
struct at_ifaddr *aa;
{
int error;
if ( aa->aa_flags & AFA_ROUTE ) {
if (ifp->if_flags & IFF_LOOPBACK) {
if (error = aa_delsingleroute(&aa->aa_ifa,
&aa->aa_addr.sat_addr,
&aa->aa_netmask.sat_addr)) {
return( error );
}
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if ((error = rtinit( &aa->aa_ifa, RTM_DELETE, RTF_HOST)) != 0)
return( error );
} else if (ifp->if_flags & IFF_BROADCAST) {
error = aa_dorangeroute(&aa->aa_ifa,
ntohs(aa->aa_firstnet),
ntohs(aa->aa_lastnet),
RTM_DELETE );
}
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
aa->aa_flags &= ~AFA_ROUTE;
}
return( 0 );
}
/*
* given an at_ifaddr,a sockaddr_at and an ifp,
* bang them all together at high speed and see what happens
*/
static int
at_ifinit( ifp, aa, sat )
struct ifnet *ifp;
struct at_ifaddr *aa;
struct sockaddr_at *sat;
{
struct netrange nr, onr;
struct sockaddr_at oldaddr;
int s = splimp(), error = 0, i, j;
int netinc, nodeinc, nnets;
u_short net;
/*
* save the old addresses in the at_ifaddr just in case we need them.
*/
oldaddr = aa->aa_addr;
onr.nr_firstnet = aa->aa_firstnet;
onr.nr_lastnet = aa->aa_lastnet;
/*
* take the address supplied as an argument, and add it to the
* at_ifnet (also given). Remember ing to update
* those parts of the at_ifaddr that need special processing
*/
bzero( AA_SAT( aa ), sizeof( struct sockaddr_at ));
bcopy( sat->sat_zero, &nr, sizeof( struct netrange ));
bcopy( sat->sat_zero, AA_SAT( aa )->sat_zero, sizeof( struct netrange ));
nnets = ntohs( nr.nr_lastnet ) - ntohs( nr.nr_firstnet ) + 1;
aa->aa_firstnet = nr.nr_firstnet;
aa->aa_lastnet = nr.nr_lastnet;
/* XXX ALC */
#if 0
printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
ifp->if_name,
ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
(aa->aa_flags & AFA_PHASE2) ? 2 : 1);
#endif
/*
* We could eliminate the need for a second phase 1 probe (post
* autoconf) if we check whether we're resetting the node. Note
* that phase 1 probes use only nodes, not net.node pairs. Under
* phase 2, both the net and node must be the same.
*/
if ( ifp->if_flags & IFF_LOOPBACK ) {
AA_SAT( aa )->sat_len = sat->sat_len;
AA_SAT( aa )->sat_family = AF_APPLETALK;
AA_SAT( aa )->sat_addr.s_net = sat->sat_addr.s_net;
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
#if 0
} else if ( fp->if_flags & IFF_POINTOPOINT) {
/* unimplemented */
/*
* we'd have to copy the dstaddr field over from the sat
* but it's not clear that it would contain the right info..
*/
#endif
} else {
/*
* We are a normal (probably ethernet) interface.
* apply the new address to the interface structures etc.
* We will probe this address on the net first, before
* applying it to ensure that it is free.. If it is not, then
* we will try a number of other randomly generated addresses
* in this net and then increment the net. etc.etc. until
* we find an unused address.
*/
aa->aa_flags |= AFA_PROBING; /* if not loopback we Must probe? */
AA_SAT( aa )->sat_len = sizeof(struct sockaddr_at);
AA_SAT( aa )->sat_family = AF_APPLETALK;
if ( aa->aa_flags & AFA_PHASE2 ) {
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
/*
* If we are phase 2, and the net was not specified
* then we select a random net within the supplied netrange.
* XXX use /dev/random?
*/
if ( nnets != 1 ) {
net = ntohs( nr.nr_firstnet ) + time.tv_sec % ( nnets - 1 );
} else {
net = ntohs( nr.nr_firstnet );
}
} else {
/*
* if a net was supplied, then check that it is within
* the netrange. If it is not then replace the old values
* and return an error
*/
if ( ntohs( sat->sat_addr.s_net ) < ntohs( nr.nr_firstnet ) ||
ntohs( sat->sat_addr.s_net ) > ntohs( nr.nr_lastnet )) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx(s);
return( EINVAL );
}
/*
* otherwise just use the new net number..
*/
net = ntohs( sat->sat_addr.s_net );
}
} else {
/*
* we must be phase one, so just use whatever we were given.
* I guess it really isn't going to be used... RIGHT?
*/
net = ntohs( sat->sat_addr.s_net );
}
/*
* set the node part of the address into the ifaddr.
* If it's not specified, be random about it...
* XXX use /dev/random?
*/
if ( sat->sat_addr.s_node == ATADDR_ANYNODE ) {
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
} else {
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
}
/*
* step through the nets in the range
* starting at the (possibly random) start point.
*/
for ( i = nnets, netinc = 1; i > 0; net = ntohs( nr.nr_firstnet ) +
(( net - ntohs( nr.nr_firstnet ) + netinc ) % nnets ), i-- ) {
AA_SAT( aa )->sat_addr.s_net = htons( net );
/*
* using a rather strange stepping method,
* stagger through the possible node addresses
* Once again, starting at the (possibly random)
* initial node address.
*/
for ( j = 0, nodeinc = time.tv_sec | 1; j < 256;
j++, AA_SAT( aa )->sat_addr.s_node += nodeinc ) {
if ( AA_SAT( aa )->sat_addr.s_node > 253 ||
AA_SAT( aa )->sat_addr.s_node < 1 ) {
continue;
}
aa->aa_probcnt = 10;
/*
* start off the probes as an asynchronous activity.
* though why wait 200mSec?
*/
timeout( aarpprobe, (caddr_t)ifp, hz / 5 );
if ( tsleep( aa, PPAUSE|PCATCH, "at_ifinit", 0 )) {
/*
* theoretically we shouldn't time out here
* so if we returned with an error..
*/
printf( "at_ifinit: why did this happen?!\n" );
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( EINTR );
}
/*
* The async activity should have woken us up.
* We need to see if it was successful in finding
* a free spot, or if we need to iterate to the next
* address to try.
*/
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
}
/*
* of course we need to break out through two loops...
*/
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
/* reset node for next network */
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
}
/*
* if we are still trying to probe, then we have finished all
* the possible addresses, so we need to give up
*/
if ( aa->aa_flags & AFA_PROBING ) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( EADDRINUSE );
}
}
/*
* Now that we have selected an address, we need to tell the interface
* about it, just in case it needs to adjust something.
*/
if ( ifp->if_ioctl &&
( error = (*ifp->if_ioctl)( ifp, SIOCSIFADDR, (caddr_t)aa ))) {
/*
* of course this could mean that it objects violently
* so if it does, we back out again..
*/
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( error );
}
/*
* set up the netmask part of the at_ifaddr
* and point the appropriate pointer in the ifaddr to it.
* probably pointless, but what the heck.. XXX
*/
bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
aa->aa_netmask.sat_family = AF_APPLETALK;
aa->aa_netmask.sat_addr.s_net = 0xffff;
aa->aa_netmask.sat_addr.s_node = 0;
aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */
/*
* Initialize broadcast (or remote p2p) address
*/
bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
aa->aa_broadaddr.sat_family = AF_APPLETALK;
aa->aa_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
aa->aa_broadaddr.sat_addr.s_net = htons(0);
aa->aa_broadaddr.sat_addr.s_node = 0xff;
aa->aa_ifa.ifa_broadaddr = (struct sockaddr *) &aa->aa_broadaddr;
/* add the range of routes needed */
error = aa_dorangeroute(&aa->aa_ifa,
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD );
}
else if (ifp->if_flags & IFF_POINTOPOINT) {
struct at_addr rtaddr, rtmask;
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
/* fill in the far end if we know it here XXX */
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr;
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
}
else if ( ifp->if_flags & IFF_LOOPBACK ) {
struct at_addr rtaddr, rtmask;
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
rtaddr.s_net = AA_SAT( aa )->sat_addr.s_net;
rtaddr.s_node = AA_SAT( aa )->sat_addr.s_node;
rtmask.s_net = 0xffff;
rtmask.s_node = 0x0; /* XXX should not be so.. should be HOST route */
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
}
/*
* of course if we can't add these routes we back out, but it's getting
* risky by now XXX
*/
if ( error ) {
at_scrub( ifp, aa );
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( error );
}
/*
* note that the address has a route associated with it....
*/
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
aa->aa_flags |= AFA_ROUTE;
splx( s );
return( 0 );
}
/*
* check whether a given address is a broadcast address for us..
*/
int
at_broadcast( sat )
struct sockaddr_at *sat;
{
struct at_ifaddr *aa;
/*
* If the node is not right, it can't be a broadcast
*/
if ( sat->sat_addr.s_node != ATADDR_BCAST ) {
return( 0 );
}
/*
* If the node was right then if the net is right, it's a broadcast
*/
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
return( 1 );
}
/*
* failing that, if the net is one we have, it's a broadcast as well.
*/
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if (( aa->aa_ifp->if_flags & IFF_BROADCAST )
&& ( ntohs( sat->sat_addr.s_net ) >= ntohs( aa->aa_firstnet )
&& ntohs( sat->sat_addr.s_net ) <= ntohs( aa->aa_lastnet ))) {
return( 1 );
}
}
return( 0 );
}
/*
* aa_dorangeroute()
*
* Add a route for a range of networks from bot to top - 1.
* Algorithm:
*
* Split the range into two subranges such that the middle
* of the two ranges is the point where the highest bit of difference
* between the two addresses, makes it's transition
* Each of the upper and lower ranges might not exist, or might be
* representable by 1 or more netmasks. In addition, if both
* ranges can be represented by the same netmask, then teh can be merged
* by using the next higher netmask..
*/
static int
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
{
u_int mask1;
struct at_addr addr;
struct at_addr mask;
int error;
/*
* slight sanity check
*/
if (bot > top) return (EINVAL);
addr.s_node = 0;
mask.s_node = 0;
/*
* just start out with the lowest boundary
* and keep extending the mask till it's too big.
*/
while (bot <= top) {
mask1 = 1;
while ((( bot & ~mask1) >= bot)
&& (( bot | mask1) <= top)) {
mask1 <<= 1;
mask1 |= 1;
}
mask1 >>= 1;
mask.s_net = htons(~mask1);
addr.s_net = htons(bot);
if(cmd == RTM_ADD) {
error = aa_addsingleroute(ifa,&addr,&mask);
if (error) {
/* XXX clean up? */
return (error);
}
} else {
error = aa_delsingleroute(ifa,&addr,&mask);
}
bot = (bot | mask1) + 1;
}
return 0;
}
static int
aa_addsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask)
{
int error;
#if 0
printf("aa_addsingleroute: %x.%x mask %x.%x ...\n",
ntohs(addr->s_net), addr->s_node,
ntohs(mask->s_net), mask->s_node);
#endif
error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
if (error)
printf("aa_addsingleroute: error %d\n", error);
return(error);
}
static int
aa_delsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask)
{
int error;
error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
if (error)
printf("aa_delsingleroute: error %d\n", error);
return(error);
}
static int
aa_dosingleroute(struct ifaddr *ifa,
struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags)
{
struct sockaddr_at addr, mask;
bzero(&addr, sizeof(addr));
bzero(&mask, sizeof(mask));
addr.sat_family = AF_APPLETALK;
addr.sat_len = sizeof(struct sockaddr_at);
addr.sat_addr.s_net = at_addr->s_net;
addr.sat_addr.s_node = at_addr->s_node;
mask.sat_family = AF_APPLETALK;
mask.sat_len = sizeof(struct sockaddr_at);
mask.sat_addr.s_net = at_mask->s_net;
mask.sat_addr.s_node = at_mask->s_node;
if (at_mask->s_node)
flags |= RTF_HOST;
return(rtrequest(cmd, (struct sockaddr *) &addr,
(flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr),
(struct sockaddr *) &mask, flags, NULL));
}
#if 0
static void
aa_clean(void)
{
struct at_ifaddr *aa;
struct ifaddr *ifa;
struct ifnet *ifp;
while ( aa = at_ifaddr ) {
ifp = aa->aa_ifp;
at_scrub( ifp, aa );
at_ifaddr = aa->aa_next;
if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) {
ifp->if_addrlist = ifa->ifa_next;
} else {
while ( ifa->ifa_next &&
( ifa->ifa_next != (struct ifaddr *)aa )) {
ifa = ifa->ifa_next;
}
if ( ifa->ifa_next ) {
ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next;
} else {
panic( "at_entry" );
}
}
}
}
#endif